GEOLOGICAL SOCIETY OF LONDON.

The following communication was read:-
"On the Geological Structure of the North of Scotland and the "On the Geological Structure of the North of Scotland and the
Orkney and Shetland Islands." Part II. By Sir R. I. Murchison, Orkney and shet
F.R.S., V.P.G.S.
In a paper read during the last session (see "Abstracts," No. 10 , therthern Highlands, as observed by Mr. Peach and himself, aided by the researches of some other geologists.
The rocks were described in their ascending order, as, first, a fundamental gneiss traversed by granite veins at Cape Wrath;
secondly, a red or chocolate-coloured sandstone and conglomerate, of great thickness, and regarded by the author as of Cambrian age ; thirdly, succeeding unconformably, is a series of quartzite, with
intercalated limestone, both of them often highly crystalline intercalated limestone, both . of them often highly crystalline ;
from the limestone Mr. C. Peach had succeeded in obtaining, near Durness," age ; fourthly, micaceous schists and flagstones occuper Silurian age ; fourthy, micaceous schists and flagstones occupying a wide
extent of country to the east of Loch Eriboll, described as being of extent of country to the east of Loch Eribol, described as beeng of
younger age than the foregoing, and older than the old red sand-
tone series which occupies the north -eastern Highlands, and a stone series which occupies the north-eastern Highlands, and a
great portion of the eastern coast of Scotland ; fifthly, the old red series, arranged by the author into three divisions, the middle being the Caithness flags.
in the past autumn Sir Roderick, feeling that several points required stricter examination, revisited the country already described,
extending his researches both east and west, and to the most extending his researches both e
northerly point of the Shetlands.
In this tour he not only confirmed his views previously examined the structure of the Orkneys and Shetlands, moreclearly defining the relations and physical characters of the beds there composing the old red series.
The present memoir com tions: and Sir Roderick acknowled ged the aid he had derived from Mr. Peach (who accompanied him throughout the journey), Mr. previous memoirs of Mr. Cunningham and Hugh Miller on Sutherland, ac., and Dr. Hibbert on the Shetland Islands.

1. The evidence obtained at various points, that the Lower Si-
lurian limestone is intercalated in quartz-rock (east of Loch Eriboll, Assynt, \&c.).
2. That the Durness limestone lies in
quartz-rock on the east as well as on the w quartz-rock on the east as well as on the west.
3. That certain igneous rocks, connected wi 3. That certain igheous rocks, connected with the Durness t.
are protruded near Smo, which had not before been noticed. are protruded near Smo, which had not before been noticed
4. On this occasion corroborative evidence was adduced conformable superposition of the micaceous schists or or gneissose
flag-stones to the quartzite series-the succession being visible flag-stones to the quartzite series-the succession being visible
at intervals in all the intermediate country between Loch Eriboll and Ledmore, and the passage e pwards from the quartzite, and
their associated limestones into the schists and micaceous flags being both clear and persistent, with some local interruptions only of igneous rocks.
s.c., That the protrusion of porphyry, hypersthene, greenstone,
peculiar to any one line, but occurs in the purple or Cambrian sandstone, in the overlying Silurian limestone of
Durness, and again in the still highter micaceous flag-stones; and old gneiss. derick pointed out the extension of the middle set of deposits,
namely, the Caithness flags, their great thickness in Caithness namely, the Caithness flags, their great thickness in Caithness
compared with their development in the south, and their range over the Orkneys into the Shetlands, where they yalso thin out, put-
ting on a somewhat different lithological character, and where the ting on a somewhat different lithological character, and where the
old sed series is chiefly reppesented by sandstones the upper part
containing plants
He dwelt upon the great value of the Caithness containing plants. He dwelt upon the great value of the Caithness
flags as paving-stones, their extraordinary durability beind flags as paving-stones, their extraordinary durability beeing due to
a certain admixture of lime and bitumen (the latter derived from
fossil fishes) with silica and alumina, whilst in some parts. fossil fishes) with silica and alumina, whilst in some parts they
contain bitumen enough to render them of economic value. The contain bitumen enough to render them of economic value. The
author next pointed out the passage of the Ciathness flags upwards
into light-coloured sandstones, which eventually form the great headlands of Dunnet and Hoy, where such overlying sandstones
cannot be of less thickness thati $1,200 \mathrm{ft}$ to $1,500 \mathrm{ft}$. With regard to the micaceous rocks of the northeast of Scot-
land and the Shetland Isles, they are, according to the author, land and the Shetland Isles, they are, according to the author,
portions of the series which is younger than the fossiliferous lower portions of the series which is younger than the fossiliferous lower
Silurian rocks of the west of Sutherland-socalled gneiss of the
Sutors of Cromarty belonging, in Sir Roderick's opinion, to the Sutors of Cromarty belonging, in Sir Roderich's opinion, to the
micaceous flag series of eastern Ross-shire; and the gneissic rock
extending southards micaceous nag series of eastern oss-sine; and
extending southwards to Flowerburn, Kinordy and Rosemarkie,
near Forrose, is regarded by him as a member of that series, near Fortrose, is regarded by him as a member of that series,
altered by the intrusion of granitic and felpathic rocks.
The paper was illustrated by a large series of rocks and fossils The paper was illustrated by a large series of rocks and fossils
collected during the author's last tour, and by geological maps
and coloured views and sections and coloured views and sections.
Papers to be readd at the next E 1. On the Old Red Sandstone of EIgin and its neighbourhood." By Sir R. I. Murchison, V.P.G.S.
5. "On some Reptilian Remains from the Sandstone of Elgin."

2y Professor Huxley, F.G. S. | December 15, 1558. |
| :---: |

The Rev. J. H. Austen, Ensbury, Dorset; the Rev. Alexander Maclennan, M.A., Rectory, Newington Butts, Surrey; John Sharp,
Esc., of the Inner Temple, Barrister-at-Law, Tunbridge Wells;
Henry Christy Esq. Panll, Esq., Moor-master, Aldstone, Cumberland, were elected Fellows. The following communications were read :-
The "On the Succession of Rocks in the Northern Highlands."

1. "On
By John Miller, Esq. Communicated by Sir R. I. Murchison, I. "On the succession of Rocks in the Northern Highlands."
By Jhn Miller, Esq. Communicated by Sir R. I. Murchison,
V.P.G.S. Mr. Miller in this communication explained the history of our
nowledge of the geology of this district ; and, having given in detail knowledge of the geology of this district ; and, having given in detail
an examination that he made of the coast last autumn, he drew
particular attention to the faithful and comprehensive descriptions particular attention to the faithful and comprehensive descriptions
of the old red district by Sedgwick aud Murchison in former years, and showed that his own observations quite coincide with
the results of Sir Roderick Murchison's late correlation of the Geissic, Cambrian, Sillurian, and old red strata of the coasts of
Sutherland, Rosss-shire and Caithness.
In conclusion, Mr. Miller pointed out that the Durness Lime. In conclusion, Mr. Miller pointed out that the Durness Lime.
stone and the fossiliferous bed3 of Caithness were still open fields for careful and energetic explorers.
Part III. The Sandstones of Morayshire, containing Reptilian re mains, shown to belong to the Uppermost Division of the Old Red
Sandstone." By Sir Roderick I. Murchison, F.R.S., D.C.L., .P.G.S., \&c.
Referring to his previous memoir for an account of the triple division of the old red sandstone of Caithness and the Orkney
Islands, the author showed how the chief member of the group in
those tracts diminished in its range southwards into Ross-shire, and
how to be recognised in Morayshire, but reappeared with its char teristic ichenhyolites in Banfflshire, (Dipple, Tynet, and Gamria).
He then prefaced his description of the ascending orde He then prefaced his description of the ascending order of
the strata belonging to this group in Morayshire by a sketch of the successive labours of geologists in that district; point-
ing out how in 1828 the sandstones and cornstones of this constitute, toen sher with Professor Sedgwick and himself to glomerate, one natural geological assemblage ; that in 1839 the Llomerate, one natural geological assemblage; that in 1839 the
late Dr Malcomeson made the important additional discovery of fossil fishes, in conjunction with Lady Gordon Cumming, and also read a valuable memoir on the structure of the tract, before the Geological Society, of which, to his, the author's regret, an abstract only had been published. (Proc. Geol. Soc. vol. iii. . . . 141.)
Sir Roderick revisited the district in the autumn of 1840, Sir Roderick revisited the district in the autumn of 1840, and
made sections in the environs of Forres and Elgin. Subsequently Mr. P. Duff, of Elgin, published a "Sketch of the Geology of Moray," with illustrative plates of fossil fishes, sections, and a geo-
logical map by Mr. John Martin; and afterwards Mr. Alexander Robertson threw much light upon the structure of the district, Robertson threw mach light upon the structure of the district,
particularly as regarded deposits younger than those under conparticulation.
All these writers, as well as Sedgwick and himself, had grouped the yellow and whitish yellow sandstones of Elgin with the old red
sandstone ; but the discovery in them of the curious small reptile, the Telerpeton Elginense, described by Mantell in 1851 ,from a specimen in Mr. P. Duff's collection, first occasioned doubts to raise re-
specting the age of the deposit. Still the sections by Captain Brickspecting the age of the deposit. Still the sections by Captain Brickenden, who sent that reptile up to London, proved that it had been
found in a sandstone which dipped under "Cornstone," and which passed downwards into the old red series. Captain Brickenden
paster also sent to London natural impressions of the foot-prints of an apparently reptilian animal in a slab of similar sandstone, from (Cammingstone)
Althougl adhering to his original view respecting the age of the and doubts, in common with could not avoid having misgivings high grade of reptile to which the Telerpeton belonged; and hence he revisited the tract, examining the critical points, in com-
pany with his friend the Rev. G. Gordon, to whose zealous labours pany with his friend the Rev. G. Gordon, to
he owned himself to be greatly indebted.
Elgin, and of Mr. P. Duff, he was much stre public museum of ance of several undescribed fossils, apparently belonging to reptiles, which, by the liberality of their possessors, were, at his request, sent up for inspection to the Museum of Practical Geology. He
was al so much astonished at the state of preservation of a large was also much astonished at the state of preservation of a large
bone (ischium), apparently belonging to a reptile, found by Mr.
Martin in the same sandstone quarries of Lossiemouth, in which the scales or scutes of the Stagonolepis, described as belonging to a fish by Agassiz, had been found. On visiting these quaries, same animal ; and these, having been compared with the remains that, with the exception of the Telerpeton, all these casts, scales and bones, belong to the reptile Stagonolepis Robertsoni.
Sir Roderick, having visited the quarries in the coast-ridge, from which slabs with impressions of reptilian footmarks had long
been oblained, induced Mr. G. Gordon to transmit a variety these, which are now in the Museum of Practical Geology ; and of which some were exhibited at the meeting.
After reviewing the whoie succession of strata from the edge of
the crystalline rocks in the interior to the bold cliffs on the seacoast, the author has satisfied himself that the reptile-bearing sand stones must be considered to form the uppermost portion of the
old red sandstone, or Devonian group,--the following being among the chief reasons for his adherence to this view :dip as the inferior red sandstones containing Holoptychii and other old red ichthyylites, there being a perfect conformity
between the two rocks, and a hradual passage from the one into between the two rocks, and a gradual passage from the one int
the other. 2 ndly. That the yellow and light colours of the upper
baid are seen in natural sections to occur and alternate with red band are seen in natural sections to occur and alternate with red
and green sandstones, marls, and conglomerates low down in the and green sandstones, marrs, and conglomerates low down in the
ichthyolitic series. 3rdy. That, whilst the concretionary limered and green conglomerates, they reappear in a younger and red and green conglomerates, they reappear in a younger and
broader zone at Elgin, and reoccur above the Telerpeton sandstone of Spynie Hill, and above the Stagonolepis sandstone of group. 4thly. That, whilst the small patches of, so-called
"Wealden". or oolitic strata, described by Mr. Robertson and others as occurring in this district, are wholly unconformable to, and rest upon, the eroded surfaces of all the rocks under consideration, so it was shown that none of the oolitic or liassic rocks of
the opposite side of the Moray Frith, or those of Brora, Dunrobin, the opposite side of the Moray Frith, or those of Brora, Dunrobin,
Ethie, \&ce., which are charged with oolitic and liassic remains, Eresemble the reptiliferous sandstones and "Cornstones" of Elgin, or their repetitions in the coast-ridge, that extend from Burgh
Head to Lossiemouth. Fully
Fully aware of the great difficulty of determining the exact
boundary-line between the uppermost Devonian and lowest car boniferous strata, and knowing that they pass into each other in many countries, the author stated that no one could dogmatically assert that the reptile-bearing sandstones might not, by future re-
searches, be proved to form the commencement of the younger
Sir Roderick concluded by stating that the conversion of the Stagonolepis into a reptile of high organisation, though of nonde-
script characters, did not interfere with this long-cherished opinion -founded on acknowedged facts-as the the progressive succestrilobite of the invertebrate lower Silurian era was as wonderfully
organised as any living crustacean, so it did not unsettle his belief organised as any living crustacean, so it did not unsettle his belief
to find that the earliest reptiles yet recognised, the Stagonolepis and Terlepeton, pertained to a high order of that class.
[The memoir was illustrated by geologically-coloured charts of the Admiralty's Hydrographic Survey of the Coast extending from
the Orkney Islands to Banffishire (which, in the want of any accu-
rate maps, fortunately pives the outlines of the coast and miles inland), and by transverse sections showing the succession and relations of the strata; ; also by numerous organic remains
from the collections of Mr. P. Duff, Mr. Gordon, he Elgin Museum, the Museum of Practical Geology, and the Geological
Society's Museum.] Society's Museum.]
3.f
and on the Foot-marks in the Sandstoues of Cummingstone," By Thomas H. Huxley, F.R.S.," F.G.S., Professor of Nat. Hist.,
Government School of Mines. The unquestion
The unquestionable remains of Stagonolepis Robertsoni which have entherto been obtained consist partly of bones and dermal
scutes, and partly of the natural casts of such parts. The former scutes, and partly of the natural casts of such parts. The former
have been obtained only at Lossiemouth, and are comparatively
few in number; the numerous natural casts, on the other hand,
have all been procured at the Findrassie Quarry, in which no bones or scutes, in their uriginal condition, have been discovered. The considerable series of remains exhivited to the society did not embrace all those which had been subjected to examination, but contained only a selection of those more characteristic parts
upon which the conclusions of the author of the paper, respecting upon which the conclusions of the author of the paper, respecting They were-1. Dermal scutes ; 2. Vertebra ; 3. Ribs ; 4. Bones of the extremities; 5 . Bones of the pectoral arch; and 6.A natural terised by an anterior smeoth facet, overlapped by the preceding scute, and by the peculiar sculpture of their outer surface, which exhibits deep, distinct, round or oval pits, so arranged as to appear kinds, the flat and the angulated. By a careful comparison with the dermal armour of ancient and modern crocodilian reptiles, it was shown that every peculiarity of the scutes of Stagonolepis
could find its parallel in those of Crocodilus or Teleosaurus, - the could find its parallel in those of Crocodilus or Teleosaurus, - the
flat scutes resembling the ventral armour of the latter, the angulated scutes the dorsal armour of the former genus.
lated scutes the dorsal armour of the former genus.
An unexpected verification of the justice of this determination caudal rexion by a natural cast of a considerable portion of the vertebræ, enclosed within the corresponding series of dermal scutes. Of these. the dorsal set were angulated ; the ventral, flat
It would appear that the anterior dorsal scutes attained a very taining more than five whines ine posterior scutes were widest, atvertebræ described were all studied from natural casts, and belonged to the caudal, sacral, and anterior-dorsal series. These surians-the obliquity of the tricular, fices of the of Teleo racteristic of the vertebræ of Stagonolepis, being, as the author of the paper pointed out, a very common character of Teleosaurian, and even of modern crocodilian, vertebre. Of the sacral vertebrx, only a natural cast of the posterior face of the second had been
obtained; but it was sufficient to demonstrate the wholly crocodilian characters of this region in Stagonotepis.
The dorsal vertebre present a remarkable peculiarity in the strong upward, outward, and backward inclination of the trans-
verse processes, and in the size of the facet for the head of the verse processes, and in the size of the facet for the head of the
rib. The vertebra thus acquires a Dinosaurian character ; but no great weight was attached to this circumstance, as the anour of upward inclination of the transverse processes of the anterior
dorsal vertebra varies greatly in both Crocodilia and Ena-
liosauria.
The ribs have well-marked and distinct capitula and tuberand the scapula is extremely like that of a crocodile. The though its articularewat exices in proportion to its lengl, and, appearance as to lead to the belief that they were covered with
thick cartilaginous epiphyses, is also completely cwocodilian in its
The natural cast of the mandible is remarkable for the great length and subcylindrical contour of the teeth, the apices of which numerous close-set longitudinal grooves, which all terminate at short distance from the smooth apex. It would appear that the teeth contained large pulp-cavities, and that each was set in a deep
and distinct alveolus. Notwithstanding their special peculiarities, these teeth might in many respects be compared with those of the Teleosauria.
A metatarsal or metacarpal bone reproduced from a natural cast Was shown to be similar to that of a crocodile, but so much shorter in proportion to its thickness as to indicate an altogether
shorter and broader foot. The cast of an ungual phalanx, on the other hand, proves that Stagonolepis had long and taper claws.
Thus far the resemblances with the Crocodilia are, on the whole mouth cose ; but She characters of a coacoidobiand codilia. It is, in fact, a lacertian coracoid, very similar to that of

In summing up the evidence thus brought forward as to the affinities of stagonolepis, the author, after comparing it with the oldest known Reptilia, expressed his opinion that the peculiar characters of this ancient reptile separate it as widely from the
mesozoic Reptilia hitherto discovered, as these are separated from mesozoic Reptilia hitherto discovered, as these are separated from
the cainozoic members of the same group -in fact, it widely clear light
The footens from
The footsteps from the Cummingstone quarries were next described. The largest yet seen by the author are eight or nine expressed his opinion that all the tracks which he had seen wey referable to variously-sized individuals of one and the same species of reptile; and he described at length the only perfect foot. The inpressserved, the one of a fore, the other of a hin palmar depression, ending in five digits, of which the innermost, representing the thumb, was very broad and short. Each of the
outer digits was tefminated by a long and tapering claw; and there were clear traces of a web-like membrane uniting thes digits as far forwards as the bases of the ungual phalanges
The innermost digit or thumb is directed inwards as well as forwards, and appears to have been provided with a thick, short, and much curved nail.

The impression of the hind foot is smaller than that of the fore only four digits, all terminating gencral resemblance. wited by web. There are indications of a rudimentary outer toe. In one track, where the impression of the fore-foot measured three inches,

The impressions might very well have been made by such an animal as Stagonolepis, with the ungual phalanges of which, in-
deed, the claw-marks of the footsteps present a close resemblance deed, the claw-marks of the footsteps present a close resemblance,
while the shortness and breadth of the palmar and plantar impressions harmonise very well with the proportions of the metaIn the course of his rem
is arthor took occasion to express Gordon for their zealous and most efficient aid, without which it would have been quite impossible for him to lay so complete a case before the society
[This paper was illustrated by original sketches, and by a fine
series of tracks from Cummingstone, and of natural and artificial casts and models of the remains of the Stagnolepis (including the specimen originally figured), from the collections of Mr. P. Duff, the Rev. G. Gordon, the Museum of Practical Geology, \&c.]
4. "On Fossil Foot-prints in the Old Red Sandstune, at Cummingstone"" By S. H. Beckles, Esq. F.G S.
Mr. Beckles, during a late tour through
Mr. Beckles, during a late tour through the Highlands, examined
the sandstone quarries the sandstone quarries at Covesea, near Elgin; and, having exposed
and removed several square yards of the sandstone slabs fossil foot-prints al this place, has sent a large collcction of them fossil foot-prints at this pace, has sent a large collction of them
to London, but has not yet had the epportunity of stadying them
in detail. Mr. Beckles says that he has secured several varieties
of footsteps, differing in size and form, and in the number of the elaws, which vary apparently from two to five. One foot-print, of a circular shape, measured 15 in. in breadth. Some of the smaller foot-prints are evidently formed by young individuals of the same species that made some of the larger marks. Some of the print
have been left, in the author's opinion, by web footed animals. have been left, in the author's opimion, by web footed animals.
Most of the surface-planes of the rock, at different levels, bear foot-marks. The majority of the tracks, Mr. Beckles says, ar
uniserial, the double (or quadrupedal) series beeing exceptional. Mr. Beckles noticed also impressions of rain-prints, well marked on some of the surface-planes, and indicati
tion of the wind blowing at the time of the rain-fall.

ROYAL GEOGRAPHICAL SOCIETY.

A VERY full meeting of this society was held on Monday evening, at Bur
chair.
The papers read were :-1. "Notes on the Zambesi Expedition,
from the journal of Mr. Thomas Baines. from the journal of Mr. Thomas Baines, F.R.G.S.,", communicated
by Dr. Livingstone, F.R.G.S. Prior to the reading of Mr. Baines journal, the President introduced the subject with extracts from a letter addressed to him by Dr. Livingstone, describing his enthu-
siastic reception by the natives, the companions of his former
journey, journey, whose numbers had been reduced by sickness. and men-
tioning the general condition of the people and their treatment the Portuguese authorities. The existing relations between the natives and the Portuguese were represented as being still unsatis-
factory the English name, however, won a pasport with the natives. The Doctor states that good coal was met with, some of which was
taken on board, and answered well. in the absence of this coal lignum vitxa and other yaluable hard woods were constmed as
fuel. The Doctor concludes by expressing his satisfaction with fuel. The Doctor concludes by expressing his satisfaction with
the conduct of the members of the expedit on. Portions of Mr. Baines' journal, which minutely details the proceedings of the
exploring party from the commencenent, were then read. He exploring party rom the commencement, were then read. He
alludes to the diftecultis encountered in navigating the
river from the rocks and want of water, and he mentions river from the rocks and want of water, and he mentions
the various astronorical and meteorological observations
which had been made, the character of the country passed which had been made, the character of the country passed
through. its climate, physical features, and other informa-
tion. The paper gave rise to an animated discussion. Mr. Macgregor Laird, having been cailed upon, explained the reason of the
slow rate of sped of the steam launch, which had been attributing it entirely to the fact of so light a vessel being too heavily laceno, and remarked that, as she was only intended to draw
six inches of water, if the weight she had to carry doubled or trebled that, her speed would naturally be diminished in propotion.
He then, as well as Mr. Lyons MLLeod, who has recently returned strongly io favour of whe vegetable produets of the country in the
vicinity of the Zambesi. vicinity of the Zambesi. Mr. Crawfurd dissented from Mr.
M'Leod in these views, which were confrmed by Mr. Macqueen and Colonel Sykes, who expressed a hope that Dr. Livingstone's
expedition would prove successful, and said that he had no doubt that the accounts given of the fertility of the coun $\mathbf{r}_{\boldsymbol{j}}$ were quite
"Account of the Lake Yojoa, or Taulebé, in Honduras,
tral America," by Mr. E. G. Squier, of the United States. Central America," by Mr. E. G. Squier, of the United States,
After commenting upon the lakes of Central America eneneally, although twenty-five miles in length and eight in breadsh that, average depth of between eighteen and twenty feet, Lake Yoonoa of Baily, published in 1850 , and in this it is repreeented as having five outlets, all open, instead of ten, with only one open, the others
being subterranean. Itisdistant, ina directline, about forty miles from the coast, being situated about midway a cross the Isthmus, between mountains averaging $5,000 \mathrm{ft}$. and $6,00 \mathrm{ft}$. elevation above
the ocean, and $3,000 \mathrm{ft}$ above the waters of the lake itself, which
is cloesly h, is closely shut in by them. It occupies the centre of one of those
singular terrestrial basins, of which Honduras offers many examples, which are formed by the contortions of the mountain systen of selves, sometimes desceribing almost circles, and enclosing plains of
varied extent and height. Into these the waters are collected, often varied extent and height. Into these the waters are collected, often
forming considerable rivers, which wind away to the sea through forming considerable rivers, which wind away to the sea through
the narrow valleys. A ap of Honduras, exhibiting the mountain
chain as broken up in wainus chain as broken up in various directions, through which chasms
the line for the Itteroceanic Railway was traced, was suspended.
The sumnitit level would ascent to that poont, and the gradients would not be steeper than
60 ft . in a mile, which is much less than many of the most im portant railways in the United States. The chairman, the author, Mr. Hamilton, and Mr. Moore, spoke with reference to the physical
features of the lake, and the advantages presented by the line of features of the lake, and the advantages presented by the line of
route indicated for a railway; and the meeting adjourned to the 2 thi of January, when the paper on Mexico, by Mr. Sevin, will be
read.
The friends of Captains Buen East Africa, will be glaid to hear that those gallant oxpecitition to have succeeded, after the most trying efforts, in reaching and surveying
the great lake of the interior, and are on their return to Zanzibar.

Tie Electric Telegiaphin the United States.-On the 1st of January there will be, for all practical business purposes, a com-
plete uniou of interests between the telegraph companies whicl, with tieir connecting side lines, embrace eglaph the wiress in the thitlantic
States and tritish provinces exceting the south, or union line,
namely:-The New York sewfound

 the trial of reaping machines next year. The date has met yet been
fixed. A sum of 30,000 francs lass been voted by the society for dis-
tribution in one or two prizes, and to defray the expenses connected

MANCHESTER LITERARY AND PHILOSOPHICAL SOCIETY.
December 28, 1858.
W. Fatrdatry, Esq., F.R.S., \&c., President, in the Chair. AT the commencement of the business of the meeting the President stated hat it was his painful duty to announce a loss which the
society had sustained in the sudden and unexpe ted death of their friend and colleague, the late Rev. Henry Halford Jones, M.A., F.R.A.S., \&ce. This lamentable occurrence took place on the
morning of the 21 st inst., and in Mr. Jones's death the society has lost an intelligent and efficient member. For upwards of twenty
years he took an active part in the business of the society. He years he took an active part in the business of the society. He
served the office of honorary secretary from two to three years, in conjunction with Dr. Angus Smith; and on every occasion Mr.
Jones, as an ardent lover of science, faithfully and honestly discharged the duties of that oficice. His scientific attainments, and varied knowledge in literature, enabled him to take an active part willing to assist in any pursuit, having for its object the advancewilhng to assist in any pursuit, having for its object the adv
ment and prosperity of the institution to which he belonged.
In astronomy Mr . In astronomy Mr. Jones was no pretender ; on the contrary, he
was an accurate observer; and his knowledge of mathematics, united to a mind possessing powers of generalisation, rendered him an instructive and, at the same time, an agreeable associate and companion.
As a me
As a member of the society he was always alive and always
attentive to its proceedings; and his love of science strict interity attentive to its proceedings; and his love of science, strict integrity
of character, and other acquirements, rendered him a powerful advocate in every department of mental progress.
It was moved by the President, seconded by Mr. Buchan, and unanimously resolved, "That this society has heard with deep regret
of the sudden death of the Rev. H. H. Jones, F.R.A.S., and desires to record its high appreciation of his services as one of the honorary secretaries and as a member of the council of the society for many
years ; and that this expression of condolence on their sudden and painful, bereavement be conveyed to Mr. Jones's widow and
family., Mr. Binney brought
brooches and ornaments.
brooches and ornaments.
"Mr. F. M. Jennings, M.R.I.A., F. G.S., some time singren
in Morocco. Whilst there he collected a series of brooches and ornaments in common use in that country. These are very similar in the Muspum of the Royal Irish Academy, and are, in the opinion of the author, another evidence of the trade anciently existing
between the Phenicians, their colonies, and Ireland. The drawings between the Phenicians, their colonies, and Ireland. The drawings
exhibited show the African and Irish ornaments. On showing these drawings to Mr. Charles James Julote, a Manchester gentle-
man, who has resided in Morocoo, he says the brooches seen by man, who has resided in Morocco, he says the broches seen by
Mr. Jennings in Morocco, and ornaments with simila designs, are not uncommon in Algeria and Morocco; they are made by
Moorish and Jewish wormmen. All he designs I Ihave seen in those countries, which are acknowledged as Moorish, have reference to some geometrical figure. Then, in the designs which may be con-
sidered Christian, some have waving lines with branches, others These reference to the cross, like rig. 1 of Mr. Jennings' drawings
These designs may be traced to Christian workmen (Spaniards Portuguese, Italians, and Maltese) who have, from time immethem have adopted the manners and religion. have a distinct language, which I have heard somewhat resembles the Irish. They used to keep up an intimate relation with the
Canary Islands. They say their reiigion is mere Christian than Mahomedan. This statement should be received with doubt When the Portuguese were driven from the coast many who had narried remained in the country and professed Islamism. the jealousy of the Moors, are an active, intelligent class, sometimes employed by European settlers as trusty servants, and very seldom a buse the confidence placed in their fidelity. They are the we read; and they are the carriers to Wednoor Mogador. I believe if we could induce the Emperor to allow us to trade to Agadeer, a large and valuable trade from that place to Senegal and Timbuctoo might be carried on. At present it is not safe to enter the country."
Mir. T. T. Wilkinson, F.R.A S., laid before the meeting a selec. tion of Geometrical Investigntions, from the papers of the late Mr. Henry Buckley, Wood House, Delph. He stated that Mr Buckley was a pupil of the late Mr. John Butterworth, of Haggate, near oidham, and was peculiarly distinguished for his knowledge laid before the meeting were several relating to the properties of bisectant axere, and their application to the solution of problems Others related to porisms, loci, tangencies, sections of ratio, \&ce., all of which had important bearings upon the principal sub-
jects of interest amongst the ancient geometricians. died in July, 1856, and might almost be considered as the last of
dient the Oldham group of self-taught mathematicians. He corresponded in his Diary, the York Courant, and the Educational Times, both in his own name and under several assumed signatures. Since his
death, Mrs. Buckley had consigned the MSS. to the care of Mr.
Widh the President, he promised to make a selection of the suggestion of ing of these geometrical speculations, and offer them to the notice A paper by Mr. Morris was read, entitied, "On the Practicability by employing a Revolving Conical Bow to work a Stern Propeller., "The
"The proposed improvement consists in substituting for the lower or submerged pat of the bow of a vessel, a core hxxed upon
a moveable shaft. The cone is surrounded by spiral flanges, so disposed that the water (when the ship is set in motion by sails or steam-power) may impinge upon the flanges, and cause the cone
to revolve. The force thus obtained is transmited through proper shafting and gear to assist the engine, if a steamer, or to work a shateng and gear to assist
stern screw, if a sailing ship.
"Now, as this may, at first sight, look very much Tike an
attempt to obtain something out of nothing, or to produce an effect
without a cause, without a a cause, I must osicict your candid or attention to the few
arguments I shall advance. I would first remark, that in the amination of this plan, it is necessary to bear in mind that it does
not profess to be a motive power - the molto not profess to be a motive power-the motion must first come from
engine or sails; and, scondly, that no more power can be derived engine or sails; and, secondy, that no more power can be derived
from it as as istance at the stern than is first encountered as retardation at the head of the vessel. Whence, then, it may be asked, arises the advantage ? In this way-the resistance in front has to
be encountercd, what ever the form of the ship's head, and whether any use be made of it or not ; consequently, if a revolving bow be
adopted, which pives no matrial incerease of resistance, Hen the power derived trom its reverution, when set either to tassist the
engine, or to work an independent screw at the stern, must be so munc, gain. This question, it will be observed, is not one of dis-
placement, but the mode of displacement.
"It has been objected that, 'as the front apparazus is set in motion by the resistance to the vessel's progress, the stern screw
can have no propelling power whatever.' Now this, you will per. ceive, assumes entirely the point in dispute, instead of attempting
cen to prove it. It is indisputable that the action of the water upon the conical screw would cause a large amount of force to be given
out by the propeller, and the enly way which this can be rendered out by the propeller, and the only way which this can be rendered
nugatory is to suppose that there would be as much additional nugatory is to suppose that there would be as much additional
resistance generated by the flanges of the revolving bow (which is in reality to suppose that the mode of displacement is equal to
displacement itself) as would be given out by the stern displacement itself) as would be given out by the stern screw.
think the experiments I am now prepared to make, in an artifis stream, will show that no such increase takes place. The water in front is pressed very little more forcibly by the flanges of the cone than it would be by the cone itself, if the flanges were re moved, but the water at the stern is pushed with considerable force by the screw, and by a force which increases with the ship's velocity. In one of the small models now exhibited, the revolving bow, in a moderate stream, gives ninety two revolutions per minute to the propeller.
"No one, at this day
"No one, at this day, will imagine that any power can be
created ; but a great deal is The ordinary head of a vessel may be regarded as a wedge employed to split open a channel for her. In her voyage, the water
is at every moment making an effort to press the two sides of the wedge together, and yet no attempt has been made to economise this constantly sustained pressure. Now, a cone is a wedge in
every direction-a circular wedge-and by surrounding it with spirals, it will become a revolving wedge, the flanges themselves constituting an active part of it. I submit that by driving through
the water power is wasted: but by bemploying a large portion bow the motive powerion may be economised. I believe that the result may be thus
stated :-Resistance of plain conical-bow $100+10$ for resistance stated : - Resistance of plain conical-bow $100+10$ for resistance
of flanges +5 for friction $=115$. Available power, one-half of $100=$ the revolving-cone is only checked to the extent of half the speed
due to the resisting water, Several experiments were then tried.
A laden model was balanced in the stream by a weight, and times the speed of the bow, The string was fastened ahead six the model wound itself forward. A second model was placed in the stream without a balance-weight, and it pulled itself ahead by a string fastened to the cone-shaft. A craft was then produced
(merely as an illustration) with a paddle both at the head and When whis is bearing to increase the speed of the hind-paddle. hind-paddle to revolve, and in doing so it pushes the boat forward is action against the water at the ster
President said it which followed the reading of the paper, the without decreasing the speed of the ship to the extent of the power gained. Mr. Morris replied that no doubt that was so ; but in ides of the vessel, but the very water which she would have to dis piace by her motive power before she could pass through it. Dr Oule thought that the effect of the revolving bow might in some
cases be to make a bad bow better; but denied the posis bility of its producing any but a retarding effect, if applied to a
ship possessing good lines ship possessing good lines.

SAITrivg an Liverpool,-During 1858, 16,726 vessels passed in-
wards through the Victoria and other northern channels to and from

Retury of Wrecks return presented yesterday to the Mersey Dock Board, it appears
that during the past year twenty-five vessels were wrecked. Of these twelve were totaly lost, and the remainder, with four excep-
tions, either raised or removed. Puxuab Rallway.-The section between Lahore and Umritsir was commenced on the 25th of October last, and the Uritsir
between Lahore and Mooltan will be soon commenced. In addition to the engineering staff in India, thirty-five engineers,
surveyors, and inspectors, are on the eve of departure, and tho urveyors, and inspectors, are on the eve of departure, and the
permanent way has been for some time in course of slipment. SUEZ CaxaL- - A deposit of $£ 2$ per share having been paid, a call
of $£ 6$ per share will be made payable at different periods during the present year, after which no cal is to be made until 1861. A meetin
of the Council of Administration is to be held in Paris on the 15 th inst, to take into consideration the YREXCH R the work:
St. Lo, on the line from - The works of the branch line from Lisons to Torrard. There are about 400 men employed on the work. The
directors of the directors of the Northern Railway have preperared the plan of the new
station which is to be built next spring at St, Quentin. It is sail thation which is to be built next spring at St. Quentin. It is said
that it will be a grand monument, three times larger than the
Strastury connect St. Quentin with Rouen, through Amiens, have been com menced. The railway from Paris to Nevers is likewise in progress of
execution. The works are considerably advanced at the two extremities, Nevers and Fontainebleau.
Expret
Gregory, in command of an expedition from a recent report of Mprobable that a low-lying belt of sendy desert extends fram the seem Australian bight, west of Spencer's Gulf, towards the Gulf of Carpentaria, uniting into one great insular continent what was once two
islands, the more fertile portion lying to the eastward of this sandy islands, the more fertile portion lying to the eastward of this sandy
belt. A patriotic inhabitant of Victoria, who conceals his name, onters. A patriotic imhabitant of Victoria, who conceals his name in course of collection for the purpose. It will, no doubt, be supple mented by the Assembly, and it is now thought quite practicable to rraverse the continent from the Murray to the northern coasts. For
this and other purposes this Governmeyt is heot as an e experiner purposes this Government is about to introduce camels canel atifirm that they will thrive and breed freely in the Australian The Late Mr. Trosas Bersinaw.-Our attention has been called to the bereaved condition of the widow and five childron of
the late Mr. Belshw, who for some months before his death had sutfered very great privations, and who are now left entiriely desolate.
Ar. Thomas Belshaw it was who originated and practically carried out exhibitions of arts and manufactures, first at at Macichechester carried
at Lhen
ativerpool, Derby, Sheffield, Macclestield, Devenport; Hull, and other places. It was he who so successfully organised the first
Great Industrial Exhibition at Bingley House, Birmingham and if he did not first suggest the idea of the Exhibition of 1851, Mr Belshaw's admirable arrangements in placiang thition of oods, \&c., Mr.
largely instrumental to its brilliant results. His enery
land talent and Dublin. Lastly, he nided the Crystal Paxhibitions of Cork and Wublin. Lastly, he aided the Crystal Palace at Sydenham;
from whence he was appointed deputy storekeeper to the Army
Works Corps; and it was whilst going of the 3rd division, with which he sailed in the Berwiek, in charge December 2, 1855, that he met with the fearful injury which corm timely death. A subscription has been set on foot for liis widow and children, and we cannot but believe the public will cheerfully and
liberally contribute to it.

PHOTOGRAPHY APPLIED TO ENGRAVING ON wOOD (XYLOPHOTOGRAPHY).
WE lay before our readers a description of a method we have devised for printing photographs direct on to wood.
We take a suitable block and cover it, in the darkened labo ratory or by candlelight, with a mixture composed of oxalate of silver and water, to which may be added a little gum or pulverised
bath brick, to suit the convenience of the engraver. The mode in which the oxalate is spread over the surface is precisely the same as that we have mentioned as being employed by wood engravers in applying the mixture of flake-white and gum-water. A little f the substance, that is to say, about as much as would lie on fourpenny piece, for a block four inches square, is sprinkled on the surface, and, the finger being then dipped in water (either with or without the addition of a little gum), the mixture spread evenly over the whole surface of the block by rubbing the finger backwards and forwards across the block in various directions until the evaporation or absorption of the water leaves the surface impregnated with a delicate and almost impalpable coatgor oxalate of silver. The block may be then pleced and here leftill dry, of for any length of time intil required, as we作很 locks which had deterioration or loss of so so long as they romained protected from the light. Oxalate of silver is susceptible of being acted upon by the actinic rays, and when the block has been prepared in the manner above indicated, it is only necesary to expose it under a negative in the printing frame to sunlight, and a positive picture is obtained in the same manner as on paper prepared in the ordinary way. The block requires no subsequent washing, nor any preparation of any description, beore being placed in the hands of the engraver; so that he receives in precisely the same condition, as regards the surface to be perated upon, as under ordinary circumstances. The engraver, however, must not expose the block to the direct action of the solar rays while working at it, or it will gradually blacken on the fect on it unless it be continued for a great length of t ine ay several hours.
There is at present little probability of metal plates superseding wood blocks in printing with type, and is therefore of great imortance that the drawings on these blocks should be made with he greatest exactness, and this can only be adequately attained by means of photography. It is not necessary that we should enumerate all the cases in which this extreme correctness is absolutely essential to convey a correct idea of the object sought to be represented, but we may mention the reproduction of anatomical subjects of enlarged microscopic objects, and generally of
all animal and vegetable specimens. We see no reason either why all animal and vegetable specimens. We see no reason either why it may not be applied to the reproduction of stereoscopic views,
which would, indeed, bring the stereoscope within the reach of which would, indeed, bring the stereoscope within the reach of these views would depend, to a certain extent, on the skill of the engraver; but most engravers would succeed in producing a block which would be sufficiently correct for the purpose. Again, with respect to reduced photographic copies of maps or plans required to be printed with type, the reduced copies can be transferred to the block with the most perfect accuracy as to scale.-Photographic

LAW REPORT

COURT OF CHANCERY, JAN. 12
(Before the Lomd Chanceloor.)

$$
0 \text { wave }
$$

THus was a petition of James spence, of Liverpool, praying that the

 Petition; Mr. Hindmarch and Mr. Drewry were for the opposition.
The Lord Chancellor said that this was one of the cases in which the
uestion in dispute between the parties oukht to bo tried at law. By refus-
 cised, and ther fore the proper
sealed.-Ordered accordingly.

Conveyance of Heayy Ordxaxce. - Experiments have been made on the high roads from Woolwich to Greenwich and back, to test the packing and casing of a new species of artillery ammunition.
The loaded wagons, posted with six horses each were driven at the The loaded wagons, posted with six horses each, were driven at the
rate of six miles per hour, and continued travelling with fresh relays rate of six miles per hour, and continued travelling with fresh relays
of horses for eight successive hours, and, as it was stated, with favourable results. A portable 13 -ins, siege mortar, weighing 65 cwt., drawn by eight horses, was also conveyed from Woolwich to Blackheath and back to test the facility of its transport, which was proved to be perfectly practicabe, after the manner of moving the ordinary
field guns. The mortar attached to its bed is mounted on an artillery carriage, and on reaching its destined point is in complete readiness for immediate use
The New Guaso Island.-The following is a description of the tenant Broadrick, of her Majesty January, 1858:-"The island of Navassa is two and a-half miles long from its north-west point to its south-east, and about two miles wide its east end, which is the broadest part of the island. It is surof the north side (where there is indifferent landing in calm waether on the rocks, which are only a few feet high), and one spot on the south-west side, where there is a sloping place which is now occupied by an American company, who are loading guano, which is plentiful on the level ground. From the top of the clitst the land rises at an
angle of nearly 45 deg. to the height of about 300 ft., from thence the top of the island is level; and, although there is no sooil on the and small trees, which spring up bet it is covered with brushwood the most part cabbage pralms (which grow to the height of from 12 f . to 15 ft), the paimetta, a species of sea grape, and one or two
other shrubs, of which we do not know the names. The north-west other shrubs, of which we do not know the names. The north-west
part of the island, where most of the guano lies part of the island, where most of the guano lies, appears to
be composed of limestone, and the remainder of scoria. The south-west side is the resort of great numbers of boobies, and
other sea fowl, who build their nests on the rocks and in he low trees, which grow on the rising tround above the
diffs. The Americans number about fifty clifs. The Americans number about ifity people on the island, and load their vessels with guano by means of a wire rope, down which
they lower the bags from the top of the hill to the landing place, they lower the bags from the top of the hill to the landing place,
from which it is taken off by boats in bad weather, but in moderate reather the vessels come alongside the loading stage. They have already exported from the island about 1,000 tons, and have stored up, ready for shipping, about 3,000 tons. The part of the island
explored cannot contain less than $1,000,000$ tons; but there is no explored cannot contain less than $1,000,000$ tons, but there is no
doubt more on the north-east part, which was not visited. There is doubt more on the north-east part, which was not visited. There is
a very fair anchorage on the lee side abreast the loading stage, in full a very fuir anchorage on the lee side abreast the loading stage, in full
sixteen fathoms (sand), within half a mile from the shore-the vessels waiting to load anchor within a cable's length, in about twelve fathoms, but the ground is rocky and foul, and they have
already lost two anchors there."

ON THE RESISTANCE OF TUBES TO COLLAPSE.
By William Fatrbairn, Esq., C.E., F.R.S., \&c.
(Concluded from p. 4.)
Reduction of the Results of Experiments 22, 24, 33 on the Collapse of
Sheet-iron Tubes to unity of length and diameter.

No, of epperi- ment.	D.	L.	Thick. ness.	P.	p.
22	183	$5, \frac{1}{2}$	-25	420	40,030
24	9	$3 \frac{1}{2}$	-14	378	10,495
33	148	5	125	125	9,140

To find the Value of the Constants a and C in the General Formula.
In equality (4.), taking $p=40,030, k=25, p_{t}=820, k_{t}=\cdot 043$ we get

$$
a=\frac{\log 40,030-\log 820}{\log \cdot 25-\log \cdot 043}=2 \cdot 23
$$

Similarly, taking $p=40,030, k=25, p,=9140$, and $k_{i}=125$
we get
$a=\frac{\log 40,030-\log 9140}{\log \cdot 25-\log \cdot 125}=2 \cdot 14 ;$
and taking $p=10,495, k=14, p_{i}=820, k_{i}=\cdot 043$; we get

$$
a=\frac{\log 10,495-\log 820}{\log \cdot 14-\log \cdot 043}=2 \cdot 16 ;
$$

and taking the mean of these values we get $a=2 \cdot 19$.
For the value of the constant C we have from $(5$.

$$
\mathrm{C}=\frac{p}{k_{a}}=\frac{820}{043^{9 \cdot 20}}=806,300
$$

Substituting these values in (2.), we get

$$
\begin{equation*}
P=806,300 \times \frac{k^{2.19}}{\mathrm{LD}} \tag{6.}
\end{equation*}
$$

which is the general formula for calculating the strength of wrought iron tubes subjected to external pressure*, within the limits indicated by the experiments; that is, provided their length is not less than 1.5 ft , and not greater probably than 10 ft . In order to facilitate calculation, formula (6.) may be written, $\log \mathrm{P}=1 \cdot 5265+2 \cdot 19 \log 100 \mathrm{k}$
nd by an obvious transformation, we have
$\mathrm{P}=\frac{820}{\mathrm{LD}}$.
The following Table will show how nearly formula (6.) repreents the results of the experiments on the different classes of tubes.

$\overline{\substack{\text { No, of } \\ \text { experif } \\ \text { ment. }}}$	D. Diameter. inches.	$\underset{\substack{\text { Length } \\ \text { feet. }}}{\mathrm{L}}$	$\begin{gathered} \text { Thickness. } \\ \text { inches. } \end{gathered}$	$\begin{gathered} \text { P. } \\ \text { By exp } \\ \text { riment } \\ \text { ris. in } \end{gathered}$		$\left\lvert\, \begin{gathered} \text { Propor- } \\ \text { tional } \\ \text { cror by } \\ \text { formulat. } \end{gathered}\right.$
2	4	$1_{1 / 8}$	${ }^{043}$	137	130	- 16
5	4	5	-013	43	${ }^{41}$	$-\frac{1}{21}$
7,10, 11	6	21	-043	55	54.7	- ${ }^{2} 5$
14	8	31	-043	32	31.6	- $\frac{1}{60}$
16	10	$4 \frac{1}{6}$	${ }^{0} 43$	19	19.7	$+\frac{1}{10}$
19	12	5	043	18.5	$13 \cdot 6$	+17
${ }^{23}$	188	$5{ }_{6}^{12}$	250	420	407	$-\frac{1}{12}$
26	9	$3 \frac{1}{17}$	140	378	392	$+\frac{1}{17}$
${ }^{33}$	145	${ }^{5}$. 125	125	116	-

So far as regards practical purposes, this formula appears to possess every desirable precision. As already anticipated, the results derived from the thin 12 -in. tubes present the greatest devia-
tion. The value of P, derived from the following formula tion. The value of P, derived from the following formula, gives a
still closer approximation to the results of the experiments, viz. $\mathrm{P}=806,300 \times \frac{k^{2.19}}{\mathrm{LD}}-.002 \times \frac{\mathrm{D}}{k}$
It is highly desirable that we should verify the law P.L.D $=$ ${ }^{\prime}, \mathrm{L}_{r} \cdot \mathrm{D}_{u}$, as applied to thick tubes. Now, we know the valve of above, closely approximates to the value derived from the experiments on the compression of sheet-iron plates. Let us, therefore, reduce the collapsing pressure of these plates to unity of thickness, with the view of ascertaining the law of variation of pressure as regar length and diameter.
P' the pressur pressure of collapse of a tube k inches thick, and
P^{\prime} the pressure when the tube is $\cdot 1$ inch thick; then
$\stackrel{\mathrm{P}^{v}}{\mathrm{P}}=\left(\frac{1}{k}\right)^{a}$,

$$
\mathrm{P}^{\prime}=\mathrm{P} \times\left(\frac{1}{10 k}\right)^{a}=\frac{\mathrm{P}}{(10 k)^{\prime}}
$$

and $\quad \log P^{\prime}=\log P-2 \cdot 19 \log (10 k)$.
Reducing the values of P by this formula, we derive the following results :-

$\underset{\text { experiment. }}{\stackrel{\text { No, of }}{ }}$	$\underset{\text { Diameter. }}{\mathrm{D} .}$	$\begin{gathered} \mathrm{L} . \\ \text { Length. } \end{gathered}$	Thickness.	$\underset{\substack{\text { Pres. } \\ \text { Pure. }}}{ }$		$\begin{aligned} & \text { Valuu of } \\ & P^{\prime} . \text { L. } . ~ \end{aligned}$
5	4	5	-43	${ }^{43}$	273	5400
22	187	${ }^{517}$	250	420	57	5100
24	9	$3 \frac{1}{12}$	140	378	190	${ }^{3} 00$
33	148	5	125	125	76	5600

The remarkable approximation of the numbers in the last column to one another distinctly establishes the law (P.L.D $=$ P., L., D.,) in relation to tubes composed of thick plates.

- By taking 2 instead of 219 for the index of k, this formula becomes $\mathrm{P}=800,300 \times \frac{{ }^{i 2}}{\mathrm{LD}}$
whence the value of P , the collapaling pressure may be readily caleulated by oridinary artithuetic.
For r
For thick tubes of considerable diametor and length, this formula may be
 $\mathrm{P}=806,300 \times \frac{\left(\mathrm{p},{ }^{2}\right.}{10 \times 36}=560 \mathrm{lb}$.

Deduction from the Results of the Experiments on the Collapse of Elliptical Tubes.
By comparing the result of experiment (34) on the elliptical tube with the result of the experiments on the cylindrical tubes, we fin that the general formula (6) will apply approx the coreter of tubes, by substituting for D in that formula the diameter of the
circle of curvature touching the extremity of the minor axis. Thus circle of cu

Diameter of the circle of curvature $=\frac{2 a 2}{b}=\frac{2 \times 7^{2}}{5}=20$ nearly

Now the pressure on this elliptical tube was 6.5 lb ., which, reduced to unity of length and diameter, gives 650 lb ., which resubes also reduced to unity of length and diameter.
Although this deduction is based on merely one experimental
tubes
Allowing proposition result, yet it appears to be confirmed
The pressure \mathbf{P} per square inch, requisite to flatten equal angular portions of a tube of variable curvature, varies inversely as the dameters of curvature.
Hence it will be observed how very much the strength of a tube subjected to external pressure is deteriorated by a deviation from the cylindrical form.
Strength of Cylindrical Tubes subjected to Internal Pressure.
Taking the mean of the results of Experiments 36 and 39 on ron tubes, we have from formula

$$
\mathrm{E}=\frac{425 \times 6}{2 \times \cdot 043}=30,000 \text { nearl } y
$$

Hence we find

$$
\begin{equation*}
\mathrm{P}=\frac{60,000 \mathrm{k}}{\mathrm{D}} \tag{7.}
\end{equation*}
$$

which gives the formula of strength of thin sheet-iron tubes subjected to internal pressure or 51,520 lo reduction of tenaity must be made for the rivetting of the plates. The ratio of reduction is in this ease 3

One remarkable fact distinctly established by these experiments, is the comparative weakness of tubes subjected to external pres sure. If p be put for the internal pressure per square inch at
which a tube is ruptured, then for tubes of the same thickness and diameter, we find from (6) and (7) the following relation of strength :-

$\frac{p}{\mathrm{P}}=\frac{1}{13.44} \times \frac{\mathrm{L}}{k^{1.19}}$

If $\mathrm{L}=2 \frac{2}{2}$ and $k=\cdot 043$, then $\frac{p}{\mathrm{P}}=7 \cdot 77$; that is to say, in this case the tube subjected to internal pressure will have about $7 \frac{1}{2}$ times the strength of a similar tube subjected to external pressure. Wh
we find
If $k=\cdot 25$, then we find $\mathrm{L}=3 \frac{3}{4} \mathrm{ft}$. nearly; that is, a tube of this length and thickness will be equally strong whether subjected Taking the mean Experiments nts 41 and 42 on the lead pipes, we have from formula (1),

$$
\mathrm{E}=\frac{370 \times 3}{2 \times \cdot 25}=2220,
$$

which gives us the tenacity of lead per square inch.
Here we find
$\mathrm{P}=\frac{4440 k}{\mathrm{D}}$
which gives the formula of strength of lead tubes subjected to an
internal pressure.

nal pressure.
 Practical Application to Construction of the Results of the

Experiments.

Throughout the whole of the experiments enumerated in the preceding pages, it has been proved that the resistance to colin the inverse ratio of the lal pressure, in cylindrical tubes, varies lengths not exceeding fifteen diameters of the has been tested to at which it ceases to hold true is as yet undetermined but the point only be ascertained by a new and laborious series of experiment on tubes of considerably greater length, in which of experiments the material modifies the above law of resistance to collapse. Such experiments are, doubtless, very desirable; but the vessels necessary for the purpose would be most expensive, and the results already obtained appear to supply all the data necessary for cal culating the strengths and proportioning the material in all ordi-
If we take a boiler of the ordinary construction, 30 ft .
long, and 7 ft . in diameter, with one or more flues, 3 ft or long, and 7 ft . in diameter, with one or more flues, 3 ft . or
3 ft . 6 in . in diameter, we find that the cylindrical external shell is from three to four times stronger in its powers of resistance to the force tending to burst it, than the fues are to resist the same force tending to collapse them. This being the case in boilers of accidents should have occurred from the collapse so many fatal flues, followed immediately by the explosion and rupture of the outer shell. To remedy such evils, and to place the security of vessels so important to the community upon a more certain basis. it is essential that every part should be of uniform strength to resist the forces brought to bear upon it. Ths equalisation of the strength of the outer shell is absolutely of no value, so long as the internal flues remain, as at present, liable to be destroyed by collapse, at a pressure of only one-third of that required to burst the The following
The following table, deduced from my own experiments, exhibits the safe working pressure, and the bursting pressure of boilers of different diameters, calculated for an external shell of a
thickness of sths of an inch. D

Diameter of Boilor.	Working Pressure.	Bursting Pressure.
$\begin{array}{cc}\text { ft. } \\ 3 & \text { in. } \\ 0\end{array}$	1bs. 118	lbs.
$\begin{array}{ll}3 & 6 \\ 4 & 0\end{array}$	101	${ }_{607} 6$
46	588 788	551 472
$\begin{array}{ll}5 & 0 \\ 5\end{array}$	70	425
5 6 6	64 59	386\%
${ }_{6}^{6} 6$	544	354 3.61
${ }_{7} 70$	50.1	3034
80 80	44	${ }_{285}^{23}$
86	411	250

Taking from the above table the strength of a boiler 7 ft . in
diameter, we find its bursting pressure to be 303 lb . per square
inch. For such a boiler the flues would be ordinarily 3 feet in diameter, and of the same thickness of plates as the shell ; and by the
formula, $\log \mathrm{P}=1.5265+2.19 \log 100 \mathrm{k}-\log$ (L.D.), we obtain for their collapsing pressure 87 lb . per square inch. As, however, the their collapsing pressure 87 lb . per square inch. As, however, the
formula does not apply with strictness to tubes of such length, the actual collapsing pressure will be somewhat greater than this. The immense excess of strength in the outer shell is, however, sufficiently apparent; the extra thickness of boiler plate which causes it being so much material thrown away, adding nothing to
the strength whilst the flues remain in so dangerously weak a condition.
To meet this disparity of strength, the experiments indicate the necessity of shorter flues, and one of them shows how this may be
obtained, practically and efficiently, without interfering with the present construction of boilers. In Experiment 6, Table I., the tube F was divided into three parts by two rigid rings soldered upon its exterior, and its powers of resistance were thus increased in the ratio of three to one; virtually, the length was
reduced in this ratio, and the strength was actually increased from reduced in this ratio, and the stren
43 lb. to 140 lb . per square inch.
43 lb . to 140 lb . per square inch.
It is proposed to apply a similar construction to the flues of boilers, to equalise their powers of resistance with those of the outer shell, on the supposition that the law of decrease of strength
holds true, within no great limits of error, to tubes of much greater length than in the preceding experiments. That this conclusion is not empirical will be seen by the folloxing experiments upon
boilers of full size, where it will be observed that the flues were distorted with one-third the pressure required to rupture the ex ternal shell.
These
These boilers were made for the north-eastern division of the London and North-Western Railway Company, and were respec..
tively of 35 ft . and 25 ft . in length. They were 7 ft . in diameter tively of 35 ft . and 25 ft . in length. They were 7 ft . in diameter
and composed of platesthree eighths of an inch thick. Each boiler had two cylindrical flues 3 ft . 6 in . in diameter, and of the same thickness
 of plates as the outer shell. They
were fixed in the position shown artcter were intended to resist an ordinary working pressure of only, and upon the square inch. In submitting them to the usual test of double pressure, the flues of the first or longest boiler gave way with 97 lb . upon the square inch; and those of the shorter boiler required 127 lb . to effect the same distortion. With these large tubes a complete collapse was not accomplished, but the
circular form, indicated by the dotted line, was dis torted, and the flue became elliptical, as shown at $b b$.* The weakness of the flues in the above experiments is so evident as to need no comment. To remedy it, it has
been already stated, we need only resort to a construction so simple, and yet so effective, as to meet at a small expense all the requirements of the case.

 (8)

Fig. 1 is a sectional view of the piston complete, taken through the piston at the line A, B, in Fig. 2, showing clearly the extension of the packing and the internal construction of the piston or bucket;
Fig. 2 is a plan view of the piston; and Figs. 3 and 4 are respectively Fig. 2 is a plan view of the piston; and Figs. 3 and 4 are respectively
plan views of the valve guard plate and valve seating, both of which plan views of the valve guard plate and valive seating,
are perforated for the passage of the liquid. In Fig. $1, a, a$, is the are perforated for the passage of the liquid. In wh. $1, a, a$, is the
piston or bucket rod carrying the guard plate b, which prevents the
ndia-rubber disc c rising beyond a certain limit. d is the val piston or bucket rod carrying the guard plate li, whit; d is the valve
india-rubber disc e rising beyond a certain lime it ed
seating; and e the improved packing, having its edge bevelled, and seating; and e the improved packing, having its edge bevelled, and
extending above the valve seating and piston cover d, snch extension extending above the valve seating and piston cover d, snch extension
of the depth of the packing ensuring the deposit of any grit, sand, or other extraneous matter, upon the valve seating or piston cover,
whence it is removed by the flow of water through the piston, and is whence it is removed by the flow of water through the piston, and is
thereby prevented from entering or working between the packing or between the packing face and the pump cylinder face, which has hitherto caused much destructive wear and tear upon both surfaces. By the use of this improved form of packing about one-third (or
more) wearing surface in depth is obtained in the packing face, which renders the packing more durable than those heretofore employed.

Australlan Telegraphs. - Electric communication between Australlan Telegraphs, - Electric commumication between
Melbourne, Adelaide, and Sydney, was opened on the end November.
The Atlantic Tkiegraph.-Recent advices from NewfoundThe Atlantic Treegraph-- Kecent advices from Newfound-
land state that several signals have been recently received there via land state that several signals have been recently received there via
the Atlantic cable, including the name "Henley." It is believed, the Atlantic cable, including the name "Henley." It is believed,
however, that the Valentia office has been entirely closed for some time, and the report is probably a hoax. Progress of Masonry at the Victoria Bridge.-At the great bridge at Montreal one of the piers, containing 12,600 tons of masonry,
was commenced on the 16th of September last and finished on the was commenced on the 16th of September last and finished on the
4th of December, the time occupied being seventy-nine days, working about eighteen hours daily. The average amount of masonry placed
in position was ten tons an hour, or two cubic feet per minute. in position was ten tons an hour, or two cubic feet per minute.
Trade or Russia.-The value of Russian exports in 1857 was $169,688,134$ roubles, those of 1856 having amounted to $160,247,872$
roubles. The value of imports was $151,686,799$ roubles in 1857 , as roubles. The value of imports was $151,686,799$ roubles in 1857 , as
compared with $122,562,442$ in 1856 . Of gold and silver specie tle compared with $122,562,442$ in 1856 . Of gold and silver specie th.e
imports in 1857 were $8,775,727$ roubles, and the exports of gold and imports in 1857 were $8,775,727$
silver ingots $23,670,076$ roubles.
silver ingots $23,670,076$ roubles.
Australian Emigation--Messrs. Cornish and Bruce, the AusAustralun emoratios.- Messrs. Cornish and Bruce, the Aus-
tralian railway contractors, having addressed a letter to Mr. Bright,
M.P. for Birmingham, offering to tind employment for 1,000 masons M.P. for Birmingham, offering to tind employment for 1,000 masons
and 2,000 navvies, the masons' society in Melbourne have drawn up and 2,000 navvies, the masons' society in Melbourne have drawn up
and published a lengthy rejoinder, addressed to Mr. Bright. They and published a lengthy rejoinder, addressed to Mr. Bright. They
assert that Messrs. Cornish and Bruce cannot employ such a number assert that Messrs. Cornish and Bruce cannot employ such a number
of masons, and that their object in writing to England for men is to of masons, and that their object in writing to England for men is to
enrich themselves by sacrifcing the welfare and happiness of the inenrich themselves by sacrincing the welfare and happiness of the in-
dustrious classes. Accounts from Australia state that the labour market was never so abundantly supplied as it is now, and, with this fact before us, were the invitation of Messrs. Cornish and Bruce
responded to, the addition of 2,000 or 3,000 people to the Australian responded to, the addition of 2,000 or 3,000 people to the Australian
working population might certainly be the means of enriching the contractors, but it would be ruinous to the interests of the workmen. Mr. Ath inst the the floating battery underwent ranges varying from 200 to 400 yards. The vessel had been towed to Shoeburyness flat, where she was moored broadside to the southward. The gun, which loads at the breech, was charged with a
6 -pound cartridge, and one of Armstrong's invented shot. The shot 6 -pound cartridge, and one of Armstrong's invented shot. The shot
are about 10 in . and a-half long and about 4 in . in diameter; the shot are covered with lead, the outer end of some of the shot very much resembles the circular ends of Mr. Hall's rockets ; others from a square of about an inch and a-half; the barrel of the gun is rifle-fluted down to the chamber. The target was marked chequered, taking in three ports of the broadside. Some common shot were
fired, none of which exceeded 400 yards ; these shot started the plate fired, none of which exceeded 400 yards; these shot started the plate
bolts, woodwork inside the plates, beam knees, decks, \&c. One of the bolts, woodwork inside the plates, beam knees, decks, \&c. One of the
newly invented shot steel-pointed was then fired, which drove in a portion of one of the plates, went through the side, tearing away one of the beams, deck, \&c., and passed out over the upper deck; another
embedded itself in the shattered plate and lodged in the woodwork the outer end being just flush with the surface of the plate. From twelve to fourteen shots were fired with great accuracy on the part of the artillery officer who on each occasion laid the gun, and placed his shot within a foot or so, in every instance, where requested on the target part of the ships side. Se she may be formed of the power of the gun from the following statement:-The 12 -pounder gun at
Shoeburyness has passed 1,500 of the newly invented shot one of which, at 800 yards' distance, passed through a solid body of oak timber 9 ft . thick. Mr. Armstrong now proposes bringing out a gun of much larger calibre to carry a 56 -pound shot. The whole broadside for a considerable distance before and abaft the target is splitting the plate through about one-fourth of the square of the plate.

DUNN AND IRLAM'S IMPROVEMENTS IN RAILWAY TURNTABLES.

Patent datid 28 th May, 1858

Tres first part of this invention, by Thomas Dunn and William rlam, of Manchester, relates to machinery for turning ordinary turntabies by power, and consists in casting a fanye ater near the strength is obtained and a saving in labour is effected. The second part of the invention consists in making turntables of large

dimensions with bowstring sides or with tubular stays, to avoid the to the machines called railway traversers, and consists in making the ends of the traversers' rails of iron or steel plates forming spring points, which points are depressed by the whecls of the carriage that
is being pushed on to or off the traverser. Fourthly, in making the
ends of the traverser rails to swivel on fixed studs, and in such wise clear of the rails while the traverser is being moved, but when an engine or carriage is being placed on or off the traverser the wheels depress the points of the traverser until they bear on the rails of the permanent way, thereby forming the inclines for the wheels of the carriage. Fifthly, in placing the cross tram rails for the traverser on diflerent levels, the outer rails are level with the permanent rails and the inner rail or rails are raised sufficiently to act as guides; by
these improvements the low shelving of the traverser may be brought these improvements the low shelving of the traverser may be brought
lower than heretofore. And, sixthly, in making a portion lower than heretofore. And, sixthly, in making a portion
or portions of the cross tram rails for the traverser capable or portions of the cross tram rails for the traverser capable
of being raised and lowered by levers, screws, or other suitable machinery, so that one end of the traverser may rest on the main line or that the whole traverser may rest on the main line when the engine or carriage is rolled on to or off the traverser, and that the
Fig. 1 is a section of part of an ordinary turntable, illustrating the first part of the invention. a is the top of the turntable, to which is cast the pulley or ring a^{1} in the usual manner; to this ring is cast the flange a^{2}. The end of the chain b is attached to the ring a^{\prime}, and after
passing round the guide pulley b^{\prime} it is connected to a crane or other
suitable mechanism, by means of which the turntable is moved round. It has hitherto been customary to make the fange az of xpensive, retted to the ring a , which mod or drilled in the ring a thereby weakening it ; according to the improvement of casting the flange a^{2} with the pulley or ring of the turntable top, greater
strength is obtained at less cost. Fig. 2 is an elevation of a turntable of large dimensions, to which the improved bowstring sides are supplied. The phatform rails c^{3}; the platform swivels upon a centre, and runs upon rollers in the usual manner. h, h, are the ends of the rails of the permanent way. The sides of the platform are made on the bowstring principle, that is to ay, each side consists of live or other suitable number of planks α, the uprights d^{1}; the planks d are secured to the beams c by the bolts d, and the whole is made rigid by the diagonal stays $d s$ and longitudinal tie rods d^{1}
Fig. 3 is a side elevation of a railway traverser to which the improved spring rail is applied; the body of the traverser and the wheels upon which it moves are constructed in the usual manner. The low shelving f are fixed the iron or stee plates g, the ends of
which project bayond the low shelving f, to form springs. The

plates g are fixed to the low shelving f by screw bolts or otherwise, and it is preferred to place the last bolt or rivet at about twelve the spring are depressed by the wheel of the carriage, the springs
may have more liberty of action than if the points of attachment were nearer the ends of the low shelving. It is evident that when the carriage whecls depress the points of the plates g, as shown to the right hand of Fig. 3, the ends of these plates form the in-
clines for the carriage wheels to run up or down, and that when the carriage is on the traverser or when there is no carriage on the traverser, the spring of the plates g raises the
points or ends above the rails of the permanent way, consequently the traverser can be moved along its cross rails without obstruction from the points, which are entirely self-acting.
elevation, of a railway traverser, illustrating the fourth and fifth of the improvements ; h, h, are the rails of the permanent way $; i, i$ are the two outer cross rails for the traverser, which are on the same level as the rails h, h; and j, j, are the two inner cross rails, which are
raised a little above the rails of the permanent way. The traverser raised a little above the rails of the permanent way. The traverser
consists of the side beams k, k, each formed of two angle irons, and end cross beams l, l, in which are the bearings for the axles of the Whects m, m, running on the cross rails i, i, and the intermediate
cross beams n, n, in which are the bearings for the wheels o, p, p; the wheels o, o, have internal flanges, and the wheels p, p, have
external flanges; these flanges pass on each side of the cross rails j, j which thus ; thet as guides to the traverser. In shorter traversers, The cross rail j will be sufficient.
The cross tram rails i and j must be cut away near the rails h, so
that the lines of the permanent way may be unobstructed when the traverser is not in use. The points q, q, of
Fig. 6 , and the inner ends of the points overbalance the outer ends, consequently the points have been depressed by the wheels of the carriage, as shown to the right of Fig. 6, they regain the position
shown at the left-hand end of Fig. 6 , that is to say the inner cnds shown at the left-hand end of Fig. 6, that is to say, the inner ends
being heavier than the outer ends lift the points of the permanent way; the joint between the low shelving rail of the traverser and the points is scarfed and overlapped. By means of these improvements the low shelving of the traverser can be
brought lower than heretofore, brought lower than heretofore.
Fig. 7 is a partial elevation, and Fig. 8 a plan of the machinery
required to illustrate the last part of the invention. The traverser may, in this instance, be made without moveable or flexible points, portions of of these improvements is to raise and lower certain the moveable or flexible points. t, t, are the rails of the permanent way. The traverser consists of the low shelved rails z, z, side beams s, s, and cross beams s^{1}, s^{1}, supporting the wheels or rollers s^{2}, s^{2}. The cross tram rails u, u, between the rails t of the permanent way,
are placed a little above the level of the said rails, in order that the that portion of each cross rail placed between the lines of the put
manent way and marked v, is fixed to a frame v^{1}, which hinges at v^{2}, v^{2}, an on a shaft w^{1}, furnished with a handle w^{2}. The mode of
fixed on
operation is as follows. - When it is requisite to remove a carria operation is as follows:- When it is requisite to remove a carriage
fom one line of rails to another, the traverser is brought over the from one line of rails to another, the traverser is brought over the lines of the permanent way, as shown in Fig. 8, and the eccentrics to
are turned with their full parts down, the low shelving z of the raverser then bears upon the lines of the permanent way, and the eccentrics are then brought into the position shown in Fig. 7 , to raise the cross rails v to the level of the cross rails u, the traverser with the carriage upon it is then moved along the cross rails, the flanges of the whecls s^{2} being clear of the rails t, t. When the carriage is to be run off the traverser, either one or both the rails v re lowered by turning the eccentrics v, as above described. Screws r other suitable mechanism may be employed to raise and lower th
rails v.

The First Breatif of the Steam-press.-Having taken his measures for securing the receipt of early intelligence, Walter began out to the public, and, for some time after 1804, had been in silent
out out to the public, and, for some time after 1804, had been in silent
confederacy with an ingenions compositor, named Thomas Martyn, who had been visited with an idea of the practicability of working the press without manual labour. So violent was the opposition of the pressmen to any scheme of the kind, that the experiments were al dead lock for want of funds ; the old ; logographic printer, who was still the principal proprietor, coming to a resolution to advance no the idea, and, in the year 1814 , have son, the manager, cherished Kenig, a Saxon printer, and his friend Bouer, of maturing a scheme which they had in their heads. The machinery was set up in secreey and silence; a whisper that something was going on had got among the printers, and they had not scrupled openly to declare that death to the inventor and destruction to lis machine awaited any attempts the introduce mechanism intotheir trade. At last all was ready for the experiment; the pressmen were ordered to await the arrival of
the foreign news, when, about six o'clock in the morning Walter entered the room, and announced to them that the Times was already printed-by steam! He then firmly declared that, if they attempted violence, he had sufficient force at hand to repress it; but that, if hey behaved quietly, their wages should be continued to them till hey got employmen. The men wiscly saw that resistance would morning, the 29th of November in to the power of steam. On that informed that the "journal of this day presents to the Times were practical result of the greatest improvement connected with printing since the discovery of the art itself. The reader of this paragraph now holds in his hands one of th many thousand impressions of the Times newspaper, which were taken of last night by a mechanical ap-
paratus. A system of machinery almost organic has been devised and
arranged, which, while it relieves the human frame of its most aborious efforts in printing, far exceeds all human powers in rapidity
and dispatch."-The History of British Journalism. By Alexander Andrews.
Sead Caneous Combustion.-The ship Meroo, from the Sand Head, Calcutta, for London, and loaded with seeds and jute, took tire and was entirely burnt on the 28 th of November, from the spontanieous combustion of the cargo
The Darlington fron Company's Works, at Darlington, are ast approaching completion, the roof over the rolling mils, when
completed, will be a splendid structure, the wrought-iron principals are the same as covered the centre aisle of the Art Treasures Exhibition, at Manchester, they are 56 ft .6 in . span, and form a perfect half circle, and are placed two in width, forming a total span of 13 ft , by 420 ft . ong. They are placed on cast iron columns 15 ft . high, and, being perfectly free from inside tie rods of any description,
have a very light and airy appearance, and will, undoubtedly, form the most complete and perfect roof for a rolling mill in the United Kingdom. The building will have a noble appearance from the North Eastern Railway, the main line of which, from York to Newcastle, passes directly in front of the works, and is connected therewith by sidings, \&c. The works also comprise spacious foundries, hitting shops, blacksmiths shops, \&c. The engines and principal part Manchester and combine all the latest improvements with the most perfect workmanship. Mr. J. B. Statham, of Manchester, has been the architect for the buildings, and the whole has been erected under the superintendence of Mr. W. Baringham. We understand that he works will commence next month writ an order for rails for the Eastern Bengal Railway Company, and it is expected will shortly
Frenci Ratlway Receipts.-The traffic returns on the Eastern France Railway, from the 1st of January to the 30th of December,
1858, both inclusive, amounted to $£ 2,168,337$, against $£ 1,921,063$ in the corresponding period of 1857, showing an increase of $£ 247.274$; on the Northern of France to $£ 2,203,481$, against $£ 2,059,084$ in the corresponding period of 1857, showing an increase of $£ 144,397$; on the Western of France to $£ 1,731,273$, against $£ 1,671,617$, showing an increase of $£ 59,657$, and on the Southern of France to $£ 723,502$, against $£ 582,154$, showing an increase of $£ 141,349$. The receipts
for the same period of 1858 on the Paris and Orleans Railway or the same period of 1858 on the Paris and Orleans Railway period of the preceding year, showing an increase of $£ 42,569$. The receipts on the Paris, Lyons, and Mediterranean Railway amounted to $£ 8,267,274$ against $£ 3,168,598$ in the preceding year, showing an increase of $£ 98,676$. The receipts on the Lyons and Geneva for the same period of 1858 amounted to $£ 193,924$ against $£ 105,961$, showing during the of $\mathbf{8 8 7 , 9 6 3 \text { . The total receipts of those seven railways }}$ 4,985 miles of railway, and for the correspeding perin of 1857 to £11,801,858 on 4,481 miles, showing an increase in the receipts of £821,883, or about 7 per cent., and in the mileage of 504 miles, or 11! per cent.

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our

inductive retardation in submarine wires,

 Srr, - Having found it impossible, last week, to reply to the admirable letter of "X. Y. Z.," which appeared in The EngiveEr of the 31 st ult, I trust to your kind indulgence to give to the few remarks which 1 have now to offer a place in your next nomethe more especially as I find that in consequence of the pressure of ther duties I shall not be able to continue the discussion any further, although I shall be always glad to listen as a respectful auditor to "X.Y.Z.," or to any of your other correspondents on this most interesting subject. My object in addressing you upon it, first of all, was simply to point out the fact that the idea of employing a return-wire, instead of the earth, to obviate the
effects of induction in long submarine lines-an idea which Mr. Tatlock oelieved to be entirely his own-had not only occurred to myself, but had, as I aftervards found, been patented in 1855. This patent was taken in the name of Professor Gordon; but it now appears that the real patentee was M Werner Siemens, of Berlin-a name eminent in the science of eleetro-telegraphy, and who, as your readers may be aware, was the first to observe and
make public the singular phenomena of induction in subterraneous make public the singular phenomena of induction appared in the
wires. His interesting paper on this subject appear Ane nates de Chimie" for 1850 , vol. xxix., and was ony broght had published his own experiments on the subject. With his sophical Magazine (in which his own lecture had appeared) summary of M. Siemens' paper. It is not surprising, therefore,
that Siemens, who had been the first to observe these effects in the that Siemens, who had been the first to observe these effects in the system of underground wires, at that time exclusively adopted in Prussia, should have been the first to endeavour to apply a
effectual reinedy for them; and it strikes me as remarkable that a man like Siemens, who must have enjoyed the most ample oppor tunities for putting the plan which he proposed to the test of rigid
experiment, should have neglected to do so before incurring the experiment, should have neglected to do so before incurring the I can scarcely believe, and yet I have seen no account of any periment on the subject which I consider decisive, or even as calcuperiment on the subject which consider decisive, or even as calcuthe plan for which the patent was taken. The two experiments mentioned by a "Telegraph Engineer" in your journal of the
24 th ult., bear entirely upon the plan for which Mr. Tatlock hasI think unwisely-incurred the expense of a provisional protection - the method, namely, of two wires in two separate cables; and have been prepared to anticipate $\dot{\alpha}$ priori. It is true that, with regard to the second, the writer says:-"The above experimen was repeated by Wheatstone, upon a cable where the return-wire
was in the cable itself, with similar results:" and he adds- "The was in the cable itself, with similar results;" and he adds-"The
above experiments, together with "X. Y. Z.'s" arguments, are conclusive on the point. Whether a return-wire be used in the
same casing, or as a separate cable, induction is manifested. Re turn currents, retardation, prolongation, are still visible, but to what extent experiment alone can show. Mr. Tatlock's proposal is therefore valueless.'
Now there is not one word of all this with which I do not agree that the unat Mr. Tatiock's proposal is vilueless, beeause I beneve that the use of two wires in separate cables would not aminish the
effeets of induction in the slightest degree. I believe also that,
even with the two wires embedded in the same cable, the effects of induction would still be visible; but what I contend is, that in the latter case these effects could, by a proper construction of the cable, be so greatly dimimislied as to prove of immense advantage in the
working of long submarine lines ; and this is to some extent conworking of long submarine lines; and this is to some extent con-
ceded, even by "A Telegraph Engineer" himself, when he says that to what extent the effects would still be visible experimen alone can show.
There is no
There is no doubt that, reason as we may, experiment mus decide the point at last. Even the partial success of the Atlantic
cable has shown that experiment is the great arbiter to which we must appeal in the last issue on all cases connected with that mysterious agent which works in the electric telegraph wire. At the same time, a little cautious theory may help us in correcting or and, acting on this principle, I am not prepared to admit that the
results obtained by Professor Wheatstone in the case to which "A eesults obtained by Professor Wheatstone in the case to which "A Telegraph Engincer" refers, afford any good ground for believing
that the effecis of induction might not be obviated to a grea extent, or almost entirely neutralised, by a properly constructed
cable on the principle of M. Siemens patent. Professor Wheattone's experiment was performed on the cable intended to be laid Corsica. It was 110 mile in length, and contained six copper wires, one-sixteenth of an inch in diameter, each separately insuated in a covering of gutta-percha only one-tenth of an inch in diameter, and only one-fifth of an inch from the internal surface of the iron envelope. Now, leaving out of vievt the necessary proximity of the wires in this case to the outer surface and to each
other-affording so much scope for induction-we cannot draw any conclusion from the experiment unless we know in what pre-
cise order the wires were counected with each other, because unless cise order the wires were connected with each other, because unless cessively, so as to produce a symmetrical or balanced system of inductive fores, the experiment proves little or nothing as regard the point under consideration. Altogether the system was too complex, the wires were too numerous, too near each other, and
too near the iron envelope, to permit the cable to be advanced, with any justice or reason, as a fair subject of experiment for our pre renders the experiment, however valuable in itself, utterly "value less" for that particular purpose for which it is adduced by your correspondent. I believe knows much) would undertake to find in suchi a cable, so coiled, one vast mass of inductive action and re action?
And yet, as a set-off even against this experiment, we have Mr and contesining testimony, who states that in a cable 166 miles long 498 miles, he found that the inductive influence exerted by either of the wires on the others was only a ten-thousandth part of the not informed as to the actual condition of the cable, and I consider it, therefore, to be also of little value for the purpose more immedistely uider reviev, except as showing that the one wire exert an almust iuappreciable inductive actiont valuable result.
Leaving the region of experiment, in which we have found nothing satisfactory or conclusive-nothing even strongly pre-
sumptive, except in so far as the result of the experiment just mentioned is highly encouraging and favourable to the plan

And here I confess that I remain unconvinced. I shall not deny that I may have expressed myself too strongly if I said that in such a cable as that proposed static induction would not take place to any appreciable extent. After the very clear, although,
I think, very exaggerated exposition of the action given by I think, very exaggerated exposition of the action given by
"X. Y. Z.," I am willing to withdraw that word, and to substitute the term considerable. We are, therefore, making some progress On the other hand, however, I think it would be easy to show, as I have previously hinted, that the injurious effects of the static in duction which would still occur would be partly compensated by
that dynamic induction which evidently showed itself in the that dynamic induction which evidently showed itself in the ex
periment last mentioned. periment last m
The fallacy which appears to me to pervade "X.Y. Z.'s", reasoning consists in his ignoring the necessity of a certain thicknes
of the insulating case as compared with the size of the wires Allow me to state distinctly, that for Siemens' arrangement to ac Affiently, I conceive it to be necessary that the two wires should
efficien be embedded pretty near to each other, and as nearly as possible in the centre of a considerable thickness of gutta-percha or other
insulator. "X. Y. Z." sems to think that the thickness of this in sulatin. " $1 . Y$. Z." seems to n e-that if the good for a thick covering, it ought to hold good for a thin one Now I mention, on the contrary, that one of the essential and vital elements of success is a certain proportion between the
thickness of the insulating medium and the distance between the thickness of the insulating medium and the distance between the two wires; because, with a certain proximity ot the wires, we can
render each of them virtually the centre of the system by sufficiently enlarging the section of the surrounding insulator; and the more that we enlarge this section, the more will each of the wires, having a given interval between them, hold virtually the place of the centre, so that the equal but opposite indu
fluence of each shall be more equally diffused all around
Now, in "X.Y.Z.'s" article I find this essential condition entirely ignored; ; and the same will be obvious, I think, to any of figure. I do not ask you to reprint his fourth figure, because in

that he has omitted the insulating medium entirely, except in the interval between the wires. But looking merely at the figure before us, the first thing which strikes an observer is the miscroscopic magninication of the wires A B as compared with the thickness n ives to this envelope. It is true the itliptical form winish he enlarge the wires to afford space for his geometrical demonstration, but if so, the envelope might have been enlarged in proportion. Here its thickness on each side of the wires is not more than onecourth, or at most one-third, the diameter of each, whereas in the seven copper wires is only $\frac{1}{10}$ th of an inch in diameter, and the

In the section, as represented by "X. Y. Z.'s" figure, above given, it requires no measurement or calculation, or geometrical lines, to show that the inductive action exerted by each of the
wires would be little, if at all, diminished by such an arrangement. The result would be much the same as if two separately insulated wires were simply placed side by side; and in that case I have all
long admitted that inductive action would take place as before nd that little or no benefit would be derived. But now let us take the arrangement represented in the annexed figure, in which
P and N are assumed to be the two wires in section, and AEBC and N are assumed to he the two wires in section, and A E B C the circumference of the in-
sulating envelope, composed sulating envelope, composed
of gutta-percha or caout-
chouc, tarred hemp chouc, tarred hemp, \&c.
is obvious that in such an a
 6 rangement as this the inductive influence of the positive
wire P, and that of the negative wire N, must tend to almost neutralise each other around the entire circum-
ference AEBCD. At E and F they will perfeetly
neutralise each other, and
neven even at the points $\mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{C}$
D , the wires are so nearly equidistant that the induc-
ive action of the one must greatly and exclusive action ofther The only spaces exposed n between the parallel dotted lines. In each of these small spaces alone may each of the wires be supposed for the present to act with its entire inductive force. Even in the penumbral spaces p B
$\mathrm{C}, n \mathrm{~A}, n \mathrm{D}$, each of the wires will act with continually in reasing effect in opposition to the other the further that we reced from the centres p and n. And on arriving at B, for example, if the distance from B to N were equal to only half the distance from B to P the inductive effect of N at B would be equal to four times the inductive effect of P at the same point, because, as "X. Y. Z."
justly observes, the inductive action is inversely as the square justly observes, the inductive action is inversety as ase the action
of the distance of the inducting surfaces. Even in this case of P would diminish the effiect of N by one-fourth; but I think it may be safely assumed that the ratio of the distance B N o B inductive action of N at B to be 36, that of P at B would be 25 or in other words, P would so far counteract N as to allow it to exert only two-sevenths of its natural inductive effect at the point B; and in proceeding from B to E, even this small fraction would go on rapidly decreasing at a constantly higher rate, as it approached E , the inductive action of P and N would almost entirely and absolutely neutralise each other.
I have hitherto supposed that the small spaces, p and n, which ie between the pase dine led lines, would each be exposed to the Dr. Faraday affirms, that induction is capable of being exerted in curve lines, the effect of N at p, and that of P at n, would each be
partially neutralised even at these points. From certain experi ments of Professor Riess, I have sometimes been inclined to doubt the existence of the inductive action exerted in this anomalous manner; but any conclusion that is stamped with the venerated name of Taraday this case, I gladly accept his dictum as furnishing the only addirou I I around the entic.
lating medium.
Enlarge this insulating medium so as to embrace the sectional area, $a b c d$, and supposing the distance between P and N to remain constant, it is evident that the inductive action of eack would be still more equally diffused around the external surface because the ratio of $b \mathrm{~N}: b \mathrm{P}$, for example, is more nearly a ratio of equality than $B N: B$
ideration. Y. Z.'s" remarks, with reference to the practical considerations involved in the construction, the paying out, and the dificulties in case of fracture connected with a cable of this de scription, I shall say nothing, for two reasons : first, because the
 terests us at present is this-Would such a cable diminish to great and important extent the effects of induction
I have also said nothing with reference to the static inductio which would be exerted betweer the two wires, because C conceive from the small surface which they present to each other, that this would be very smal
I have yet, however, to add one word on the subject of the dynamic induction, because I believe that in this we should find a useful coadjutor in working a cable of this kind. It is well known, as one of Faraday's great discoveries, that when wosition , either extended or in a coil, are placed in juxta that current, at the moment of its transmission, excites momentary current or wave in the other in the opposite direction and at the moment when the primary current ceases, a secondary Wave or current is excited in the other in the same direction Hence, at the instant when a positive current was transmitted hhrough one of the wires, that posisive current would strengthen o whereas, at the moment of the cessation of both currents, each would tend to immediately destoy add extinguish whatever mained of the other. This I conceive to be a point which well deserves consideration; but feeling that I have already tres veloped by others who are better qualified than myself.
Glasgow, Jan. 10, 1859 . George Blair, M.A.

diving bell

Sir,-Having been a continual subscriber from the first of your valuable journal, and seeing, by last week's number, that one man nearly lost his mife in the diving bell at the works of the new application of the air pipe being fixed either externally or internally of the bell from the top to bottom, which will keep the wate out of the bell in case the air supply pipe should accidentally get broken short oil; as in lie case reerred 10 , it will give the man an opportunity of giving the sigual to he drawn to the sur-
face; A is showing the air pipe which is generally fixed to the

bell; B the improvement in the pipe attached to top of the bell , D , and by bending a piece of pewter or other tube
glass globe will show the practicability of the same.

Chas. Askew.
Dec. 21st, 1858
railway brakes
SIR,-The frequency of railway accidents induces me to offer the suggestion that to prevent them we must have good brakes. I inclose a sketch of a brake of which I have made a working model; a, is a section of carriage; b, cistern attached to the
carrige frame, and filled with water; c, a square rod which run

anderneath the carriage, and also through the cistern in which there is a two way lock to be opened and shut by the rod c. At m
there is a slot in the rod, and a square slide, and behind this a spiral spring to keep it in proper place. This rod is attached to spiral spring to keep it in proper place. unsent arrages by means of a link and universal joints ; d are
different two guard irons for brake rods f^{1}, and $f^{2} ; g$, is a ram or piston forced out by the water that the force pump l forces behind it This pump is worked by an excentric sheave which is fixed on the
carriage axle g. Now, by turning the rod c one-eighth of a revoation it allows the water to pass into the force pump, which causes od f^{2} to be pressed backward and the rod f^{2} to be pressed forward, of course tightening the brake blocks i, i, i, i, until the wheels are made to slide upon the rails. At this time the pump
stops working, and to release the brake we need only turn the rod c one-eighth of a revolution further, when it will open communication between the barrel and cistern, and the same water will do without waste.
I should feel much obliged for your opinion or that of any of your correspondents on the merits and defects of such an arrange-
ment.
RICHARD Roberts.

Rhymney Ironworks, Dec. 28th, 1858.

bOILER EXPLOSIONS.

Str,-The article on Boiler Explosions in The Enaineer of the 3 ste ult. induces me to offer a few remarks on the circulation
of water in boiles, which I have never seen trated with the attention it deserves.
Rather more than twenty years ago I gave a good deal of time and attention to the construction of boilers, and experimenting
with the same , and some years later valuable experiments were with the same; and some years later valuable experiments were
conducted by Messrs. Josiah Parkes, Charles Manby, Professor Dr. Schafhautel, and others, on the evaporative power of anchief object I kept in view was to effect a rapid circulation of the water in the boilers, as well as to secure a proper combustion of the gases generated by the fuel, as I was, and still am convinced
that the danger of explosion would be greatly lessened by attention that the danger of explosion would be greatly lessened by at
to the power, and a greater evaporative effect also produced.
In one of my first experiments with a small boiler I could not keep the water in it, on account of priming so much, and in a short
time the fire-box became leaky ; but after I placed a perpendicular funnel-shaped tube in the water, the top of which was an inch o two below the surface, and the lower end nearly to the bottom of
the boiler, I then found the difficulty (of priming) at an end, and the boiler, I then found the difficulty (of priming) at an end, and
immediately the fire was raised the surface of the water streamed towards the funnel, and descended to the bottom of the boiler, and the heated water ascended and threw off its steam, and again descended through the tube. I urged the fire win,
$(3 \mathrm{ft}$) fan blast, but could not raise the water level.
I have in later years used this plan in large steam boilers with very good effect, and I feel satisfied that if tubes were placed in he side water spaces of locomotive the real level of the water would be better shown by the trial cocks.
The instance you have given in the paper of the 31 st ult. of
the centre tubes of a boiler having been burnt out leads me to the centre tubes of a boiler having been burnt out leads me to middle of the tabes, the whole length of the boiler, the upper
thin plates, about 2 in . apart, perpendicularly through the thin plates, about 2 in . apart, perpendicularly through the
part of the same being level with the top row of tubes, and the part of the same being level with the top row of tubes, and the
lower part to within 3 or 4 in . of the bottom of the shell, the effect would be a perfect circulation of the water, and an un-
interrupted descending current would be produced from end to end interrupted descending current would be produced from end to end
of the boiler between the two plates. Many methods may be adopted to cause circulation in eylindrical and other boilers which would also prevent the injury of the plates over the fire.

Middlesbrot-on-Tees, Jan. 8, 1859

nectification of the circle

SIT, - I beg to thank "Old Engine" for his calculation of the line
BW. The approximation certainly is less correct than that tesulting BW. The approximation certainly is less correct than that resulting
from my former figure, whose error (page 6 , vol. iii.), is less than he soovoth part of the diameter. But the figure in last month's number is easil
If this won't do, try something else that will," is not a goo rule, and mast be changed when we get a better; however, I had point in reserve by which to produce a greater approximation, and
beg your kind permission to hand the following improvement :-

Let P be the middle, M and D the ends of the radius; on PD construct an equilateral triangle PD B, and join B B ;
produce D B till B \times the produced part equals B M, plus B D, and join $P \times$ cutting B M in Q. Then the three sides of D B M plus the three sides of $\mathrm{PB} \times$ equals 5.905083411 of the radius
D . The difference between the sum of these lines and the the middle of $P Q$, and upon this perpendicular line take $M Z$ equal to one half of it, i.e., draw a line from B to the middle
of this perpendicular line, and join $Z B$, cutting $P Q$ in W; then of this perpendicular line, and join $\mathrm{Z} \mathrm{B}$,cutting PQ in W ; then
$\mathrm{B} W$ will be the difference required, i.e., B W plus the three sides of D B M plus the three sides of PB \times equals the circum-
ference.
But the three sides of $\mathrm{D} \times \mathrm{P}$ plus $\mathrm{D} \times$ also equals $5 \cdot 905083411$
of the radius D M ; therefore BW plus $\mathrm{D} \times$ plus the three sides of the radius DM ; therefore $\mathrm{BW} W$ plus $\mathrm{D} \times$ plus the three sides
of $\mathrm{PD} \times$ also equals the circumference of the circle whose radius is M D.
On the rectification of the circle see Tre Exarxeer, vol. iii.,
Nos. 61, $62,64,65,66,68,70,7$
Old Daily Press Office,
21, Great Charles street, Birmingham,
January 10th, 1859.

submarine conduction.

Str, - Since writing my last letter to you I have ascertained that che account given of Professor Faraday's experiment, in the "En-
cyclopadia Britannica," differs from the account of the expericyclopxdia Britannica," differs from the account of the experiment given by Professor Faraday himself (in a. paper read before
the Royal Institution, January 20th, 1854). From the former account it appeared that the circuit was closed by the pole of the battery being connected with the first wire, and the other pole with
the earth, whilst the end of the wire was also in communication with the earth. But it appears that such was not the case, and that the current transmitted along the wire was sent from one pole
of the battery solely, the other pole being insulated. Your correof the battery solely, the other pole being insulated. Your corre-
spondent, " A Telegraph Engineer,', is therefore, no doubt, correct in the account of the experiments detailed in your journal of the 24th December.
The plan which I suggested for obviating the effects of induc experiment.
January 2nd, 1859

SMITHFIELD SHOW-OAT BRUISERS
SIR,- The paragraph in the last letter of your correspondent "A Visiting Engineer," referring to oat-bruisers, is (unintentional, we are quite sure, on the writer's part) calculated to do us a injury by misleading your readers as
detail in the construction of our mills.
It appears that his experience is derived not from one of our
nills, but, in his own words, "from one ordered from a firm of thirty years' standing, the principle of which is nearly the same as Messrs. Turner's, the brasses fitted in the same round bush style." Now we never made our larger mills with the "round
bush" bearing, and long before 1854 we used bearings to whick the description of wheel he has since adopted accurately applies, iz., octagonal shaped brasses in halves with flanges at apod and fitted into the block at an angle of forty-five degrees. Pro
this we can readily furnish him, if provided with his address. At the present time we manufacture ten varieties of bruising mills ; five of these are adapted for working by horse or steam mils, ifve of these are adapted for working by horse or steam
power, and the main spindes of which are carried by angular plummer blocks with brasses in halves. The other sizes being for very rarely require to be renewed. E. R. and F. TuRNER.
St. Peter's Ironworks, Ipswich, 5 th January, 1859

the suez canal.

A currovs illustration has recently been offered of the way in which editors of Trench newspapers. 4 the fiberty of the at Havre, M. Frederie de Coninck, was consuited a short time since by a working man upon the propriety of the latter investing his
savings in M. de Lesseps' company for cutting a canal through the Isthnus of Suez. The prospectus holds out the hope of a minimum of 20 per cent. interest upon capital. The applicant for advice argued that as his savings amounted to $£ 80$, the investment in this plinanthropic and patriotic scheme would give him
M. de Coninck, before offering an opinion, was anxious to examine the project in a conscientious, businessilike manner, and to ascertain its chances as a financial operation. The resul ap-
peared to him so unpromising as an investment that he considered it his duty to communicate them to his fellow-citizens. He accordingly addressed a series of letters to the local newspaper, the
Journal du Havre, purporting to set forth what he conceived to be Journal du Havre, purporting to set forth what he conceived to
fallacies in the arguments favourable to the scheme, and the fallacies in the arguments favourable to the scheme, and the
erroneous calculations on which they were based. Instead of being inserted in the Journal, the first letter was returned to its author by the editor in person, who expressed to M. de Coninck, "in the
most courteous terms, his regret at being unable to open his most courteous terms, his regret at being unable to oppe
columns to critical ohservations appon the company for piercing the Ischnus of Suez," Not to be definted in his purpose, M. do
Coninck has since published lisisteter in ine form of a pamphite headed with this quotation, "LE Exaggeration Revele la Paiblesse." The letters are well writen, the language courteous, the wit keen, the reasoning cogent. These are merits, but perhaps they were
considered sufficient to justify the rejection. One is naturall curious to know why the editor of the journal was unwilling, unable, to admit legitimate and temperate criticism on a public company. M. de Coninck's remarks seem to throw some light on
the fact. "The newspapers of Havre," he says, "stop my mouth with one hand, and with the other brandish the advertiseme trumpet." If this be so, the secret of the unanimous support,
which the scheme has received in the $\overline{\text { Prench press is not a mystery, }}$ and we are left to conclude that no paper will publish critical r marks on a scheme which is largely advertised in its columns M. de Coninck confines his criticism to the finannial part of the
project, for he says, "This splendid enterprise has all my sympathies, except so far as regards debit and credit, were it only
to teach the English Governinent that io our day great things may be accomplished in the world without it, and, if needs be, in spite of it." Surely this is patriotic enough. M. de Coninck does not
seek to depreciate M. do Lessep, nor the politital) value of his project; he only doubts its practicability, according to the estimates certainty of success as a commercial speculation. Under these circumstances, and because the letters are meant to warn people
from an enterprise which the author declares will prove their ruin, from an enterprise which the author declares will prove their ruin,
the conduct of the journalist appears, to say the least, very strange. The invitations issued by the Suez Canal Company for subscrip
tions have been addressed to persons with small means-petites bourses - whose discernment is often, unfortunately, on a par with
their resources. These invitations have been accompanied with the most tempting statements of prospective profits, calculate vexy unceasonable in their pexpectations; and these in turn have been followed by appeals to that lower description of patriotism which in France is nown as Chauvinisme. For the purpose of public con What little trust can be placed in the prospectuses Coninck recalls to mind the advertisements of a certain maritime company which covered the fourth page of all the journals, from the sublime and stately Moniteur to the langhing Charivari, and which promised 40 per cent. profit upon shares which, were
realised, would produce to their holders from 60 per cent, to 70 per cent. loss. He anticipates a similar result from the Suez Canal, while fully admitting the perfect good faith of M. de Lesseps.
An important feature in the seheme is the construction of two
piers at Pelusium, running out into the sea for a distance of 6,000 piers at Pelusium, running out into the sea ior a distance of
metres, in order to obtain a depth of water of from 7 to to 8 metres. metres, in order to obtain a depth of water of from $7 \frac{1}{\text { to }} 8$ metres.
M. de Lesseps's statement, based upon the report of the "eminent engineers," Linant Bey and Mongel Bey, is quoted, and is to this effect-that there can be no doubt as to the possibility of kuilding
these, since, a century back, the Dutch Government built a pier these, since, a century back, the Dutch Government
8,000 metres in length in Lion's Bay, near the Cape of Good Hope, and sunk to depths greater thay 16 metres. This argument, M. de Coninck observes, would be wher hase but for one thing, or English at the Cape in Lion's Bay, which does not exist, a the engineers have mistaken an abandoned project for works co structed; or, in other words, "Ils ont pris des vessies pour dcs of the masonry of the piers under water at 15 f . the cubic metre, which the author of the pamphlet finds uncommonly cheap when compared with the cost of masonry on land in France. On a matter
o purely technical it would be presumption for any but profes to pronounce an opinion ; yet if may be judged by the standard of similar structures in Europe with masonry at 15f. the cubic metre, MM. Linant Bey and Monge Bey assert that the cost of the piers will be $30,000,000$ f. Besides the piers at Pelusium there are to be others at Suez 4,000 metres long; and the Egyptian engincers just mentioned, following a like mode of estimating cost and quantities, make the estimate of expenditure on the erection of piers at both ends of the canal a moun those for like works in England, some very curious results may be found. Taking the piers at both ends, it would appear there wil be a total length
In the report of the Select Committee of the House of Common on Harbours of Refuge information is given as to the cost and mode of constructing piers and breakwaters. Mr. Teasdale, the deputy-engineer of Yarmouth Harbour, proposed to build a break and which Imber piles cased in iron, at a cost of $£ 34$ the lineal Y to build, , beheve, would be much cheaper than masonry. Ye, estimate, in Yarmouth, upor iron and skilled labour are said to be in Egypould cost 10 per cent. more than the estimate for masonry in Egypt. Mr. Abernethy suggested the construction of a break whith at the Mumbles, in the Bristol Channel, upon a novel system, which would effect an cconomy "in material and time, and consequently of money, by forming the structure or headland is con linetere, aniluble ind close het where is ime by the side of Swasea .iver, which an poccopper slag required quantity. Yet with all these advantages, Mr. Abernethy estimated the cost of his system at $£ 370,000 \mathrm{a}$ mile; so that. supposing there were equal facilities for procuring timber and stone at Pelusium and Suez, which do not appear, and that Egyptian labour were as cheap as Welsh, the cost of the piers a both ends of the Suez Canal would be $\ell 4,440,000$, or more than " May, 1858, shows reative to Harbours or Refyge, Should the piers at Pelusium and Suez prove as expensive as the or nearly double the total capital of the
Leaving the question of cost, M. de Coninck examines the chances of remuneration to shareholders. He quotes the sourcees tons of shipping passing through the canal annually, and paying duties or 10.. a ton $=30,000,0001$; a anchor dues for that $1,560,000 \mathrm{f}$.; 250,000 hectares of land, at 350 f , the hectare-produce of the lands at the end of twenty years, or annually, 990,000 e. making a total income of $40,056,000 f$., from which will have to be $1,201,680 \mathrm{f}$; leaving a et prodithistration, 15 per cent. is to be repaid to the Egyptian Government, 10 per cent. to the promoters, 3 per cent. to the directors, and 2 per ceat. for retiring peations,
which would leave the shareholder nearly 13 per cent. for his money, if all the sources of revenue prove as productive as stated.
M. de Coninck next passes in review the sources of reveme. He is sceptical as to the sand downs peoducing any profit, ant as for the lande, ho sbows that in Normandy, the richest and most fertife part of France, it is dificuit to lef land at more than 120f, the model farms in the Arabian deserts, The revenue from tae N.Ie appears nom inappropriately to be a myth. As to $3,000,000$ of says he ppin phasing that $6,000,000$ tons of shipping double the Cape of Good Hope and Cape Horn every year ; and be also desires to be inforined how upon to pass through the Suez Conal, especially since M. Felix Belly has proposed his Nicaraguan waterway.
M. de Lesseps states that the saving which passing through the cluding winchor would be 325 . a-ton, from which the toll, inbut as this includes a presumed saving in insurance of $9 f$. on th ship and cargo, whereas underwriters charge from two to four
per cent. more on ships navigating the Red Sea, M. de Coninck reduces the saving to 12f. a ton. At present the additional freight cultics of navigating the Red Sea. Wherefore he ask the dificulties of navigating the Red Sea. Wherefore he asks, how can merchants be expected to send their goods up the hed sea at an
extra cost of 30 . to save 12f? would arrive at the Cap or Good Hope in thirty-five days, from the Cape to St. Helena ${ }^{2}$
fifteen days, and from St. Helena to the Channcl in fifty - five, making 105 days in all. On the other hand, a ship sailing from Suez in thity days more would tate fail eanal, and then forty-ive days to sail into the Channel, or 11 days in all. The Suez route would make the passage longer
by five days. In the other season the canal would shorten the passage by fifteen days, but for a ship of 500 tons it would cost 5,500., and shippers would, consequently, prefer being the extria
time at sea to paying this sum, which is at the rate of 11,000 .

mont)

The most amusing part of the discussion is, that M. de Coninek hows that for any merchandise to be imported via Suez the whole or the 1 in hin poses a differential duty greatiy in ravour of the oceann route
Thus, the duty on cotton imported by the Cape of Good Hope is $72 f$ the ton, against 144 f , the ton if imported by any other channe the Snez- route is S468 the $1026 f$, on indigo as $60 f$ t 200f. the 100 kilogramues. So that, in order to save 12 . a-ton, and supposing the Governument fixed a medium duty, merchant who imported via Suez would have to pay on cotton 368 , on coffee 90f, and on indigo 420f. a-ton more than those who im ported by the Cape of Good Hope.
One source of revenue M. de Lesseps points out:-" The current fish (shed by the action of the locks will draw in a multitude of terranean.
After this estimate M. de Coninck ceases to treat the canal scheme seriously. He considers it as an Oriental allegory, and says that it is because the little fish, proceeding not only from
the Red Sea and the Mediterranean, but also from the mouth of the Seine are drawn in by the action of locks, that he raises his warning and cries aloud-" Take care, little fishes ; do not get in, you will be caught; for it is, on you, little fishes, that
they depend to furnish large revenues!"-Correspondence of the
" times." !
Time Davaers of time Derp-The number of wrecks reported
The Davaers or tur Dere- - The number of wreck
in 1858 was 1,887 . This seems a distressingly large total.

HALLIWELL'S IMPROVEMENTS IN MULES FOR SPINNING AND DOUBLING COTTON.
Patent dated May 11ti, 1858.

Tms invention, by Robert Halliwell, of Bolton-le-Moors, is appli-别 performed by the cam shaft, in the mules known as Roberts' patent self-actors.
Fig. 1 is a side elevation of a self-acting mule to which the im-
provements are applied; Fig. 2 is an end clevation, taken from the provements are applied; Fig. 2 is an end clevation, taken from the back of the same; and Figs. 3, 4, and 5 are detached views of parts
of the improvements. a is the rim shaft, to which are fixed the driving pulley a^{1}, and backing-off friction cone $a^{3} ; b$ is the twist shaft, which is driven by a worm on the rim shaft; c is the lower shaft, which is driven by the spur wheel a^{3}, fixed to the boss of the pulley a^{4}, loose on the rim shaft a. To the end of the shaft c is fixed d, gearing into the the eel en on of whe scroll shaft eq f bevel pinion front roller shaft, which is driven from the rim shaft a by a train of whecls shown best in Fig. 2, and by an horizontal shaft $g ; h$ is the
squaring or drawing-out shaft, which is driven from the shaft g by squaring or drawing-out shaft, which is driven from the shaft g by
diflerential wheels. i is the carriage supporting the spindles j and the faller and counterfaller shafts k, l. The faller motion is clearly shown in Fig. I, and does not require to be particularly described m^{1} on the front scroll pulley shaft m^{2}. The parts above enumerated, and all the others necessary to complete the mule, and which are not more particularly referred to hereafter, are made in the usual The in
The invention consists of an improved combination of parts for putting in and out of gear the machinery for drawing out and
putting up the carriage, and for putting the backing-off friction cones in and out of contact. The lever n, which is similar to the long lever used in Roberts' patent self-acting mules, vibrates upon the fulcrum stud n^{1}; the front end of this lever is held up while the carriage is going out by the catch n^{2}, and to the back end of the
lever n is hinged the bar n^{3}. To the carriage square i^{1} is jointed the weighted lever o, furnished with a bowl o^{1}, which, as the carriage moves to and fro, runs on the upper surface of the lever n. The upper end of the bar n^{3} is jointed to the horizontal arm of the bellcrank lever n, which is mounted on the stud n^{5}, fixed to the framing ; to the vertical arm of the lever n^{4} is jointed the horizontal rod p,
which slides to and fro in a bracket p^{1}, projecting from the framing which slides to and fro in a bracket p^{1}, projecting from the framing;
to the rod p is tixed the incline p^{9}, which acts on a bowl projecting from the lever p^{3}, by which the drawing-out catch box is worked; to the rod p is also fixed the stud p^{4}, for acting on the lever p^{5}, shown also in Fig. 3. At the upper end of the lever p^{ν} is a slot in which a stud tixed to the cone fork lever $p 7$ enters; on this stud is mounted a bowl p^{3}, which is held in contact with the catch or curved plate q,
by the spring $p e$, fixed at one end to the lever p^{5}, and at the other to the rod p. The curved plate q vibrates on a tixed stud q^{\prime}. To the twist shaft b is fixed a pinion b^{1}, gearing into the pinion r^{1} fixed to the second twist shaft $r_{\text {, which }}$ is sometimes used in mules for spinning fine numbers. To the shaft r is tixed the finger $r 3$, which, as the shaft revolves, comes against the stud s^{1}, projecting from the bar z, and raises it off the stud s^{2}, fixed to the framing. In coarse
spinning, when the twist shaft is not required the bars is raised off the stud s^{2} by a lever acted upon by the carriage. To the bar s is mounted the bowl s, , taking into the slot of the curved plate q; the end of the bar s is jointed to the strap fork lever t, which is hinged to the stud t^{1}. Upon the boss of the strap fork lever t are fitted the weighted duplex levers t and . To the squaring shaft h is fixed the pinion h, gearing into the wheel h^{2}, to the face of which is fixed alternately into contact with the levers t^{2} end t^{3}, as will be described hereafter.
The illustration represents the parts of the mule in the positions they occupy when the carriage, in going out, has performed about half its traverse. The mode of operation is as follows:- When the carriage arrives at the end of its stretch, the finger i^{3} disengages the catch n from the stud projecting from the long lever o, which being
pressed upon by the weighted lever o, then drops on to the catch n^{4} this change in the position of the long lever n causes the bar n^{3} to rise, and consequently moves the rod p in the direction of the arrow sufficiently to cause the incline p^{2} to throw the drawing-out catch box out of gear, thereby instantly stopping the outward motion of the carriage, the drawing rollers having been previously stopped in the usual manner; the carriage then remains stationary until
sufficient twist has been put into the yarn, at which time the finger r^{d} comes against the stud s^{1}, and liberates the bar s, which then moves in the direction of the arrow, being influenced by the weighted lever t^{2} acting on the strap fork lever t, as shown in Fig. 4, which represents the parts in the positions they occupy when the carriage is out, that is to say, the bowl h^{3} has then lifted the strap fork lever t but the stud projecting from the lever t wis the on the said strap fork lever, and causes it to assume the position indicated by dotted lines in Fig. 1. As soon as the bar s has been
liberated, as above described, by this means, the driving strap, which aring the going out of the carriage had been held on the pulley a and partly on the pulley a^{4}, is moved entirely on to the pulley a^{4}
When the bar s is moved, as above described, the bowl s^{3} moves the curved plate q until the bowl p^{6} enters the recessed part of the plate q, the spring p^{6} then acting on the levers p^{5} and p^{7}, press the backing-off friction cones into contact; the backing-off is then effected, and the fallers are acted upon in the usual manner; and
when the faller has descended to its proper position for winding when the faller has descended to its proper position for winding
the yarn on the cops, the faller arm is comes under the faller rack i, the upright i^{3}, to which is tixed the inclined piece i^{3}, then drops, and the inclined piece $i^{i 6}$ acting on the trigger n^{5} disengages the catch n^{4} from the long lever n, which then drops the second time; the dropping of the front end of the lever n disengages
the holding-out catch z in the usual manner, and raises the back end the holdino-out catch z in the usual manner, and raises the back end
of the said lever until it is latched on the catch n^{*}, the bar $n \mathrm{is}$ is thus again raised, and the rod p is moved a second time in the direction of the arrow, thereby slackening the spring $p^{6_{2}}$ and bringing the stud p^{i} against the lever p^{5}, which, acting on the lever p^{7}, disconnects the
backing-off friction cones; the stud p^{3}. projecting from the bar p backing-off friction cones ; the stud p^{3}, projecting from the bar p,
then presses against the strap fork lever t, and holds it in position then presses against the strap fork lever t, and holds it in position
The bar n^{3} in rising the second time, acts on the lever n_{7}, to which the putting-up catch box $n s$ is connected in the usual manner; the carriage then commences running-in, and when up the tinger $i d$ disengages the catch n, the back end of the long lever n then drops, being pressed down by the weighted lever o; the bar n^{3} in descending pulls the drawing-up catch box ns out of gear, and draws
the rod p into its original position as shown in the drawing; the the rod p into its original position as shown in the drawing; the
bowl has has by this time raised the lever t^{3} in the manner above described, and liberated the lever t, which then acts on the strap fork lever t, and brings the bar s, the curved plate q, and driving strap back to their former positions, at the same time the incline p
is brought from under the bowl of the lever p^{3}, thereby is brought from under the bowl of the lever p^{3}, thereby allowing the drawing-out catch box to be put into gear by the action of the
spring p p^{10}. The drawing rollers having been put into motion, and spring p^{10}. The drawing rollers having been put into motion, and
the fallers unlatched in the usual manner, the various parts are in their proper positions for performing another stretch.
The catch
The catch \boldsymbol{v}, shown by dotted lines in Figs. 1 and 3, is for the purpose of keeping the backing-off cones out of contact until the curved plate q is brought back to the position shown in Fig. 1 ; it is

SHUTTLEWORTH'S IMPROVEMENTS IN PORTABLE STEAM ENGINE BOILERS.
Patent dated May 29th, 1858
Ths invention, by Joseph Shuttleworth, Lincoln, has for its object
improvements in portable and other steam engine boilers. For these

FIG.I.
outward, and to which the tube plate and front plate are fixed, leaving lower portions of the side plates without flanches, with a view to leave space for cleaning out the sediment. The upper edges receive the ends of the bars or stays, which strengthen the covering phate, and give support to such bars'or stays.

Fig. 1 is a longitudinal section, and Fig. 2 a transverse section of the tire-box of a steam boiler; a, a, are the covering and side plates, which are made with nanches b, b, to one of which the tube plate c is fixed, and to the other is tixed the front plate d; the lower portion (as shown at e, e, Fig. 2) for cleaning out the sediment. The tube and front plates being here flanged as in the ordinary maner, as shown at g, g. The upper edges of the flanches b of the covering plate a, and the upper edges of the tube plate c and of the front plate d, receive and support the ends of the bars or stays $f ; f$, which strengthen the covering plate, the covering plate being connected to
the bars or stays f in the ordinary manner.

Foreign Jotrings.-An electric telegraph between Teheran, and Fauris is to be established in the spring, and a railway is to be formed between Teheran and Elbourg, the summer residence of the Shah of Paris to build eight new guobont immedistely so made as to take to pieces like a dissected map and be readily put together again.-On the 2nd November the Government of New South Wales passed an Act for the grant of 250,000 per annum towards the establishment of a mail route viá Panama. The condition insisted on by the Act are, that one-half the total subsidy be paid England and Sydney be not more that the time occupied betwee England
Floating Batteries.-A correspondent of one of the morning
journals proposes to make these vessels, up to the line of journals proposes to make these vessels, up to the line of load dis
placement, a solid mass of material of such specific placement, a solid mass of material of such specific gravity lighter by shot. The combination proposed is one of cork shavings, light wood sawdust, rush stems, cotton waste, flocks, hemp, and other light material, which, by the aid of a solution of gutta-percha, other chemical process, would form a solidifying mass, so tough that it could not be knocked to pieces by shot, and so light that it would
be only one-half the specific gravity of water. and therefore unbe only one-half the specitic gravity of water, and therefore un-
sinkable, however perforated by shot, and capable of carrying arma ment and naval equipment to the extent of nearly onc-half the weight of its own displacement in tons. Such vessels of light draught would accompany flects of war as tenders to line-of-battle ships, whence they might be manned and stored as occasion might

TO CORRESPONDENTS.

Next week we shall publish our usual half-yearly extra number, which will comprise the Index for the last half-year's volume. It is just to ourselves that wee should call general attention to
the fact that this half-yearly compilation includes a perfect List the fact that this half-yearly compilation includes a perfect List of all the Patents granted during the period to which it relates,
and in this respect alone is of the utmost value to the Engineer, and in this respect alone is of the utmost value to the Engineer,
Manufacturer, and Patentee. The utmost care is given to its Manufacturer, and Patentee. The utmost care is given to its
production, and we think we may guarantee that it is as production, and we think we may guarantee
correct as such a voluminous work can be made.
Notice- Four wolumes of The Exarisere may now be liad ready bound. Voh I
 163 , Sirand
It is adsiagble for correspondents to give initials rather than general signa-
turee, as Constant Reader. We have many thousands of kind constant readers.
 invention for sale, stating iss merits and not asking too hiop a a price for it The
great diffeulty in effcting the ele it great dificiculty in elfecting the sale of a patent is the very exiravajant idea of
value too frequenly atuched to it by the nventor, and uctich forms an in-

 howeer vond it may be, and horeverer numerous is merils; and that, afler all, be llamed if he deciline to riek bie llousands oflen asted upon vithat may possibly prove a fature
Cosstavt Resese (
Constant Rempkr (Grat Yarmouth). - We should imagine that, having done the work you mention, he parties to whom your rg a an E. (Poplar).-We understand that Messtr. H. M. . Laurrence Sandon Engine Works, Lievppool, have just manufactured an ice machine on the principle invented by Mfr. Harrison, of Getlonig, and ve beleere they will be happy to afford you or ony of our readers any information respecting it
H. (Blackburn)- We Hank you for your suggation, of which we hope shorly to avail ourselves.
noof-parings (from the farrier'sp) very stuitable-indeed the best material for case,
 surrounded by the compasition, and kepp at blood heat for a a time in proportion
to ve depth of iron dusied to ce converted into stect. For an eighth op an inch in deph, eight to tucete hours will be required. The quality of the iron eeill make a difference, but experince is the best teacher.
Susiccniser (Carlisise).
TrouThton's sork There is a work
in Buckersbury
in Bucklersbury.
 the other 7h March, 1850 , consequently neilher has expired.
s. $-T$ The stech h vill appear nct
8. S.-The stecth will appear next tweek, wilh a few suggestions

Minkh-No description of the apparatus mentioned has been publishial
The Exginezr. We will endeacour to oblain the required information. tio. - Your paper, whien submitted to the councll, becomes the property of
the institution, and you tould not be at liberty to publish it. An abstract could
appear during Dhe teeek folloring its reading, tut its complete publication ucould be delayed, perhaps for a year.
Divise Belp.-A submarine boat was constructed by Mrs. Soott Russell, nearty
at the close of the Crimean war. It was, wee betiece, fitted will aparas Siebe. We cannot state what became of it
Sece, T. J. (Blackwail).- Before calculating the weight or the saffty vatue (from the
ratio of the kevers) you must deduct from the total pressure of the steam against
the under surface of the valve, the treight of the lever, valve, and attached springthe under surface of he valiee, the wreight of the lever, valse, and attached spring-
balance (the latter being disconnected from tos bottom fastening), the whole being balance (the latter being disionnected from ths bottom
weighed at a point exactly over the centre of the value.
weighed at a point exactly over the centre of the eatee.
K. F. (Belfast).-No adtantage has ceer been demonsin
K. F. (Belfast).-No adeantage has cever been demonstrated to result from the
use of heated air in ordinary combunstion in furnacs. In blast furnaces the
only adeantage of hot air is in preventing the cooting offect of cold air. on the only adeantage of hot air is in preventing the cooling etfect of cold air on the
iron. Cold air does not cool a turning coat, Novever. The production of heat
is caused by the chemicalcombination of the carbon of the coal weith the oxygen of the air, and is not believed to be dependent upon their previous temperature.
J. T. (Bombay). The matter has been arranged as you requestel S. T. (Bombay).-The matter

Stepers vere Greavs patent,
SToDes. The steppest railuay slope for its depth in such materist is probabty
 clay, it has stood well for several years at $1 \frac{1}{2}$ to 1 .

tunnelling.

To the Editor of The Engineer.
Sik, -In reply to your correspondent (Gorton), allow me say that I believe the most important work of tunnelling, now going on in England, is that
through the Malvern Hills-about seven miles from Worcester-on the ine in course of construction from Worcester to Hereford.
Lincoln, Jan. 8th, 1859.
We have to haank "Ledbury" also for a similar answer.]
piston rings.
To the Edilor of The Engineer.
Srz,-We find, in perusing Tae Escisera, dated 24th Dec., 185s, that
J. and M. Swaire, of Hyde, and Dukenfeld, Cheshire, have taken out . and M. Swaire, of Hyde, and Dakenkeld, Cheshire, have taken out a patent for a metalic piston with three rings. We have made pistons with
three rings during the last two years exactly the same as the piston patented, with this exception only, that the patentees cut their rings in
four, and we cut ours only once. We will thank you to give publicity to this letter this week, if possible, for we do not think it right that Messrs. Swaine should patent a piston that is in almost gencral use. We will
thank you to give us your opinion whether their patent will in any way thank you to give us your opinion whether their pat
prevent us from making our pistons in our usual way. Barnsley, Jan. 12th, 1859 . Josica Barraclover and Sos. You may go on making
hitherto made them.]

RAILWAY CARRIAGE BUFFERS.
 (To the Editor of The Engineer.)

In, -In your impression of the 31st ult, a "Mr. W. B. C." suggested the propriety of detaining the buffer rods when driven home, and likewise at
balf stroke, similar to the action of a gun lock. In the first place, I may remark that there is not so much to fear from the reaction as your correnot caused by the buffer's reaction, but are consequent upon the unyielding nature of the obstacle run into, such as an engine off the road, or a train Mr. W. B. C.s remark relative to the rebound of two bodies brought
violently into contact, is only applicable in certain cases, which violently into contact, is only applicable in certain cases, which may be
exemplified by causing two carriages to be run into each other, at an equal speed, when each will rebound an equal distance from the point of
contact providing they are or the same weight and spring power. Again, let one carrige remain stationary, and run the other against it at any
given speed, the result will be very different; the moving carriage will impart all its momentum to the stationary one, which will be driven forward, leaving the other in a state of rest, at the point of contact, without
retrograding so much as an inch. I do not pretend to argue that no acciretrograding so much as an inch. I do not pretend to argue that no acci-
dents have arisen from the breaking of couplings caused by sudden reaction of buffing springs, the late melancholy affair on the Oxford,
Worcester, and Wolverhampton Railway is clearly attributable to this cause-in this case your correspondent's plan would have been of service.
This class of accident is peculiar and rare, and can only occur to heavy trains coming to a sudden stand whilst ascending a steep grade. The plan proposed would be attended by a host of inconveniences in shunting, run-
ning, \&c., to ssy nothing of the complieated arrangement, cost, and danger in setting the springs at liberty-ie, discharging liemu.

throttle valves.

Str,-I shall be obliged to any of your readers who will inform me what is the best construction of throttle valve for steam engines It is for a pair 380 indicat land engines 50 -horse power each (nominal), working up to suting of at a fourth of the stroke. Regularity of speed is essentisl Glasgow, 12 Jan gite
Glasgow, 12th Jan. 1859.

combined steam.

(To the Editor of The Engineer.) Association, at Leeds, last summer, on combined steam. His method of
superheated steam was to have a pipe in the uptake to the engine chimney, which conveyed part of steam to the cylinder-this pipe entered close or very near to the cylinder.
Will you be so
Will you be so kind as to state in your notices to correspondents whose
method is best - if the method is best-if there is one better than Mr. Wethere'ds-and the pro-
portion of the pipe with the superheated steam to the steam pipe.

steam power.

Sis,-In answer to the inquiry of your correspondents, Messrs. Forster and Williams, a short 1-in. pipe will be suitable for a 4 -horse power engine, and for 40 lb. steam pressure in the boiler (the horse power reckoned as work
done by the engine at $33,000 \mathrm{lb}$. lifed 1 f . high per minute. horse power). An 8 -horse power engine may be driven by such a pipe,
but with considerablo but with considerable waste of steam Supposing litue counter pressure obstructing the discharge of the steam :from the 1 -in. pipe, the amount of steam passing might be sufficient for a 40 -horsc Dower engine when supplied by large piping
A long 1 -in. pipe with sharp
rafts, radiation, and other obstructions to the ueeful application of steam will only allow a friction of the above given powers to be obtained, not the quantity passing a short pipe under favourable circumstances.
Could you give us the standard of horse power to which your corre-
spondents refer? Is there one kind generally understod in a general inquiry? Is there one acknowledged in law? C. Scuites and Co.
 Per minule in a gencral inguiry in
rffer your last query to hle latyers.

Aderisements cannot be ouaranted insertion unles deliered bfore eight o colock
on Thurstay evening in each week. Mhe charge for four lines and under is half-a-crown; each line afterxardst, sixpence. The line averapaes ten words
Blocks are charged the same rate for the space they fll. All single adeor-
 Communications to be addresesed to the Editior of Tux Exorosern, 163, Strand
W.C., London.

THE ENGINEER.

FRIDA Y, JANUARY 14, 1859

metropolitan junction railways

Renewed attention is being directed to the connexion of all the railways which come into the metropolis. The North London, which connects only the Northern and which promises much for the success of similar undertakings for the connection of the Northern, Western, and Southern lines. The North London, nine miles in length, cost $£ 1,300,000$, carries about $6,000,000$ passengers, and earns about $£ 133,000$ per annum, and pays five per cent.
dividend. Upon this sucessful result Mr. Charles Pearson projected the Metropolitan Railway, which was in tended to connect the Great Western and Great Northern lines by a subway railway under the New-road, and to extend thence down the Fleet Valley to a central station in Victoria-street. The cost of this work was estimated There appears but little prospect, however, of further subscriptions, and the company which was organised to carry out the undertaking is likely to be wound up.
In the mean time a project has been started, with the concurrence of the directors of the London and North Western and North London Railways, to extend the West
London (the famous line of $M r$. Punch) from Kensington, London (the famous line of Mr. Punch) from Kensington,
across the Thames and through Brixton and Camberwell, to the South Eastern Railway at the Spa-road. This line, together with the North London, would then connect al the railways which come into the metropolis, and the
circle of railway communication around the City would be circle of railway communication around the City would be
interrupted only between the London Bridge and Fen-church-street stations. The estimated cost of the new line -which is known as the North, West, and South London Junction-is $£ 700,000$, of which the directors of the Lon-
don and North Western have resolved to recommend their don and North Western have resol
proprieters to contribute $£ 100,000$.
The South Eastern Company is also promoting a line from their London Bridge station to Charing Cross, one which would connect the three great lines on the south side of the Thames. This line would be carried through Southwark on arches, and at some distance away from the river, until it reached the Waterloo station, near which
it would diverge to Hungerford Bridge, where it would cross the Thames and enter a large station at Charing Cross. The length of the proposed line would be about one and three-quarter miles, and its estimated cost-including the bridge and terminus-is $£ 1,070,000$.
Another plan is that of Mr. H. J. Yeatman, C.E., which contemplates the connexion of the Loudon and South
Western with the Great Northern and North London lines Western with the Great Northern and North London lines, by a railway from Waterloo station, across the Thames to
the lower end of Somerset House, whence the line would
be carricd on arches over the Strand to Lincoln's-inn fields, and thence parallel with Gray's-inn-road to King's Cross and the North London Junction. A great central metropolitan terminus is proposed to be made in Lincoln's inn-fields, which affords a convenient open space of ground, one-eighth of a mile square. The plan proposes also the connexion of the South Western and South Eastern lines by a railway from Vauxhall-road, through Kennington and along the bed of the Grand Surrey Canal, to the Bricklayers' Arms branch of the South Eastern.
Then there is Mr. Bell's plan, which is to lay four lines of rails on the bottom of the Regent's Canal throughout it length, between Paddington and Stepney, eight and a-half miles, and to extend the City-road branch by an open cutting three-quarters of a mile long to a central terminus in Forestreet, near the Bank. Another cutting, with a tannel under the London Dock gates, would extend also from Stepney to the Thames Tunnel, whereby the railway would be carried to the south side of the river, and thus to the South Eastern line at New Cross.
Whilst these schemes are being urged upon the public解 and twentyose trins are running each way daily, over the portion already finished. This line is the first to cross the Thames within the limits of the metropolis, but, as has just been seen, not less than four other schemes of metropolitan railways are projected, to pass either over or under the river.
In most of the plans enumerated the junction of the various railways is merely incidental, whilst the accommodation of local, or the extension of existing traffic, is the principal object sought. Of the $6,000,000$ passengers profitable metropolitan lines-the principal portion are profitable metropolitan lines-the priacipal portion are
local only, and it is from passengers mainly that the revenue of the line is derived. Whilst we do not doubt that the extension of the London Bridge railiways to Charing Cross would accommodate $8,000,000$ passengers annually, we do not suppose that $4,000,000$ more would be carned even if the three great northern and western lines were
extended to a common junction at that point, although extended to a common junction at that point, although
such extensions would doubtless have a large local traffic such extensions would doubtless have a large local traftic
of their own. If it were possible, indeed, there should be of their own. If it were possible, indeed, there should be
railway communication throughout the metropolis. Our population of $2,800,000$, at a moderate estimate, performs an annual local movement of $1,000,000,000$ miles, which, if
estimated at a railway charge of $1 \frac{d}{}$. per mile, would yield estimated at a railway charge of $1 \frac{\mathrm{~d}}{}$. per mile, would yield more than $£ 6,000,000$, or twice as much as the revenue of
the London and North Western Railway annually. The London General Omnibus Company derives $£ 600,000$ from this movement, and conveyances for hire at least as much more. Altogether $£ 2,000,000$ a year are spent on the
vehicular accommodation of the metropolis, although, as the vehicular accommodation of the metropolis, althongh, as the
average charge is perhaps 3 d . per mile, not one-fifth of the average charge is perhaps 3 d . per mile, not one-fifth of the
local movement is thus aceommodated. In a cab, a passenger is carried at a slow rate at a charge of sixpence a mile (to say nothing of frightfur cases of overcharge),
whilst the entire moving estabishment occupies an average street space of 10 ft . by 5 , and weighs probably a ton and a quarter. If one could be carried at four times the speed and at one quarter the cost, how many of those who are now foot passengers would ride, and how great would be carried on aver much larger area, and the value of metropolitan property would be far more nearly equalised than at present. What our general railway system has done for the kingdom a metropolitan system might accomplish for London.
A journey from Paddington to London Bridge is as formade in time and almost in expense as that from the latter point to Tunoriage Wells, whilst the number who must anwho perform the latter journey. But how to bring railway communication within the reach of the numbers who would so quickly avail themselves of it? The cost of the viaduct would be frightful in most districts, whilst in some it plan, not be permitted at all. plan, known as the dry sewer system, wil a
the purpose. It could only be carried out at great cost, whilst it would never become altogether popular with the public. The only remaining resource is in street railways, about which much may be said on both sides.
Whatever plans may be adopted for the improvement of our metroplitan communication, there can be no doubt that those portions of the City whence their principal traffic is those portions of the City whence their principal traffic is
derived would be of great advantage to the public, whilst it is probable that such extensions might be made profitable to the railways themselves. Among these the extension of the London Bridge railways to Charing Cross, and of the northern and north-western lines to Lincoln's-inn-fields o to the Bank, are especially desirable, and promise to prove
profitable. Whether the latter extensions should be carried profitable. Whether the latter extensions should be carried
across the Thames merely tojoin the South-Western line is, across the Thames merely tojoin the South-W estern line is,
however, very doubtful. At the same time it is important however, very doubtful. At the same time it is important
that the latter should be extended to the north side of the river, and this is provided for in the London Bridge and Charing Cross scheme. Whilst it is rather too much propose two new railway bridges over the Thames, withi
200 yards of each other, it must be admitted that inn-ields is not the proper place for a general terminus of the southern lines, masmuch as it is inconvenient for th West-end, whilst for the City a much better accommodatio already exists at London Bridge; and the absolute con-
nexion of the means than the suburban lines already proposed is matter of secondary importance. Very few passenger
indeed who arrive from York, Liverpool, or Bristol, ar indeed who arrive from York, Liverpool, or Bristol, aro
likely to proceed through London, without halting, their way to Southampton, Brighton, or Dover. It rather for those who wish to come by the respective line to the City, and to return again, that more central termini is not likely to be excessive, the condition of our principal thoroughfares will be improved by diffusing-not concen-trating-the throngs of passengers arriving by railway

If all the London railway traffic were to be concentrated at any one point, the streets, for a considerable distance around, would become impassable. It is for this reason
that the metropolitan railway scheme, with its general terminus in the Fleet Valley, would increase rather than diminish the overcrowding of the narrow streets leading thence to the City. A termise add to the present crowded state of the neighbouring thoroughfares, although the junction of the northern lines only at that point would be attended with far less inconvenience in this respect than would
result from a general connexion of both the northern and southern lines.
It is evident to all, that upon the present rate of increase of the metropolitan traffic the existing arrangements for and that some means of improvement will become indispensable. The very fact of this increase, by reason of he consequent increase This circumstance should hasten the execution of such plans as promise the greatest amount of improvement, and Bridge railways through Southwark to Charing Cross, as proposed by Mr. Bell; the extension of the northern as proposed by Mr. Bell; ; the extension of the northern
lines also to Lincoln's-inn-fields would unquestionably be productive of great public convenience if its execution be practicable.

malleable iron girders.

THE cast iron girders, 41 ft . long, made by Mr. J. U.
Rastrick for the British Museum, were once considered as Rastrick for the British Museum, were once considered as
wonderful achievements in the art of iron founding. They wonderful achievements in the art of iron founding. They
were cast, too, before Mr. Hodgkinson had shown us the strongest section for an iron beam. Their success was
followed by a considerable increase in the use of cast iron followed by a considerable increase in the use of cast iron
girders, and it is only since 1853 that Mr. Fairbairn's able researches have led to the adoption of malleable iron on an extensive scale, in such applications. We once saw a if it had been a bar of thin steel, whilst being drawn on a truck along a rough pavement. A moment after, hearing
a sudden crash, we turned to see the casting broken short off, one half lying on the ground. A very small blow-hole, until then concealed, sufficed to explain the cause of the
accident. From that time we lost faith in cast iron as a material for beams, and we foresaw, in the admirable details of the great factory at Saltaire, the general substitution of malleable iron wherever wide spans of permanent,
strong, fireproof, and economical flooring might be required.
To our ironmasters one of the most interesting features the malleable iron beoms of French manufacture. At common, although those of less length were being extenhouses. There is now a very long and beautifally roiled the Conservatoire aes Arts et Metiers. The flanges appear
to have been rolled purposely broad to show how well it could be done, since such a width is out of all useful prosimilar beams have been rolled is due, however, in a great measure, to the good, or rather the adaptable quareol iron, which, as we have seen proved upon the same beams, can be cut with a knife, almost like lead. Such iron, although hares, just as our Lowmoor iron withstands the test of rolling into the flanges of engine tyres, prove what iron is good and what bad.
wide flanges from our, hot-blast coke iron. When, several years ago, Sir John Guest undertook to make flat-bottomed
rails 7 in . deep and 92 lb . to the yard, for Mr. Stevens, the American railway engineer; a large number of rolls were broken, and nearly one half of all the bars rolled were
defective. To crush down a square pile into with light wide flanges, is a tremendous test for the best iron, and requires heavy rolls and ample power in any
case. Nor even then must the inspector insist on too rigid a standard of finish. If the iron is at all red-short, the short the beam had best be broken up for scrap. By working good iron at a high heat, and reducing it to shape by a few passes through very powerful rolls, a fair quality of
beams may be had. The manager of the Butterley Ironworks has succeeded in rolling sound $8 \frac{1}{2}$-in. beams 45 ft . long, and $10 . \mathrm{in}$. beams rail was rolled also at the same works 63 lb . to the yard, and 86 ft . long, perfectly sound, and without the
least flaw ! These are among those things which few will believe can be done until their execution has been proved by actual trial, as it was also with the 4 -in. iron plates
required for covering shot-proof ships. The difficulty of rolling increases greatly with the width case of the sample at the Conservatoire, have very narrow
flanges, hardly more than $2 \frac{1}{2}$-in. on top and bottom for a 7-in. girder. Where a broad bearing is required two beams are used side by side, and bound together with stout
iron wire. Our knowledge of the proper width of flanges for rolled beams is still defective. Of course, with that portion of the beam subjected to tension, the farther it is
carried below the neutral axis, and consequently the thinner and wider the flange, the greater the theoretical particles in the flange are brought into action only by their lateral adhesion to the vertical web, and Professor Barlow found that with a flat-bottomed rail $2 \frac{1}{2}$ inches wide, a slight apparent increase of strength was shown after planing off
half an inch on each side of the flange, which was thus reduced to a width of $11 \mathrm{in} .\mathrm{His} \mathrm{opinion} \mathrm{was}$,that in
the loss of flange-width the rail had suffered no loss of
strength, the slight strength, the slight apparent increase being due
to the slight but inevitable inaccuracy of the
hydraulic apparatus used in making the experiments. On the other hand, at the convention of German railway engineers, held at Berlin in 1850, it was found that a considerable increase in strength attended the increase
of the width of the bottom flange of the Vignoles of the width of the bottom flange of the Vignoles
rail. Whilst the Great Western Railway has many flatrail. Whilst the Great Western Railway has many fith a base 6 in. vent crushing into the longitudinal timbers, rails of similar pattern are also in extensive use on cross-sleeper lines in Prussia. We are aware that formulæ have been given for
the determination of the proportions of rolled girders, but we do not deem them entirely conclusive on the subject.
There can be no doubt that rivetted plate iron girders are much inferior in strength to solid beams of the same section. Mr. Fairbairn's well-known experiments-showing single rivetted joint is but 56 -apply as much to bridges as to boilers. If we could imagine the tubes of the Britannia and the Vietoria bridges to be rolled whole without a seam or crack, how much stronger they would be, and how much more permanent! In the present structures a ceaseless abrasion and oxydisation is going on in every hole of
the millions of rivets. This destructive action is of a far the millions of rivets. The exists in iron ships, where the strains, although severe, are gradually applied and withdrawn. We do not know what may hereafter be accom-
plished by improved modes of welding in the construction of such immense bridges, but it is already practicable to roll solid $18-\mathrm{in}$. girders - possibly those of greater depth - for smaller spans. An improved mode of arranging the pile
has been adopted at one of the rolling mills in the United has been adopted at one of the roling mills in the
States, whereby heavy beams can be rolled perfectly sound and with comparatively little power. The pile is made to approximate in its form to that of the finished section. Thick, wide slabs, grooved on one side, are made for
the top and bottom, and between a pair of these, and keyed into their grooves, are slabs forming the central web of the pile. Thus laid up, the pile has the
form of the letter H. In this form it is heated and easily form of the letter H . In this form it is heated and easily
rolled to the finishing dimensions. The grain of the iron rolled to the finishing dimensions. The grain of the iron
being already arranged in the pile to correspond with its ultimate arrangement in the finished beam, the whole comes out sound, and in its best condition for resistance.
of a large number of beams already rolled in this manner less than 1 per cent. are reported to have proved defective 7 -in. beams have been thas rolled perfectly sound, and 51 ft .2 in . long, for the United States Capitol extension,
and the 9 in . beams, of 90 lb . per yard, are easily rolled in a train of 16 -in. rolls. Bridge girders, 18 in. to 24 in . in depth, with flanges of from $8 \mathrm{in}$. to $10 \mathrm{in} .$, might be
rolled with corresponding facility. Two of these 9 -in. beams, of beautiful finish, were sent last year to England, one having been sent to Mr. Fairbairn as a token of acknowledgment of the very great services which his re-
searches have conferred upon the manufacture of malleable searches have conferred upon the manufacture of malleable iron beams. The other, we believe, is still lying at Liverand in the hear thi tration of the action of the United States Patent Law, which we had something to say in The Engineer of last week. The applicant-a Mr. Griffin, we believe-for a was refused off hand, and for the reason, that Mr. Daniel Gooch had applied a bar of steel to one side of an ordinary pile, in order to roll steel-faced engine tyres! A very
formal remonstrance and lengthened argument succeeded in overthrowing this objection, and after much delay and plan bore no resemblance to Griffin's, other arrangement much more nearly like it, entirely escaped the notice of the examiners. And within a few weeks afterwards a patent was granted to a Mr. Stevens for a so-called
"hollow rail," which was nothing more than an ordinary bridge rail, with its lower inner edges compressed together as was done with the rails of the Dublin and Drogheda line, more than a dozen years ago. It might be mentioned, that although it is their business to reject any application for a patent for an old, useless, or impracticable contrivpossibility of welding the inner sides of the rail together after it had been already rolled to size! Mr. Stevens, however, who was not one to stick at trifles, produced a gether for a distance of nearly an inch from the bottom After, however, scraping away a rich coat of yarnish, an interstice was found, corresponding to the pretended weld which was only effected by a compound of white lead and oil, known as "putty
But to return to iron beams. No difficulty has Embedded to arise from their expansion or contraction. Embedded as they are in masonry, they are exposed to very of which we need have little fear if Mr. Brunel be correct, who has stated that a rail welded up to a length of 100 ft . showed no alteration of length when exposed in the open air! In some parts of the world large blocks of warehouses and public buildings are built almost wholly of cast
iron, a thing which, although done some years before the iron, a thing which, although done some years before the
time of the Crystal Palace, was thought, twenty years ago, to be absolutely impracticable.
In rolling $7-\mathrm{in}$. and $9-\mathrm{in}$. beams, which we believe will ultimately be made nearly as cheap as railway bars, an
important application might be made by using them as rails upon the very simple and economical plan which has been introduced upon the Eastern Counties line. A remarkably thin flange will withstand the wear of the wheels, if it be of good iron, and supported continuously on timber. We have before mentioned the instance of the flat-bottomed
rails, which were reversed rails, which were reversed, and in that position had with stood a considerable traffic for nearly four years. The flange had not crushed at any place, but had been permanently deflected for nearly one-eighth of an inch along its inner edge. In the plan referred to, a 7 -in. beam, with a $\frac{3}{}$-in.
web, and a head not exceeding -in. thick, and weiging less than 70 lb . per yard, would be bolted between longi-
tudinal balks of timber, which would lie hardly below the surface of the ballast. If this system of permanent way
should be brought into general use, as from its considerable economy in construction, and probable low cost of maintenance, it promises to be, a rail very similar to the present patterns of beams will be adopted with it. This system of con-
struction has, we believe, been proposed for some American lines, where ordinary 7 -in. beams of 60 lb . per yard will be used in laying experimental lengths.

the mechanics' institute and lord brougham.

IT is a proof of the humanising character of modern civilisation that public ingratitude is being more and more similar vice in individuals. Society is constantly attaining to a better appreciation of the services of those whose lives are devoted to its welfare. When any great public bene-factor-and few can now go unrecogniscd-fais to receive shabby, to say the least; and there are never wanting some, and generally a sufficient number of noble spirits who will cry "Shame" in earnest, and at once step forward in a substantial vindication of justice and honour. Not only in
acknowledgment of military services, for which England acknowledgment of military services, for which England
has dealt noble measure to her manly heroes, but towards social, educational, and philanthropic efforts have modern communities shown the same spirit by which
individual gratitude is inspired. What a testimonial was tendered to Mr. Cobden! George Stephenson, too, had his reward whilst living, if not in a gratuity, at least in the honour and respect of the English nation, which we are sure would have offered something even more substantial,
had not his admirable genius placed him beyond the need of it. Pro admirable genius placedes of money from most of the continental services in the introduction of the electric telegraph, and
Bavaria has just made a similar grant to Steinheil. But we need not multipl instances. The spirit of public gratitude is active, and when the public has learned, as ninepast wenteths of its number have learned only within the past week, that Lord Brougham - a man whose public be burdened noble incidents in our history - is likely to it has done him, ns itebts of an institutionst honour, has outlived its time of usefulness, we are sure that the simple announcement will be sufficient to set the matter right at be not able to bear a burden which, relying on the public recognition of the good he was about to accomplish, he stituly took upon himself. the true spirit of enlightened philanthropy, has done its work. As one of its trustees, he became responsible with his associates for the rent of its rooms, a matter of $£ 229$ a year, the present value of the maining co-trustee, who has reached an advanced age and is in bad health, Lord Brougham will be liable for the en-self-supporting. It can hardly require an appeal to public
 if allowed to remain, it must be a source of much mortificavices To one who has rendered such disinterested public seritself so much upon its practical superiority, if the founder of its first practical institution, and one which has contributed so much to this superiority, should be left to pay the $£ 2,000$ only are required to clear Lord Brougham of the have no more anxiety. The announcement of the case in the Yumes has been promptly followed by a handsome subscription and we have noe to the funds of the Mechanics' Institute; and after in proof of the readiness of a British public to do justice to its real benefactors.

submarine warfare.

The Times has given us a wonderful account of a wonderful invention, which is to do wonderful things in the destruction of ships and in marine warfare generally. As a matter of course, this invention is of American origin,
and the Times accordingly couples its announcement with a handsome tribute to the excellent judgment of the Yankees in military and naval matters," which," the great leading journal tells us, "they handle in a spirit always leading journal tells us, "they handle in a spirit always is only weakened by the subsequent acknowledgment that the invention in question is too much even for the Americans, and that they will have nothing to do as given by our contemporary, it is nothing less than a submarine boat made only for working under water, in form much resembling the shape of a porpoise but capable of being made large enough to contain eight,
ten, or even fifteen men, if necessary, with a proportionate ten, or even fifteen men, if necessary, with a proportionate,
quantity of explosives. In this boat, weighing about eight tons, the inventor states that he, with others, has sunk in Lake Michigan, and remained under water for four hours, without any air tube or other communication leading from
his boat above the surface of the water, and propelled the boat in and near the bottom of the at the rate of about three miles an hour. He has, whilst in his boat, and under water, by means of machinery working through its side, sawn off timbers fourteen inches square. He can sink his boat from the surface almost instantly, either to or minches or feet from the surface of the water, or to 100 the surf first or otherwise, as may be required. He can attach powder torpedoes to the outside of his boat, on its deck or sides, and proceed under water out to sea, in any weather, under the ship' ship in sight, fix or anchor ano tor to the torpedoes simultaneously, or at intervals, and retire,
still under water, out of danger from the explosion and out of reach of an enemy's guns. He can also convey powder
torpedoes of 100 lb . or more weight, inside his boat, and torpedoes of 100 lb . or more weight, inside his boat, and
when under an enemy's ship, pass them outside through his patent hatch, fasten them to the ship's bottom and fire them. He can enter an enemy's harbour, under water, and make surveys, only showing above the surface a sight
tube, no more than one half inch in diameter, and retire tube, no more than one half inch in diameter, and retire
still under water, and proceed out to sea, and make his report to the commander of a fleet or ship. He can go out to sea, meet a hostile fleet, go under their bottoms, fix torpedoes to go off by clockwork, or bore holes in their boat, he can remain under water with several men with him, and do service at sea off or in harbour for several
days, without landing or showing one ingh of his boat days, without
Certainly, if all this, or, as the Times remarks, one half of all that the patentee guarantees can be done with it, be
true, the submarine boat " will make such a change in the true, the submarine boat " will make such a change in the of the question, and render of no avail the tremendous forts of Cronstadt or Cherbourg."
Before we enter into any consideration of this wonderful invention, we must state at once that its announcement is attended with many improbabilities. It is spoken of as
forming the subject of a patent; y yet what patent, in Eng-land or America, could have been issued for a contrivance
of such character, without being widely copied and disof such character, without being widely copied and dis-
cussed? We believe that nothing has been seen of it among those of the American journals in which the lists of patent claims are published. If such an affair were
really patented, we should be having drawings and descriptious of it, not only in scientific and practical publica-
tions, but in many of the newspapers of can understand that a descent into Lake Michigan might can understand that a descent into Lake Michigan might apparatus there could have been no reason for secrecy.
We presume that no account of this descent has been given in America, whilst on the other hand American in-
ventions are rarely allowed to come to this country without being duly heralded to the world. But, what is much more singular, the American Government, which is building
the wonderful steam battery at Hoboken, and which paid the late Robert L. Stevens a a pension of, five dollars a day, from 1815 to his death in 1856 , for keeping secret a certain
projectile of his invention-the American Government, projectile of his invention-the American Government, precedent, and admirable enterprise in adopting and im-
provements in the art of warfare, the Times so handsomely acknowledges-this American Government treats the sub-
marine boat invention as a good joke, and has sent away the inventor with a flea in his ear! Now, we don't believe
a word of this. The American Government is celebrated for its hospitality to all new ideas of the kind in question, and however many mare's nests may be thrust upon it, it
exhibits noble patience in their investigation. than all, the crafty Louis Napoleon, whose military ideas are of the most ingenious and strategic character-the
Emperor who invents pistols, breech-loading cannon, ironcoated ships, vaisseaux beliers, and we don't know what else-this same Louis Napoleon shats the doors of the
Tuilleries in the face of this startling invention. Again we say, we do not believe a word of it. It is not his style.
No Government is more on the alert than that of France to secure whatever may give a preponderance in war, and any one not clearly non compos, who should make a serious
proposal to impart the secret of such a formidable engine as that in question, would be sure of the eyes and ears not only of the French Ministers but of their imperial master also. Nor would the shrewd proprietor of a valuable
patent, which he was about to sell to the British Government, take pains to publish to the world the fact of the
refusal of the French and American Governments to listen to his plans. And these refusals, if any there were, could they were made. No Government advertises the facts of,
and grounds for, its dismissals of propositions of such a character.
We do not, then, treat the report of this invention as did the Secretary of the American Navy, since however
unlikely it is from the circumstances that a practicable submarine boat has been really made, we still believe in its possibility, at least in that of suspending and propel-
ling such a boat at any moderate depth under water for some time together. And when we shall have done this, we shall have produced a very formidable engine of marine
warfare-one that must change the whole character of warfare-one naval operations.
It is a matter of credible history that a "submarine
diver," as it was called, was employed in 1780 , in New diver," as it was called, was employed in 1780 , in New
York Harbour, to harrass our shipping. We believe no vessel was at any time injured by this contrivance, but
it is well established that under the directions of General Putnam a machine was actually constructed by the inventor, in which he could sink to any depth within a few
fathoms, and propel himself in any required direction. Several attempts were made to explode torpedoes upon
the bottoms of the vessels which were then blockading the port, but after a few triais, unattended by any important result, the ingenious inventor at length lost con-
trol of his apparatus, and was drowned
In such contrivances the supply of fresh air for respirahowever, for a submarine boat, when used in war, to be time. Any apparatus of the kind which could be managed under water for half-an-hour together would have abundant opportunities of taking air from the surface at such intervals. A couple of swing pipes, with cocks at their outer ends,
the whole portion to be exposed being no sized spy-glass, could be made to answer all the purposes of induction and exhaustion, and these pipes could be put so unexpected by an enemy, that there wly, and in positions so unexpected by an enemy, that there would be very little
chance of their being carried away by dragging, and still
less by shot. A large cylinder, with a displacing piston within, would enable the operators to sink or float their
craft in a very few seconds. Oars or screw propellers, to be moved by hand, could easily be made to work through water-tight joints. A rudder could be similarly worked.
Courses could be ran by compass, whilst suitable pressure Courses could be ran by compass, whilst suitable pressure
gauges would show the exact depth of submersion at any moment.
Diving operations carried on by the aid of air-pumps at the surface are easy enough, and we are already familiar
with the exploits of Mr. Bethell in raising half a million of property from the wreck of the Thetis, and in raising Turkish guns from a depth of 500 ft . in the Bay of Navarino. Dr. Payerne's apparatus, also, used in laying stone at
Sir Charles Fox that there would be no difficulty in constructing a submarine vessel so as to form a most powerful engine for the destruction of the ships of an enemy. The Nautilus also exhibited a considerable adaptation to submarine operations, although the had necessarily to be worked probability of a demand for submarine apparatus, in the event of war between any of the great European nations,
will lead to renewed efforts on the part of inventors, until we shall doubtless have submarine boats capable of accomplishing nearly or all that is claimed for the extraordinary
invention now under the consideration of our Government.

the metropolis gas supply.

The grievances of the gas consumers formed the subject of a prolonged inquiry during the last session of Parlia-
ment, without, however, leading to any results. The inquiry is to be resumed during the approaching session and we may hope that, before the end of the year, the parties concerned be settled to the satisfaction of all the managers, appointed by the delegates from the various metropolitan vestries and district boards, to conduct the
inquiry before the Parliamentary Committee, have made a report of their labours during the past year, and although much time appears to have been consumed in bringing their dustry in the action, they have shown considerable inthem. The attempt of severa of the ges companie, which had been originally chartered with the view of their maintaining a healthy competition with each other, to exchange districts, and in some cases to withdraw from those in which a competition existed, was the signal for resistbefore Parliament. Numerous causes of complaint had existed previously, and these were all likely to be greatly aggravated under the threatened combination. These complaints had been urged before Parliament upon former gas companies was attempted, and in 1855, when they sought also to obtain certain legislation by which the gas their impositions. It was notorious that, although the price of gas had been reduced to 4s. 6d., the gas bills of the consumers were in many cases more than when the price was 6 s. ; that incoming tenants were made to pay the arrears due from former tenants for gas supplied; that the gas was
frequently cut off by the companies upon the most trifling causes of dispute, whilst it was generally of inferior quality. So, too, consumers were obliged, as they still are, to pay for a certain amount of gas, whether that quantity is consumed or not. The least charge is $£ 110 \mathrm{~s}$. per annum, whether
the quantity burned be 6,600 or $1,000 \mathrm{ft}$. The fact that the gas was notoriously of low illuminating power, not withstanding that it was certified to be above the parliamentary standard, raised the question also whether the gas
tested by the company was the same as that supplied to the public
One of the most important disclosures made under the present inquiry was that of the over-registration of meters,
a subject which attracted so much attention last summer The evidence of Mr. Crosley, a manufacturer of meters showed that a very large proportion of those at present
used by the gas companies can be made, by over-filling, to register very considerably against the consumer. Upon this point the report before us says : "It has hitherto been
supposed, that it a meter be tested by an inspector, and found to register correctly, the consumer is thereby pro-
tected, and cannot be made to pay for more gas than is actually consumed. Mr. Crosley's evidence went to show to the comm entire mistake, and he demonstrated clearly was such that although registering correctly at the prope water line, they could be, and often were, so over-filled with water by the inspector, as to register immensely showing the consumer. Mr. Crosley handed in a table chester. Out of these thirty-six meters no less than and to register found to be over-charged with water four, there were five which registered from 1 to 2 per cent against the consumer, nine which registered between 2 and 5 per cent. against him, four which registered between 5 and 10 10 per cagainst him, and six which registered more than actually one which registered 35 per cent. against the consumer, and another registered 28. Such was the state in which the meters were actually working in Manchester,
the meters being tried just as left by the When the meters, however, were the inspector."
they would bear, their indications were still more erroneous. Mr. Crosley, having tested the meters of six London makers, found that, " when filled to the top of the waste
pipe or spout, one meter was found 64 per cent. against the consumer ; the next 38 , the next , the next 11, the next 10, and the sixth 9 per cent., all against the consumer. It appeared, from the evidence of this witness, that great numbers of meters are habitually overfiled with water, as, when sent to him to repair, the levels at which the water has been standing are plainly to be seen. The general result of Mr. Crosley's evidence was
to show that any system of meter testing at present in use was
sumer."
In respect of the pablic lighting of the metropolis, which does not cost less than $£ 240,000$ a year, the committee has collected a large mass of evidence going to show that an overcharge is made by the gas companies of not less than $£ 60,000$ a year on the public lighting alone. The report says: "In most of the contracts for inghting entered into with the gas companies it is stipulated that the public lamps are to burn 5 ft . in an hour, but it was found that in most cases this rate of consumption was maintained only during a few hours after sunset. Generally speaking takes diminution in the light of the pubinc lamps are extinguiout ten oclock, when most by meter is considerably diminished. A further diminution of light takes place about midnight, and from this time till sunrise the pressure maintained in the mains is so small that the consumption falls
as low as 2 ft ."
The report states that, whilst the companies have been in the habit of defending the price charged for public lamps by declaring that they consume at least $20,000 \mathrm{ft}$. per bring to light the startling fact, that instead of consuming $20,000 \mathrm{ft}$ a-year, the lamps in certain parishes consume no
 the public lamps found to consume so much as $20,000 \mathrm{ft}$. per annum!
The report states, also, that at an early period in the Parliamentary inquiry, the gas companies were found to be instilling into the minds of their friends in the committee, an impression that the capital invested in the metropolitan gas works was paying a very low rate of interest; and one of the members of the committee was heard was pa how paying a dividend or on panies, as presented to their own shareholders, showed that the aggregate gas property has for some years paid an in terest of nearly seven per cent. on all share capital, and that The analysis of the chave been more than six per cent. also that some of the companies are burdened by an extravagant expenditure of capital in proportion to the capacity of the works, and demonstrates the unfairness of taxing the public with a price for gas calculated to pay that whilst one of the London companies has appended only about $£ 240$ of capital for each $£ 100$ of exp rental, other companies have expended more than $£ 400$, and one company actually nearly $£ 600$ for each $£ 100$ of gas rental.
Whilst the companies also have endeavoured to show the injustice of a fixed price for an article, the cost of which is affected so much by the prices of coal, iron, \&c., the analysis holders shows within what small limits the price of gas ought to vary according to the ruling price of coal
which the managers, appointed to conduct the clauses before Parlion the propose for in inviry a bill to be introduced into Parliament on the subject o the metropolis gas supply. Among the provisions emten per cent., is to be dividends, instead of being limited to ten per cent., is to be graduated by a sliding scale in the compelled to lay pipes and supply gas at the cost of any if ren applying for the same, he giving sufficient security, if required, for the payment. Incoming tenants are not to be held hable for arrears due for gas, from out-
going tenants. Each vestry may appoint a chemical examiner to test weekly the quality and pressure of the gas supplied. The illuminating power of the gas shall be such that an Argand burner having fifteen holes and a 7-1n. chimney, consuming five cubic feet per hour, shall give pound, each burning 120 twelve sperm candles of six in the supplied is to be free from ammonia, bisulphide of carbon, sulphuretted hydrogen, and other deteriorating agents. A pressure of not less than ten-tenths, or 1 in . (afterwards is to penalty of $£ 100$ is proposed to be attached to any offence against the stipulation in respect to quality and pressure. No meter is to be affixed unless it has been tested by an officer appointed by the Board of Trade, or by the Justices in Quarter Sessions, and a proof mark impressed thereon and officers are to be appointed to inspect and report upon the working of the meters. Several other clauses are proposed, in order more effectually to protect the consumer. the hat would our friends with the gas grievance say to 25 per that, in New York, where the price of coals is not versally used in almost every room of every house, the price is 12s. 6d., or three dollars, per thousand feet? And the gas, too, is of the most villanous quality. There are million; and these companies, although they of about one bined, do not interfere with each other. The treatment or consumers is often as unjust and summary as here. As migint be supposed, very many large hotels and manufactheir own gas from resin or fatty matter. So we in London are not so badly off, after all. It is clear, however, that our gas supply is attended with many abuses; and it in the coming Session of Parliament will result in suitable legislation in the matter

NEw Zenland.- Fresh coal has been discovered in this province, and the accounts of the quality are most satisfactory. A separate
contract for the conveyance of the mails between Melbourne and contract for the conveyance of the mails between Melbourne a
Wellington has been entered into by the Provincial Governme
The idea of a submarine telegap to Wele

THE PATENT JOURNAL

(Condensed from the Journal of the Commissioners of Patents.)

Grants of Provisional Protection for Six Months.

 in foretign bodies." $-A$ communication. - Pctition rccorded 25 th September

 and in the apparatus con Yected therewith."

 thereinn", EMARD Huarpurvs, Deptrord, Kent, "Improvements in brazin
metal tubes in tube plates and other metal surfaces to each other."
 provements in ornamenting
cember, 1858 .
Invention protected for Six Months by the Deposit of a Complete
Specification.
 Patents on which the Stamp Duty of $£ 50$ has been Paid. 4. HEsRY Bessgurr, Queen-street-place, New Cannon-street, London

List of Specifications published during the week ending

2312. Joskru Prgrrg Gulusp, Paris, France, "Improvements in generating hydrogen, and in the means of, and apparatus for, applying the same to and other machinery for spining cotton and other fibrous substances, whereby the cop will be built much firmer, and prevent snaries in the
 apparatus for cutting woollen fabrics." 185s. 8ttition recorded
 niture, tab $b e r, 1658$.
 of their objections to such application, at the said OMixice of the Commis sioners, within twent-one opys afer, the date of the Gazette (and of the Journal) in which this notice is issued.

Patents on which the Stamp Daty of $£ 50$ has been Paid. 33. Sayurl Cunhiffe Listrer and Wiliam Toseur, Bradford, Yorkshire - Dated 7 Th January, 1856 . 18 .
 1850. ${ }^{\text {Jinw }}$ Hamilutos, jun., Liverpool, Lancashire.-Dated 10th January,
${ }_{1856}$,

List of Specifications, published during the week ending

$* *$ Specifications will be forwarded by post on receipt of the amount of price
and postage. sums exceeding 5 s. must be remitted by Post-office order made payabe at the poe ex
Great Scal Patent Office.

ABSTRACTS OF SPECIFICATIONS.

The following Descriptions are made from Abstracts prepared expressly for The
Engineer, at the oflce of her Monjest's Commissioners of Patents.

Class 1.-PRIME MJVERS

Including Fixed Steam and other Engines, Horse, Wind, and Water
Mills, Gearing, Boilers, Fittings, \&c. 1419. R. Anssrroxe, North Woolwich, Essex, " "Steam boilers and furnacess.
Partiy a communication - - Dated 23 3rd June, 1858 . This invention is more particularly applicable to those usually de
nominated "upright" boilers, the outside shells of which are corstructed of a cylindrical form, or some shape approaching thereto, such a boiler having, when standing vertically on its base, all its horizontal sections circular, or nearly so. Within the lower end of this upright boiler is
placed the farnace, furnace flue, furnace chamber, or fire box, which placed the farnace, furnace flue, furnace chamber, or fire box, which
may be of any suitable form and dimensions for containing the kind may be of any suitable form and dimensions for containing he kind
and quantity of fuel to be used, but the patentee prefers that the said furnace or fire-box be made as nearly as practicable circular or cylindrical, and surrounded by a space (containing water) of any
annulated or other convenient shape between the furnace and the shell of the boiler. Within the said furnace chamber or fire-flue is placed the fire grate, but which may also be sometimes placed entirely below the bottom of the furnace chamber or fire-box, and surrounded by brickmanner. The boiler is also to be supplied with a smoke flue, chimney, or funnel, proceeding from the top of the fire-box, and passing upwards
through the top of the boiler. Or the smoke flue may be made to pass through, the top of the boiler. Or the smoke flue may be made to pass
out laterally or horizontally by one or more openings through the water out laterally or horizontally by one or more openings through the water
space in the more usual way, but the former or vertical passage through space it the more usual way, but the former or vertical passage tringugh
the steam chamber is to be preferred, in order to dry and superheat the steam, a provision being made, if required, by the interposition of a fire brick shield or otherwise, by which occasional unnecessary or accidental overheating or burning of the lower part of the furnace may be prevented.
Through or across the aforesaid annulated or annular water space two or more strong tubuiar commexions or passages of suitable forms are to be fixed, by rivetted fanges or otherwise, to the fire-box and shell respectively, by which the latter mutually support and strengthen each
other. And in order that these connecting passages should thus act as tubular stays, it is preferred that they stould be fixed opposite to each other in pairs, so that the greatest uniform strength may be thereby
obtained. Two or more of these tubular passages may also be used as fuel passages or feeding mouths, through which to supply fuel to the hiterior or the furnace; and the patentee prefers that two opposite and lowermost passages may be so used for the purpo3e of obtaining
uniformity of expansion and contractlon, and consequent greater durability in this part of the boiler; and also in order that the furnace may be supplied with fuel at each side alternately, for the purpose of attaining the most economical and perfect combustion of the fuel and the gases arising therefrom, or otherwise for the purpose of firing or
stoking on both sides simultaneously, and thereby producing the most stoking on both sides simultaneously, and thereby producing the most
rapid generation of steam. One or more of these fuel passages may also rapid generation of steam. One or more of these fuel passages may also
be advantageously occupied by fire-feeding apparatus, or machinery of any suitable construction, to be used in addition to the ordinary hand
fring economy. The next improvement also relates to the furnace and the combustion of the gases, when either bituminous or non-bituminous coal
passages not required for the supply of fuel, and which may be made smaller than the others, are to be used as air ducts or passages through which oky supply an excess of atmosphefic air to the upper portion of the fresh supply of fuel, according as bituminous or non-bituminous fuel is used, and thereby causing any hydro-carbon and carbonic oxide gases they may contain to be more perfectly burned or consumed. And in order that such comparatively perfect combustion of the fuel may be attained without the great diminution of the steam generative power and destructive effect on the material of the boiler, which universally accomare to be partially filled or lined with perforated fire bricks, tiles, or other substances for heating the air which passes through them to the interior of the furnace. It is also preferred that this projection of the air into the flue should proceed from two opposite air ducts at the same time, so that the two opposing currents may neutralise, and commingle with each other and with the flame in the upper part of the furnace, and thereby the flame against the inside of the fire-box, which is so generally pro duced in steam boiler furnaces as frequently constructed, where the supplementary air, especially cold air, is admitted for the alleged purpose of perfecting the combustion. The next and most important part of this boiler of given dimensions, as well as by a given quantity of fuel, and consists in an improved construction of the interior of the furnace to be supplied with a number of peculiarly shaped hollow vessels or etorts, which it is proposed to call generators, to be fixed across the furnace, and crossing each other from side to side. Within and through these steam generators, which may be considered as so many small boilers, the water is permitted to circulate, communicating freely with vertically may be generally at or nearly at right angles to the vertical
ver xis of the fire-box, so as to allow the flame and current of hot air from the fire to strike most advantageously directly against their lower sides. ontal plan of small diameter the position of these generators in ho arge furnace chambers the generators may be alternated in superposition, with others at angles of forty-five or sixty, or any other aliquot rea within the furnace chamber may be sufficiently occupied with horizontal heating surface for the most perfect practical abstraction of the heat from the rising column of flame and hot air. The aforesaid steam generators are to be formed of a convenient shape for manufac-
turing by welding, rivetting, brazing, or otherwise most suitable to the metal of which they are composed, and they are especially to be preferre wards, the tapered or conical part commencing at or about the middle of their length, and they may be made either with or without flanges by which they may be attached to the sides of the fire-box, being more particularly recommended to be connected thereto by means of angle projecting some little distance into the water space. 22. W. E. Newrow, Chancery-lane, London, "Centrifugal governors for
steam engines and other motors."-A communication. -Dated 33 rd June steam.
1858.

The inventor employs a centrifugal governor constructed on any of
the usual plans with balls and arms, but made very much lighter than usual, and instead of giving it only about the number of revolutions in given time that would be due or natural to it, considered as a conical pendulum, as has hltherto been customary in the application of centrifugal To the slide of the governor which connects it with the regulator, counterpoise is attached of a weight much greater than the aggregate
weight of the balls and arms, and sufficient to balance, as nearly as possible, the great amount of centrifugal force developed by the rapid revo lution of the latter; and it is in the employment of a counterpoise eo
proportloned in weight in combination with the arms and balls revolving proportioned in weight in combination with the arms and balls revolving
at a much higher velocity than would be natural to them, considered as a conical penculum, that the present invention principally consists. The invention also consists in so applying the counterpoise to the governor the balls and arms of the latter expand so as to render its action constant, or as nearly so as may be desired, relatively to the power of the overnor to sustain it. The invention further consists in the employ the engine or motor.

Class 2.—TRANSPORT.
ncluding Railways and Plant, Road-making, Steam Vessels, Ma-
chinery and Fittings, Sailing Vessels, Boats, Carriages, Carts, Harness, \&c.
392. Sir J. C. Andersox, Fermoy, Cork, "Locomotion." - Dated 21st June,
1858. No. 1. These improvements, in making a permanent way for locomotives to work on, is not to adopt the costly plans followed in construct-
ing railways. On a good firm pitching of large stones, having thei broadsides downwards, the chinks to be filled in with chips of stone strongly driven home, and concreted to form a solid and smooth
foundation to receive the upper surface of cut stone, blocks, or stone or foundation to receive the upper surface of cut stone, blocks, or stone or
wood pavement, or well backed brieks, or small broken stones well cemented together, or timber plated with iron, furnisbed with any of the above materials procurable in a district through which the railway may pass, the inventor forms his compound tram road of the requisite breadth for the wheels or locomotives and other carriages to run on Equidistant he fixes between his compound tramway a T rail o wo pairs of horizontal whels, two whep to run on each side of the guide rail, and under its horizontal top. By this arrangement a train can be guided round curves, and cannot run off the line. No. 2. To counteract the gravity of a train in steep hills, he fixes another T guide rail at the side of the compound tramway or common road, to guide a the gravity of the ascending train. To one end of a rope working in a the top of the hill, he top of the hill the small carriage containing the counteractin weight is to be attached. Thus arranged, the small descending carriage ill counteract the gravity of the ascending train. It is quite eviden therefore that the same power which will draw a train at any given
speed on a level will cause it to ascend a steep gradient at the same elocity, provided the counteracting weight equals the gravity of the and other carriages in such a manner as to run upon his conipound
tramway, common road, or railroad. The wheels are to be made onical, as used on railays, but in place or as railway wheels, makes them 3 in . to 4 in . broad. By this arrange-
ment the conical parts of the wheels will run on the rails, and thio ment the conical parts of the wheels will run on the rails, and thio
cylindrical on the compound tram roads, or on common roads. No. 4. For the purpose of ascending gradients, where the counteracting weight as described in No. 2, is not used, he forms the driving wheels of his
team carriages thus:-Against the insides of the locomotive drivin wheels he builds cylindrical wheels of a smaller diameter than the large heels. From the top to timbe reamway, raised above the ground. As soon as a locomotive carriage
reaches a hill, its smaller wheels will run on the timber tramway, when the peripheries of the larger wheels, no longer smaller wheels, and thus as speed is lost power is gained. Should it be necessary, in order to prevent the wheels from slipping, they can be cogged, as also the tramway. The guiding rail as described in Nu. 1 in prevent lateral friction. No. 5 . It may sometimes be necessary to un the train orf H suitable arrange moels. No. 6. To secure
the friction of any number of the whecls of the train that may be required by their friction on the rails to draw a load, he places the

1427, J. RRonxsov, East India-roan, London, "Adapting water-closets to
ships, so as to ensure the safety aud more pertect ventilation of tho

The pipe from each, closet is connected to a main sewer pipe, which
is connected to a powerful exhausting pump worked either by hand steam power, or any other suitable means, so as always to maintain a partial exhaustion of the sewer pipe or pipes, and thereby cleanse the
closets, ventilite the sstip, and insure its safety, from the fact of there closeta,
being
with.
1430. R. Precknaxs, Lockerbie, Dumfries, N.B., "Apparatus for communi-
cating, siskals from one part of a railway train to another."
June, 18ss.

Th
Tis invention relates to certain mechanical arrangements whereby the passengers and attendants of a railway train are enabied to commu-
nicate with any part of the train with great facility and certainty. In
these arrangements a f fexible tube is carried along beneoth tho botto of all the carriages in the train, this tube being made to terminate in a whistle at the part where the engine driver stands. This tube is in
separate lengths for each carriage, provision being made for coupling the separate lengths for each carriage, provision being made for coupling the
ends when the trin is mande up. The lengths of tube are loosely held in staples or hooks. Each carriage has extonded into it a branch tube
from the mann line of tubing, with a mouth piece for blowing into. For
the wo of passengers the tue onan passengers, each branch tube is brought up at one end of the
the
carriage, and then turned into the carringe, beneath the roof, which it passes, being fitted with a subu-bringech bieneath a moutherpiece and
tap or valve for each compartment. Either a mouth-piece and a a tap or tap or valve for each compartment. Either a mouth-piece and a tap or
valve myy be tited at the end of each branch and sub-branch tube ; or a
and pair of bellows fitted with a tap or valve may be used. The office of the
taps is so keep the lines of tubing colosed, except at the instant when a
signel signal is to be given, and at that time the signaller must open the tap of
the mouth-plece which he uses the rest being lil the mouth-piece which he uses the rest being all closed. Inen Intend oof a
tap a
talf-acting ralve opening into the tube may be used, so that whist the inmate of a carringe can communicato with the tube, no blast can tube led out of the main tube, troo taps are fited upon the main tube, one on each side of the part where the branch emerges, so that any
carriage with a branch tube may be set in the train with either end frst closing the tap which ts behind the last branch tube in the train. Ali
the taps in the main tube are of course kept continually open, the taps in the main tube are of course kept continually open, except
that one behind the last branch in the train. The main tubes on the thar one bere coupled by serew functions. A short piece of inflexible
carriages are carriage ly drawing the end of the elastic tube at each end on each carriage ly drawing the end of the latter over, or in any other con-
venient wayy and the projecting end of this inflexible tube is screwed
exteriorly fon exteriorly for a short distance. These screwed ends are fitted with an
enveloping nut or serewed thimble to effect the junctions of the tube enveloping nut or screwed thimble to effect the junctions of the tube
end sat each carriago, this nut being fitted with a pendant weighted lever to turn it by, and to prevent it from turning by the action of the
carriages The tube beneath the engine and tender is made of such
materilas as will stand the heat well, materials as will stand the heat well, and the engine portion is brought
beneath the footboard and up through it to a suitable height for whistle. Or this tube may be taken to the outside of the engine frame, and then brought up the outside of the engine ending near to and in
front of where the driver stands. In this way various signals may be given by any of the parties in the train as may be agreed upon.-No proceceded wih
i43. T. Boorn
carringes." -Dareo. street, Goswell1.street, London, "Wheels and axles
This invention of tmpre, 185s. nxles to carriages consits, First, in so fiting the anxle to the bearings
that the friction consequent on its rotary motion is subdided
tributed and
 applied thereto produces a tendency to onward motion. For this pur-
pose the inventor tives pose the inventor fixes the axle loose in its bearings, these boarings
consisting of a number of rings placed one within the consisting of a number of rings placed one within the other. The
smaller ring or bearing surface wwht which the axle e is in immediate
contact is fitted somewhat
 it; the third ring is similarly adapted to the outer diameter of the second
ring, and so on. The outer ring constitutes a fixed bearing surface
fixed to the carriage frame. The fixed bearing has annular plates
fited to fixea to the carriage frame. The fixed bearing has annular plates
fixed thich partially enclose the sides of the several rings and
keep them in position axle, which enclose the sides of the smaller rings and embrace or
overip the targer annular plates, thereby keeping the whole of the
bearing ring in bearing rings in position. Suitable stop collars or other parts are affixed
to the axile for securing the several parts in position. The weight of
The to the axle for securing the several parts in position. The weight of
the carriage resting on its bearings presses all the rings in contact with
each other in a vertical line upward from the excentricic to each other. When tractive force is applled to the casriago
it throws thas line of contact weight resting on the severalal rings in this line of contact, now out of
the upright, gives the carriago a tendency to onward motion, and at the same time any rotary motion of the nxie is distributed throughout the
number of bearing rings and does not take effect on any one bearing surface in particular. The improvements in mounting and fitting wheels
to axles

 plates fixed to each side of the wheels, Between the annular plates of
these rings he disposeses annular surfaces of india-rubber as cushions to inceive any side shocks. A plate of metal is interposed between the
Ind
are secured to the the angs as a Whel, which is thereby kept in position laterally with regard to the
axle. Sultable collarg cap and several parts in proper position. The remarks before made with refe-
rene rence to the tractive force transmitted through the axle, and taking
effect on the wheel, apply with regard to the tendency to onward motion: also to the distribution of the frictlon on the several rings or bearing
surfaces resulting from the rotary motion. The pars is also applicable to pulleys and other parts having motion on axes.

- Not proceeded wilh. 1437. Not proceceded wilh. Weplar, Middlesex "Plating of ships and floating and
other batteries, to render the same shot proot." -Dated 25th June, 1858. The object of this invention is to coover the exposed parts of the
null of wooden and iron shipp, and alto of batteries, with plates of tron
or steel of or steel of sufficient thickness to resist the percousive force of henany
shot. This the inventor proposes to do by the usi of rebated plates,
whied Which will enable him to form some lap joints. In covering the exposed
parts of the hull of wooden ships with these plates he uses screw boits
for securing them in place; but for iron ships he prefers the use of rivetsBy rebating the adjolning plates, and getting a good lap, it will be under-
stood that one row of screw bolts or rivets will suffice, in place of two as ordinarily used, to make good one joint, and thus an important saving in the cost of plating a vessel will be effected. To prevent the shot from striking the bolt heads he proposes to sink them in the bolt holes in the plates, instead of bringing them flush with the face of the covering plates. Instead or bolting the plates directly to the planking or
plates of the ship, or of the floating or other battery, he proposes to bolt plates of the ship, or of the floating or other battery, he proposes to boit
or secure thereto parallel lines, or nearly so, of angle iron, to receive the or secure thereto parallel lines, or nearly so, of angle iron, to receive the
lines of rebated plates, and by means of their flanges form with the lines of rebated plates, and by means of their fanges form with the
plates overlapping joints, and hold the plates securely in position. The the outer face of the plates, but shall form with the adjoining plates a recess, sufficiently narrow, however, to prevent any shot that may hit the
edges of the adjoining platez striking the retaining bars. By this edges of the adjoining, plates striking the retaining bars. By this
arrangement the lines of bolts employed for retaining the outer covering arrangement the ines of bolts employed for retaining ,
plates in position will bo protected by these plates, and there being no bolt holes through the plates the risk of their spliting from the percussive force
 Ins.
In screw slips it is necessary (says the patentee) not only to examine the screw, but to examine and repair, if required, the parts which are submerged, without being obliged to put the vessel in dock. On this
condition only the improved system here described presents the desirable security, the repairs being in all cases practicabele and economieal. It is
to tattin this end that the present apparatus, which cannot be described to attain this end that the present apparatus, which ca
without reference to the drawings, has been composed.

1473. W. Carsrick, Liverpool, "Wheels for carts or vehicles to run on
common roads."-Dated 3olh June, 1858. This invention relates to a novel mode of constructing cast or wrought iron naves, and combining them with wrought iron spokes and wroust
iron rims or treads. The naves are fitted with a bush of cast or iron rims or treads. One naves are hited when placed in the eaneve is
wrought iron, brass, or other metal) which, west
secured therein by keys or wedges, so as to admit of its being taken out secured replaced by a new one in case of brealazae or injury. Instead of
an ordinary linch pin to retain the wheel on the axle an ordinary linch pin to retain the wheel on the axle, a round head or cap piece is placed on the end of the axle, and prevented from turning
round thereon by means of a feather or cross bar on the under side of the cap piece, which is fited in a groove or transverse silit cut out of the end of the axle, on which it is secured by means of a stud screw, which
passes through the cop piece, and enters the end of the axle. Some-
times, instead of making the wheel wholly of metal, the inventor makes the nave of metal in the manner just described, and adapis thereto wooden spokes and felloes. By means of these improvements he is
enabled to construct wheels of equal or greater strength than those now 475. H. C. PRARCe, Liverpool, "Reefing the sails of navigable vessele."
Dated 1st July, 1868 . To apply this invention to (say) top-sails, an horizontal supplementary
bar is fitted across the sail equidistant between the head of the sail and the close reef. This supplemenary spar is attached to the sail, and suspended at the ends on axles by ropes or chains, which reeve through
blocks or chocks on the top-sall yard arms, and are carried to the centre of the yard, where they are passed through blocks or chocks for convenience of working. Or these lift ropes may be carried from the
centre of the centre of the yard up to the cross trees or top-mast head, and thence
through blocks or chocks to the "top" or deek. The centre of this supplementary yard, which revolves, is fitted with a boss to recelve a "parbuckle" or "semi-parbuckle," one end of which is attached to the
supplementary revolving yard, and is passed several times round it, and from thence to a hole or block at the top-mast head, and down to the deeck, where it is made fast, thereby causing the sail when dropped
down to roll itself up both from above and below, and when twited to unrol it relf as the es ail is elexated. The supplementary revolving yard
is connected to the mast ty two hoops, which are connected together is connected to the mast by two hoops, whithe are connected together
and encompass the yard, on each side of the parbuckle erest, and are
secured to a split in the middle from the upper yard to a litle below the close-reef, to admit the centre gear to work through it. The edges of the split of
the sail are roped and held together by means of connecting link travellers, and which are attached to the hoops which encompass the
yard, and traverse up and down therewith as the sail is hoisted or yard, and traverse up and down therewith as the eail is hoisted or
lowered. It will be readily seen if the supplementary revoviving yard be
fitted to the centre of the sail, and attached to a "jack-stay" in place of the mast the whole of the sail might be rolled up on the rotating spar.

- Not proceced willh. - Not proceded wilh.

Class 4.-AGRICULTURE

Including Agricultural Engines, Windlasses, Implements, Flour
 mowing, certain agricultural operat.
ceating TDated 30h June
This invention comprises, Firss, locomotive engine for the purpose of mellowing land and throwing up
earth. Secondy, the adaptation earth. Secondy, the adaptation of an intermediate shaft for com-
municating motion both to the propelling wheels tools. Thirdly, the employment of a frame resting by its bearings on
the proplling tools. Trirdyy, the employment of a frame resting by its bearings on
the prolling wheels, and o the intermediate or driving shat, and
supporting parts for communicating motion to the propelling wheels. Fourthly, the employment of an arrangement of parts for obtaining.
intermittent action, that is to say, for causing the tools to act twice or intermittent action, that is to say, for causing the tools to act twiee or
oftener on any particular cover. Firnil, the combination of the two
preceding arrangementa in the same apparatus preceding arrangements in the same aparatus so as to obtain, at
pleasure, continuous or intermitent action. Sixthly, the placing of the
furnace over the fire carriage wheels. Seventhly, the arrangement of feed-water tank under the beiler and bete teen the large whe els.
EIggthty, the employment of a short frame connected to the apparatus
for for carrying the tools, Ninthly, the adaptation on the small frame of
an arrangementof of scews and bevel wheeels for riasing and lowering the
tools from and towards the tools from and towards the ground. Tenthly, the combination with
such small frame of mechanical parts for castingover the sides of the
machine the earth mellowed and thrown up by the spades. Eleventhy machine the earth mellowed and thrown up by the spades. Eleventhly,
the employment of cranks leyed
 to perform their work in two strokes, intervals, or aetions. Tweifhty,
tha a daptation, arrangement and metho of action of peaciliar imple.
ments, so contrived and acting as to cut into the soil consecutively, and
 throwing parts into and out of action or connexion, for communicieting
the desired motions or actions, and for the arrangements of the tools or the desired motions or actions, and for the arrangements of the tools or
tmplements. Fourtenthy, ha adaptation to various machinery and
apparatus, and generally where parts or or applinces ane to be apparatus, and generally where parts or appliances have to be thrown
into and out of action or connextion, of a peculiar arrangement and
combenation of parts combsnation of parts for such purpose represented in, and deseribed
In reforence to tho drawings. Firceenthy, a geveral arrangement and
combination of parts of machinery, desceribed with reference to the combination of parts of machinery, described with reference to the
drawings, adapted for digigg, mellowing, reaping, mowing, and per-
forming various agricultural operations, and for cutiog forming various agricultural operations, and for cutting drains and
excavating. Sixteenthly, in so combining and arranging the parts of
the aforeaid arangen draught animal instead of by steam, by applying namimat wraction to the
propelling wheels, and thereby actuating the driving shard and the

 It consists, First, supporting the upper feed rollers of machines for
cutting hyy, straw, and other vegetable sulstances, in adjustable bearings, so that eaoc, oroller can ran rise or fall indindendendently of the other-
Secondly, in custing the mouth-piece of machines for cutting hay, straw, apd other substances, of cast steel; Thirdly, in making the teeth of the
first pair of feed rollers of such machines tapered, and radiating from the axis; Fourthy,
machines for cutting hay, straw, and other vegetable substances ; and lastly, in an improved mode of c
or other fixings of such machines,
1493. J. Scorr, Drummond-street, London, " Dressing, separating, and
cleaning seeds, and apparatus for these purposes."
Dated S. J. Scort, Drummond-street, London, Dreasing, separating, and
cleaning seeds, and apparatus for these purposes."-Dated 3rd July, 1858.
Carrot seeds, and the seeds of some sorts of weeds, and other seeds, have beards or tails, or down, or husks, or hulls ; grass seed is often mixed with the seeds of weeds having horns or tails, and also with
round or other shaped seeds. The patentee causes the rass seed to
俍 with longitudinal bars or spaces, and either horizontal or inclined upwards or downwards, and from which it falls on one or more slopin sieves or gratings with longitudinal bars or spaces. The grass seed
slides down and off the end of the sieve, while the tailed or horned seeds fall with a spiral motion, or in such a position as to pass through the ongivudinal spaces of the sieve. The first reciprocaung sieve also
separates a portion of the seeds and of the small round seeds which may have been mixed with the grass seeds. He sometimes projects the seeas by centrifugal or other force, and allows them to fall upon the to different distances, according to their weight or form, are received in different boxes or receptacles, provided or not with sieves or screens.
For cleaning or dressing carrot seed and similar seeds so as to remove For cleaning or dressing carrot seed and similar seeds so as to remove
the tails, beards, husks, or hulls from them, he employs one or more the tails, beards, husks, or hulls from them, he employs one or more
cellinders or cones covere with wrireard or metallic brustes or punched r the wire cards or brushes may be arranged on a dise or plate, which may revolve over or in proximity to a fixed plate or sieve, or the apparatus may be mard in
a spiral form. In either case the carrot seed or other seed is introduced a spiral form. In either case the carrot seed or other seed is introduced
between the two surfices, and the tails, or beards, or husks are rubbed off, and pass through the sieve or wire gauze. The carrot seed may pasils ou at beards, and be afterwards separated by sifiting, winnowing, of
ter otherwise. The wire gauze casing may fit the wire and surface, or may at intervals, and may be edjusted by screws or other means. He sonese. times applies a gentle heat for drying the seeds, or facilitating the operation by means of gas burners or other heating apparatus. The
last portion of the tails or down may be removed by means of sieves
witt rubbers, which rub them through the siese, off at the end or side. This rubbing apparatus may also be used in
combination with a winnowing machine, or with the machines before mentioned.

Class 5.-BUILDING

Including Brick and Tile Machines, Bricks, Tiles, Drain Pipes, and
House Fittings, Warming, Ventilating, sce. 1403. G. R. Schivex, Philadelphia, U. S., "Apparatus for ventilating and
for circulating, moving, or otherwise acting upan air or other fluids."for circulating, movis
Dated 1 Ist J Jne, 1858
This
uniform diameter revolving horizontal, one of which is tubular from the end of the drum, with
spiral spiral pipe or passago wound or coiled around or within the said drum,
open at one end, os os to freely admit air and water or other fluids in
contact with one outer surface of the drum witha fre passage through such coil into the said tubular journal, into which the other end of one pipe or coiled passage enters wweter and air-tight
through the said tubular journal into a vertical or other stationary pipe attached water and air-tight to it, by the usual method of packing, and In which it turns out or one side pipe at its opposite end. A reservoir immersed in water or other fluid, provided with air and water feed pipes and a float valve to regulate the quantity of water therein. A reservoir of water, and air-tight, into which the coiled pipe communicates
through the tubular journal and the air and water dischargo pipe一when necessary the discharge water pipe conducting back to the reservoirand an air cischarge pipe for the escape of air. Lnstly, a contrivance
to receive the water or other fluids at its maximum point of elevalion in the vertical pipe, and transfer it back to the cylindrical drum, there
act to one extent of its gravity as a motor, or driving act to one extent of its gravity as a motor, or driving power, any
defcicency thereof being supplied by any known motive power, or by
hand labour when it is so desired. -Not proceeded with.
413. J. Rounkrioox, Glasgow, "Apparatus for reaglating the flow or
pasagige of fuids."As applied to the purpose of regulating the supply of cleansing water short cyllindrical chamber of pretty large diameter, having a top and
shater bottom cover scrowed on. The bottom cover or end forms the actua
shallow shell or chamber through which the supply of water from the main is brought to the apparatus. This portion is cast in one piece on the main or supply pipe, being disposed horizontally, that is to sis, with beneath. In the centre or this end dise or shell there is an aperure communicating with the inlet section of the main pipe, whilst there is a second aperture slighty excentrically disposed, and communicating with
the opposito or outflow section of the main pipe leading to the closet pan, the two apertures being of course completely separated by a disc shell face there is filted a circular disce of caoutchouc or other flexible material, arranged to bear upon an external annular face al
round the shell. This flexible disc has screved upon each button or stail disc piece of metal, the under one of these small discs
having fitted to it a soft or flexible face-piece of leather or other material to form a valvular fit upon an elevated annular working face
round the central hele in the operating chamber has attached to it a lateral water pipe of narrow bore, and fitted with a stop cock for setting the flow. The top cover or
end diso of the chamber has passed through its centre spinde nted with a belical spring to keep it up. The lower end of this spindie which is passed through the cover has upon it a holding or
collar button, to carry a second large flexible disc of caoutchouc, which like the one already described, is of the same diameter as the cylinder'
bore. is isshed on its inner face for the elastic dise apparatus is thus: - When the closet is about to be used, the pressure
upon the seat causes the main upper spinde to be depreseded, and thi spindle then forces down the upper flexible disc so as to contract the
space for water in space for water in the cylinder beneath it, and thus foree the con-
tained water back through te leateal stop cook into the main, the
water way through the stop cock being pur water slowly through. Then, on the release of the oper to pass the from pressure, the water in the man main pipe beneneth the opetiating nitue spindle no
pressure from above the dise to interfere with its upward force. the bottom flexible disc, and nows hrough from the inlet section of the main by the aperiures already described into the outlet section,
thus reaching the pan of the closet. This flow continues until the
upper internal presure between the tion made up by inward fow of water again throuyh the in the cylinder i when the lower flexible disco will resume ths seath tand cut off the supply
of water to the basin or pan. The apparatus is then age
 This invention consists in conducting a supply of air from the exterior
of the room to the fire by means of a passage in the wall or floor, or
. other convenient place. The patentee causes this passage to communiand conducts apertire or passage ore or ide or ire-place or stove aperture on the other side of the fire-place. These apertures supply the
air to the fire and to the room. They regulators, and may be adjusted to direct the air in such a manner as to
counterac suitably pleasure,

 ond

 into and foring troush the druias or temer.

Class 6.-FIRE-ARMS

Guns, Swords, Cannons, Shots, Shells, Gunpowder, Implements of War
or for Defences, Gun Carriages, \&c.
 , Noun Kentroan, tondone, EFicearmu"-Doted

 Bitand

 stud inside what is called the break-off, the end of the cartridge is pierced,
and with that, in combination with the above nipple, explosion is secured. and with that, in combination with the above nipple, explosion is secured.
The construction of the improved birding gun (which plan is particularly adapted for converting the present ramrod gun into a breech charger)
consists simply in using the like screwed or grooved axle as described in
 stock, and not running through the bore of the barrel as
described in the specification of the said previous patent, but
passes into a hole made in a long bar of steel let into the
stock at the part now occupied by the ras affixed to the break-off at the head of the gun, and the lock screw runnite has a hole it in it ine deeply chamfered so that the finger can press in the stud, and the finger
being already in the hole at the time the stud is pressed in, the lever
can be immediately moved so as to bring the axle out of the hole in the bar of steel. As described in the former patent, a pin or stud to cause
this works in the inclined groove or helical slot. For this gun the patentee simply uses a cartridge of small shot in a case, and the paper containing the powder is affixed to its back with a thread, or may bo jointed as in the specification of the former patent. The cartridge for
this as well as for the breech-charging rifle will be presently described.
The patentee sometimes uses the last mentioned arrangement for breechcharging rifles, but the axle in this case has a flat filed upon its side, upon which the hammer of the rifle rests, and upon motion being given to
the lever the round part of the axle keeps the hammer off the nipple until the breech is properly closed. The lever of this rifte, although the same as regards the principle in the working part of the axle as the this case on the rigt the specification of the previous patent, is in make room for the axle the block or stud into which the main spring acts is placed further up towards the narrow end of the lock plate, and
the lock plate is then cut away to allow the breech part which recelves the lock plate is then cut away to allow the breech part which receives the axle to be placed just in front of the hammer centre, so that it
may rest upon the flat formed on the axle of the lever as before de-
scribed. For breech-charging cannon the patentee screws head of wrought iron or other metal in a spherical form or otherwise in the rear of the gun, through which head he passes an axle with an
inclined groove in it, and affixes a lever of suitable strength to the axle, using a similar spring stud at the end of the lever, as is
described for sporting birding guns; or he makes the lever simply snap over the round of the barrel. In order to ensure the firing of breech
charging cannons from the explosion of a percussion cap, he screws into the touch hole a nipple provided with an arm or lever to screw it in and out, and causes the nipple to terminate at bottom in a tube which enters into the cartridge. The improvements in cartridges for breech charges (whether large or small arms), and without which they would
practically be of little use, consist in forming the back of the cartridge practically be of little use, consist in forming the back of the cartridge
with a deep recess made grease proof with gum arabic, shellac, cement, suitable for the purpose, and on charging the same or lubrication of any kind is placed in such recess it will not heat and
penetrate to the powder, and at the same time, however soft the tallow penetrate to the powder, and at the same time, however soft the tallow
or other lubricating material may become in hot climates, in no case will it come in contact with the fingers when the cartridge is being handled for loading, the recess being only partially filled. By this
arrangement the patentee is enabied to use a much softer lubrication
than usual, which than usual, which will act equally well in cold as in hot weather, and will nogether without chance from increase of temperature of the lubricating
tor material passing from one cartridge to another. The back of the pape or other material used for enclosing the powder and balls at the
recessed parts is formed of a uniform thickness with its sides, and thus he makes a rifle or gun cartridge at its rear, and without the usual
process of tying, and obtains a much neater finish at the edges of the recess. Above all, in importance, and which is the most particular object and use of the recess at the rear end of the cartridge
or powder part, is, that the lubrication placed therein shall at
each explosion be force in each explosion be forced into the breech parts of the weapon.
From the want of somo plan for supplying such lubrication
continuously few rounds have become fixed, and the arm rendered used, after firing breach has been removed and cleaned. Another advantage resulting
from this plan is, that should the weapons be left uncleansed or exposed to wet after use, they are effectually prevented rusting until the opportunity occurs of removing the dirt and moisture. Sometimes for prefers filling the flash of these is so m, or morab a considerable thickness of bees'-wax mixed with tow or other suitable material. The above method of recessing and lubricating are used either at the rear
end of the ordinary cartridges or to the particular jointed cartridges de scribed in the specification of the previous patent, before referred to making them, in gumming or cementing the outside of the paper or other material inclosing the bullet at the front thereof (instead of fixing
such bullet to the paper itself, as it has heretofore been the custom) Upon twisting the above paper or other material over the point of the bullet the folds become fixed together by the gum or cement, so that the
bullet is firmly secured in, and yet does not adhere to any part of the paper or other material. The advantage of this is that when the bullets are fired they fit the barrel very tightly, and yet immediately after they issue from its nose separate fro
of shooting are not impeded.

Class 7.-FURNITURE AND CLOTHING

Including Cooking Utensils, Upholstery, Ornaments, Musical Instri 1398. W. C. Wheiss, Long-acre, London, "Lamps."-Dated 21st June, In those descriptions of safety lamps in which the flame of the lamp
is surrounded by glass, considerable difficulty is experienced in bringing is surrounded by glass, considerable difficulty is experienced in bringing
a sufficient supply of air to the flame. To obriate this diffculty the patentee constructs a series of tubular passages through the oil vessel,
which communicate at their lower end with the external air, and at their upper ends they terminate near the wick, so that the air which passes into the lamp through these passages comes at once in contact
with the flame. This arrangement is also applicable to other lamps. with the flame. This arrangement is also applicable to other lamps.
In safety lamps, to avoid danger of explosion, the endz of the passages are covered with wire gauze; or, in place of this arrangement, the oil bottom of which a series of holes are formed for the admission of the Immediately above these openings the case is provided with a false bottom of wire gauze, and after passing through this the air passes up all
round the oil vessel, and enters the body of the lamp
1401. A. V. Nkwrox, Chancery-lane, London, "Spoons and forks."-A com-
munication.-Dated 21 st June, 1858 . This invention relates to the application of malleable cast iron for present used in the production of these articles in clepper or brass The malleable iron is rolled in the same way as in the manufacture of the like articles in copper, but under the influence of a double de-
carburation to which the cast iron is subjected. By this means an economy is effected in the cost of the articles, the copper being replace by an innocuous white metal, which presents also the advantage of
409. J. A. Raise, Wells-strcet, Gray'-inn-road, London, "Coilapsible
framework for bessteads, sofas, and other like articles of furniture."
Dated 22 and June, 1858 . Dated 22 nd June, 1858 ,
This invention consists in the application of a system of cross levers similar to lazy tengs, in such manner that by a single set or system of
cross levers on each side of the bedstead or other frame it can be state at any intermediate and fixed either at full length or in a collapse

Class 8.-CHEMICAL

Including Special Chemical and Phamaceutical Preparations, Fuel
and Lighting Materials, Preparation and Preservation of Food, Brewing, Tanning, Bleaching, Dyeing, Calico-Printing, Smelting,
Glass, Pottery, Cements, Paint, Paper, Manures, \&c. 1404. H. Descon, Widnes Dock, near Warrington, Warwickshire, "Purify-
ing alkaline lees." - Dated 21st June, 1858. This invention relates to certain improved processes for purifying the facture of alkalies, such sel sand processes consist, Firstly, in adding hydrated protoxide of iron, or hydrated peroxide, or hydrated magnetic oxide of iron, to such lees at any
convenient temperature not exceeding 130 degrees of Fahrenheit's thermometer. Secondly, in separating at any lower temperature than 130 degrees Fahrenheit the precipitate produced in and from such lees, by
the reaction at a bigher temperature of any salt of iron,
phides, or of any oxide of iron when added thereto; and when the term
"salt," or " metallic salt," is used herein the patentee means such compounds of iron, manganese, and zinc, not being sulphides, as are well
known to chemists as salts of iron, manganese, and zinc, as chlorides, sulphates, kc . kc ; and of iron. Thirdly, in adding any salt of iron, or orde of iron, to such lees in a state of concentration at or near their boiling points, and in
subsequently diluting them and separating the precipitate. Fourthly, in exposing the said lees after any salt or oxide of iron, manganese, or zine has been applied thereto to the action of atmospheric air and agitation. Fifthly, in the prolonged application of temperatures below 130 degrees
Fahrenheit to such lees when containing any ferro or ferri cyanides, Fahrenheit to such lees when containing any ferro or ferri cyanides.
Sixthly, in the admixture of caustic lime or magnesia to the precipitate produced by any hereinbefore mentioned metallic salt or oxide reacting
on such lees, for the purpose of retarding the oxidation of the precipitate during the separation of the alkaline lees therefrom. Seventhly, in roasting such precipitate, when not mixed with lime or magnesia, with an alkaline chloride, so as to produce a corresponding alkaline sulphate,
with the view of utilising such precipitate.
 used in a damp state for to that description of paper now ordinarily instruments. It consists in preparing the paper by coating or im-
pregnating it with a solution or other preparation of catechunic acid and iodine, whereby the paper, upon being damped with clear water in the ordinary manner of damping copying paper, will receive a stai 1432. J. Berrss, Strand, "Obtaining surfaces on which to print maps and
other designs."-Dated 25 th June, 1858 . The inventor proposes to take a woven or textile fabric or othe sutabie $\begin{aligned} & \text { roundation material, and applies thereon a coating of pigment } \\ & \text { combined with boiled linseed oil, diluting the ofl in case of need with }\end{aligned}$, either alcoholic or resinous spirit, as may be preferred. This coating is laid on to the foundation with a brush, and afterwards scraped and
rubbed down, or the latter only, and the process repuated until he of caloric is obtained, if from the state of the atmosphere or othe cause he requires it. On the surface so prepared he prints the map design, inishing the work by sizing and varnishing. The pigments used
for white surfaces are carefully prepared zinc, lead, but he prefers the former. He adds pigments of various sorts and body of the composition or coating above described.-Not proceeded with. 505. E. HaEFPELY, Kearsley, "Recovering oxides of manganese from pro-
ducts arising out of the manufacture of chlorine, and in raising com-
mercial manganese to higher oxides."-Dated 3rd July, 1858. mercial manganese to higher oxides,"-Dated 3rd Juyly, 1858 . ${ }^{\text {aising com }}$ -
The liquor from the vessels in which chlorine gas is generate to flow upon lime-stone, or carbonate of lime, or carbonate of baryt
until the free acid contained in it is neutralised, or nearly so. It is the boiled with finely divided limestone or chalk, or carbonate of bary (the carbonate of lime arising from the manufacture of caustic soda is
applicable), and the peroxide of iron held in suspension is separated, either applicable), and the peroxide of iron held in suspension is separated, eithe by filtration or subsidence, from the solution from which the manganese
is precipitated by free lime. It will be found that boiling greatly is precipitated by free lime. It will be found that boiling greatly
accelerates the filtration or the subsidence. When all the manganes has been precipitated, a further quantity of free lime is added, the proportion of which can be ascertained by noticing the quantity required to
precipitate the manganese, and then adding as much more. Or in precipitate the manganese, and then adding as much more. Or in
equivalents for every equivalent of manganese there should bo two of caustic lime. The precipitate is then boiled and thrown on to a filter by water being poured over it, and then transferred to an iron pan to b dried. From this it is removed to a closed or muffle oven, maintained at a low red heat; but even a white heat is found not to be injurious. The
contents of the oven are then lixivated with weak hydrochloric acid, or by the refuse liquor from the ayparatus for generating the chlorine gas, y which treatment the lime is removed in solution, and the manganes merce to higher oxides the manner above described is followed.
507. Richard archibald Brooman, Fleet-street, London, "Cast steel."-
A communication.-Dated 5 th July, 1858 . The objeat of this invention is to produce cast steel from iron of any
description in one operation, and the invention consists in cementing in a suitable crucible or furnace fragments of iron or steel of an description by means of a mixture composed of oxide of iron or of manganese, carbon (either plain or bydrogenised, such as resin or soot and potash, soda, lime, alumina or other alkaline or cartby material in
the state of an oxide or of a salt. In order to produce the required reactions between these substances it is necessary to mix them intimately them as uniformly as possible among the fragments of iron ar to spel instead of uniformly spreading the mixture in this manner, the sub-
stances may be placed in layers in the crucible or furnace. The carbon impregnated with the oxides and the salts is not affected by the air, bu combines intinately with the iron or steel. The combination is favoure by the nascent state of the carbon, and by the electric action set up by
the oxides and salts. Instead of employing alkaline or earthy mate rials in the state of oxides or salts they may be employed for the purpose of this invention in a state of chloride; but then it is necessary to oxide of iron or of manganese to disengage the chlorine. The remainde of the process is conducted as before. The quantities of the variou
materials used in carrjing this invention into effect depend upon th nature of the metals operated upon, and of the product desired. But quality into good cast steel, about 3 per cent. of alkaline material, and
from $2 \frac{1}{2}$ to 3 per cent. of carbon or carbonaceous matter, such as resin

Class 9.-ELECTRICITY

Including Electric, Magnetic, and Electro-Magnetic Apparatus,
Electrical Apparatus, Galvanic Batteries, \&c. 1483. C. F. Vasserox, Essex-street, Strand, London, "Electro-magnetic
machines."-A communication. - Dated 2nd July, 1858. wool, flax, horse-hair, cloth, cane, or any other material capable, of being said cord with a wire of copp or any other conducting metal.-Not proceeded with
492. J. L. CLARE, Haverstock-hill, Middlesex, "Electric telegraph cables
or ropes."-Dated 2nd July, 1858 , In order to distinguish one wire from another when coated with guttapercha, or a compound containing gutta-percha, or with other plastic
insulating matter, a projecting rib or ribs, or it may be groove or grooves,
are formed longitudinally on or in the coating. By these means, when such coated wires are made up into telegraph cable or ropes, the wires
have each their distinguishing marks.

Class 10.-Miscellaneous.

Including all Patents not found under the preceding heads. 12822. E. VIogrs, Paddington, London, "Manuthature of bricks and other
articles moulded or formed from clays."-Dated 7 h June, 1858 . This invention consists in applying a material obtained from a refuse like material in the manufacture of carburetted hydrogen gas. When the torbane mineral has parted with all, or nearly all, the volatile or volatilisable property possessed by it, or therein contained, whilst under it is withdrawn from the retort, and this refuse is thrown on the waste heap. Now it has been found that this refuse, which is of a black colour
contains generally sufficient carbonaccous matter to enable it to be burnt in heaps in the open air without fuel, after having been ignited, and when it has been subjected to perfect calcination the result is white masses or nodules of a light friable material, which has been chemically determined as "anhydrous silicate of alumina," and the patentee has
found that by reducing this material, to a suitably fine powdered condition,
and then intimately mixing it with various kinds or descriptions of clays,
he thereby improves the quality of the clay with which it is mixed, and he thereby improves the quaily of the clay with which it is mixed, and
also enables clays which could not heretofore be employed for producing numerous articles economically or perfectly to be easily wrought,
perfectly moulded, and capable of being successfully burnt or kilned. Ser This improved stopper is formed in the interior with a groove or cavity fitting over the top of the bottle or jar, with a plug or solid portion fitting into the mouth of the same. A washer of leather, indis-
rubber, or other elastic or compressible material, is inserted in the rubber, or other elastic or compressible materia, is inserted in
groove or cavity, and fills up the space between the substance of the
stopper and the top of the bottle or jar. The exterior of the stopper also grooved to receive a wire, string, or other means of attachment, to the neck of the bottle or jar, which has a projecting ring formed on i
for the purpose of facilitating the tying or fastening of the wire or for th
string. 289. R. A. Broonas, Fleet-street, London, "Pipes and tubes."-A com.
munication."-Dated 8th June, 1858. This invention consists in manufacturing copper tubes and pipes copper in a galvanic battery over and upon a core of lead or other fusible metal or material capable of being fused or melted by heat, or otherwhes reduced or removed. The core may be solid or hollow, and, when hollow, may be allowed to remain in the copp
by melting or otherwise.- Not proceded with.
295 A. RIgG, sen., and A. Riag, jun., Chester, "Improvements in appa-
ratus for tipping or upsetting coals, minerals, or other substances, and in ratus for tipping or upsetting coals, minerals, or other substances, and in
brake machinery." - Dated sth June, 1858.
The improved apparatus consists of a table or framing mounted on axles, on which framing or table the receptacle or wagon containing the
material to be upset is held firmly. On the axle there is a brake whee surrounded by a band which is connected to a lever which moves betwee
fixed guides, on which guides there are ratchet teeth, into which a click on the lever takes, so that the brake can bo left in any position on the after the coasls or other substances have been upset, the moveable part
are prevented from returning until the click is released. The receptacle are prevented from returning until the click is released. The receptacc
or wagon containing the material to be upset is placed on the framing or table in such position that the centre of gravity is beyond the axles, so
that, when the brake is released, the framing and wagon tilt over, and
the speed at which they are allowed to tiit is regulated by means of the the speed at which they are allowed to tilt is regulated by means of the
rake. The framing or table is so weighted that, when all the coal o
other substance has been upset on the brake wheel, the framing table resumes its first position. To the front of the table or framing is fixed a scoop or screen with or without
ides, which receives and guides the coal or other substance as it slide ides, which receives and guides the coal or other substance as it slides described is also applicable to other machinery.
298. D. Moskler, Manchester, "Machinery used in the
vulcanised india-rubber thread."- Dated 4th June, 858 .
In manufacturing vulcanised india-rubber thread

In manufacturing vulcanised india-rubber thread it is customary to lap a sheet of vulcanised india-rubber round a roller, the sheet of vul
canised india-rubber passing through a trough containing a solution o
shellac, which causes the whole to adhere together while being cut
 under a rod or roller placed in the trough, and the surplas shellac is re
moved by an instrument called a "doctor." This invention consists in dispensing with this instrument called a "doctor," and in causing the
arge roller on which the vulcanised india-rubber is lapped to bear o large roller on which the vulcanised india-rubber is lapped to bear o
the roller in the trough containing the solution of shellac, and aroun whice the sheet of india-rubber passes before it is lapped on the larg
roller. When the sheet of vulcanised india-rubber is being wound on the large roller the surplus quantity of shellac or other cement is
squeezed out by the pressure between the lap and the roller in th trough
measu
mean measuring and registering the flow of liquids." ${ }^{\text {D }}$-A communication.-
Dated 9 th June, This invention consists of two cylinders placed side by side, and two
balance beams connected together and placed one above and the other underneath the cylinders. A pipe open at both ends ascends to a certain
beight in the centre of the cylinders. The liquid is admitted in both eight in the centre of the cylinders. The liquid is admitted in both
cylinders alternately, and when it has filled one of them up to the
mouth of the pipe it overflows through it, and falls into a cup place immediately underneath the lower orifice of the pipe. The cup rests on
the lower balance beam. The weight of the liquid it receives overcomes counterpoise placed above the opposite cylinder, and forces down the
balance beams. This movement raises the rod of a valve placed at the bottom of the cylinder, and the liquid which it contained, as well as that balance-beam is furnished with a crank, the rod of which communicate combined to actuate the hands of two indices indicating the number of
beam strokes; and as the quantity of water necessary to overcome the beam strokes; and as the quantity of water necessary to overcome the
counterpoises represents a certain measure, the indices will consequently how the number of pints or quarts which have passed through the 04. J. Easterbroor, Sheffield, Yorkshire, "Ratchet braces." - Dated 9th
June, 1858.

 The brace thus formed, while it possesses all the advantages of an
ordinary ratchet brace, has this superiority, that it can be used in
positions where a brace with a straight sided ratchet wheel would be wholly inapplicable.
308. T. Robisson and H. Oodes, Manchester, Lancashire, "Safety lamps
and apparatus connected therewith."-Dated 9 th June, 1858 . The object of the first part of this invention is to attach the gauze
to the lamp in such a manner that it cannot be removed by any apparatus which the miner usually bas at his disposal; and to effect this end in a
simple manner the patentee claims, Firstly, the use of two or mor fastenings, which must be held back simultaneously to allow the gauze to
be removed. Secondly, the use of keys acting by serew threads for be removed. Secondly, the use of keys acting by screw threads for un-
locking safety lamps, whether one or more fastenings be employed. Thirdly, an apparatus for unlocking, described, whereby two or more keys
are made to act simultaneously. Fourthly, the use of enamelled metal 309. J. Roesris, Upnor, Kent, "Reflector or cover for gas burners."-
Dated 9th June, 1858. The chief object of this invention is to prevent the accumulation of
heat in apartments arising from the combustion of gas. For this heat in apartments arising from the combustion of gas. For smoke of the gas flame, a water chamber, which, being in close
proximity to the flame, will take up and by transmitting it to the water contained in the chamber give off an aqueous vapour that will effectually keep down the temperature of the
apartment. Standing up over the central hole in the reflector is a tube with a closd end, and surrounding this tabe is larger diameter upper side of the metallic disc reflector, and form an annular water cbsmber, over the inner periphery of which the heated gases from the flame play, thereby causing a slow evaporation of water contained in the
chamber. In cases where a reflector is not required, the suspended cover for collecting the smoke may be made with an annular water
chamber, and the required result will be in like manner attained. -Not chamber, and
proceeded with.
314. J. Luis, Welbeck-street, London,
communiation. Dated 10th June, 1888 .
This invention cannot be described wit
318. T. Chatwis and C. Tavlor, Birmingham, Warwickshire, "Screw
stocks."-Dated 10th June, 1858.

The improved screw stocks contain three dies situated in the, stock
nearly in the directions of radii to the axis of the rod or bar on which
a screw is to be cut by the said dies, One of the dies is ordinarily stationary, and the other two are made moveable, being capable of a
sliding motion so as to approach to and recede from the stationary die, siding motion so as to approach to and recede from the stationary die.
This motion is necessary during the cutting of the screw, and also for the making of screws of different diameters having the same pitch of thread. The patentees claim causing the moveable dies of a screw stock to advance either by the advance of a screw box upon the sciewed handle of
the stock, or the advance of a screw in the body of the stock. Secondly, causing the several dies of a screw stock to advance simultaneously by e use of a ring encircling the dies, the inclined inner face of the sail a screwing motion into the body of the stock.
320. W. Davis, Birmingham, Warwickshire, "Tangs of awls, awl blades,
and the stocks or pads for holding the same."-Dated loth June, 1858 . The object of this invention is to simplify the form of that portion of same time that the patentee effects this, the awl when finished will be ound much stronger at this part than when made in the customary way and the tangs being of a uniform size the awls may be readily removed or applied to their respective pads or bandles, as this part is intended to ended to be made. Secondly, in the manner of giving form to in inch tended to be made. Secondly, in the manner of giving form to such
kind of awl blades; and, Thirdly, in the stocks or pads for holding such awls, which stocks or pads are secured to handles turned and finished in
the usual way, and the means thus described are also applicable for pplying other such like implements to the handle or paso applicable for are intended to be used, such as surgical instruments, corkscrew worm cannot well be described with out reference to the drawings.
325. J. Gemmell, Belfast, Antrim, Ireland, "Starch."-Dated 11th June According to these improvements the grain or vegetable substance used for the manufacture is ateeped in water, and otherwise treated in
the usual manner. The water and the partially dissolved starchy matters re then passed through sieves to separale the coarser particles therefrom The stained product is run from the sieves on to an inclined plane, or what is technically termed a runner, and hitherto only used for separating
the starch from the "slimes." In this operation the water is run off, and the whole of the amylaceous product is precipitated upon the face
and of the incline or "runner." The starch is now removed to bo dried or wet part of the process being effected in one apparatus. The runners or inclined planes used for the purpose may be modified in construction to suit the object in view, and may be arranged in series so as to carry on
the process continuously. By means of this simplification of the manufacture the yield of starch is of uniform quality, the ordinary waste of material is avoided, and time, labour, and plant economised
1328. G. Bartholomaw, Linlithgow, "Gas meters."-Dated 11th June 1858.
The object here is to secure uniformity in the measurement of gas, by
keeping the surface of the water in the measuring compartments at the keeping the surface of the water in the measuring compartments at the
same level, although by evaporation or otherwise the water becomes same level, although by evaporation or otherwise the water becomes
diminished or increased in the case. The patentee claims, the arranging wet or water gas meters so that the drum or measuring, chambers
ratenter claims, the ar acting on suitable index apparatus are made to float in the water or
other fluid contained in a case or reservoir, whereby such drum or measuring chambers, whilst such meters are in action, are sustained at a unitorm and determined line of immersion in such water or other
fluid, whatever may be the beight of the water or other fluid in such 133. Newros, Chancery-lane, London, " Machinery for cutting
communication. - Dated $12 t h$ June, 1858 . This invention consists chiefly in the use of two knives arranged and a log or block, each knife cutting one-half of the veneer, and so that each knife will make its cut or stroke in the same plane with the other
knife, and in a line parallel with the run of the grain, whereby the veneer is less liable to be roughed or broken than when cut in the di-
rection of the length of the log. In order to cut veneers from sueh woods rection of the length of the log. In order to cut veneers from-sueh woods
as are usually used for veneers by the improved machinery forming the suitable box, by preference, by the use of steam and hot water combined in order to soften the fibres, unless the log is a very soft or green wood,
in which case the steaming will not be required.
341. J. H. Youva, Great College street, Camden-town, Middlesex, "Set
ting up (composing) and distributing types." - Dated 14th June, 1858 . These improvements in setting up types relate chiefly to the com-
posing machine patented by the patentee in 1840, in which an inclined lane is used for the purpose of collecting the different types as they ar machines in which a moveable belt or belts are used as a collecting medium. The patentee now claims, First, the application of appathe stepwheel. Secondly, the application of apparatus for obtaining a regulated alternate movement and stoppage of the types upon
the inclined plane, in order to insure their being properly taken
off. Thirdly, making the steps of the raising of the types at the termination of the inclined plane of the
same, and the regulated action of the pusher so that it may not strike at an improper movement. Fifthly, the application of electro-mag-
netism for netism for regulating the taking off the types off the inclined plane and
their delivery into the receiver. Sixthly, the application of a smal their delivery into the receiver. Sixthly, the application of a smal
auxiliary composing machine, which may be fixed to, or detached from of the channels composing machine. Serenthly, the partial covering
ondich the types slide on the inclined plane Eighthly, the application of a groove for small-bodied type in the bed o the channels of the inclined plane used for a larger bodied type
Ninthly, the application of a pusher through the aperture or apertures so constructed in the inclined plane to allow of superfluous types falling off
the same. Tenthly, the application of moveable blades to effect the distribution of types by means of their nicks as described.
442. H. J. Dasiril, Donington-park, Derbyshire, "Process by which the
stamp on bankers sheque is cancelled, and the cheque indelibly and
simultaneously crossed."-Dated 14th June, 1858. simuitaneously crossed."-Dated 14th June, 1858.
The patentee claims the exclusive right to cross bankers' cheques, and
cancel the stamp thereof, by excision or perforation thereof.
43. H. N. S. SurapygL, Medway Manor House, Bradford, Wiltshire,
"Preparing iron and other metals or mixtures of metal, and casting the same in moulds."-Dated 14th June, 1858 .
In carrying out this invention the iron or other metals or mixture of
met meted to a mechanical stirring. It is then run into the mould, and the
jected
stirring is kept up by a stirrer in the mould till the iron or other metal or mixtures of metals is set or solidified.-Not proceeded with.
346. J. H. Jonsson, Lincoln's.inn.fields, London, "Apparatus for breaking
or crushing stones for road metal, and other purposes, and for crushing
ores and othher hard and brittle substances," - A communication.-Dated
14th June, 185s.
This apparatus consists essentially of a pair of vertical iows, the one
being fixed and the other moveable; or, if found desirable, both jaws may be moveable. These jaws have their acting faces corrugated
vertically, and such acting faces are made also conrerget one towards the other, so that whilst the space between them at the top
where the stones or other hard substances are introduced is sufficiently large to receive them in an unbroken state, the space between the jaws at the bottom is only sufficiently large to allow the fragments to pass
through after they have been crushed or broken to the required size A short but powerful vibration is imparted to one or both of the jaws by
any convenient arrangement and combination of powerful by a crank or excentric on the main shaff. The patentee prefers to
employ one moveable jaw only, and to actuate such jaw by a combination employ one moveable jaw only, and to actuate such jaw by a combination
of a knee or toggle joint with a powerful lever worked from a crank of short stroke on the main shaft, which may be fitted with a suitable fly
wheel and driving pulleys. By the above described form and arrangement of jaws, and the motion of the moveable jaw, when a stone or Other hard substance is dropped into the space between the jaws it falls
down by its own gravity, until it is arrested by their convergent faces
and the moveable jaw advancing crushes the stone, the fragments o by a spring for that purpose, and descend by their own gravity further down, when the next stroke of the jaw will so on until the whole of the fragments are sufficiently reduced to pass through the bottom space between the jaws. It is also proposed to combine with this machine a revolving screen to receive the fragments as they fall from the jaws, and separate or sort them into two or more sizes. To prevent the rapid wearing of the jaws, they should be made
of hard iron, and be well chilled, and chilled pieces may be inserted of hard in
into all the
353. W. P. Wrikivs, Ipswich, Suffolk, "Refrigerating apparatus." - Dated
15th June, 1858 , This invention refers principally to refrigerators used for coolin wort, and relates, First, to the method of securing the small tubes within the outer, casing or shell which contains the cooling liquor or water.
These tubes are fixed and held in the tube plates, but instead of fixin These tubes are fixed and held in the tube plates, but instead of fixing them rigidly thereto the patentee simply slides them through the hole
formed to receive them. These tubes are arranged by preference in circle within a cylindrical outer casing. He cuts from a sheet of indiaand cuts holes corresponding wiscs of positions of the several tubes, an places them on the ends of those tubes which all project through th tube plates sufficiently for the purpose. He then places washers or plates similarly formed with holes to receive the ends of the tube more screw studs and nuts forces the india-rubber against the tube plate, and thereby compresses it around the tubes. By this means the joints are rendered tight, at the same time admitting expansion and contraction to take place without affecting the tightness of the joint tion. The tubes thus fitted and fized are at any time easily removed fo repairs or other purposes. Another part of the invention relates to the arrangement of the channels or passages of the water in connexion
with suitable cocks, valves, or other parts, whereby the water can be diverted from its ordinary course, and caused to pass the water can be tubes in the opposite direction to that of the course of the wort, whereby those tubes are readily cleaned from sediment, hop leaves, or other obstruction, and otherwise cleaned out. The passage of the wort is of
course at the same time suspended through that part opened to the water. water. A third part of the invention refers to the introduction of middle of their length (if long). This is similar to the washer used for compressing the india-rubber dese
tures for the passage of the water.
354. Sir Francis Charles Knowles, Lovel-hill, Berks, "Manufneture of
steel."-Dated 15th June, 1858. The nature of these improvements is as follows:-As soon as the
metal is withdrawn from the converting furnace, in whatever shape it may be, as bars, rods, sheets, plates, \&c., the patentee puts it into retorts bonaceous matter, and carefully excludes all atmospheric or other carretorts after they are filled with the metal. The retorts with their contents are then heated in the ordinary way of gas retorts for a longer or horter time, according to the size or thickness of the bars, rods, plates, $\& c$, until the temper or cementation by the carbon shall have become even throughout the mass, and the steel itself almost homogeneous. The ir with the siftings of coke, and allowed to cool gradually in the heap. render them more homogeneous, and to destroy many crystallisation or scate of strain in the mass among its molecules. If bars, rods, plates,
steel, after conversion (above all, if the iron from which they are made be itself clean), and after this subsequent process in retorts, be olled " "shear" velding process, and will be found to be highly homogeneous and solid. less liable to crack under the hammer

LIST OF OPEN CONTRACTS

so far as they relate to engineering or general
invited forks-London and North Western Railway.-Tenders are Canal to Coantroction of a railway from a point on the Shropshire and after 10th Jan, at Messrs. Locke and Errington's specifications on Westminster.- Tenders to 7th February
construction mainiegad Dock Works.-Tenders are invited for the onstruction, maintenance, and removal of a puddled timber coffer dam plans entrance of the intended deep low water basin at Birkenhead. Coburg Dock, Liverpool.-Tenders to 22nd January
buildings and Works-Bishopstone.-Tenders are requested for new lans and specifications at Mestate of the Ecc Bishopstone, on and an 10th January.-Tenders to 5th February.
for the construction of and cone Conpany.-Tenders are invited from 5,000 to 8,000 feet of gas Coggeshall.
bends, braneles ictoria.-Tenders are invited for east iron pipe Specifications with J. Scoltock, 75, Old Broad-street, City, Vetoria, -Tenders to 20th January.
construction of a battery, Island, Mumbles, Swansea Bay. Specifitions and the Light Hous Engineer Office, Pembroke Dock.-Tenders to 20th January. asholder-Equitable Gasligit Company.-Tenders are invited for the erection of a cast or wrought iron gasholder tank, 112 ft . in diameter,
and 30 ft . deep, with telescopic gasholder, columns, girders, \&c. Par--Tenders to 24th January.
Butcdinas-Bedpord.-Tenders are invited for the ent Grammar School, for the erection of a new school, and making a new road at Bedford. Plans and specifications with Mr. James Horsford Architect, Bedford-Tenders to 24 th January.
at Penarth, and a fications on and after 24th January, at Mr. Hawkshaw's, 33, Grea
George-street, Westrin Goods and Cattle Wagons-Waterford and Limerice Rati will be receved for the supply of sixty to seventy wagons. ford with Thomas Ais orh, secretary, at the offices, the Mall, Water-ford.-Tenders to 18th January

received for the construction of the line

 street, Limeris and specifications at the engineer's office, 51 , George street, Limerick, -Tenders to 1st February.construid wards of seventeen miles of line. Plans and specifications on and after to 3th February.

The Indus Steamers. - The difficulty of the want of efficient means of transport on the Indus is likely to be obviated by Steam Flotilla by Mr. Jobn Hamilton, of Liverpool. One of these vessels was launched and tried a few days since at Liverpool, when
her draught was found to be 17 in ., and her towing speed five and hall miles an hour against the tide, or eight and a-half miles in

THE IRON, COAL, AND GENERAL TRADES OF
BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
tre quar

 of One-Mrectasics Axd Misisc Ix Sovin Stafrondshims: Shocting Re spector: Pu Chains-:ruors Dispores is The GLass Thade-MmLand
 Thade-The Proposed Tariff: Spread of he American Trade-Tas MoosThe current quarterly meetings of the Ironmaster's Association
commenced on Wednesday at Wolverhampton, and were continued commenced on edansayy at . olverhampton, and were continued
yesterday at Birmingham. At both places there was a good attend-
ance of both members of the trade and consumers. The trade ree soived to adopt the recommendation of the preliminary meeting, an sooved to adopt the recommendation of the preliminary meeting, and
continue the prices as tiey have ruledin the past quarter. On every
hand an improvement upon last quarter was reported. It was noi, however, such as to justify an advance. Nevertheless, Lord Ward's
agent has sent out circulars andouncing a rise of 10.s. The proced-
ing is occasioning much dissatisfaction in the trade, especially as his ing is occasioning much dissatisfaction in the trade, especially as his
lodstip's iron has in the past few weks been selling at 5 s. under the
list price, at which terms it is understood the make for some time has been sold. At the same time the masters are not without expectation
that if the present steady improvement should continue, they may be
 We say few, because the makers will not sell large quantities eveen at
those rates, unless their circumstances compel them to part with their In re Riley and Riley, of Bilston, ironmasters, was a case which
came again before the Birmingham Bankruptey Court on Friday.
 bankrupt, Mr. W. T. Rilicy, was adjourned sine die. The decision of
Mr. Registrar Waterfield ons that ocasion has since been appealed
againt, and the Lords Justices decided that the bankrapt should
again come before this court, which he did this morning. Mr. Knight
and appeared on betalf of the assignees to opposeg, and Mr. Jobn Smitit,
with Mr. Edwin Wright, on bebalf of the bankrupt. On the last occasion the examination was adjourned sine die. on the ground that
the accounts filed were not satisfactory, and that better accounts could be furnished. A point then arose as to what was termed an arbitrary
balance as struck on the 1 sist of December, 1856 and Mr. Kigight
Bis now examined the bankrupt, who said that on the 20 th of September,
1856 , it appeared he had paid away more than he had received by
$£ 24,000$. When he joined lis father the book showed $£ 79,000$ overE24,000. When he joined his father the book showed $£ 79.000$ over
paid. He than the present cash-book in Otcober, 184, without
reference to his father's books. In February, 1855, the accounts appeared to have been overpaid $£ 14,000$, and in July, $£ 25,000$. That
banance was carried forward till October, 1858, when Mr.
and comem came
anced a new cash-book. He said he was perfectly unable and commenced a new cash-book. He said he was perfectly unable
to explain this state of the accounts. After hearing the learned gentlemen on both sides
pass his last texamination.
 The meeting had been convened by the inspectors, Mr. W. Hopkins
and Mr. Carmi Rellason, for the purpose of obtaining from the creditors an authority to extend the time previously agreed on for
payment of the respective dividensts, the period at which it had been arranged that the second dividend should be paid being near at hand.
It. was explianed at the meeting that the extension of time esked for
was rendered necessary, through the required expenditure which had been incurred in opening the collieries in connexion with the estate,
and the inspectors showed that there was a great probability that and the inspectors showed that there was a a great probability that, by
the creditors agreeing to defer the payments as suggested, they would realised they could not possibly do so, as a valuable property would have to be sold at a great sacrifice. After some desultory
sation further time was given for payment of the dividends. Coal is in iood demand at remuerative prices. The question of
wages has begun to be re-agitated
o the South Staflordshire Coal Miners'. Association, he secretary
ors buted an address among the colliers, inviting them to a series of
meetings to be held in different parts of the district. The first of these meetings was beld on Thursday evening. in the Temperance
Hall, Oldbury; it was attended by upwards of 200 persons, and was presided over by Joseph Linney, who said that the time was come
for the masters to complete their promise, and increase the collier Tor the masters to complete their promise, and increase the colliers
Wages. John M1Caffery spoke next, maintaining that not only had
the time could be no doubt that the masters were now in a position to give
them more wages. Already, without being solicited, one or more masters about Wednesbury had intimated to their men (in the thin coal seams) that in about another week their wages would be raised
6d a-Ray. He should recommend that steps be taken to obtain a
rise of $6 d$. 1 . 1 , throughout the whole district After hearing Miller it was resolved that at a future meeting a deputation should be appointed to wait upon the mastere, or somen other steps taken to obtain
an advance of $6 d$. a-day ; and that if this increase was not given, then that the men would strike for a rise of 1 s, a-day
Wolverhampton, and their districts, there is a tolerably steady trade except, however in some feve fancy branches, and in riilway coach trade. In Birmingham there is scarcely so much doing as there was a few weeks since. Such as it is, however, is most encouraging, as
showing that Shopkeepers at home are now di-posed to give out what is known as sheif orders, otherwise to order fo: stock. There are no
large contracts under execution in any branch, except that of the executed. . . . malsall, where some good Government orders are being
The metal marke in a very uneasy state. Both tin and also copper have gone up since our last. The rise did not, however,
take the trade by surprise. On Saturday the price of tin was advanced 3s. per ewt., making common biocks 123 s . 6 d , refined dito, 133 s . 6 d .
per cwt. On Tuesday an advance of one halfenny per pound took place in the price of copper, making tough cake and tile $£ 112$ 10s.,
and best selected $£ 11510$ 1os. per ton. rooms for machines, several of which are now in the town, and will in the course of a few weeks be in active operation.
Mr. Baylis, of Wolverhampton,
fence, or hyrdele, of tubing, andond to oconesect to the hurm one railes with of the
joints. By this means a stronger fencing is obtained and facilies are provided for conveying water or other fluid for the purposes of
irrigation, or for the use of cattle. At the Smihfiel show irrigation, or for the use of cattue, At the smibited this fencing and obtained numerous orders.
who had been employed as engine tenter at the Rough Hey Colliery. Darlaston Green, was killed whilst at his employ. He bad placed the
working of the engine in the hands of a second person, and proceeded himself, whilst the engine was in motion, to lubricate certain of its parts from a considerable elevation. The poor lad was thus engaged
when he fell in the machinery. The engine was stopped before it
it was dead. The injuries he had received were chielly about the back. to discharge so important a daty as the working of a colliery stean daya ago, it will be remembered, by the

Willenhall magistrates. Instances of negligent working of pits in coroner sis now investigating the cause of the death of three men who lost their lives at the Osier Beds Colliery, in consequence of the break-
ing of the chain, on the 29th of December. H. G. Longridge, Esq inspector of mines, again attended the inquest, and gave evidence as
o the state in which he found the pit chain and pulley and other oo the state in which be found the pit chain and pulley and other
machinery to which it had been attached. He deposed that on the sst instant he examined the winding chain and found two long links
mater ittached to the broken end, but the middle link was missing. He The ground bailiff. Witness required two short pieces to be cut of chain where the the break tha occurred pace, where also produced. wiece
He went on to state:- I am inclined to believe that the cause of the
breaking of the chain was, that it fell off the pulley to the north side and got jammed edgeways between the axle bearing and the pulley
The suditen drop and jerk would account for the breaking of the chain. The holding-down iron strap, which was taken off in my presence, after examining the framework, \&c., I have required to be
produced. The engine ends of the broken cbain had pulled away nd broken off a portion of the pulley axle carriage. In its presen
tate I find the pulley to be out of the vertical position; but this oined. I cannot concive any the pulley, except it has previously been out of the vertical position bave examined the iron of which the chain is made, and produce
ome pieces of links which I had broken to test it. It appears re markable that although the long part of the link has a most excellen ppearana a crystalline form. It is to this circumstance that I Iatribute he accident t but I cannot account for the chain getting off the
nulley, which is 3y in in the " trod." I consider the chain has
allen off the pulley, and jammed edre up between the cariage and
ald allen of the pulley, and jammed edge up betwen the carriage and
ulley, thereby throwing the strain on the upper link, which broke, and by others followed. There are our chains worked ong one engine
and band leading to different shafts in various dreewhich 1 consider productive of anger, though customary in this district. The remarkable fact on When placed in similar circumstances to those to which these chains are exposen, appears 1 require more consideration than has hithert
been given io it, and must always be productive of danger in case of ny sudcen jerk, no matter how excellent the inks may have origi-
nally been. The portion of the chain near the eugine, which did not 5o down the pit, appeared to me to be longer in the links on what
vould be the lower side of the chaiu when it dropped off the pulley. nn reply to questions from the jury Mr. Longridge said that the form
of the chain was as good as posside, if chains must be used, but he thought the slipping out of a piece of "blocking" (the wedges which He thought the chain a safe one for work, supposing it did not get off the pullev, and was not subjected to violent jerks.
John Wilkes, the engine man, stated that it w. Geld engineer to examine the chains three times a week, but in the guestion once. Witness had heard complaints that the pit frame was out of the vertical position, and nine days before the accident the
chain had broken, all the einks on one row having given way. A juryman mentioned a report that three men fros
left the pit on account of the state of the pulley famem.
John Deakin, the butty, deposed that he had drawn the attention of the pit carpenters to the state of the pit frame, but they said they
ould not alter it He also complained to the ground bailiff, wh descended the pit with him, but the chain worked well in the shaft. The pit frame was not altered, and it was now working in the same
ondition as when the accident occurred. A late banksman, John Fereday, had complained to him that the chain did not run properly ver the pulley. Fereday had left his service without notice, but
witness did not summon him before the magistrates, not considering

Mr. Williams, the ground bailiff, deposed that on the complaint of the butty he had sent Coleman, the head carpenter, to set the pit-
rame right, and that Coleman had reported to him that it had been frame right, and that Coleman had reported to him that thad been
done. When he went down with the butty he found the chain to work perpendicularly in the shaft, the skip keeping quite clear. In
is opinion the chain had been dragged off through the practice of pulling the skip to the side of the shaft at the top, and thus caused the accident. This practice bad once nearly cost him his life, and for
he had discharged several men. He was now having the flanges hich confined the chain to the pulley made higher at all the pits. The pit-frame was not out of perpendicular now.
proper maner. After some consideration a verdict of "A Accidental death" was returned; but the jury wished the coroner to rebuke the anxiety in getting the pit-frame placed in a proper position. This vas accordingly done.
A serious conflict is now being waged with much bitterness on each side between the tlint-glass makers and their employers. The former
are determined by their union to regulate the number of apprentices that their masters receive; whilst the e latter are uniting to prevent the union from being other than a provident society. The strife is general throughout the country, is a aready accoompan.
and is expected to be attended by a universal lock-out.
An annual meeting of the members of the Birmingham Midland Lords tice of the proceedings must stand ver until next week
The Birmingham Gas Company are getting themselves into a dififculty. brought their main to that town, and reduced their price to a point consideraby below the Birminghamet dies not seem to
Writes :-" Why the inhabitants of Birmingham should pay pay. per
1,000 ter 1,000 for gas, while our friends at Walsall only pay 3s. 4d., I cannot conceive. I suggest we memorialise the Corporation of Walsal
o extend their mains to Birmingham, and I doubt not they will find us good customers. The companies here are very certain not to
reduce until pressure from the public is brought to bear upon them. reduce until pressure trom the public is brought to bear upon them.
It was only by a thrat to establish another company, aided by our
most excellent member, W. Scholefield, Esq., that they reduced to 4s. I trust the people of Walsall will support their representatives in their spirited d attempt to supply them with cheap gas. and prevent an
odious monopoly from companies who have threatened to introduce their gas.
The Marquis of Anglesea proposes to go to Parliament for powers that purpose e f30,000 on mortgage. The following are the principal pay $£ 520$ per Piability of he Marquis to repair the old bridge is extinguished. This appears to be a permanent liablity under a grant from the Crown
estates to the first Lord Paget-tide county of Stafford to pay $£ 520$ per annum for forty years. The county of Derby to make the like payment of eonty of Derby to makike suca further occasional payments as the bridge commissioners shall require. The matter came before the Derbyshire magistrates at the last quarter sessions. Mr. Richardson, of Burton, as the solicitor of the Marquis of Anglesey, explained
that the Marquis did not shrink from repairing and maintaining the present bridge; but it having been built for pack-horses, it was no longer adapted to the requirements of the town, and a new bridge
was absolutely necessary. He believed he might say that fovo would buy up the obligation of the Marquis, in addition to which the noble lord was prepared to give another $£ 5,000$, making $£ 10,000$ of the whole required. A motion of Lord Waterpark to appoint a cominitte to meet the Marquis gave place to an amendment instructing the clerk of the peace to oppose the bill. In speaking to the amend-
ment, Mr. Cantrell, a magistrate, owned that the bridge was the
most dangerous one in England; but the county of Derby was not
bound to repair it , nor were they justified in bearing part of the expense of building another bridge. The Marouis of Anglesey, wh owned the greater part of Burton, had land either letting at an enormous rent or selling at an enormous price in consequence of the
improvement of the town; but whilst he derived the benefit from the improvement of the town; but whilst he derived the beneitit from the
increase of the town he sought to throw the burden of the new bridg increase of the town he sought to throw the burden of the new bridge
upon the two counties of Derby and Stafford. The Marquis proposed to give one-third; but if the estimate was exceeded the counties would have to bear the loss and pay for all future repairs. If the Marquis wished to have a new bridge let him build it under the inspection of by law. When the subject was brought before the Staflordshir magistrates, Mr. Twemlow (the late chairman of Quarter Sessions) cost of a bridge at $£ 12,500$, but by the plan proposed which was t repay the cost in forty years, the cost to this county would be $£ 20,800$ and th? whole cost of the bridge $£ 62,400$. Mr. Twemlow proposed that the clerk of the peace should be instructed to oppose the bill in
Parliament. The Lord-Lieutenant said he understood that the whole cost of the briage wond should be uppointed to meet a committee of the Derbyshire magis rates and the agent of the Marquis of Anglesey on the subject. There were also two railway companies concerned in it. In the course of the conversation which followed, it was stated that the Marquis of
Anglesey was liable to keep the bridge in repair, but not to widen it Anglesey was liable to keep the bridge in repair, but not to widen it,
Eventually it was decided that the bill should be opposed by the ventualy it was decided that the bill should be opposed by the
Clerk of the Peace for Staffordshire, and also that committees respec tively of the Staffordshire and Derbyshire magistrates should meet upon the matter

Quantity and average value per ton of the iron exported 1857 and 1858
The most interesting of the many trade circulars that come into South Staffordshire at this period of the year is that of Mr. Frederick
Robinson, metal factor, of Liverpool. Of the last circular that Mr. Exports of Iron from Liverpool, 1857 and 1858.

	Bars.	Rods.	Hoops.	Sheets.	Plates.	Pigs.	Rails.	Total
1857.	132,563	13,904	22,095	29,335	11,738	16,267	61,506	287,448
1858.	130,030	15,974	23,398	24.5	8,807	28,872	33,945	265,

Description.	1857.		185	57 and	
			1858.		
	Highest. Lowest. Per ton. Per ton	Average. Per ton.	Highest Per ton.	$\begin{aligned} & \text { Lowest, } \\ & \text { Per ton. } \end{aligned}$	Averago
Merchant bars ..					${ }_{6}^{2}$ s. ${ }^{\text {s. }}$ d.
Staffordshire rails ..	8126715	(8 49	717	7	77
$\xrightarrow{\text { No. }}$, 1, S. Scoteh pigs,	63	0400	370	2180	${ }_{3} 14$

Comparative Statement of Scotch Pig and Malleable Iron, §c., 1857 to 1858.

Stock in Soothand in Dee. 31 st

$\substack{\text { verago prict } \\ \text { the jear }}$

E3198.
1858.
340,000
131

130

The New York correspondent iron trade

his last letter:- 'The President's Birmingham paper thus writes this, though my previous letters must have prepared your readers to expect so much on the subject of a difference of opinion between Mr. Buchanan and the Secretary of the Treasury. The former, warned by the admonitory voice of Pennsylto favour specially the iron interest, and to this end recommends the levying of specific instead of ad valorem duties. The iron men in
effect reauire no higher protection than this change would afford effect require no higher protection than this change would affiord
them. The fluctuation and uncertainty of protection under the present system is the evil of which they chiefly complain, being in fact a discrimination against them, as well as offering opportunity for
false invoice. Thus: if iron bars should be worth 50 dollars per ton at our piers, a duty of 30 per cent. added would make their varue in
the market 65 dollars, at which price American iron would in a year or two supersede the imported article entirely (except perbaps some
Norway and Russian brands), and in that case the revenue now derive so fro the import of iron would cease. But suppose the supply to be so far in excess of the demand as to reduce the price of foreign
bars to 30 dollars, the addition of an ad valorem duty to this would only raise the duty to 39 dollars, and A merican works would be com pelled to cease their operations until the surplas stock of England
was worked off, paying a reduced duty to the Custom House Now was worked off, paying a reduced duty to the Custom House. Now imported, would, while yielding more revenue, have preserved an equal mean of price, so that in a given number of years its cost to the extremes. Such is the reasoning of the iron men here and their arguments are now endorsed by the President. Mr. Cobb's opinions are entirely opposed to those ot his chief.
iron, and articles of Birminghendation would increase the duty on iron, and articles of Birmingham manufacture, to 25 per cent., an
advance of 1 per cent. on the present rates. What course will be
pursued by Congress can now only be mere matter of conjecture, and
will doubtless be influenced in a great degree by extrinsic circumtances and secret appliances; for my own part I incline to the pinion that Mr. Cobb's advice will be followed. But in spite of a tariff regarded as extremely adverse, the iron interests of the country
are decidedly improving, especially in Pennsylvania. The Pbonix-
 long the Reading Railroad route have resumed operations, the whole ausing an increase in the demand for coal of 12,000 tous weekly.
In a former letter I alluded to the impetus recently given to the iron trade of Missouri, by the discovery of extensive coal beds in
Illinois, and the completion of a railroad from the mines to the Ohio River, by which the coal is transported cheaply to Missouri. The
ore now being worked in this last state is obtained from the celebrated Pre now being worked in this last state is obtained from the celebrates
Pilot Knob,' or iron mountain of Missouri. It is represented huge iron cone, rising from a plain, and surrounded by mountains on every side; its base being almost a perfect circle, and its top terminating in an apex, like a sugar--lof. Its height is about 550 ft ,
and its summit about $1,470 \mathrm{ft}$ above tide water. The iron mountain covers a space of 500 acres, and by a careful calculation it is estimated to contain $220,000,000$ tons of iron ore above the base, the ore yield-
ing 6 per ect.. of pure metal. It is now seriously resolved to coneveral remarkable projection into a mercbantable commodity, and eequance of the active development of the resources of Missoori (due
ehiefly to German immigration), and as a corollary of the triump of anti-slavery principles in Kansas, a numerous party, principal composed of the working men of that State who are opposed to slavery, has lately sprung into existence, and is steadily increasing
in number. TTey find their chances of employment becoming distant when Missouri will be a free State. They came very near electing an abolition candidate for Congress at the last election; indeed, they claim to have been only defeated by fraudulent voting;
and their candidate, Mr. Blair, is now in Washington to contest the seat at present filled by his opponent. The advance of manufactures
in Missouri will tend to tring about abolition, as slave labour after all cannot be made profitable in skilled occupations, and alreal all cannot be made profitable in skilled occupations, and alread
every week, slaves are being sold in Missouri to go further south

NOTES FROM THE NOKTHERN AND EASTERN NOTES COUNTIES.

 Tue iron trade of the Cleveland district appears to be in a satisfactory condition. Of sixty-five furnaces fifty-eight are in blast, and
only seven out. During the past year there was considerable de-
pression, as appears from the following data :-

There are, it is said, indications of progressive improvement in trad Eston, by the Clay Lane Company one at Cargo Fleet, by the Tees
Iron Company: and two at Middlestrongh, by Iron Company; and two at Middlesbrough, by Messrs. Snowdon
and Hopkinas. The sickle forgers of Hackenthorpe, Masborough, \&c., cent. The manufacturers allege that the wages they have paid are
from 20 to 30 per cent. above those given in other places. The reaping machines, meanwhile, are gaining ground, and the manufac-
turers are said to be fully employed. The trustees, under an assignment made by the late proprietors of the Werst Staveley and silkstone
Colieries have proposed a composition of 1 s s in the creditors, provided all agree to ascept that amount , and sign a re-
lease. Most of the trade reports of the week are of a cheerfal lease. Most of the trade reports of the week are of a cherful
character. The shipping trade of the Wear is a little better, freights
having ranged a little bigher, both foreign and coasting, from the having ranged a little bigher, both foreign and coasting, from the
port of Sunderland. Several fine vessels have been lannched from the yards on the Wear-one, the Newcastle, is a splendid frigate-
built ship of 2,000 tons, destined for the East India troop and pas-
senter trade. senger trade.
The inquest on the bodies of the two bors killed a few days since by an explosion of fire-damp in the Tunnel Pit, ebonging to Messrs. J.
Taylor and Son, of Shevington- not Sleevington, as misprinted last
week-was held on Friday. The evidence showed that immediately week -was held on Friday. Wae evidence showed that immediately
after the explosion some fire was found in the mouth of the level of
George Fairburst (a collier to whon the deceased acted as drawers), but none in the place where the boys were when it took
place. Two toppages were blown down. The explosion was
not Toud. The bodies of the deceased were not burned; they were
suffocated by the after-damp. The explosion was occasioned by a suantity of gas ifniting which was explosion was occasioned by a
causked in a the saink or varcuum
coust, the colliers employed in that part of the
mine being allowed to work with the tops off their safety lamps mine being allowed to work with the tops off their safety lamps.
There was very little gas in the pit, and the usual precautions were not required. The pit had been examined on the morning of the ex-
plosion, and no gas was then found. He was shown yb the evideneco of
Mr. Peter Higson, the inspector, that both the manager and underMr. Peter Higson, the inspector, that both sthe manager and under--
looker had been cautioned by him againt allowing the men to use
naked candles, and that he had, in September to naked candles, and that he had, in September last, , given to the
manager a written notiec; but as it was doubful whether Fairburst
had not gone to the fault with his naked candle away from his own had not gone to the fault with his naked candle away from his o
working, the jury returned a verdict of A Accidental death," but
quested the coroner to censure the manager and underlooker
obeying the oder quested the coroner to censure the manager and underlooker for not
obeying the orders of the inspector. Fairhurst is not expected to
survive. A fearfal colliery accident-resulting in the loss of seven lives-
occurred hast week at the Agecrof Coliiery. Pendlobury. The cage
in which the men ascen from the pit is raised with great velocity by
means of a bigh tress means of a migh ascend from the pit is is raised with great velocity by
mersen steam engine. A string attached to the
axle of the whieecommmunicates with the engine-hous, and rings an
alarm bell when the cage is within about sixty yards from the mouth
of the pit wen the alarm bell when the cage is within about sixty yards from the moung tho
of the pit, as a signal to the engineer to slacken speed and use caution.
By sone means this contrivance appears to have got out of order and on the present occasion the appears to to bave got out of ordid did not sound.
engineer consequenty
cage was very nearly
caid not checck the speed of the engine until the cage was very nearly at the top of the shaft; he then became aware
than tomething was wrong, and looking towards the pit saw the cage
had arrived close to the top. He made a desperate flort to spoly had arrived close to the top. He made a desperate effort to apply the
brake and stop the engine, but it was too late. The cage struck the
beam with great violence, instantly snapping the wire rope, and the beam with great violence, instantly snapping the wire rope, and the
unfortunate men were precipitated to the bottom of the pit, a depth
of between 200 and 300 yards. They were of course ell spot. The cage was attached to the wire of course, all killed on the by four iron rods.
These, on striking against the head at the top of the shaft,
at the first joint. The evidence at the inquest resulted in an
verdict of "Accidental death" being found by the jury. Elias Booth the engineman, was called and examined, but was not sworn. He
said that in consequence of the drum having been altered and made said that in consequence of the drum having been altered and made
larger, the care came up one stroke of the engine earlier, and he gave larger, the cage came up one stroke of the engine arinier, and he gave
directions to Roe, a joiner, to make such an alteration in the lenght of the strap attached to the indicator as would cause the bell to ring when the cage was sixty yaris from the pit's mouth, as beforc. On the present occasion the bell did not ring, and that was the cause of heen at the colliery
At the Ruabon petty sessions, Mr. J. Jukes, owner of the Erllwydd Colliery, near Pant, has been summoned for neglectiog to provide an indicator and brake to the engine, and a steam gauge to the boiter, a
his works, as required by the 6th and 7 th general rules of the Coal Mines Inspection Act. The defendant was finded 40s. and costs in each case.
The colliery explosion at Bickershaw, which was noticed in last
week's EvarnEER, has resalted in the death of Robert Barrow, one of week's Exainger, has resalted in the death of Robert Barrow, one of At an inquest held on the sufferer the jury returued a verdict of "Accidental death.
Dickenson, Inbers of the Manchester Geological Society Mr. Joseph
 stances which had come under lis own observation where it was great pressure. In May, 1852, at a colliery in South Wales, where
eftects that the fir-damp had existed in a state ut
ind sixty-five persons were killed, the gas had burnt down the roof, leaving a large hole above like a chimoey, the top if whice courd not
be reached with a long rod. Another instance in which great pressure of kas in coal manifested itself was in the Wigan tive-feet, on the 30 th of January, 1855. The floor of the pit, in one part, was blown up by it, leaving a deep hole. From this the gas issued until the
17 th of February. These sudden outbursts, even where gas was not expected, showed the necessity of constant care with the safety lamps,
and of efficient ventilation. Mr. Dickenson, after enumerating other instances, quoted some remarks from a paper upon the subject
by Thomas John Taylor, who orlated that at the Pierey Mine, under the river tyne, a shaft was sunk to the depts of 32 yards,
and the workings extended in difierent directions. From some cause the workings were suspended, but pipes were laid to the
extreme rise, to take away the air. The pipes, however, became over-flooded, and the fire-damp accumulated to such an
extent that its pressure raised the water $19 \frac{1}{\text { f fathoms }}$ higb, then burst
eit its way through. This was equal to a pressure of atout 48 atmo-
spheres, or more than 60 ll . to the square in. It was well known that in the north of England there was an issue from a large yoat
which was burnt on the surface, and lighted the country round for a which was burnt on the surface, and lighted the country round for a
considerable disance, jiving out at first 95 cubic ffloo of ire-damp per
minute ; it afterwards decreased to 70 ; subsequently it was recorded minute; it atterwaras decreased at as 34 ft, and was now declining. At Mr. Ryland's colliery, at Wigan, the damp was conveyed and employed to light the smiths' shops with
In one perforation thirough the seam, he (Mr. Dikeneson) found it give out 10 cubic it. per minute. Whenever a roof was noticed to by
the pressure of gas should be suspeted and guarded agaios. At the
conclusion a vote of thanks was accorded to Mr. Dickenson for his paper, and some discussion took place upon it. Al! concurred that
high pressure, in certain cases, existed.

A public meeting has been held at Knaresborough for the purpose
considering what steps shall be adopted in order present railway accommodation being removed by the projected line
of the North Eastern Railway Company through te centre Harrogate and iss Stray. The proposed line was stigmatised, in the course of other attacks upon it, asa bad one in its junctions, gradients,
and curves; and it was alleged that it would cost $£ 100,000$ or and curves; and it was alleged that it would cost 110,000 or
f110.000 withount any probable increase in the traftic It was resolved
that a deputation shourd wait upon the directors of the North Eastern that a deputation should wait apon the directors of the North Eastern
Company, and lay the mems. of the meeting before them. Of course
there is anor there is another side to the question, as the proposed line has received the approval of the North Eastern directors and shareholders. The
Harrogate Improvement Commissioners have also, by seven to two votes, expressed their approval of the line.
At the last meeting of the Manchester
At the last meeting of the Manchester City Council, Mr. Councillor
Haworth called attention to the impure condition of the Bridsewate Canal. Formerly Hulme put its sewerage into the canal, but now it was diverted into the tunnel at Knott Mill; and he believed that an excellent remedy might now be applied, by using the discharge
water (for condensation purposes) at Woodhead. It would only be necessary to introduce dam-bourds, of 4 ft , at stretford, and the litt
would only be 15 ft . Mr. Councilior Bowker said he believed the
Bridterater Bridjewater trustees would be ready to deal with the matter. He
thought Mr. Haworth's plan was practicable. After observations
from Crom other gentlemen on the serious nature of the nuisance, il
decided to refer the subject tothe General Purposes Committee.
The committee of the Manchester
The committee of the Manchester Exhibition of Art Treasures
have presented to the corporation of the city a bust of his Royal Highness Prince Albert (byy Mr. M. Noble). ${ }^{\text {accepted the bust with pleasure as an }}$ a council have interest manifested, and markede patronage and support rendered by
his Royal Highness the Prince Consort, in order to secure the suces of an exhibition which will ever be memorable." The report of the committee for conducting the Exhbibition states that the receipts from
all sources amounted to $£ 110,588$, and that the balance in hand is £304 14s. 4 d . Out of this sum a few small debts have still to be The Manchester City Council propose to further way works, and at the last meeting Mr. Councillor Curtis expressed an
opinion that the receipts were ent making Within the last few years (he said) the receipts had not varied mee. than $£ 5,000$. There had been an extension costing $£ 34,000$, and
now they were asked for $£ 39000$ more now they were asked for $£ 39,000$ more. If they were only to increase
their production of gas at the rate of $£ 5,000$ in three eears, and ex-
pend $£ 30,000$ or $£ 40,000$ ent to give full information on the subject. Mr. Councillor M.Dougali
said the gas committee had appointed two conet report upon meters, and to make a full and fair investigation of the
subject subject. With regard to the remarks of Mr. Curtis respecting the
receipts, the first cause of the diminution was a fall in the consumption, last year, to the extent of $£ 1,700$, by the manufactories and
 gas there was also a less demand for coke, and they bad to thatl
cheaper cheaper. These causes produced a diminution of gas profits. The
proceedings of the gas committee were contirmed. At a meeting of the originators, members, and friends of the Sal-
ford Working Alen's College it was stated, a day or two since the number of working men who bave already joined the institution is
190 . Some of the students have becone classes; the names on the several registers number 283 , and the
average attendance has been 193, or 69 per cent the increase of students the council now require an increase in their staf of fourteen gratuitous teachers. Extended accommodation is re-
quired, and the council are exerting themselves to obtain more com-
modious premises. estate, near the Peel Park, is considered premises on the Oakfiel The amount reequired for the purchaside of this buitding for is $\$ 1$, puo. Re-
ports have also been presented during the e ports have also been presented during the last few days from the named institution the report stated that in the first term the
whole number of students entered was 231 ; in the cond term, 195 and in the thirr, 163 . In the first two terms the members, of the first term, 151 , or two-thirds of the whole, were. Hence, in the Mechanics' Institution; and in the second term the members of this
class were 126 , or five.eighths slight fee from members of the Mechanics' Institution was required,
than one half, were derived from this source. The actual attendance in class throughout the year was more than 65 per cent, a proportion
quite as tigh as was expected. The proportion of students from the quite as tipb as was expected. The proportion of students from the
class of operatives bad been steadily rising. and was now one-third of the whole. An examination is to be held at the end of June, and and fees during the year had amounted to $£ 995 \mathrm{~s}$. 2d., and the total expenditure to $£ 9519 \mathrm{~s}$. 6d. The report from the Ancoats College stated that in Ancoats there was a population of 76,896 persons, and in the district there were large coton mills, dye- works, \&e, which
brought together vast masses of labourers. The college was opened on the 27th of January, 1857, and the students were divided into two sections. From January to May, 1857, the register showed that eg
persons, between the ages of fifteen and forty, had joined the college. During the summer a gymnastic class had been the means or keeping comembers of the college together to some exten, bat enrolled. This might be accounted for owing to the scarcity of work last winter on the one hand, which deprived the operatives of the
means of paying the fees; and, on the other, by the fact that this winter they bad been working overtime
Commerce, on Friday evening, the best means growth of tlax in India-a question to which public attention has recently been called-was among the topics discussed. The sabject
will also members of the chamber
The first stone of the Dillican viaduct, on the Lime Valley Railway a Liow Gill, was laid last week. Before the stone was laid, the
engineer, Mr. J. E. Errington (of the firm of Locke and Errington), delivered an address, stating that the occasion was one of much immagnitude, consisting of a viaduct of eleven arches, of 45 ft . span, more than. 100 f.t. in heg tht and containing about 400,000 cubic feetoo
masonry. The stone was laid by Mr. W. A. F. Saunders , the chair masonry. The stone was said by Mr. W. A. F. Saunders, the chair-
man of the board of directors, who was presented by Mr. Buxton, the contractor, with a siver trowe of elaborate workmanship, and a
beautiful silver-mounted mallet. The chairman, after laying the sone, deivered an appropriate speech, in whict he congratulated him-
self and brother directors on having got a contractor who bore high character for energy and perseverance, and be had no doubt this
character would be fully sustained in the execution of this gigantic undertio. He then some advice on their conduct, and stating it was the intention of the whectors, assisted sy the contractor, to estabilish a reading-room,
which should be supplied with papers and periodicals for the use of lecture on the Sabbath. Mr. Buxten in thation the delivery for his good wishes, assured him that nothing should be wanting on his part to insure good order, and to assist the directors in carrying out
any plan for the improvenent of the men. Convivial dinners for Some of the branches of the Amalg
, Milwrights, Smiths, and Pattern-miety of Engineers, funds of the general society meetings during the last few days. The

report to the River Wear Commissioners with regard to certain improvements in Sunderland Harbour. Messrs. Stevenson observe, in
the course of their remarks - - W We have carefully inspecte, whole of the quays of Sunderland Harbour, from tie bridge downwards, for the purpose of enabling us, in conjunction with Mr. Meik the engineer to the Wear Commission, to consider the practi-
cability and expense of deepening the lower part of the har-
bour, in accordance with the views of the Royal Commissioners on Hardours of Refuge, as expressed during the
investigation held by then out the channel to bo deepened on the Wear
keep the channel in the upper part of the river on the north best to as to avoid interfering with the rumerous slipways and docks whic are situated on the south side. Atter reaching the lower ferry, the
deep channel will pass most naturally to the south side. The proposed new quay, from the bridge to the lower ferry, will have a most bene-
ficial effect on the currents, while accommodation." Messrs. Stevenson sum up the results of the proposed plun by observing:-"It will add fifty-two acres of deep water tended and improved quay room will be very considerable. It is liowever, to the increased accommodation for vessels frequenting either
the dock or river that the proposed improvements owe their chief
val advantage, in such a port as Sunderland, of obtaining to overrate the into which the ordinary class of coasting obtaining a place of shelter
water." They estimate the expense as follows :-

160 f . sheet pling for protecting North Plierlead
155 yards timber work for protecting inner end of Nori)

Add 10 per cent. for incidents
$\begin{array}{ll}1,280 & \frac{8}{0} \\ 0\end{array}$
4,26210
4,140
0
\qquad

The engineer (Mr. Meik) has been directed to prepare an estimate above the staithesening theriver the same to the some distanc the commission., The furdher consideration of Messrs. Stevenson's
report is deferred report is deferred
The directors of the Sunderland Dock Company have informed the on the following terms :-The commissioners to pay on the original shares for the ye yars ending
June, 1860 und 1861

And, in the event of the shipment of coals in the dock exceeding 650,000 chaldrons in any year after 1867 , than five per cent. in per-
petuity. The four per ceat. preferences shares to participate in the
increased dividend; above that amount the same as the orivel shares. The five per cent. preference stock to be paid that amount. The
commissioners to have power to pay off all decription on par. The subject will be further discussed by the Wear commissioners
R.N. regards Liverpool matters it may be stated that Captain Bevis, packet and transport agent, iw shouty years with the port as Admom tuat office. Somene
of the principal owners of ships and steamers have commenced ath scription for a testimonial. At the last monthly meeting of the
 at first intenced to be appropriated by them for the purpose of the will be fitted up by the Admiralty in the and that the Conway moored in the Mersey. Captain Anderson, in the course of some observations bearing upon the schoolship, said, the education of boys
for the sea would be a great advantage in every point of view, and prevent many of those difficulties which too frequently occur on given to seamen for food conduct, and that diphat diplomas should be proposed school they should also have a school on shore. Captain
Reed spoke in commendation of the proposed school system, which
he thought would go far to remove many of the evils now complained
of, and raive the moral standard of seamen. He also som consideration whether the school system might not be extended to vessels at sea, conceiving that it might be so adapted as not to
interfere with the ordinary discipline. The receipts at the Liverpool Custom House varied very lititle in 1858, as compared with the previous year. In 1858 the amount received was $£ 3,628,400$ against
$£ 3,627,455$ in 1857 commissioners a letter was read from Mr. No Nexwands, the
borough engineer, requesting that his position in relation to the borough engineer, requesting that his position in relation to the
board should be elearly defined. It appears that an altercation had taken place relative to the duties or the engineer, who is not a salaried servant of the board, but has, on one occasion, received a present of
f100 in acknowledgment of the very valuable services he had
hendered rendered. A resolution was carried by 6 to 4 , regretting that Mr.
Newlands should nave any reason to complen continue his professional assistance. At the last meeting of the Birken-
head commissioners a report was read showing that the number of
 1855,$83 ;$ in 1856,$261 ; 1857,215$, and in 1858,251, making a total.
in ten years, of 1.090 . At the monthly meeting of the Wallasey commissionere, the ferry committee submitted a lengthy report, de-
tailing negotiations with Messrs. Coulbort Seacombe, Egremont, and New. Brighton Ferries. Mr. Rudd, the
late manager of the Woodside Ferry, had estimated the annual working expenses of the three ferries, with six boats, at $£ 10,468$. The
boats and plant, he etated, he was unable to value, Messrs. Coulborn
having having declined to give him anthority to do so, but he considered six
new boats sitable for these ferries could the n be built for $£ 33,000$
Afer an inteview After an interview with Messrs. Coulborn, the committee had recom-
mended an offer to be made to Messrs. Coulborn of $£ 30,000$ for the purchase of their interest in the Egremont and New Brigiton Ferries, the lease of Seacombe being also transferrest to the board, the pur-
chase-money ato he payable one-hal fin cashb, and the remainder by the mortgage of the board, bearing interest at five per cent. for a period and to be paid for in like manner. The recommendation of the com-
mittee having been approved by the board at its last meeting, the offer was made, but rejected by Messrs. Coulborn. Further attempts
at negotiation proving fruitless, the committee observed in their report, "the only course is to give Messrs. Coulborn notice, in writing,
under section 38 of the Wallasey Improvement Act quiring them to signify whether or not they are willing to treat with
the local board for a fall of their interest in the said ferries, and to proceed to bave the consideration to ob paid and the terms and con-
ditions of such purchase setted, in case of difference, by arbitration, as provided by the Act." It was resolved that this shoold be done.
According to the estimates of the finance committec Accordisions, the Birkenhead Ferry revenue for the year ending April next will amount to $£ 24,466$; the gross expenditure is calcuconsidered with Particular Reference to the Training of Mechanics or Operatives' Children," has been read before the Hisoric Society by
Mr. Hugh Shimmin. The paper urged that, notwithstanding the advance of intellectual training at school, the training at home was
becoming less effective or more n glected. Schools were now expected becoming less effective or more n glected. Sch onols were now expected
to do everything, and the parents rested satisfied by the merely
handin of the last generation was contrasted with what was seen now, , and the
distingaishing features of the time were illustrated by the increase of distinguishing features of the time were illustrated by the increase of
intemperance amongtst females. the rage for public amusements, and the inordinate love of dress. Facts in support of the views advanced
were adduced, and the evils resulting from the neglect of home tepravity which so much abounded amongst the working-classes, In noticing the rage for anususements as one of the distinguishing pecu--
liarities of the day, Mr. Shimmin said it was expected that men might be fiddled into morality and sung into religion.
In the north a few matters of interest are repore
In the north a few matters of interest are reported. The first cargo
of coals was shipped in Jarrow Dock yesterday week. The cofler
 passed into the gates in the forenoon, and locked into a the docker, Whe The
barge was towed to the further end of the dock, and havled under arge was towed the the further end of the dock, and hauled under
one of the spouts. A train of one hundred wagons of small coals
was waiting above, and being run down, three at a time along the was waiting above, and being run down, three at a time, along the
solf-acting incline to the top of the spout, were discharged into it, and
thence into the barge. At three oclock the barge was towed out again in the presence of a great number of people, and amidst loud
cheering, \&c. There are now 23 ft . of water in the sill of the dock, and 14 ft water in the channel, which is being dredged to 25 ft , The
more formal and complete opening of the dock will take place in a few weeks A "Northern Architectural Association Thas been formed Havelock, at Sunderland have agreed to invite artists to send in design on or before the 7th of February. The monument is to be crected
the Mowbray Park, and the cost is not to exceed $£ 1,500$. The
 powder was used on the occasion, and a large quantity of rock was removed for the Tyne piers, The number of bankrupties gazetted
in the Newcaste distriet in 1858 was fifty-nine; in seven previous
vears the average was thirty-six. The district tank stoppage and years the average was thirty-six. The district bank
liquidation has probably had something to do with this
At a meeting of the Cambridge town council the
At a meeting of the Cambridge town council the Parliamentary committee reported that they had considered the notices of an in
tended application to Parliament for the Bedford and Cambridg
 was necessary, the present Eastern Counties station being too far dis-
tant, ill-arranged, and inconvenient. [This point is well put.] The committee also observed that it was desirable to construct a bridge over the railway where it crossed rec Trumpington--
tion to which the committee of directors have acceded
There has been a good deal of grumbling among the Norfolk county magistrates with reference to an excess on the estimates de-
livered by the county surveror, Mr. J. Brown, for certain extensive
works which bave been for some time in works which have been for some time in progress at the county
lunatic ayylum. The county surveyor admits that there has been an ex-
cess of f3, cess of $£ 3,21410$ s. on estimates of $£ 19,925$; but states that an at vance
in building materials took place, that labour was scarce, and that some alterations and deviations were made in the plans. The committee
of justices, in who of justices, in whoe hands the management of the asylum is placed, will
not admit that Mr. Brown has altogether satisfactorily explained
the discrepancies between the cotimates and expenditure, although it is generally conceded that the works have been well executed. long debate took place at the sessions held on Friday, and a com-
mittee was appointed to take into consideration the duties and emoluments of the office of county surveyor. It was further agreed that Mr. Brown shoupid be reappointed at Easter for six months only, and
that at the expiration of that time the fice shoold be considered open, with a new salary and under new conditions. The salary
attached to the office has been the enormous sum of- 660 per annum advanced a few years since to $£ 75$, and three per cent. upon all works
above $£ 500$. The magistrates appear now to have come to the conclusion that a higher salary must be paid than they have accorded to
Mr. Brown, who has been in office twenty years. A somewhat Mr. Brown, who has been in office twenty yerrs, A somewhat
similar question has been discussed by the Northumberland magiscrates, in consequence of the necessity of appointing a successor, in
the ofice of surveyor of county bridges and buildings, to the late Mr. H. Welch, who died on the 21st of December last. From a statement submitted $\begin{aligned} & \text { clerk perace, it tappeared that Mr. Welch was appointed county } \\ & \text { bridge surveyor in } 1831 \text {, at a salary of } £ 400 \text { and that in } 1839 \text { he was }\end{aligned}$ bridge surveyor in 1831 , at a salary of $£ 400$, and that in 1839 he was
also appointed surveyor of county buildings, at a further salary of
$\mathbb{L 2 0}$, making for the two oflices $\mathbf{L 6 0}$, Mr. Welch at the same time
not bing precluded from chamber practice; and his services wer
described as having been very valuable and efficient. The office of
bridge bridge surveyor was explained to be one ordered by statute. but not
necessarily required to be connected with that of surveyor of county necessarily required to be connected with that of surveyor of county
buildings. By Act of Parliament, bridge surveyors had all the powers buildings. By A et of Parliament, bridge surveyors had all the powers
of surveyors of highways. The applications would be numerous, and to give ample opportunity it was recommended that the matter
should be left open until the sessions at which the appointment was made. It was further suggested that, until the Easter sessions,
It when the vacancy would require to be filled, the services of Mr.
Welch's foreman should be retained. Mr. Hodgson Hinde moved Welch's foreman should be retained. Mr. Hodgson Hinde moved
that it was expedient to confine the duties of the bridge surveyor to that it was expedient to confine the duties of the bridge surveyor to
be appointed to the superintendence of bridges only, as originally be appointed to the superintendence of bridges only, as originally
committed to Mr. Weleh, on the ground that many civil engineers, might be incompetent to superintend the architectural works of the county. It might then be a question whether they would
employ a county architect with the remaining $£ 200 \mathrm{a}$ year, or leave it open to appoint architects for particular buildings as they were re-
quired. Sir Matthew White Ridley, Bart, thought that if they appointed two persons, with a divided responsibility, it would introthat gentlemen might be found quite competent to undertake the daties combined. $H e$ moved, therefore, an amendment, that the
offices of bridge surveyor and county architect be confined officer, whose duties should be defined by a committee. Mr. Hugh Taylor seconded the amendment, remarking that they would get one
good officers for $£ 660$ a year, whereas, if they divided this sum between wo officers, they would get but indifferent ones. The amendment was carried by ten to four. On the motion of Sir M. W. Ridley the committee to define the duties was appointed, and it was agreed that
they should present a report to the adjourned sessions, in Yebruary with a view to the appointment being made at the Easter sessions. The Lynn town council have declined to pay the last call of the
Norfolk Estuary Company for one-third of the $£ 5,476$, on the ground that the certificate was not in conformity with the Estuary Act, the render the claim valid
Steps are being taken to secure the benefit of the Oxford Middle
Class Examinations for the eastern countiey, and to select Ipswich as
a centre. A meeting was held with this object on Monday.
Mr. Fhancellor, surveyor to the Chelmsford Local Board of that town. The population of Chelmsford amounts to abont 8,000 persons, living in 1,600 houses, of which 1,200 are connected with the water mains of the Board of Health. The consumption is estimated at 95,000 gallons per day at present, but Mr. Chancellor considers-
looking at the demand in other towns-twenty-five gallons per head a safe basis, so that when all the houses in the town are connected required. The country round Chelmsford is destitute of springs of sufficient calibre to meet this requirement; and after a very careful consideration, Mr. Chanceller arrives at the conclusion that an artifcial lake containing 17 acres (described as abounding in
springs, and containing 2.500,000 gallons), at the foot of the railway embankment on the north side of the town, would be the best source railway, and as the water is of a better quality than that obtained from other sources, Mr. Chancellor proposes to conduct it by means
of iron conduit pipes to a filtering tank to be constructed in the Board of Health yard. Mr. Chancellor further developes his views as follows -"The end of the pipe in the lake will be 4 ff . below the surface of leaves, and other coarse matter.ed The filtering tank will have a filtering area of gallons per minute ; and the tank would hold, when full, 80,000 gallons of filtered water. The filtering medium would consist
of 'Ransome's Filtering Slabs,' which, although more expensive at first, are easily cleansed, and thereby effect a large annual saving
I might observe, in passing, that these selats I might observe, in passing, that these slabs have been used at the a very satisfactory reply, upon the subject from the engineer to the into a well about 25 ft deep, outside the present engine-house, in
which would be placed a three-throw which would be placed a three-throw pump, which might be made up
of portions of our old pumps.. By means of sluice cocks at the
 therefrom, save one with astop cock to connect this new main with
the ond main in the Board of Health yard annd thus the water would the old main in the Board of Health yard; and thus the water would
be pumped ap into the reservoir direct." Mr. Cbancellor, after going into further details in reference to the mode of working the supply,
states that he propeses to erect a water-tower about 80 th. high at the
work works. The basr have expressed themselves much indebted
Mr. Chancellor for his report, and have agreed to defer the matter in order that the levels of the lake and also of the river may be taken,
that the water in the river may be tested, and that other inquiries may be made.
The Boston arge gashon Gas Cumpaný propose an addition to their works of
 pany have advanced their charge for lighting the public lamps 5 . per annum on each lamp.
Yet again Wisbeach and the river Nene. At the last meeting of the Wisbeach town council a committee, appointed Dec. 3rd, to take int
further consideration the state of the river Nene and the works of the Nene Valley Drainage and Navigation Improvement Commissioners
stated that after making inquiries they unnimously recommented Mr. Thomas Page, of Middle Scotland-yard, as the engineer to consult with the corporation upon the state of the river. A very nro-
tracted discussion upon this point resulted in the adoption of the report of the committee, and an order to invite Mr. Page to confer
with the corporation upon the state of the river. On the motion of with the corporation upon the state of the river. On the motion of
Alderman Watson an order was also made for procedings to be taken (at the expiration of the time specified in a notice to the Nene with a view to the immediate removal of the obstructions in the river
Under the supervision of Mr. Naylor, C.E., a 6 -horse engine has been placed in the Norfolk Lunatic Asylum. The boiler will also At
new workhouse was 55,000 , and that positively more than $£ 20,000$ jas been expended! The Rochdale town council have agreed to take half an acre of land at a rental of 112d. per yard. for the purpose
of recting another gasmemeter 100 ft . in diameter. At a meeting of he Manchester city council last week, Mr. Alderman Goadsby stated pletion it was the wish of the markets committee that every member of the council would see it, and say how far their views had been
carried out. One reason for this was, that the committee proposed to carried out. One reason for this was, that the committee proposed to oand, as it would be a great accommodation to a large number of
inhabitants in that locality. -The vexed question of the Manclester post-office seems in a fair way of settlement, although the gale goes council Mr. Alderman Heywood post-office authorities have decided to erect a new post-office on the site of the Queen's Theatre, and other properties adjoining, this councí authorises the mayor to communicate to the Postmaster-general the wilingness of the corporation to afford every assistance in the fur-
therance of the bill through Parliament, and in arranging with the owners and occupiers interested in the properties which are require
to be purchad ment should have had to spend $£ 70,000$ of the public money upon
site, when the council coold have sold them one which would have site, when the council covid have sold them one which would have
answered all the purpose for $£ 20,000$. Mr. Councillor Cotrell conanswered all the purpose tor $£ 20,0000$ Mr. Councillor Cottrell con-
gidered it was $£ 50,000$ of the public money thrown away. The resolution was passed, with two or three dissentients.

SHAW AND THOMPSON'S SCOTCH IRON MARKET The state of the Scotch pig iron trade during the past year has been such as might have been expected after the severe crisis of 1857. The price has been unusually steady-speculation has
been less keen, and produced small variations in price-foreign shipments has produced simall variations consumption has fallen from 312,000 tons to 275,000 tons. At the beginning of the year a speculation for a rise was commenced in Liverpool, and
in the months of January, February, and March, the price gradually advanced from 52 s , to 60 s per ton, but it soon became too violent the rise was premature, and that the trade had been rapidly. The result was, that before the end of April the price had receded to 52 s ,- -the figure at which the advance began, and since then quotations have ranged between 52 s . and 56 s . per ton for mixed numbers warrants.
some time during the year that iron would have declined at panic of 1848. but such calculations have been erren anter the is now generally admitted that since then the cost of producing quite as unremunerative to the makers as it was at the time we have referred to.
The average price this year is 54 s .6 d . per ton, showing the
great depreciation of 14s. 6 d . per ton as compared with last yearthe avection of 14 s . 6 d . per ton as compared with last yearWe have given above, various statistics of the trade-the most noteworthy of which is, the addition to our stock this year of
nearly 150,000 tons, making the total stock 337,000 tons. Another fact claiming attention is, that notwithstanding the conagainst 123 same day last year ; and there are five new furnaces Nothing will stion.
the par show better the lifelessness of our market during have only been 8 s . per ton, whilst in the previous year the price Regarding the prospects for next year, the present state of trade is not very encouraging. Orders for spring shipments are as yet apparently not very extensive; and in our own district, although
some of the consumers are very busily employed, the majority have very few orders, and some are almost altogether idle. With only a very gradual revival of trade, we cannot look forward to much higher prices for 1859 than we have had this year ; nor do activity of trade which characterised the few years previous 1857.

The closing quotations to day are for mixed numbers warrants
s. 6 . per ton, and for No. 1 and 3 G.M.B., 53 , 3 . Glasgow, Dec. 31, 1858.

PRICES CURRENT OF METALS.

 quence of the oadvanece in TTn in those what have mado no alteration as yet
are expected to join the movement thortly. January 14th, $1850 . \quad \begin{aligned} & \text { MOATE and CO., Brokers, } \\ & \text { 65, Old Broadstreet, London. }\end{aligned}$

