R.IILWAY BRIDGE OVER THE LAN-HO, CHINA.

The single line standard gauge railway between Kaiping and Shanhai-Kwan, north-east of Tientsin, built by the Chinese Government, crosses the Lan-ho on a bridge consisting of five throngh spans of 206 ft . and ten deck spans of 103 ft . 9 in . between centre of bearings, as shown in Fig. 1. In accordance with instructions of Mr. Claude W. Kinder, Engineer-in-Chief, Tientsin, and Sir Benjamin Biker, Consulting Engineer, a competition of designs and tenders was held in autumn, 1891, in Westminster. Ten manufacturing firms, viz., five British, three French and
Belgian, and two American, took part in it, and eventually the order was placed with Messrs. Andrew Handy-
clusive of wind, shall not produce greater tensile stresses than those tabulated below :-
For Main Girders, Cross Girders, and Rail Bearers of Plate Construction.

of the corresponding specified tensile stress; nor in the case of pin-connected members the fraction $95-0045 r$, when r is the least radins of arth of the of the ssid tensile stress. Alternating stresses. - Members subject to alternate tension and compression must have sectional areas equal to the joind inde-
required for the compressive and tensile stresses considered required for the compressive and tensile stresses conside additional
pendently, except in the case of wind bracing, where the pendently, except in the cal area may be one-half the preceding.
sectional area may be one-haif the preceding. of the corresponding specified tensile stress, and on plate girder webs seven-twelfths of the same. The bearing stress, measured on the diameter of the rivet, bolt, or pin, and the bending stress on pins, shall not exceed one and a-balf times the said tensile
stress, Where a bending stress occurs on a member of a bridge stress. Where a bending stress occurs on a member of a bridgel
subjected to a direct tensile or compressive stress, the sectional area shall be proportioned to the sum of the stresses. No part of

side and Co., of Derby, Mr. Max am Ende, of Westminster, acting as their engineer.
The specification of strength, drawn up by Mr. Kinder and Sir B. Baker, contains the following paragraphs:Rolling load.-All of the main line bridges shall be constructed
to carry a rolling load on each line of rails of two engines followed by a train weighing $1 \frac{1}{2}$ tons per foot run, as shown in I. and II.
 Foll wed by train of $1 \cdot 5$ tons per ft . run. II.
Inches.
$48-72-108-00-10-06-78-16-106-72-168-96-96-66-78-66-96$
$10-10-20-20-10-10-10-10-10-10-20-20-10-10-10-10$
Followed by Tons.
Followed by train of 1.5 tons per ft . run. guard rails may be taken at 400 lb . per lineal foot for each line of $\underset{\text { rails. }}{\text { guard }}$
Wind prexsure.-In calculating wind stresses, the wind must be assumed to be blowing at a slight angle to the axis of the bridge,
so as to take effect on the exposed areas of both the windward and the leeward girder, except where the latter is temporarily screened by a passing train. The wind pressure with the train on the bridge shall be taken at 501 b . per square foot. In the latter case the height of the train may be assumed to be 9 ft ., and he resultant wind pressure of, say, 450 lb . per lineal foot. shal Other stresses.- In the details of the designs regard shall be had to the stresses resulting from the sudden application of continuous brakes, or from the end action of wind, and also from the centrifugal action of the rolling load on sharp curves, should such
occur on a bridge or viaduct. Working stresses on steel.- All bridgework and trestle piers shall comply with the whole of the following conditions:-(1) The combined stresses resulting from the rolling load, dead load, and wind, shall not produce a greater tensile stress than $7 \frac{1}{2}$ tons per square inch, nor more than the corresponding compressive, shearing, and
bending stresses, as hereinatter set forth. (2) The combined stresses resulting from the rolling load and dead load alone, ex-

200ft. to 400 ft .-
Bottom chords Bottom chanals
Dial
For wind bracing, all spans For floor suspenders all spans...
the web-plate of a girder shall be included in the estimated secthe web-plas of the flanges.
tional areas Rollers and bed-plates.-The pressure on rollers shall not exceed Ralf a ton per lineal inch on 2in. diameter rollers, three-quarters of a ton on 3in., and one ton on 4in. and above. Bed-plates and rockers shall be of sufficient area and strength to distribute the load over the masonry without oxceeding a pressure of 16 tons per
square foot.

Compressice stresses,-For plate girders the compressive stress shall not exceed 85 per cent. of the corresponding specified tensile stress. For truss or lattice girders the compressive stress shall, in
the case of riveted members, not exceed the fraction $95-.003-$

- $4 \frac{1}{2}$ tons near centre of girder and 51 to 7 tons at ends.

In the case of the Lan-ho Bridge, sketches showing the system of triangulation of the main girders, the system of the floor, \&c., were given, and it was further specified that the five through spans should be pin-connected, and
the ten deck spans riveted bridges.

IMPERIAL CHINESE RAILWAYS-BRIDGE OVER THE LAN-HO designed by mr. max am ende, m. inst. c.e ; messrs. a. handyside and co., derby, constructors

Pin-connected bridges, as they are usually made in America, are considered by engineers in Europe to be wanting in stiffness and, therefore, not so durable as riveted bridges. This is ascribed to the unsatisfactory connection of the transverse bracing to the main girders; to the suspension of the cross girders from the pins by means of hangers; and to the construction of the transverse bracing of round rods with screws and angular cleats at the ends. Recent practice, however, has almost
done away with the hangers and has adopted riveted
connections between cross girders and vertical posts, as
allo stiff diagonal bracing with riveted connections. It
is, therefore, unnecessary here to dwell upon the short-
comings of those abandoned details, while with regard to
the fixed connections between the cross girders and posts,
it is sufficient to remark that it causes bending stresses
in the latter, and an overstraining of the inner side of
the main girders, in the same way as in riveted bridges
with doubie-webbed main girders and with overhead brac.
ing. But present American practice has not yet abandoned chord, where compressive stresses occur, and the eye bars have to be braced together in order to enable them to resist those stresses. It may be admitted that no objection of importance can be raised against the use of eye-bars as described for the diagonals of the web or for the bottom chordom deck bridge girders, but when they are used for the holes appear to prevent absolutely a satisfactory connection

IMPERIAL CHINESE RAILWAYS—BRIDGE OVER THE LAN-HO MR. CLAUDE W. KINDER, M. INST. C.E., ENGINEER-IN-CHIEF; SIR BENJAMIN BAKER, M. INST. C.E., F.R.S., CONSULTING ENGINEER

between them and the transverse bracing. If the latter stress to the chord, even if special flanges are added in flanges lying in the plane of the web, an unsatisfactory is attached to the pins, the apparently insuperable the plane of the transverse bracing, which, moreover, are state to anyone admitting the tantamount importance of difficulty arises of directing the resultant of the stresses in objectionable on account of the distribution of the the transverse bracing to that of other parts of the bridge in the diagonals into the centre of gravity of the section of horizontal stress between the flange and the chord being the question of durability. Now, the details of the Lan-ho the chord. On the other hand, if the transverse bracing is rendered uncertain. In actual practice, therefore, Bridge showhow this may simply be obviated by the substi-eye-bars, the posts are bent in transmitting the resultant the state of a girder without flanges, at least without out them, see Fig. 8 . The loss of sectional area is not great.

The eye-bar is made of an ordinary flat bar, 15 in . wide for pin-holes of 6in. diameter, the ends are strengthened by plates riveted on each side; the two rivet-holes of \bar{z} in. diameter, by which the bar is weakened to the extent of 13.2 per cent. on the remaining sectional area, may be repeated at any point between the ends without further weakening the bar, and the transverse bracing may be attached, for example, in the middle by means of rivets, and in such a manner that the resultant of the stresses acts in the centre of the section of the chord. In place of one of the two rivet holes, a slot is made to allow the bracing.bar to pass through, see Fig. 8, but this, although解,
The above surplus of 13.2 per cent. of metal refers panels and to the main diagonals, in all to 36 tons in a total of 156 tons for each span. This percentage is, however, reduced by taking into account the stresses from the eye-bar on the 6in. pins would not be more than 8in.,
transverse bracing on the top, have in the Lan-ho Bridge
a similar one also at the bottom, the latter consisting of a similar one also at the bottom, the latter ctruts in the plane of the frame; the required open profile for the passage of the train is therefore accurately enclosed by he framework-see Fig. 12. In this way the lateral move ment of the upper part of the is ridge reata a minimum. The ends of the rail bearers have their support direct on the masonry, and are here fixed to the strut which takes the stress from the lower transverse bracing to the end pins as described, see Figs. 4, 11, and 12. The inclined plate girder passes through openings in the rail bearers, so that were not the case, the inclined plate girder, being prevented from bending downwards, and being very stiff horizontally, would be subjected to very great bending stresses when the chords of the main girders extem
under the load, while the rail bearers would only to some extent take part in this extension. Stresses from this
is therefore half of what it would be in a box-shaped girder. The Fin . space between the bars is closed by $2 \mathrm{in} . \times$ in. strips at the edges. The main girders are 7 ft . apart, and the sleepers rest direct on the top flange, which is strengthened for the purpose of sustaining the bending stress from the load. There is a horizontal transverse bracing between the top flanges and a vertical transverse bracing between the uprights, as also a plate girder over the bearings. The weight of metal in one span is $34 \frac{1}{2}$
tons. The diagram of stresses for the through span is tons. The diagram of stresses for the through span
given in Fig. 5 , and that for the deck span in Fig. 18 .

INTERNATIONAL SHOE AND LEATHER

EXHIBITION.
There is something of interest to engineers "at all the Industrial Exhibitions which are held from time to time in the Agricultural Hall, Islington. At a leather exhibition the produced, and the machinery used in its manufacture.

with a length of 25 ft .9 in ., and is often ess in proportion to the length. This corresponds within the limit of elasticity to an additional stress of 1.1 ton, whereas the 15 in . bar has only an additional stress of 0.59 ton. The
difference amounts to about 7 per cent., so that the surplus required is about 62 per cent. of 36 tons, or $2 \frac{1}{4}$ ton in 156 tons,
It can hardly be denied that this small additional quantity attending the substitution of riveted eye-bars is amply compensated by the satisfactory state of the transverse bracing, and by the fact that these eye-bars can be manufactured without the employment of expensive forging apparatus, and without re-heating the steel. It ever be induced to set up British manufacturers will ever be induced to set up such apparatus, even if pin-
connected girder bridges should come into fashion in

Europe. Chain suspension bridges have almost been abandoned, and in those rare cases where eye-bars withou rivet-holes are required, it will be more profitable to cut them out of plain flat bars.
The raking struts in the through spans of the Lan-ho Bridge are made, contrary to common practice, to turn reely upon the end pins, because, as one of the reasons why pins are used is to avoid the bending stressesfrom fixed connections, it appeared inexpedient to introduce pins and at the same time to retain the bending stresses, except
in the horizontal part of the top chord, see Figs. 6 and 7 . The diagonals of the lateral bracing are constructed so as to be capable of resisting thrust, and, as already mentioned, are made to act in the central axis of the chord -see Figs. 8 and 9. The shearing stress is finally brought to the end pin in the direction of its axis y means of a transverse strut, as shown in Fig. 11. The head of the pin transfers the stress to the cast steel bedplate, to which also the shearing stress from the overhead bracing, see Fig. 3 , is conducted through the raking strut by the $1 \frac{3}{4}$ in. turned bolt, see Figs. 11 and 12, while the flange The inclined end frames, which usually have only a
cause, increasing from the middle to the abutments, occur in all bridges in the cross girders and the diagonals of the transverse bracing, if the latter lies in or near the level of the chords, unless the rail bearers and the diagonals are furnished with expansion joints: but this is not usually done, and with the diagonals meeting, as here, at the chords in the middle of the panel, the stresses are less intense.
The vertical posts of the main girders are not made, as usually, of a tubular section with braced sides, but of an H section with a solid web, the reason being that they can be better painted, and that the pin connections at their ends are more accessible. At half height all posts and diagonals are connected together by two horizontal bars, see Fig. 2. The other details of the large span of the
Lan-ho Bridge, see Figs. 13, 14, and 15, are without particu-

Unfortunately, in the present instance, we have nothing to say about the former. Have woven and india-rubber belts driven leather belting out of the market? Is leather no we can only testify that on Monday last, the opening day, no leather belts or valves were to be seen.
However, the show of boot making-machinery, both British and foreign, was very good. Machines at work were shown by Messrs. Pearson and Bennion, Simson and Co. Pegg and Son, H. F. Dale, and Mudd and Co., all of Leicester; Keats and Bros., of Stafford; Bateman, of Halifax; the Gare Machine Company, of Stockport; Timpson, of Northampton; and of course sewing machines by Messrs. inger, and wheeler and exhibit. Besides boots, the only novelty we interesting exhibit. Besides boots, the only novelty we and trunks, by Messrs. W. Insall and Sons, of Bristol, in cluding some ladies' trunks strong enough to resist th efforts of Transatlantic "baggage smashers." Their weight would, however, be too great to hinder them from coming into general use in Europe.
There is the usual display of exhibits which have no connection with the object of the exhibition, such as safes, writing-desks, ventilating and heating apparatus. Still, great Thomson ventilating fans, and in a little ralculating machine by Messrs. Arter, Dixon, and Co, for adding up columns of pounds, shillings, and pence. A pretty little machine is that shown by Keat's Featherweight Spool Company, for winding their spools. These articles are intended to replace the wooden reel, especially when the cotton, thread, or silk which is being wound is in-
tended for export. They are made of celluloid, 24 in. diameter, tended for export. They are made of celluloid, 2 tin. diameter, and hardly thicker than letter-paper. The outer edge is
serrated, and the thread is wound round the notches. The serrated, and the thread is wound round the notches. The
inventor states that ten of these spools empty weigh the inventor states that ten of these spools empty weigh the
same as one reel, and that six dozen new spools, when filled, only occupy the same space as one dozen reels, carrying the same relative amount of sewing material.
There are probably other exhibits worthy of notice, but like most exhibitions, this was far from being completed on the opening day.

Mason College Engineering Society.-At a general meeting of the above Society held in Mason College, Birmingham, on in Cycle Construction" was read by Mr. C. Recent Darrard M.1.M.E. in Cycle Construction was read by Mr. C. R. Garrard, M.1.M.E.,
Mr. R. J. Richardson in the chair. The author traced the early history of the cycle, giving examples in the sixteenth century, and an interesting sketch of a bicycle made in Scotland in 1840, which had a very similar appearance to an ordinary "safety." He fully described the early manufacture of light rims and wire spokes, and portant a feature in modern cycles. A reference was made to pneumatic tires-experiments thereon-the author mentioning that vehicles with a maximum load of 4500 lb . on four wheels could safely be used on our roadways. The process of detaching oxides and the flux used in brazing by the electrolytic method was fully explained. The paper was followed by a discussion, infacture Professor A. H. Smith spoke of the importance of the cycle mannfacturing industry from a commercial standpoint, and also of the large field it afforded for engineering ingenuity and calculation.

THE IRON AND STEEL INSTITUTE．

The annual meeting of the Iron and Steel Institute was held on Wednesday and Thursday last at the Insti－ tution of Civil Engineers，the President，Mr．E．Windsor
Richards in the chair，being supported by a numerous Richards in the chair，being supported by a numerous
and representative gathering from all parts of the conntry and representative gathering from all parts of the conntry，
including beside many others，Sir Henry Bessemer，who including beside many others，Sir Henry Bessemer，who appeared to be in good health，but was unable to address the meeting on account of a temporary loss of voice，
Sir Lothian Bell，Sir B．Samuelson，Mr．Carnegie， Mr．Snelus，Mr．Hadfield，Sir E．Carbutt，Mr．E．P． Martin，and Mr．David Dale，the treasurer．The report of the Council，read by Mr．Brough，the secretary，on Wednesday morning，stated that 39 members had been elected last year，but the diminution by deaths and
resignations of membership were in excess of that resignations of membership were in excess of that number，but this will probably be reversed by the large
number of 72 candidates proposed for election on the number of 72 candidates proposed for election on the
present occasion．Satisfaction was expressed at the very present occasion．Satisfaction was expressed at lie very 1893，which was largely to be attributed to the skilful organisation of Mr．Dale and Mr．Ianson，the presi dent and secretary of the reception committee．It was
nnounced that the autumn meeting of this year would announced that the autumn meeting of this year would
be held in Belgium between August 20 th and 25 th，the be held in Belgium between August 20th and 25th，the
first two days being devoted to a formal meeting in Brussels，and the remainder of the time to excursions in he Liége and Charleroi districts．
Tre bessemer gold medal for the year was awarded to made in a short address，by the President recalling the numerous additions and improvements made by Mr． Gjers since 1865 ，including the Cleveland calcing kiln， and the developments of hoisting plant，blowing engines，
and hot blast stoves made in connection with his model works at Ayresome；the last－mentioned apparatus espe－ cially being taken as the perfection of iron pipe stoves，and t present but for the introduction of fire brick stoves The greatest service，however，that he had rendered to the iron and steel trade was the invention of the soaking pit，which had been widely adopted，with the consequent acknowledged the medal in a short speech，and the business of the meeting began with the reading of the Presidential address，which seems now to hay．
an annual necessity，and which we give below．
Mr．E．Windsor Richards，President，said：－The practice of
your president delivering more than an inaugural address became establishede by Dr．Percy，mand has been followed over aver sings became ball all
succeeding presidents．Custom decides that ordinarily the address succeeding presidents．Custom decides that ordinarily the address
shall be a
referred to tomparatively short one．In 1886 the learned doctor industries，and to over－production a adding，that either consump．
tion must be increased or production limited．All interested in tion must be increased or production limited．All interested in
these industries have said the same thing many times over．
Our own country is too small to keep our immense establish－ ments occupied ；we bave lost tho greater part of the Continental trade owing to protective tariffs，baving for their main objects the
fostering of their own industries and finding ocoupation for their
own population W We anxionsly look abroad for fresh fields to own population．We anxiously look abroad for fresh fields to
receive our products，so as to maintain and possibly increase con－ receive our products，so as to maintain and possibly increase con－
sumption．Always keoping in mind the fact that our Institution
confines its attention conpion its atwaytention almost whooly to iron and stoel，my remarks
cefer only to those industries．I must be careful not to transgress refor only to those industries． 1 must be careful not to transgress
Refle 2，which states that the object of the Institution shall be to
afford means of communication between the members of the iron afford means of communication betweon the members of the iron
and steel trades upon matters bearing upon their respective manu－
factures，excluding all and steel trades upon matters bearing upon their respective manu－
factures excluding all questions oconected with wages and trade
regulations．Since that rule was framed，the Institute has become regulations．Since that rule was framed，the Institute has become
quite cosmopopilitan in character．During the whole of last year
the depression was so great that there was little encouragement to the depression was so great tuat there was little encouragement to
spend monoy to improa either processes or machinery，so that
there is little in this dirirction to call your attention to there is a lull in invention，with fow new develenomoents，and theere seems to be almost as little new to record in steelmaking as there
is anything fresh to say about the puddling process．Under these
circumstances there ircumstances，therefore，I purpose deviating a little from the
beaten track in this short address ；my exxuse being that it is
 of our in
togetber．
During

 Tourral－was 706,583 tons，and in 1886 it increased to 730,343 tons；
whereas in 18933 the same suorece shows that the depression had become more accentuated，for we find the figures are lowered to
579,38 tons，which was loss than for many years exeept the
previous year，when the production was 43,550 tons lower than in

 ducts，or increased cost of manufacture？I feel quite sure，from
carefol observations made at several establishments，that our
metallorgists and metallargists and manufacturers still keep a foremost position，
nd have not fallen away in any one of the above respects．It is true we have almost lost our continental trade，but it is not for the
want of skill or knowledge of manufacture，but by reason of pro－ igh tariff rate we are called upot us in two ways：First，the various countries，to a great extent exxludes our products；and
secondly，the high prices obtained by our competitors enable them or make such substantial profits in their own country that they can aftord to quote very low pricess leaving them little or no protit
when in compotition with us．This may seem paradoxical，but the object is to obtain as large a production as possible，as that has
proved to be of very great importance in reducing general and But even under such
But even under such greatly disadvantageous conditions，we
have several times quoted and obtained considerable rails，delivered inland on the Continent，at prices which have left
a profit．The competition has，however，become altogether one－ sided，for the railway companies have latterly，after receiving the
lowest tenders from us，allowed their manufacturers to amend weir offers，so that we are quite shat out from those countries，
vhilst our own is left open to their attacks．I could cite many instances of this，what I term unfair competition；the figures have many times been poblished in the newspapers，and so are public
property．The following recent example illustrates what 1 par－ ticularly desire to direct attention to．In January of this year，
England tendered for some steel rails delivered in Oldenburg at a price of 109 marks per 1000 kilos，；the lowest German tender was
114 marks．Notwithsanding astrong protest，the order was given
to the German firm at the English price，but if the German manu－
facturers had been tendering for steel rails for delivery in England， their price would have been about $£ 315 \mathrm{~s}$ ．per ton or less．In the
English tender before referred to an import duty of $£ 15 \mathrm{~s}$ ． 6 d．per Eng ish tender before referred to an inport duty of $£ 1$ s．． 6 ．per
ton was included，as well as the cost of carriage；
so I repeat that in not accomplished by greater skill or by more econominal methods ${ }^{2}$ manufacture．
We have been repeatedly advised to adopt better methods of working，to construct further labour－saving contrivances，to afford
better and more thorough technical education．We have con better and more thorough technical education．We have con－
inually advanced in these matters：We are still doing all that lies in our power in thosed iirections，and mureh yet remains to be
done．But of what avail is it to construct labour－saving machinery， done．But of what avail is it to construct labour－saving machinery，
and so throw more men out of employment，when we have already housands of willing bands out of work？And then labour－saving cachinery can be，and is，as readily and as quickly adopted by our
competitors as by us．Is it not true，and cannot we assert without egotism，that almost all the great，inventions，improvements，and
labour－saving contrivances in the industries I am referring to labour－saving contrivances in the industries 1 am referring ta，
have beon brought about in this country？Thorough technical
education is of the very utmost importance，and is receiving the reatest attention from the highest and best But what even wril technical eduaction avail us angainst the
unfair conditions I have pointed out？And what relief will these unfair conditions I bave pointed out？And what relief will the
things，which are so generally and so persistently preached to
give us when they are adopted？They can give no relief in th give us when they are adopt
present condition of things．
Never since the organisation of this Institute has the metallurgist experienced a more difficult time than the depression we are
passing through．Added to his commercial troubles are constant passing through．Added to his commercial troubles are constant
demands from the workmen for either higher wages or fewer hours demands from the workmen for either higher wages or fewer hours
of work．The gravity of the situation demands the closest con－ sideration of commercial men and of statesmen．We may well
anxiously look round to see where the markets for our produce and employment for our workmen and capitar are to come from．Great
hopes are entertained at home that the tariff laws in America will hopes are entertained at home that the tariff laws in America will
be so altered and improved in our favour that we shall be able to resume delivery of iron and steel to that country．But American
legislators are perfectly woll country，and know quite well that thene the new ind of their own
first be fostered，and employment found for the must irst be fostered，and employment found for their own poople．
We may rest perfectly assured that they will legislate in that direction，and not in favour of England or any other country to the
detriment of their detriment of their own．We should not turn our eyes either so
much to America for a market，for they have experienced a far
greater degreo of depression than we have．Nor must we look to greater degree of depression than we have．Nor must we look to
continental nations to take our iron and steel，for they are well able to supply themselves；and if present tariffs are not sufficient to keep out our productions，they will be increased．We cannot
and do not complain of countries ostoring their own ind ostries，
but we claim to exercise our privilege of trumbling when these but we claim to exercise our privilege of frumbling when these
tariffs are so high asto enable our competitors to poach on our lands by placing even a small quantity of iorment，and steel in Greailly when by placing even a small quantity of iron and steel in Great Britain，
they depress the avaue of the whole of our products，and we have
reason for complaining of a competition which is so one－sided and unfair to our mananuacturares．
But．we must look tor
But we must look to our own possessions and to our own
Colonies for rolief，and our legisators must safeguard their
terests and ours．Canada is thorouth
 tion．We look anxiously for further development of railways in
India and Asstralia，and Afria．should，ere long，become of
onorme may fins dime to consider these isportant quastions，which a affect the well－being of so many thousands engaged in the iron and steel
industries，and are indeed of vital interest to the whole of the community
竍 greatest，number，but even he could scarcely have imagined that steel rails would be put on board ship at $£ 3$ 12s． 6 d ．per ton．The
manufacturer，not being included in the category of the greatest number，would perbaps not complain so much of the price if b until times inproved．One cannot woender，hoovever，that orders
for rails are few when we are informed that those laid down from Ostend to Brusseles，made to Mr．Sand berg＇s Goliath section of
flange rail weighbing 105 lb a a yard，have reat
 made at Seraing，and contain from $\cdot 4$ to 44 of carbon．We leari .6 to 7 c carbon，the object being to lengthen the ifite of light sections
of rail can be no ne can only regard such extremes with alarm，and ther

Europe．
Very considerable trouble and expense have been experience by manufacturers through differencess in analyses by different
coemists，and it teems to bo a desirable thing that a committee
of our chemical members should bie of our chemical members should be appointed to consider whether
standard methods of analysis could bo determined on，and if so
the that such standards should be recognised and adopted in the trad research generally，in which our members are interested，we migh
well make grants of money from the funds of the Institute．It
i the intention of the Council to consider this matter，and they wil made in aid of soientitic research．
Dr．Dudley of Altoona
Dr．Dudley，of Altoona，bas just sent me a description of an
attempt made to ascertain the quantity of phosphorus in thre samples of steel．A l large quantity of drillings was taken in trom
each of the three samples，care being taken to eliminate the influence of sogregation as much as possible；he analysed some
himself，and sent the others to several eminent chemists．
 show，and mo men vexation and locs have been ocacasioned andereby．
sormit me to call the attention of steelmakers to the unsatisfactory
Pe manner in which ingots are generally made．It is a rare thing
to seo clean，well－made，and sound ingots．What with running stoppers，sand marks，cracked moulds，and stickers，the present
method of ingot－making is not creditable，and should be improved I own to having been as great a sinnor in this respect as it is
possible to find，but I made many efforts to extricate myself f from the position，but without much success．It was owing to my
failure to improve ingot－making that induced $m \mathrm{me}$ to reduce the number of ingots made per cast by doubling the size of the ingot，
and so having only one－half the number to make ；and to deal and so having only one－halt the number to make；and to deal
with the grataly increased size，I designed and made the cogging
rolls 39 in．diameter，and so dealt effectually and economically with ingots 16 in ．square，rolling them into rails over 15 fft ．i length．
After
about 30 owtessand and being dealing witlith ingotremely for rails weighing up to making department，I much desired to go further and reduce
again the number of ingote made per cast． again the number
constructed at Eston rolls 5 ft ．diameter to reduce ingots weighing five tons to slabs 30in．by 6in．thick for plate－making；this wa
then found to be，and is to plant．I was thus not far from the task 1 had set myself of deal－ lig with one ingot to one cast，but was deterred from going
further at that time by two considerations -1 st，A dim fear ot segregaiton，and 2n la，strong fear of the great length and weight
of the rolls of so large a diameter as 5 ft ．If the bydraulic forging press of a couple of thousand tons power had been avail
able in those days，I believe that at Exton we should long ago bave
ben making a cast of from 8 to 10 tons of steel into one ingot．
This seems a small thing to This seems a small thing to say at this time，when ingots $6 \mathrm{ft}$. ． 9 in ．
square，weighing up to 70 tons，are being dealt with by the square，weighing op press，and easily handied by appliances which
bydraulic forging
her been so simplified and perfected that weights up to 100 tons can be manipulated with perfect ease and safety．
The first paper read was that by Mr．G．J．Snelus， making steel castings direct from a small Bessemer con． verter，which is intended for use as an adjunct to ordinary foundries and machine works where there is not work rand even for a small open hearth fu to the metal at the end of the ordinary blow a definite quantity of melted ferro－silicon，then making the afterblow，turning down when the extra silicon has been burnt out，and adding the ordinary final additions of ferro－manganese，\＆c．，as circumstances require．The advantage is，first，that we can use an ordinary Bessemer pig iron with $2-3$ per of silicon；secondly silicon produces such a large amount of heat at
the right time，and so rapidly that the metal he right time，and so rapidly that the metal
becomes very fluid；thirdly，that as the silicon burns to a solid，it leaves the metal comparatively free of gas， that in consequence of the metal being so fluid and already free from oxide of iron，the ferro－manganese or other substances added，such as aluminium，are more effective and remain in the final steel ；fifthly，that in con time and file great fluiaty of the metal，much more The experity is given for casting operations，
Those carried Legénisel，where there are two small converters，one for 300 －kilogramme charges and one for 600 kilogrammes The later is about 4_{2} ft．high and $2 \frac{2}{2} \mathrm{ft}$ ．in diameter． is th vessels are furned down by hand power．The blast is taken from the city pressure service，being passed five atmospheres to one to two atmospheres．The ex periments were carried out in the smaller vessel．A mixture of English pig iron，chiefly Ayresome and Harrington，is employed，as，after many brands had present is about $90 f$ ．per ton－ 2000 lb ．Coke costs 32 f ． per ton，and the selling price of steel castings is about 24s．per cwt．The pig iron is melted in a small cupola， The ferro－silico ingenious construction，the blast being heated，the melted metal dropping into a heated crucible as it melts，and being weighed before use．There are usually six small tuyeres in the small vessel，eight in the large vessel． lay is not ade te creasot，but the quality of to eight blows in the vessel．One thousand charges from the same lining have been run in the large converter．Mr．Walrand finds a 12 loss of 5 per cent．on the iron melted in the cupola， 10 to per cent．silicon is lost in melting the ferro－silicon．The erro－manganese added is melted in a crucible，and the aluminium is put in in small pieces during pouring and casting．Four blows were made，varying from $22 \frac{1}{2}$ to 24
minutes for the main，and $1 \frac{1}{2}$ to $2 \frac{1}{2}$ minutes for the after－ low．The following table gives the results of analysis of the samples from No． 4 blow

	I．	II．	III．	iv．	v．	vi．
						家高高
Iron（by difference）	． 72	801	－	－	－	80＇795
Combined carbon．	Trace	$0 \cdot 13$	0.12	$0 \cdot 25$	0.255	Trace
Graphite	$3 \cdot 45$			－	－	4．543
Silicon	$2 \cdot 93$	0.013	0.013	0.043	0.042	$10 \cdot 419$
Sulphur	0.037	0.033	0.039	0.035	－	0.065
Phosphorus	0.043	0.043	0.055	0.069	－	0.115
Manganese	0.820	Traces	Traces	0.288	－	4．063
Aluminium	－	－	－	－		

A visit was next made to Creusot，where there is a Walrand plant in use，but unfortunately it was not at work，but a number of castings，chiefly pit wheels in
green sand，were inspected and found to be of excellent queen s
The newest and most important installation，however is that at Hagen，in Westphalia，which was visited by and Co．＇s locomotive works at Gorton Beyer，Peacock， chester．This consists of two small converters of 600 kilos．$=12$ cwt．capacity each．It is，however，pos－ he shop is arranged for two small $=15 \mathrm{cwt}$ ．The space across is at present erected，along with a windlass and hoist the windlass being worked by a rope from the engine working the Roots blower in the engine－room adjoining． In this engine－room is the blowing engine for the con－ verters．When the work of the foundry necessitates the utilisation of both converters at once，the engine will be completed to a compound vertical．At present，only one converter being used，the high－pressure portion of the engine is alone finished．Adjoining the engine room is the boiler－room，containing a water－tube boiler working at six atmospheres．An overhead travelling hop is 68 ft ．in length， 43 ft ．wide．The engine casting 24 ft ．by 22 ft ．，and the boiler－house 35 ft ． 6 in ．by 22 ft ．The
process, but of very small size; the linings and bottoms re rammed in the usual way. The cupola is of the Luhr-man-Greiner type, which is meeting with considerable success in Germany. The blowing engine, when the lowpressure half is erected, will be a compound engine, vertical, with the air cylinders above the steam. The engine works at a steam pressure of 90 lb .; diameter of highpressure cylinders, 400 millimetres $=15{ }_{3}^{3} \mathrm{i}$. .; diameter of ow-pressure cylinders will be 550 millimetres $=21 \mathrm{in}$. stroke 600 millimetres $=23 \mathrm{in}$.; diameter of air cylinder 650 millimetres $=25 \frac{1}{2} \mathrm{in}$. The engine delivers the air at a pressure of $1 \frac{1}{2}$ to 2 atmospheres. The engine was built by Klein. Between the blowing engine and the converter is arranged an air accumulator or equaliser, with a safetyvalve to blow off at two atmospheres. At Hagen they have made such progress with the process that they are able to produce castings at will-within reasonable limits -having predetermined tensile strength, and on the occasion of the previous visits of Mr. Lange, and at his and the author's joint visits, three casts were made-1st, for mild steel ; 2nd, for intermediate steel; 3rd, for hard steel. Examples of the composition of these are given in the following table :-

	No. 54, to Rive mild steel $45-50$ kilo., mean of two tests gave ($=30 \cdot 4$ tons).		
Iron (by differsnce)	$98 \cdot 233$	$97 \cdot 35$	$97 \cdot 03$
, (byexperiment)	98.4	$97 \cdot 4$	$97 \cdot 10$
Combined carbon	$0 \cdot 23$	$0 \cdot 27$	0.34
Silicon ...	$0 \cdot 356$	0.508	0.833
Sulphur ...	0.058	0.049	0.048
Phosphorus	0.067	0.069	0.072
Aluminium	0.087	$0 \cdot 150$	$0 \cdot 144$
Manganese	0.966	1.594	1.513

At Hagen it is the practice finally to harden the steel by an addition of ferro-silicon with ferro-manganese, and that they depend more upon the silicon than the carbon for getting the desired strength. For many purposes, and especially for castings, such steel is no doubt very useful, but the author doubts whether it is suitable for use where it may have to stand sudden shock. This departure from ordinary practice is interesting, but, as process, but has been worked out at Hagen, and the very process, bat tests obtained and certainty of results is very remarkable. The cost of the process, which is gone into in considerable detail, is said to work out to about 4 s .6 d . per cwt. of finished steel in the ladle.
With regard to the cost of a complete installation, Mr. Daelen states that the total cost of the buildings and plant complete at Hagen would be about $£ 3500$, and gives the following details:-

Blowing-engines as completed for blowing
Blast-pipes and accumplator
One converter of 600 kilogran
One eonverter of
Cupola, stage, and hoist
Boiler, tubular
In most foundries, buildings, cupolas, steam services, dc., would be available, and the main items of cost would turning blowing-engine and converter. The mechanical Hagen is gear for converters used at Paris, Le Crs admirably. The adyaniple and inexpensive, an a able to make stee castin cast iron eaply, just when sand, is so apparent, that in all probability no foundry of importance will in future be considered as properly equipped without a Bessemer converter.

Although the chief aim of the inventors of this process has been to facilitate the manufacture of steel castings suitable for ordinary iron foundries, it by no means follows that it is not applicable to other purposes ; and the author believes that it will be useful in all cases where quality of product is of more importance than a slight extra cost. If, for instance, it is possible by this process to make a sound soft steel of uniform quality without blow holes, why should it not reinstate the Bessemer process for the manufacture of plates? In examining a vast number of fractures of tensile tests of plate steel, the author has rarely failed, with a powerful lens, to detect indications of want of continuity in the metal, due to gas cavities, even in samples of Siemens steel; and all such defects must involve irregularity, and possibly failure ; so that if this process will largely elimi nate gas cavities and give a sounder steel, the slight sated by the improved quality of the material. It is also possible by this process, with careful attention to the quality of the materials employed, to make steel of grades of hardness equal in quality to crucible steel.
After the reading of the paper some explanatory statements were made by Mr. Genésil, one of the inventors, Mr. Lange, and Mr. Daelen, by whose advice the process was adopted at Hagen, but nothing of the nature of a discussion took place. Subsequently a paper by Mr. Jeremiah Head on "Scandinavia," and more particularly the North of Norway, as a source of supply oriron ore time until the hour of adjournment on Wednesday, so that a third paper by Mr. Bamber, on "The Analysis of Steel," which was on the programme, was not taken.

The Leicester Corporation Waterworks department is growing very anxious concerning the low water, in consequenee of
the remarkably small rainfall. The reservoirs are about 15ft. below the weir, and the deficiency amounts to some 580 million gallons.

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our
kinetic theory of gases-values ce β and γ in natural gases.
 obaining the value of $\sqrt{\beta}$,
for that purpose being :-
$\overline{u_{i}}=\sqrt{\frac{6 p}{\rho}} ; \bar{v}_{n} \sqrt{\beta}=\sqrt{2 K \cdot T} ;$ and $\sqrt{\bar{\beta}}=\frac{\bar{v}_{i}}{v_{n}} \sqrt{\beta}$
in which equations $r_{;}$and v_{n} are the velocities of the mean square of the molecules in the ideal and natural gases respectively; p their pressure on unit surface, $K_{\text {a }}$ their specitic heat at constant volueg,
T their absolute temperature, and β the ratio of their total energy to their energy of translation. The second and third of the above equations are applicable to the case of gases composed of perfectly
smothth elastic non-spherical molecules, as well as to rougb, spherical, elastic molecules ; this I inadvertently omitted to mention in my last letter.
Assuming that a gas raised to double its absolute temperature ase
temperature, then the product
c_{n}
$\sqrt{\beta}$ can be found experimentally by Professor Jolly's steam calirometer, or otherwise. Thus for any gas, when the pressure, volume, and absolute temperature are known, the value of β can be found independently of its specific heat, or of γ, the ratio of specific heat at constant pressure and We will now pro
in terms of γ.
in terms of γ.
The total energy in unit volume of a natural gas is given by the equation $\mathrm{E}_{n}=\frac{1}{2} \beta \rho \overline{v_{n}^{2}}$
we have also, from my former letters, the equations

$$
\overline{v_{i}^{2}}=\frac{6 p}{\rho} ; \text { and } \overline{v^{2}}={ }_{\beta}
$$

Combining these equations, we get

$\mathrm{E}_{n}=\frac{3 p}{\beta}$.

The above equation gives the energy in unit volume, hence the energy in unit mass is given by the equation,
$\mathrm{E}_{n} \mathrm{~V}={ }^{3} p \mathrm{~V}$
where V is the volume of unit mass. Again, from the definition of $\mathrm{K}_{0}=\frac{\mathrm{E}_{n} \mathrm{~V}}{\mathrm{~T}}=\frac{3 p \mathrm{~V}}{\beta \mathrm{~T}}$.
Now, $p_{\mathrm{T}} \mathrm{V}_{\text {in }}$ all gases $=$ constant $=\mathrm{K}_{p}-\mathrm{K}_{p} ; \mathrm{K}_{p}$ being the
specific heat at constant pressure. Hence-

$$
K_{\varepsilon}=\frac{3}{\beta}\left(K_{p}-K_{v}\right)
$$

$$
\begin{align*}
\mathrm{K}_{\varepsilon} & =\frac{3}{\beta}\left(\mathrm{~K}_{p}-\mathrm{K}_{v}\right) \\
\beta & =\frac{3\left(\mathrm{~K}_{p}-\mathrm{K}_{v}\right)}{\mathrm{K}_{v}} \tag{1}\\
\beta & =3(\gamma-1) .
\end{align*}
$$

And this may be written-
$\gamma=\frac{1}{3}(8+3)$
In the following table the values of $\sqrt{\beta}, \beta, \bar{v}_{i}, v_{n}$, and $\boldsymbol{\gamma}$, calculated from the equations, proved in this and my former letters, are given for certain permanent gases, and also the experimental values
of γ for the same gases. Some of the values given in my last letter were incorrect and should be altered; the experimental values wre taken from the "Encyclopedia" Britannica," vol. xxiii., are taken
page 480.

Hydrcgen
Hydrcgen
Oxygen.
Nitrogen
Dry air.

$(\beta+3) \underset{\mathrm{n}}{\mathrm{E}}$
Experi-
mental
value of γ

The elolat
The calculated and experimental values of γ given in the last
wo columns would agree exactly if the values of K_{v} and T in the two coses agreed. Thus, for the first time it has been shown that
two experimental values of γ are quite in accordance with the inetic theory of gases.
It has been proved by Clerk-Maxwell that for non-spherical
perfectly elastic molecules- "Phil. Mag perfectly elastic molecules-" Pbil. Mag.". vol. xx., 4th series, pages 35 and $36-$ "the whole vis vira of translation is equal to that
of rotation in each system of particles," which gives 2 for the
value of β. If Clerk-Maxwell's proof is correct, it seems to indicate that gas particles are smooth, spherical, perfectly elastic bodiesperfectly elastic in the sense that the forces of compression and estitution are equal-and that the value of β over unity given
above is due to vibrations in the molecules, and not to a rotary motion. This seems quite in accordance with Waterston's theory as explained in the introduction of his paper on this subject, and regarding which I hope to be able soon to give a short account.
8, Norfolk-square, London W.,
C. E. BAsEVI, April 27 th.
specific and latent heats of steam.
SIr,-In my letter of March 13th I committed an error in stating that the fall in temperature corresponding to a fall in pressure
from 150 lb . to 45 lb . is, according to Regnault's tables 86.4 deg Fab. The data on which the calculations contained in that letter are based are those given to me by Mr. Harrison. I find on con-
sulting D. K. Clark's tables, which are, I think, based on the suiting $\mathrm{D} . \mathrm{K}$. Clark's tables, which are, I think, based on the
results of Regnault's experiments, that the temperatures and volumes corresponding to given absolute pressures do not agree exactly with
Mr. Harrison's values. Thus we have:-

Whatever may be the true volume of a pound of steam at 150 lb . pressure, its volume after threefold expansion must be three times 150 lb . pressure is correct, or the final volume at full stroke if Regnault is correct, ought to be equal to 2.95×3 cubic feet $=8.85$ cubic feet, or 1.8 per cent. less than Harrison's. Notwithstanding that the temperature, according to Regnault, is nearly 2 deg. less, the volume is more than 1 per cent. in excess of Harrison's. If we determine the value of J by means of Regnault's
values of the temperatures, and work done calculated from Harrivalues of the temperatures,
son's diagram, we have-
$\mathrm{J}=\frac{68,007 \cdot 7}{83 \cdot 9}$ foot-pounds $=810 \cdot 6$ foot-pounds
If we use 2.95 cubic feet and 8.85 cubic feet as initial and final lumes, and 1.098 as the value of n, we get-
$\frac{p v-p_{0} v_{0}}{n-1}=\frac{(442 \cdot 5 \mathrm{deg} .-398 \cdot 25 \mathrm{deg} .) 144}{.098}$ foot-pounds $=65,020 \cdot 4$ foot-pounds.
Whence $\mathrm{J}=\frac{65,020 \cdot 4}{83 \cdot 4}$ foot-pounds $=7796$ foot-pounds

If we determine the value of n from Regnaults' tabular values we
get-
$\left.\qquad \frac{2 \cdot}{2 \cdot 95}\right)=\frac{45}{45}=3 \cdot 1$,
whence $n=1 \cdot 07$, and we have
$p v-p_{0} \tau_{0}=(442 \cdot 5-409 \cdot 5) 144$ foot-pounds $=67,885$ foot-pounds
and $J=\frac{67,885}{83 \cdot 4}$ foot-pounds $=814$ foot-pounds,
The complete absence of arguments and of evidence of the thinking out for themselves manifest in the communications of my oppo-
nents afford irrefragable proof that intellectual training forms no part of the system of modern education. The system appears to be devoted entirely to securing the successful passing of examinations for the sake of the immediate concrete pecuniary results. The methods adopted to gain this end would not, however, be successfu if the examiners themsolves were masters of the subjects in which
they have to examine. To my statement that Zeuner's values of in the equation $p v^{n}=$ const., which are, I believe, generall accepted as being very near the truth, are really values of γ, the ratio of the specific heat of steam at constant pressure to the specific heat at constant volume, I received simply the dogmatic reply that the value of γ for steam is 1.3 . With this value the pressure after
threefold expansion would be equal to $150 \div 313 \mathrm{lb}=36 \mathrm{lb}$, and we have with Regnault's volume of 11 lb . of steam at 150 lb . and 36 lb . and of the corresponding temperatures
$\frac{p v-p_{0} x_{0}}{\gamma-1}=\frac{(442 \cdot 5-318 \cdot 6) 144}{3}$ foot-pounds $=55,472$ foot-pounds,

$$
\text { whence } J=\frac{55,472}{97 \cdot 4} \text { foot-pounds }=569 \cdot 5 \text { foot-pounds }
$$

if the specific heat of steam is equal to the specific heat of water. If we adopt Joule's value of J, viz., 772 foot-pounds, the corre-
sponding value of the specific heat of steam at constant volume sponding value of the specitic heat of steam at constant volume volume of 1 lb . of steam at 36 lb . pressure is $11 \cdot 4$ cubic feet. After adiabatic compression up to 150 lb . pressure we should therefore
have volume of 1 lb . of steam at 150 lb . pressure, equal to 3.8 cubic feet if $\gamma=1.3$ in the case of steam. It is clear then that the fin d siecle scientists must be wrong either as to the value of the specific
heat of steam or the value of γ. I feel s are the majority of your heat of steam or the value of γ. I feel s ire the majority of your
readers will come to the conclusion that they are wrong on both points, and will be convinced that the specific heat of steam i equal to the specific heat of water, and that Isherwood's value of J , viz., 789 foot-pounds, is more nearly the value of J than Joule's value, viz., 772 foot-pounds.
It is strange that hitherto
It is strange that hitherto in numerical calculations the value of
the temperature of air on a Boyle and Marriotte scale should have the temperature of air on a Boyle and Marriotte scale should have
been adopted in the case of steam to represent the same indicated temperature, since the experimentally ascertained values of the corresponding pressures and indicated temperitures of the steam not only show that the Boyle and Marriotte temperatures cannot be the same in both cases, but afford also the means of determin-
ing the approximate value of the Boyle and Marriotte temperature in the caspe of steam. In accordance with the law of Boyle and Marriotte, if $v v_{1}$ be the volumes of a given weigbt of steam at the indicated temperatures $t_{2} t_{1}$ respectively when subjected to a constant pressure p_{1}, and $p_{2} \quad v_{2}$ corresponding pressures and
volumes of the same weight of steam at temperature t_{2}, t_{2} being volumes of the same weight of steam at temperature t_{2}, t_{2} being
greater than t_{1}, and k the Boyle and Marriotte temperature of the least of the two limiting of indicated temperatures, we shall have

$$
\begin{aligned}
& \text { the two limiting of indicated temperatures, w } \\
& \frac{v}{v_{1}}=\frac{k+t_{2}-t_{1}}{k}=\frac{p_{2} v_{2}}{p_{1} c_{1}}=\frac{450}{405}=1 \cdot 1112
\end{aligned}
$$

for the values $p_{2}=150 \mathrm{lb}$., $p_{1}=45 \mathrm{lb}$., if Harrison's values of the volumes are adopted. According to Harrison $t_{2}-t_{1}=86^{\circ} 4 \mathrm{deg}$.
and weget $k=777$ deg. Also if a is the coefficient of expansion per degree of tem
$\begin{array}{ll}\text { whence } a=\cdot 00012 . & v=(1+\alpha) 864 \\ \text { For a range of } 180 \text { deg. temperature we have },\end{array}$ therefore, $\quad v=(1.0012)^{180} v_{1}=1.25 r_{1}$

$$
k=\frac{180 \mathrm{deg} \cdot}{\cdot 25}=720 \mathrm{deg} .
$$

In all existing works on thermodynamics 491 deg. F., the value of the lower of two indicated temperatures separated by an
interval of 180 deg. on a Boyle and Marriote scale in the case of air, has been adopted as the absolute temperature of melting ice or of the indicated temperature 32 deg. Fah., so that 459 deg,
Fah. has been considered as the absolute temperature correspond ing to 0 deg. Fah. In using, therefore, the adiabatic equation of relation between temperatures and absolute pressures deduced from the law of Boyle and Marriotte, viz., $\mathrm{T}_{2}=\left(\frac{p_{2}}{p}\right)^{\boldsymbol{\gamma}} \mathrm{T}_{1}$, in which $T_{2} T_{1}$ are the temperatures on a Boyle and Marriotte scale, adopted, viz,:-
$t_{2}+459 \mathrm{deg} .=\left(\frac{p z}{p_{1}}\right)^{\gamma-1}\left(t_{1}+459 \mathrm{deg}.\right)$
The correct equation is-
$t_{2}-t_{1}+459 \mathrm{deg} .=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma}} 459 \mathrm{deg} . .$.
(A)
steam, the equation for the same range of tempera
In the case of steam, the equation for the same range of tempera
tures is, in accordance with Harrizon's data-
$t_{1}+720$ deg. $=\binom{p_{2}}{p_{1}} \frac{\gamma-1}{\gamma} 720 \mathrm{deg}$.
459 deg . in the case of air, and 720 deg . in the case of steam, being t_{1}, the lower of the two indicated temperatures, whatever the value of t_{1} may be.
Since the value of γ varies with the temperature, formulas \mathbf{A} and B, with an average value for γ in each case, can only give approx mations to the true value of the temperatures. If, in the case of
steam, we adopt 212 deg, as the lowest temperature, the formula steam, we ad
reduces to-

$$
\begin{equation*}
t=\binom{p}{14 \cdot 7}^{\frac{\gamma-1}{\gamma} 720 \text { deg. }-508 \mathrm{deg} .} \tag{C}
\end{equation*}
$$

In equations B and C we must use the value of γ calculated from Harrison's diagram data, viz, 1.098 , so that $\frac{\gamma-1}{\gamma}=\cdot 082$. If we determine k and γ from the tabular data corresponding to 212 deg and 302 deg., an interval of 90 deg., the corresponding tabular
pressures and volumes are 14.7 lb ., $69 \cdot 1 \mathrm{lb}$., 1642 cubic feet, and 383 cubic feet respectively, and we get

$$
\begin{equation*}
t=\binom{p}{14 \cdot 7}^{1.66} 934 \text { deg. }-722 \mathrm{deg} . \tag{D}
\end{equation*}
$$

and $\gamma=1.064$. If we determine k and γ from the tabular data corresponding to 212 deg . asd 392 deg ., an interval of 180 deg . the
corresponding tabular pressures and volumes are $14 \cdot 7 \mathrm{lb}$., $226 \cdot 6 \mathrm{lb}$., corresponding tabular pressures and volumes are 14.7 lb ., 226.6 lb
1642 cubic feet, and 126.6 cubic feet respectively, and we get-

$$
\begin{equation*}
t=\left(\frac{p}{14 \cdot 7}\right)^{0.64} 953 \text { deg. }-741 \mathrm{deg} \tag{E}
\end{equation*}
$$

and $\gamma=1.068$. The divergence in the values of k and γ in equation the values obtained from Harrison's data for ranges of abont 90 deg. of temperature, is due solely to experimental differences. Why the ralue of k for both ranges of temperature deduced from the tables is practically the same, and why in the case of the
formule deduced from Harrison's data for ranges of 90 deg. and
range of 90 deg．than for that of 180 deg．，admits of easy explana－
tion．This explanation will also， 1 think，remove the dificulties under which some of your correspondents appear to be labouring
as to the significance of the word temperature．
To insure clearness of argument I will first give exact definitions f the meanings of the terms used
Definition No．1．－The quantity
the quantity of thermal power possessed by the body in a given thermal state
Definition No．2．－When two bodies are in contact and no heat
passes from one body to the other，the two bodies are in the same ermal state，and are said to have the same temperature．
Definition No．3．－A thermometer is an instrument for
the difference between the quantities of heat possessed by by Definition No．4．－The English thermal unit of mass is the mass of the platinum standard．In analytical dynamical investigations when one pound，one foot，and one second are adopted as units of orce，space，and time respectively，the un
times the mass of the platinum standard．
The difference between the quantities of heat possessed by a unit of mass of any substance in two different thermal states is ascer－ tained by measuring the difference in volume of the operative substance used in the thermometer，when it is brought into the
same thermal states as the substance，by bringing its bulb in contact same thermal statas as the substance，by bringing its bulb in contact
with the substance and comparing this with the difference in tates，of which the difference between the quantities of heat possessed by unit of mass of any substance in those thermal states
s known．For instance，waterbetween the thermal tater is kgown．For instance，water between the thermal states of melt－
ing ice and ebullition．This quantity may be divided into any of the difference between the heat possessed by a thermal unit of that mass of water at the temperatures of melting ice and boiling water respectively．If，then，the increment of the volume of the operative substance prodnced by raising its thermal state from that of melt－
ing ice to that of boiling water is properly divided into 180 f heat equal to the English thermal unit multiplied by the specifio heat of the substance at constant volume．Each of these intervals marked on the tube of the thermometer is called a degree of
temperature．If equal increments of heat corresponded with temperature．If equal increments of heat corresponded with
equal increments of volume，the intervals on the tube of the
thermometer would be of equal length，and the mode of marking the divisions at present adopted correct．Equal increments of volume do not，however，correspond with equal increments of heat． of the volume occupied by unit of masss，which varies with the pressure to which the substance is subjected．Now it bas been
ascertained that whatever the volume may be of a given weight of gas at the temperature of melting ice，its volume at the tempera． ture of boiling water bears a constatht ratio to it it，so long as the
turessure remains constant．This law must，therefore，hold true pressure remains constant．This law must，therefore，hold true between the heat possessed by unit of mass of any substance at the
temperature of boiling water and melting ice into any assigned number n of parts and $v_{1}, v_{2} v_{3}, \otimes_{c}$ ．$v_{n}-1 v_{n}$ represent the volumes of the operative substance of the thernmopeterent at the temperature of melting ice and at the successive temperatures of
the substance after one，two，three，\＆c．，$n-1, n$ units of heat the substance after one，two，three，s．e．，$n-1, n$ units of heat
multiplied by the specifici of the substance bave been added to each mhitiplied by the specicicic of the substance bave been added to ache volume of the operative substance of the
perature of boiling water，we shall have
$\stackrel{v_{1}}{v_{1}}=\frac{v_{2}}{\tau_{2}}=\& c .=\frac{v_{n-1}}{v_{n}-2}=\frac{v_{n}}{v_{n}-1}=\frac{v_{n}+1}{v_{n}}=\& c .=(1+\alpha)$
where a is the coetficient of expansion determined from the equa－
tion $(1+a)^{n}=\frac{v_{n}}{n}$ ．The coefficient of voluminal expansion per unit of increment of heat is therefore constant，so that equal
increments of volume do not correspond with equal increments of ncrements of volume do not correspond with equal increments of Now all existing thermometers are graduated by dividing the difference between the volume of the operative substance at the temperature of boiling water and melting ice into a number of
equal parts and intervals of the same length are continued below
 Near the temperature of melting ice the intervals between the marks on the tube of the thermometer are longer than the true
intervals．
Below intervals．Below the temperature of melting ice the divergence continues to increase，above the divergence decreases until at some
point between the temperatures of melting ice and boiling water point between the temperatures of melting ice and boiling water
the true increment of volume corresponds with the mean， after the mean increment is less than the true increment，and the
divergence continually increases．At the temperatures of boiling water and melting ice the marks on a correctly graduated ther－ mometer coincide with those on thermometers graduated into
divisions of equal length，but at no other points．Since the mean intervals are greater than the true intervals in the neighbourhood of the freering point，temperatures below the freezing point
indicated by an ordinary thermometer are higher than the true temperature，and the divergence cometinually increases．Above tree
freezing point the indicated temperatures are lower than the tre reezing point the indicated temperatures are lower than the true
temperatures，but the divergence continues to decrease until at boiling point they coincide．In the neighbournood of the boiling
point the mean increment of volume is less than the tree incre point the mean increment of volume is less tban the true incre－
ment of volume per unit of increment of heat，so that the indicated temperatures below boiling point are lower，and above boiling
point higber than the true temperatures，and the divergence of k are practically the same，because the increment of volume
from 212 deg．to 302 deg．is by the law of Boyle and Marriotte equal to the increment from 302 deg．to o392 deg．，whilst in the case of formula C the increment was calculated in accordance with the
true la expansion．
In the letter from Mr．Harrison，referred to in my letter to your－ the work calculated from the diagram for pressures of from $451 b$ to 1501 lb ．with the tabular values，Mr．Harrison makes the following remark：－＂Unfortunately for my theory it does not apply outside
these limits－i．e．， 45 lb ．and 150 lb ．－of pressure as the steam table stands to－day．Above 150 lb ．there is more heat shown than I require，and below 451 lib．there is too muct molume．I Ithink there
may possibly be an error，and that the low－pressure volumes may be much too great．I can think of no method of experiment which
will give those low－pressure volumes with anything like accuracy．＂ the discrepancies to which Mr．Harrison refers would be reduce to within the limits of allowable experimental differences by the
use of a correctly graduated thermometer．It would suffice to
mark out correctly the spaces corresponding to suceessive differ－ ences of $45 \mathrm{Fr}, 25 \mathrm{C}$ ．，and 20 R ．thermal units and to divide the intervals into equal spaces．The temperatures would in this way

 ture is 26.3 cubic feet，and at 200 lb ．pressure the tabular volume
is $2 \cdot 26$ cubic feet and the temperature 381.7 deg．，so that the rise
in temperature according to the tables is 169.7 deg γ determined from the equation $p e^{\gamma}=$ const．is 1.064 ，and we have $p v-p_{0} \sigma_{0}=\frac{(452-386 \cdot 6) 144}{\gamma-1}$ foot－pounds $=147,127$ foot－pounds，

147，127

we deduce the volumes from Harrison＇s value of the volume at
b．，which agrees with the tabular volume within 1 per cent．，
viz， 9 cubic feet，by means of the value 1.098 for γ ，we get
volume at 200 lb，equal to $2 \cdot 31$ cubic feet，or onls 2 per cent than the tabular value，and at $14 \cdot 711 \mathrm{lbe}$ t， 24.94 cubic feet，or 7 per cent．less than the tabular values．These discrepancies，consider－ ing the dificult nature of the experiments and the fact that the
formula by which they are tested is only approximately trae，are certainly not outside allowable limits of error．We have，from the values last obtained
$-366 \cdot 6$ ） 144 foot
$=\frac{139,694}{169}$ foot－pounds $=823$ foot－pounds.
The Boyle and Marriotte values of the temperatures，however， differ very widely from the true values，The difference between the volume occupied by the air in an air thermometer graduated
according to the law of Boyle and Marriotte－i．e，with equal intervals corresponding to two suceose thates－is equal ascertaining the amoune per degree of temperature determinea by
anpansion between the temperatures of melting ice and bioling water，multiplied by the differences
betwen the numbers of degrees，which denote the temperatures between the numbers of degrees，which denote the temperatures
of the two states．In the case of air the mean volume is equal to
$\frac{3665}{180}$ eubic feet．The increment，therefore，between 32 deg．and 381.7 deg ．is equal to

$\frac{.3665 \times 3497}{180}=7103$ cubic feet．

Since the coefficient of expansion of air per degree F is equal to （he true temperature，we shall have
Whence $t=3428 \mathrm{deg}$ ．The following table gives the values of
the temperatures indicated by the temperatures indicated by a truly graduated thermometer，in
which every rise or fall in one degree of temperature indicates an equal increment or decrement of heat，corresponding to the values
on a Boyle and Marriotte scale，which refer to the same thermal state of the body

 the differences between the temperatures on a correctly $\begin{aligned} & \text { cradingated }\end{aligned}$ thermometer，in the case of the examples worked out for Boyle to the range of pressures from the following result．Corresponding ing trua indicated temperatures 265．8 deg．and $328^{\cdot 3}$ deg．，we have
from Harrison＇s indicator diagram data
$J=\frac{68,607 \cdot 7}{62 \cdot 5}$ foot－pounds $=1088$ foot－pounds．
From the tabular value of the volume at $1501 \mathrm{lb}, 2 \cdot 95$ cubic feet Harrison＇s experiments， $65,020 \cdot 4$
$=\frac{65,020 \cdot 4}{62 \cdot 5}$ foot－pounds $=1040$ foot－pounds．
From tabular values of pressures and volumes and the corre－
sponding value of $\gamma 7$, viz．， 1.07 ，
$\frac{67,885}{62.5}$ foot－pounds $=1086$ foot－pounds．
Corresponding to the range of pressures from 1471 b ．to 200 lb ．， $342-8$ deg．，we have from tabular values of volume and correspond－ ing value of γ ，
$\frac{147,127}{130 \cdot 8}$ foot－pounds $=1125$ foot－pounds．
 1 per ce
$\mathrm{J}=\frac{139,694}{130 \cdot 8}$ foot－pounds $=1068$ foot－pounds.
From 32 deg．to 180 deg．，within which limits must be included
the difference between the true temperatures is greater than the
difference between the Boyle and Marriote temperatures difference between the Boyle and Marriotte temperatures．The
value of J，therefore，correctly estimated from the result of Joule＇s experiments is less than 772 foot－pounds．Are we then to reject the
data obtais data obtained from Regnault＇s experiments and from indicator from these data exceeds that determined by Joule by his direct experiments by more than 40 per cent．？The mean of the values
determined from the tabular volumes and pressures is 1080 foot． determined from the tabular volumes and pressures is 1080 foot－
pounds and that determined from Harrison＇s diagram 1088 foot－ pounds，and that determined from Harrison＇s diagram 1088 foot－
pounds，which diffors from the former by less than 1 per cent．Can we，in the face of such strong corroborations of the truth of the totally different kind，hesitate to come to the conclusion that the 1130 foot－pounds．
10 ermal unit lies between 1050 foot－pounds and 130 foot－pounds．
Since the trae
 temperature of the mixture of one pound of steam at 2122 deg．with
50 lb．of water at 58.2 deg．，we shall have，leaving the effects of latent heat out of 12 eratio
From this we get $t=61-5 \mathrm{deg}$ ． If ，then，the actual resulting tem perature of the mixture is 82.8 deg．，we shall have latent heat $=$ pounds，thelatent heat of one pound of steam at 212 deg．is equal to
1086×1080 foot－pounds $=1,172,880$ foot－pounds ；according to the hitherto accepted values．it it is equalt to 744,980 foot poot pounds
only．The difference， 427,900 foot－pounds，is an addition of nearly only．Per cent．torence，hitherto accepted value．There is clearly
so
still a wide field left open for icer steam．Unless a much greater proportion of the total heating power of fuel is atilised in boilers than has hitherto been supposed，
the total heating power of fuel must be much greater than the amount stated in the tables．Since the true temperature，corre－
sponding to 3000 deg．on an equally divided scale，is only 1130 deg sponding to 3000 deg．on an equally divided scale，is only 1130 deg．＇，
the indicated number of thermal nuits is nearly 170 per cent， greater than the e true number，whilst the increase to the value of
the thermal nuit is only abont 010 per cent．The ectual heat required
to smelt cast iron must bo much less than the estimated quantity． In can be demonstrated that the number of degrees of the abbso－
late temperature of boiling water cannot be less than thamber late temperature of boiling water cannot be less than the number
of thermal units of latent heat and may be more．It cannot there．解隹 be less than about 1086 deg．The Boyle and Marriotte tem－ peratu the Boyle and Marriotte temperature－ 459 deg．，the true temperature is
The conclusio
The conclusions at which I have arrived are the result of calcula．
tions based on experimental data，which are universally accepted tions based on experimental data，which are universally accepted
as being very near the truth．Those，therefore，who decline to Appeals to authority on questions which admit of being settled by argument are simply childish．Wiliam Dosaldsos．
April 7th．

arnot and modern heat．

SK，－－Incoummon with a good many others who have not a very clear conceoption of thermodynamic problems， 1 have sought instruction
from Dr．Lodge＇s chapters appearing in THE ENGINEER．If I under stand him correctly，ho contends that motive power can only be
obtained by descent of temperature from a higher to a lower level， without referenco to molecular constitution，and in Section XI， April 20 th，， ，instances the example of the steam engine in these
of the great annecessary drop of temperature between the furnace
and the boiler．Starting with the temperature of the boiler，and ignoring all energy below the temperature of the condenser，it may be efficient enough， 80 or 90 per cent．I suppose
Now，I have always been under the impression that，although much of the energy of combustion certainly goess to waste between
the farnace and the boiler，the engine itself is an imperfect machine，incapable in its action of turning to account the greater part of te energy which bas been imparted to the steam．Taking cylinder，as determined by Regnault，will be 281 deg．Fah．，and
the latent heat 916 deg．；total heat， 1167 deg．According to Dr． efficiency during one stroke that due to the fall of temperature from 281 deg．to that of the condenser ；but in there were no such thing as latent heat－that is
to say，if the whole of the heate energy imparted to the steam
could be thailable路 Everybody would be rather more than four times as much． an economical producers of work，but all I wish to point out is that the biler alone is not to blame．The most serious defect of the ystem is the impossibility of utilising three－fourths of the total
constituent beat of the steam．The hope of the future lies in the study of internal molecular motion and the possibilities derivable therefrom．
Middlesbrough，April 26th．

the forty－eight hours＇week．

Sir，－The correspondence which has appeared in The Enaingen from various parties interested in the forty－ight bours＇question
has induced me，as an old member of the Amalgamated Socity ask the insertion of my opinions on the matter，which I know are shared by a number of my brother members．I agree with Mr． Hope that the result of the introduction of this system is at
present ansatisfactory，but for different reasons，It will no doubt present unsatisfactory，but for different reasons．It will no doubt
be in the recollection of many of your readers，that when the change was first suggested three leading principles were laid down those men would have more time in the evening for intellectua improvement，recreation，or otherwise．（3）That their condition
would be improved physically by the lessened amount of labour to be performed during the day．The system as adopted at Messrs． Allan＇s，Mather＇s，and Woolwich Arsenal has signally failed to
comply with each of these conditions．Since Mr．Allan announced in the press that production bad not decreased through its adop．
tion，it has been made an imperative condition that no decrease in the output must take place wherever the system has been adopted．
This at once disposes of the idea that more men would find This at onco
employment．
work rule that the men should start later in the morning and work later in the evening seems to me utterly absurd．The
argaments advanced for this are to my mind ridiculous，and simply mean，when one reads between the lines，that managers，
foremen，timekeepers，and other officials，who are mostly rated men，do not like to turn out early in the morning，while they are amusement，but the workman has to go home，probabyly by rail，
clean himself，and have his tea，before he is in a position to do so． clean bimseif，and have his tea，before he is in a position to do so．
After spending nearly half a century in labour， 1 would rather go After spending neariy har a century in iabour，we with the excep．
to work at six in the morning and leave at five wis might be altered to seven a．m．to six p．m．The third condition is nullified from the fact that the severity of the labour is increased by it being compressed from nine hours into eight．
Thaking these circumstances into consideration，I have come to were previous to the alteration，while the employer is considerably benented．For instance，at Woowwich the running expenses of will be saved on 300 hours per year．This will amount to a con siderable sum，and may perhaps account for the wilingness of
the Government to carry out the change in the Goverment first puzzled me，but I bave since come to the conclusion that it
 whoever supports the change on the lines laid down at the three
establishments I have mentioned，is acting entirely in the interests of employers．
April Soth．

Sir，－Will you let a woman say a word about the eight hours． I do not want my man at home in the morning when the breakfast
has to be cooked and the children washed and dressed；he is in the way．Let him go to his work early and come home to a comfort chester were allowad a word，we would．not have women of har saved
in the morning．Cut it off the other end of the day，when it will be of some use，
Manchester，May 1st．

A Fitter＇s Wifg．
foreign tests of steel．
SIR，－In a recent communication in The ExGINERR，December 29th，1893，under the title of＂Tonsile Tests of Wrought Iron Rail－
way Axles，＂I drew attention to the undesirability of engineer demanding too high a tensile strength for iron and steel used in constructive work．It is also desirable to notice the fact that mild steel of low tensile strength is preferred in Germany，and the
following extract from a letter from one of the highest metal－ following extract from a letter from one of the highest metal．
lurgical authorities in Germany confirms my views on this

In Germany do not show the＇mysterious＇cracks and other occurrences as with steel of greater tensile strength．While you say in England that material of twenty－six to thirty tons tensile strength，we in Ger many are of the atrong opinion that the better results are obtained from steel of lower tensile strength．The boilermakers take，as a rule，material of not more than $25 \cdot 4$ tons，and their specification is
for furnace plates from 27.6 to 25.4 tons tensile and 25 per cent． elongation．In the same direction goes the strong opinion in for constructions，\＆c．，are too higb，hecause the milder steel is more trustworthy．Certainly there is made steel of higher tensile There the consumers wish expressly to get the harder material．＂ Germas communication affords an idea of the present practice in subject that the successful competition of our German rivals in engineering work is partly due to the practical metallurgical
knowledge displayed by them in this selection of mild steel of low

［It seems possible，however，that German engineers are com－
pelied to accopt these low steels simply because German makers do not know how to produce highor steels which are trustworthy．－
ED．E．］

The Select Committee of the House of Commons which has been considering the Southwark and Vauxball Company＇s Bill
announced on Tuesday that they considered the preamble proved， but might，when dealing with tho clauses，have to suggest that the wish to prejudice the question of the acquisition of the Londoy wish to prejudice the question of the acquis
water supply by a competent water authority．

THE GLASGOW SEWAGE DISPOSAL WORKS
MR. G. V. ALSING, ASSOC. M. INST. C.E., ENGINEER

GLASGOW SEWAGE DISPOSAL WORKS

In our previous notice of these works-page 42 ante-we fully described the progress of the sewage through the Swanston-street to the outlet for the pure effluent to the Clyde, and it only now remains to give some explanation of
through three endless travelling intercepting screens, seen in the precipitation tanks H H, and the aëration planes I I, with end view at B, to the catch pit C. The floor of the pit is the channel Q in the centre for conveying the liquid to the shaped into three grooves, each containing a screw conveyor lifted bya bucket elevator and deposited in rail from which it is
 wall into the large channel D, and thence to the pump well E filter beds. The culverts S S serve for the removal of the sludge from the precipitation tanks, the sediment being allowed to flow through valves into the culverts, after the beds by means of floating drainers, to be afterwards described.

Fig. 9-SAND-WASHING MACHINERY, GLASGOW SEWAGE WORKS
the accompanying sectional drawings of the machinery build- from which it is raised by centrifugal pumps and discharged ing, \&c., which in conjunction with the description and plans already published will, we hope, render the structural arrangements and modus operanai perfectly clear. Fig. 1 is of the two catch pits and the pump-room. The sewage after passing from Swanston-street under the precipitation and aesration tanks by the channel A, as shown in Fig. 2, flows
through a large cast iron main into the mixing pit F. In this chamber the chemicals required to effect the precipitation wards flowing by way of the channel G treated liquid afterof the precipitation tanks $H H$ to which it is admitted for either the intermittent or continuous modes of operating os described in our first article. Fig. 2 shows a sectional view of

Fig. 3 shows a sectional elevation of the sludge tank K , with the mixing floor and apparatus for incorporating the precipitation chemicals above, and of the apartments containing the sludge pressing plant. The sludge runs by gravity from the precipitation tanks through the culverts S and J to the reservoir K, which has a capacity equal to a twenty-four tank, the sludge is lifted by means of two chain pumps to

CENTRIFUGAL PUMPING ENGINE

tirre mixer M on the floor above, in which it is thoroughly stirred with a quantity of either lime or oharcoal, after which it flows through pipes to the sludge rams N. From the rams the
sludge is forced by compressed air to the filter presses 0 O, on the upper floor of the building; the compressed cake lafting through shoots into railway wagons below. To the facilitate the dispatch of dry refuse collected by the city cleansing department, along with the sludge cake, to the Corporation farms in the country. Fig. 4 shows a section through the precipitation tanks and the aëration beds in the line of the channel J, which conveys the sludge from the collecting culverts S S, to the sludge tank K. Fig. 5 shows two sets of filter beds in section. The strained and aërated liquid, after passing under Swanston-street by the syphon pipe shown in dotted lines, passes first through the coke
filter R, and thence by way of the channel U to the sand filters T T, where the last traces of impurity are removed. The liquid reaches the second set of filters by a distributing channel, passing from the syphon pipe about midway between the filter beds, and communicating on either side with the channels shown to the left of the coke filters. After perco lating through the beds of graduated filtering materials, the clarified liquid finds its way by numerous division channels o the main outflow watercourse V, which carries the effluen Fig. 6 rep
Fig. 6 represents one of the largest of the centrifugal pumping engines made by Messrs. Drysdale and Co., of the from the pump well to the mixing pit in the machinery building. The four large pumps, jointly capable of raising $1,120,000$ gallons per hour to a height of 28 ft . with a steam pressure of 100 lb . per square inch, are all similar in design to that shown in our illustration, two of them being adapted for 15 in . and two for 1 sin. suction and delivery pipes. The engines, representing a improvements, all working parts being arranged to latest great strength and accessibility. The crank shafts are ent out of solid steel forgings, and all bearings are of bronze lined with white metal. The cylinders are fitted with paten pistons, sight-feed lubricators, and improved relief valves and lagged and covered externally with planished sheet steel A novel hand barring gear is provided for turning the engines, and patent ejector condensers are fitted, so that they can be worked either condensing or non-condensing as desired, by have with a view to securing high efficiency and small frictional losses, are fitted with patent improved charging appliance and the necessary sight glasses. Similar installations of pumps and engines have been supplied by the same makers to the London County Council for the metropolitan main drainage stations at Barking and Pimlico; also for main drainage stations at Dublin, Belfast, and other places, with we understand in all cases, highly satisfactory results. In
addition to the four main pumping engines described above, Messrs. Drysdalejand Co. have supplied the Glasgow work with two smaller belt-driven pumps, seen to the right hand of the installation in Fig. 1, delivering into a pipe in com pumping hour
Figs. 7 and 8 show respectively an elevation and a plan o the floating drainers supplied by the Glenfield Company Kilmarnock, for emptying the clear liquid from the surface of the precipitation tanks after the sludge has settled to the the tanks so as to be easily operated by men standing on the division walls. The drainers are controlled by means o double-faced sluice valves, operated by rods passing through and closing. Before the sewage is hand wheels for opening arms are drawn up to an almost vertical position and fixed by chains to the pillars. After precipitation has sufficiently advanced the arms are lowered, and the cocks on the pillar of the sluice valves opened to allow water to enter and sink the arms till the floats rest on the surface of the liquid. The floats keep the open mouths of the arms just below the sur face of the water, the arms sinking with the liquid till the floats rest on the sludge, after which the arms are again hauled up and faxe to time is saved, and all risk of disturbing the settled sludge is time is
Fig. 9 gives a general view of a novel sand-washing machin employed for cleansing the filtering material, which has als been made by the Glenfield Company. As the filter beds cover a large area, the moving of impregnated sand to and from the ordinary stationary washing-box would have formed a seriou item of expense. The washing vessel is mounted, in thi plase, on a the of the carriage are made to turn at right angles, so that the entire apparatus is not only able to travel from end to end of a series of filter beds, but can at will be transferred from one series to another. When the spot to be operated upon is reached, the movable wooden platform of the machine is lowered to within a few inches of the surface of the filter The workmen then easily throw the soiled sand on to the perforated inner bottom of the washing-box. A current o gravitation water led to the machine by a hose passes up-
wards through the sand and speedily cleanses it, the dirty wards througg coke filters. The front plates of the washing vessel are formed as sluice doors with suitable gear for opening, and when the washing is completed the doors are raised and the sand falls back into the filter, the whole operation being rapidly, cheaply, and effectively performed.
The Dalmarnock sewage works, which it may be mentione have been effectively lighted with incandescent and arc lamp by thestaff of the Corporation electric lighting department, were
formally cpened by the Lord Provost on the 2nd inst.; but they have already been long enough in experimental operation to show that they are easily capable of performing the duty expected of them, viz., the purification of the sewage from the eas tern portion of Glasgow, amounting to about one-fifth of the city's total production. The entire establishment has bee Mr. G. V. Alsing, A. M. I.C.E, and when in ordinary operation the works will be under the control of the Corporation cleansing department, the practical management devolving on Mr. T. Melvin, who has acted as clerk of works since the commencement of operations two years ago. As to further steps likely to be taken in the direction of dealing with the sewage from other parts of the city, nothing is as yet definitely decided; but it is not improbable that other cimilar works, to deal with the western drainage, may ere long be commenced at Dalmuir, where the Corporation owns about 200 acres of suitable land, purchased a number of years ago farm an intention, it is hardly necessary to say, long sinc abandoned. \qquad
GROOMBRIDGE'S SLOW SPEED DIRECT. ACTING FAN.
This fan, which is illustrated by the engraving below, is non-centrifugal, but is constructed with a rotary disc, having apertures in which are mounted feathering or swivelling vanes acting as pistons, and working in an annular casing formed with a diaphragm or partition near the outlet, preventing the return to the inlet of the air drawn into the machine. The vanes are mounted on spindles provided with cranks or arms which engage in a cam groove or path formed in the cylindrical surface of a sta
centrically with the annular dise.
The shape of the cam groove or path is such as to keep the vanes at right angles to the disc path is such as to keep the vanes at right angles to the disc during a portion of each
revolution, but to cause them to feather or swivel and lie flush with the surface of the dise in the apertures therein, and so enable them to pass through the diaphragm or parti-
tion. The annular casing is formed in two parts or halves

which are situated on opposite sides of the dise, and the diaphragm consists of two internal projection3, one on each together a pap or space is left between them, to allow passage to the disc and vanes in their movement of rotation, but which gap or space is in reality always filled by the rotary disc or a vane therein, and so prevents the air returning to the inlet. The working of the fan is as follows :-The disc being set in motion, the vanes are caused to travel round the

COVER SHOWING DIAPHRAGM
annular chamber or casing, and are guided by the cam groove into a position of right angles with the disc, and transversel to the annular chamber or casing, while they are caused by the cam groove at the proper time to feather and turn flush which they return to their former position daphragm, after pass the air inlet they occupy a position at right as the the disc. In this way air is drawn in behind each wane, an is carried round the annular casing or chamber by the vanes, and striking against the diaphragm is forced through the outlet. The vanes correspond in shape to the cross section of the annular casing.
One of these fans has been made by Messrs. Wailes, of utions-road, London, by whom it is worked at 320 revoan air pressure of 23 in . of water. Mr. Chas. Groombridge Enfield, is the inventor.

RAILWAY MATTERS.

The Gold Car system of heating carriages by steam from the engine, which has been in operation upon the Manchester,
Sheffield, and Lincolnshiro Railway, is now about to be adopted
 Bowdon, and the cas
into use next winter.
The improvements in preparation by the North-Eastern Railway Company at Sunderland Station do onot meet with the
approval of the Corporation, who have instructed their town clerk approval of the Corporation, who have instructed their town clerk
to inform the company that tho alterations to be made are totally inadequate to moet the neods of the town, and that, short of an
entirely new station, the only satisfactory plan would be the oxtenion of the existing station westward.
In Europe no railway accident of importance, in which petroleum has played a part, has occurred since that at Abergele.
History bas, however, repeated itself, and at ten oclock on the
 lision with a goods train between the villages of ZWyndrecht and
Barendrecht, in tha province of South Hoolland. Some of the
trucks of the goods train were laden with petroleum, which at trucks of the goodd train were laden with petroleum, which at
 the stoker of the exprese woro both seriously injured, and six
the passengers received slight hurts. Oher accounts spak of
large number of injured. The mails for Amsterdam were saved.
In a Board of Trade report on the accident at the pablic road lovel-crossing near. Altrincham Station, and to the the manager of the railimay that the present is the first case of
personal injury sustained at the crossing during the twenty-four years he has been manager. Major-General Hotchinson describes the accident, which was due to a misunderstanding between the
driver and guard of a ballast engine train, and then refers to the proposed substitution of a new foot-bridge for an existing one, which people will not nse. One proposed arrangement would cost
the company $£ 20,000$, and even then would not be as convenient ss a subway, which the inspector suggests would be better for foot
passengers, perambulators, and cycles, which cannot use the present step bridge.
The Belgian State Railroads had 2018 miles of road at the end of 1892,2091 locomotives, 1287 tenders, 281 passenger
cars 577 baggage cars, 4,770 freight cars, and 916 station-a station for every 24 miles.
grades was 42,881 , or 20.5 per mile of road, four times as many as passenger trains, and 7 train movement was equivalent to traight trains each way daily, with an
average of 7.51 pasenger cars, and 17.4 f froight cars per train. Further progress wassongar cars, ind add $17 \cdot 46$ freight cars per train.
the Sunday frepght train movement. In 1891 out of 1621 rreight trains 1442. per per cent.
did not run Sunday; in 1892,1505 out of 1639 or 917 per cent. The
respectable sum of 107,776 dols. was received for "platform tickets," that is, tickets which authorise the holder not to ride, but
to pass through the station to the platform in front where passengers get off an
offer his services, \&c.
The Great Eastern Railway Company announces that for them the Royal Agricultural Society's show at Cambridge it is
from erecting an extensive new station at Mill-road, which will be nearer to the show ground than the present station. It has also been
arranged that stock from any part of England and Scotland consigned by the Great Eastern Company's route will be conveyed in
through vebicles. Special arrangements will be made for the through vehicies. Special arrangements will be made for the
prompt despatch of return show trafict In addition to the ordi-
nary excellent fixed service of express trains betwen nary excelient ifixed servico of express trains between Liverpool-
street, St. Pancras, and Cambridge, extra fast trains will be run.
Great, Great, Eastorn through express trains will also be run between York, Doncaster, Lincooln, and Cambridge, enabling passengers to
travel without chango of carriago beotweon these points and affording direct communication with the principal places in Scotland,
and the principal stations on the North British, Northe Eastern,
and Lancashire and Yorkshire, and Manchester, Sheftiold, and Lininoln. shire Railways. There will also be througg communication or
passenger and live stock traffio with the London, Brighton, and Line and Liverpopol-street, and forn Rlive wayseck, traffic whith the London
and South-Western Railway, via Kentish Town, and the Great Western Railway, tia Victoria Park and Acton. Throngh tickets bridge.

APAcIous harbour, a city on sand and arid cliffs, a dry and sand-logged strotch of maritime plain, two enclosing rivers,
and a magnificent Hinterland. Such is the heart of Angola, artanagnancont inportant colonn, as described by the British
Ponsulat Loanda, who thus reports on the railway in course of construction in the district. It will not work miracles, but it will per pound to about thd., provided that the owners of estates and economically, and will, mor over keep out of trein ace to the line
such astounding items as $£ 7$ books for the carriag such astounding items as $£ 7$ 10s, for the carriage of a barrel of
cement worth 14s. Nearly eight years have elapsed since work on cement worth 14s. Nearly eight years have elapsed since work on
it first began, and the terminus is not expected to be reached aefore the close of 1895. Dividing the distance by nine gives an brilliant achievement. The gange of the line is metre, and the cost of the line has beon at the rate of $£ 4182$ a mile. The mate-
rial is all of Belgian manufacture. Trains are now running regufirst load of coffiee was brought down a few weeks ago. Before the next crop is ready for transport Cazengo and Golungo Alto
will have the permanent way laid straight between them. The third-class passenger is charged less than 1d. a mile, and the second three times as much, while a drst. elass passenger and a ton of some kinds of goods, says the Railuay Ners, such as building Writing on the cost of working Liverpool Overhead Railway, a correspondent says:--In the Railroad Gazette of March
16th, page 190, appears a table giving the cost of working, \&c. of the Liverpool Overhea
following little table :-

July
Ausust
Seppember

Hence during these three months 121,320 train miles averaged
3.743 d ., or 7.591 c . per train mile. On page 193 you publish an
 three months mentioned. Wee operating expenses were $£ 13,77$ sterling, which is 13.573 d ., or 27.526 c ., per train mile; that is 38
times as much as the mean cost given in the table. Of course, one who is familiar with these matters will see that the costs summed up in the table cover only the items there specified, and he will notice that a good many items which cause expense somewha,
near that arising from the items tabulated have been omitted The trains are composed of two light cars each. The latest analysis of the cost per train mile on the Manbattan Railway o
New York which I have at hand, is for the year ending September 30th, 1887. Assuming that these trains were made up of four cars, the cost fors trains of two cars would be as follows: Motive power
$12.6 ;$ carr, $.572 ;$ station 2 and other expenses, $6.95 ;$ way and
structure, $2.86 ;$ general, 2.87 ; total, 31 cents.

NOTES AND MEMORANDA

Writing in a German paper, a brewer attributes disastrous results obtained in a brewery to the employment of the
ac-lined casks. The lac had become porous, and toemed with wild yeasts and other organisms. He strongly advises the employment of pitch rather than lac.
Writing on the structure of certain varieties of rust, and their analogy with the sodimentary ferraginous minerals of
Lorraine, M. Bleicher says:- "' "The combination of ferric hydroxid and silica in presence of soft water underground may be so rapid
as to form rusts comparable in appearance and structure with iron as to form rusts comparabi.
A paper was recently read before the Paris Academy of Sciences Won an Electrochemical Method of Observation of Alternating Carrents," by M. P. Janet. By means of paper soaked
in potasium ferrocyanide and ammonium nitrate, and wrapped in potassium ferrocyanide and ammonium nitrate, and wrappod
on a rovolving metallic drum, a metallic style registers the periodi variations of the electro-motive force.
Iv a recent number of the Comptes Rendus is a paper on the magnetic properties of iron at different temperatures by
M. P. Carie. Thie intensity of magnetisation slowly decreases, thon more rapidly lessens, with rise in temperature, the rate of
loss attaining its maximum for soft iron between 740 deg, and loss attaining its maximum for soft iron betwen 740 deg, and
750 deg. There is no definite point for the temperature of trans formation of ivon, At temperatures above 750 deg. the intenity
magnetisation continues to decenese at a continually lessening rate in general, from 950 deg. to 1280 deg. the coofficient of magneti-
sation is almost constant. Between 755 deg. and 1365 deg. the coefficient is independent of the intensity of the field.
That it is easy to find microbes in the soil capable of assimilating atmospheric nitrogen, if culture media devoid of al
combined nitrogen are employed, was pointed out by M. Wino gradsky last summer, and in a recent number of the Comptes Rendus an account is given of important progress made by hino in
this most interesting subject. By progresive caltivation of this most interesting snibject. By progressive caltivation of a
mixture of mierobes derived from soil, in a nutritive liquid from which all traces of combined nitrogon were carefully excluded,
Nature says, Winogradsky reduced the varieties present to three Nature says, Winogradsky reduced the varieties present to three
bacilli, of which one was finally separated out and discovered to be endowed with this function of assimilating atmospheric nitrogen. This organism is strictly anaërrobie, and will not grow in either broth or gelatine. It ferments glucose, producing butyric, acetic,
and carbonic acid, and hydrogen. The amount of atmos pheric nitrogen assimilated is proportional to the quantity of glucose con-
tained in the culture material, and which undergoes dom tained in the culture material, and which undergoes decomposition by suggesting that this phenomenon of the fixation of atmospheric nitrogen may be due to the union witbin the living protoplasm of the microbial cell, of atmospheric nitrogen and nascent hydrogen, resulting in the s.
Iv an article on the machinery in the Postal Telegraph Cable Company, New York, the Electrical World describe
lift in which the ball threaded nut is used. The only points of contact between the nut and screw are by a chain of balls, which
occupy twelve threads, and enter and leave the ends of the nut occupy twelve threads, and enter and as they lenve one end nut
through a tube, which takes the balls as returns them to the other end at a tangent to the line of travel bital points of the elevator apparatus, and herein lies one of the most potent reasons of its success-the reduction of friction by soure-for not only is the nut so constituted, being, in fact, a developed spiral thrust bearing, but the trast bearing at the on ball or roller bearings. So free is this machine from statio friction that it is possiblo to start the lift with a slight increase
of current over the normal hoisting current, provided time be taken so that the work done in acceleration is small compared to
 crusbing under normal or oxtra working strain. Ten balls of two
different make were put under crushing strains, and required from
竍 different make were put under crushing sta
$20,000 \mathrm{lb}$ to to $40,00 \mathrm{lb}$ to to break each of th
sure varies from 50 lb . to 125 k b. per ball.
In the course of a lecture at the Royal Institution Professor J. A. Fleming described various olectric generating
stations in this country, including those at Liverpool, Glasgow, and St. Pancras, and the plant used in transmitting 2000-horse power
trom the Falls of the Anio, at Tivoli, for eighteen miles over the from the Falls of the Anio, at Tivoli, for eighteen miles over the
Campaga to Rome. From the upper levels of the Anio an aqueduct has been led which delivers water to the top of an iron pipe halfway down the declivity on which are situated the famous cas cades of Tivoli. The pipe is about two metres in diameter and can
deliver 100 to 150 cubic feet of water a second with a head of 150 ft , or nearly 2000 -horse power. The water is conducted to a series of The six larger ones are directly connected with Ganz alternators, which generate a current of electricity at a pressure of 6000
volts, while the three smaller ones are used to drive the exciters The current is conveyed to Rome by four cables carried on 760 posts, which are placed in a straight line across the Campagna.
Outside the Porta Pia t Rome is pressure is reduced from 5000 to 2000 voits. Part is then used
for aro lighting in the streets of Rome, and the rest is distributed by underground cables to various other centres, where it is again transformed down to a pressure of 100 volts for use in houses,
About twenty thousand incandescent lamps are thus supplied with current.
At a recent meeting of the Kaiserliche Akademie der Magnotisation of Iron and Nickel Wires by Rapid Electrical Oscillamaterial traversed by electrical develloped in a wire of a magnetio by means of the formula given by Lord Rayleigh and Stefen, the
value of μ (the permeability). The heat developed in the wir ander observation was determined by means of a thermoelectric
couple, and was compared with the heat developed in a no
 These values agree very well with those obtanded by Lord Rayleigt
and Bauer for very feeble magnetising forces. The results ob tained by these observers show that for certain values of the magnetising force the permeability is constant, and that it after-
wards rapidy increases. Now the results obtained by the author
show that over the range be is employing This fact, Nature says, may be explained either by supposing that the magnetising forces employed are so small that we are dealing
with that part of the curve where μ is constant, or that, although the magnetising forces are much greater than those to which the
former supposition limits us, the megnetisation is unable to follow the rapid changes in the magnetising force, so that the magnetisation nover reaches that part of the curve where μ is variable
and has very much greater values. A rough estimation has shown that, at least on the surface of the wire and at the commencemen of the oscillations, the magnetising force exceeds more than a
hundredfold the maximum limit within which μ is constant. Thns sation which must not be confused with the hysteresis., It would also appear that Baver and Lord Rayleigh's results which refer
to longitudinal magnetisation, also apply to circular magnetisa-

MISCELLANEA.

Messrs. Newton, Chaybers, and Co. (Limited), have closed one of their pits, working a section of the Thorncliffe thin
Messrs. Mavor and Coulson, Glasgow, inform us that they have appointed Mr. H. T. Barnett, of S5, Victoria-street,

Mr. John Clayton Mrwburn, chartered patent agent, Chancery--lane, and Mr. George Beloe Ellis, solicitor and
ontent agent, late of the firm of J. H. Johnson, Son and Ellis, of
 Elis.
On Monday afternoon a serious accident occurred in the shaft of a new colliery at Glasshoughton, near Castleford. Eleven men were at the bottom engaged in sinking operations
when the scaffolding suddenly fell in. The whole of the men were injured, and
repairing the wrecked shaft on the following day another mishap copased four men to have a narrow escape through baving the plat-
form on which they were working carried away by a sudden fall form on which they were working
of earth, timber, and brickwork.
The engineering operations of the South Staffordshire Mines Drainage Commission for the monthending April 27 have been
of a steady and satisfactory nature. The Commissioners, at their monthly meeting on Wednesday last, were informed in in the report also the general manager of the Commission, that the eight pumpalse engen had raised $8,929,000$ gallons, or 39,860 tons every
ing engeor
twenty-four hours. Bat, notwithstanding the low rainfall of $1 \cdot 8$ lin. of
twenty four hours. But, notwithstanding the low rainfall of 1.81 in.
of rain, there had been no diminution of water at the principal engines.
A NEw design for wheel-cutting machines, which has been recently introduced by Mesers. G. Birch and Co.. of Salford,
possesses some special features which it may be interesting to notice.
 different sizes of blanks, the end of the screw being fitted with an adjustable micrometer, which has one edge divided for ordinary ruch. This appliance saves considerababe time in the cutting of wheels, kc., as it enaber the
depth of tooth at the first cut.
AT Rheims an electric lighting station has been inMI. Wheyer et Richemond, are driven by gas engines, two of 50 -horse power, two with two cylinders of 80 -horse power, and a single-cylinder engine of 45-horse power. The regular working of
the engines has permitted, with the addition of an antomatic the engines has permitted, with the addition of an automatic
starting arrangement, of suppression of the electric accumulators ; and the light is, we are informed, very steady, even when the
motors only work with one-fifth of their fall charge. The milowatt costs 1 f . 21 . w., or onearly ha shilling; but the price is to be
kilo
reduced as the number of subscriber ing
A Local Government Board inquiry was held on Thursday, the 26th ult., by Mr. Riienzi Waiton, M. Inst. C.E., at
the Board Room, Main Drainage Works, Mortlake, with reference to an application by the Richmond Main Sewerage Board to
borrow $£ 7500$ for additional works. There was no opposition. The plans of the proposed works were explained by Mr. William triple expansion punpist engine capable of pumping 12 million gallons in 24 hours, additional sludge presses, to be worked on a
combined system of air pressure and direct pumping, screening

The position of the shipbuilding trade of the Clyde is very the past week. The Admiralty orders have been increased by the addition of half-a-dozen second-class cruisers, and the Government
work now on hand is admitted to give the Clyde a fair share of work now on hand is admitted to give the Clyde a fair share of
what is going. It is ostimated altogether that in the course of A pril no less than 70,000 tons of now shipping was placed with The output from the Clyde yards in the last four months embraces sixty-five vessels, with an a agregate of 91,183 tons, compared with
seventy-three vessels and 67,362 tons in the corresponding period of last year.
The mechanical perfection which has been reached in the long juction of the modern bicycle and tricycle is shown by pleting them. On Monday morning, the 23rd, the cyclists, Herr M . Villaume, described as Secretary or Attaché to the British Embassy in Paris, started from Paris for Vienna and Gratz. The
distance is about 1300 kiloms, or 815 miles Next month a run is to be made as between Milan and MunichTyrolean Alps, with a maximum height of 1239 m . The express
train covers the distance in twenty-two hours, and the cyelists

Some months ago a serious landslip occurred at Gohna in the Gurhwal district of Bengal, blocking the flow of a consider-
able river and converting a valley into a buge lake. Since then it overtops the dam it will carry it away, not and it is feared that when
andanding the enormons thickness of the latter, and cause a most destructive graph line is now being constructed from Hurd war to the spot in order to give timely warning to the people inhabiting the threatened
tracts; but apparently no measures are being taken to try and aver what may be a terrible disaster. The water is still 200 ft . below
the top of the dam, bat it may now he expected to rise rapidly, as the snow will soon melt with the advance of the season
The annual meeting of the South Wales Institute of En was announced that Mr. T. Forster Brown had retired from th. It sidency of the council, and the members appointed Mr. A. J. Riches, M. Lee, vice-presidents. Several interesting papers wer read and discussed. At the postprandial proceedings, in
responding to the toast of the Welsh coal and iron trades, Mr Morgan remarked that they were only in their infancy, and a great future before it. It had been said that their coal
would only last 1100 years, but he thought 1500 years nearer the mark. Professor Elliot, commenting, said that in either case the
cost of coal must increase, and economy shonld be studied.
The yearly report of the Hamburg-American Steamship company states that four powerful double-screw steamers Two of them-each 445 ft . long, 52 ft . broad, and 34 ft deep - are to named the Prussia and the Persia. The other two contracted fo respectively with the Vulcan Works, at Stettin, and Messrs. Bloobm
and Voss, of Hamhurg, will have report, be fitted up for carrying 2500 steerage pansen, says the report, be fitted up for carrying 2500 steerage passengers, and
which, by the fall use of their space, will be able to load with close and inventions, st, are, by the use of the newest improvement thirteen miles an hour on a coal consumption of about 55 to 60 tons
per day is guaranteed.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER

PUBLISHER'S NOTICE.

* With this seek's number is issued as a Supplement a Tro-page
Engraving of the Triple-expasion Enyines of the Turret Age.
Erery copy as issued by the Publisler includes a copy of the Suple. Exery copy as issued by the Publisher includes a copy of the Supple-
ment, and subscribers are requested to notify the fact should they not menh,
receive it. Price
Pd.

CONTENTS

The iron and Stek institutg
Latent Heats of Steam Kinetic Theories of Gases-Specific and

Rs to Tris Enror -The Mechanical Equivalent of Heat-Train
Resistance The Eosivines-Tho Gnligh ant Ahmel

Catalougrs
ATrichican
 Hoted fron Laicishrie The Sheffiklo District

Thuschrs and Trial Trips

TO CORRESPONDENTS.

Registered Telegraphic Address,.". ENGINEER NEWBPAPER,

MELVILLE'S TUBE STOPPER.
(To the Bditor of The Bhgineer.)

ADVERTISEMENTS

 Advertisements cannot be inserted unless delivered before 8ix
o'clock
necestion
Thursday
even

meetings next week.

 Cilectraci Enerky," by R.
Continuation of discussion.
 Engineer.
Socirry of Evoinerrs.- Monday, May 7 th, at the Town Hall, West

 Paper: "The Eaton and Eccleston Sewage Precinitation Works," by M"
Albert Wollheim, A.M.1.C.E. Visit to Eaton Hall, seat of the Duke

DEATH.

On the 2ath ult., at Kaliemans, Alleyn Park, West Dulwich, Wruius
WALKER, M.I.M.E., late of Sourabaya, Java, aged 63.

THE ENGINEER.

MAY 4, 1894

the cost of electrical energy.
There are few subjects familiar to engineers abou which less accurate information is possessed than th cost of electric lighting. The consumer knows all that is, in one sense, to be known; his quarterly bills supply the
facts. But the producer is in a totally different position for multifarious reasons, on wh ane and wasteful of space to dwell. Mr. Crompton ha made a determined and praiseworthy effort to impar information, and in be generaly admiled, we think, that he has succeeded in wring and reading one of the most discussion-creating papers ever produced. Il was
read on the 26th ult. before the Institution of Electrical Engineers, and we have appropriated its title for this Earticle. The paper is very long. Its discussion has only just commenced, and may no doubt be continued with profit and all the pleasure that can be derived from rea in the pages of our numerous electrical contemporaries Under the circumstances we make no apology for no reprinting it. But there are particular statements in it which it would not be well to pass by in silence, and we are the more urged to notice them by the fact that Mr Crompton has, doubtlessly inadvertently, attributed ex pressions of opinion to The Engineer which are no ustified by anything contained in our pages.
Mr. Crompton begins his very clever paper by considering the case of an ideal electric supply works intended to distribute $5,000,000$ units of energy per annum. The capital represented will be $£ 500,000$, and Mr. Crompton holds that the undertaking ought to earn 7 per cent. per annum on the share capital. He further assumes, playing with some dexterity the troublesome
rôle of a prophet, that it will be possible to sell electric energy to the public at 3d. per unit, or about one-half the existing rates. Now it forms no part of our purpose to deal with the electrical portion of his paper save in ver general terms. We may grant that the efficiency of dynamo is anything from 90 per cent. up, and so on. The portion which specifies the cost incurred in making the dynamos turn round. In other words, with the initial
dynat producers of power-the boilers and steam engines. Mr Crompton gives a table in which he sets forth the ex penditure on various items, and we find at the outset "Fuel cost per unit sold, 2.5 lb . Welsh coal at $20 \mathrm{~s} .0 \cdot 27 \mathrm{~d}$." This happens to be about one-third of the quantity of fuel needed in exceptionally well managed electric light works. In 1891, as shown by Mr. Raworth, the consumption was 19 lb . to 22 lb . Mr. Crompton states, however, that cases have come within his own knowledge during the winter months-when, as he admits, the economy of fuel was at its best-when attained. Before going further it is proper to point out that Mr. Crompton's estimate of $2 \cdot 5 \mathrm{lb}$. is a through and through estimate. It is intended to cover the whole year's working, and because working in winter is more economical than working in summer, it is clear that this means that something very much less than 2.5 lb . must be reached in winter; and it is this something much less that will have to be contrasted with the minimum of 5 lb . now recorded. When we come to examine the data on which Mr. Crompton bases his prophecy, we fail to find sufficient justification for the assumption. In fairness to the author we reproduce his own words - "I have arrived at my new possible or ideal figure of $2 \frac{1}{2} 1 \mathrm{lb}$. of
Welsh coal per unit sold in the following manner: I find that we can in sold in the following manne this coa having an average calorific value of 14,500 B.T.U per pound. With proper arrangements for heating the feed-water to nearly boiling point boilers can be obtained which will evaporate 12 lb . of water at our working pressure of 150 lb . I think that the losses due to irregular working and banking fires can be so
minimised that $2 \frac{1}{l} \mathrm{lb}$. may evaporate 25 lb . of water minimised that $2 \frac{2}{2} \mathrm{lb}$. may evaporate 25 ib . of wate into dry steam-not on tests only, but as shown and will menthade for us using not more than 12 lb . of steam
at from three-quarters to full load, or 13 lb . of steam at from half to three-quarters load per indicated horse-power per hour. To these engines dynamos can be couplese direct of such efficiency that the combination will hour more than $18 \frac{1}{2} \mathrm{lb}$. to $20 \frac{1}{2} \mathrm{lb}$. of steam per unit per hos oads be counted an average of 20 lb . per these engines are actually 10 per cent. of the steam in feed porated being obscure sources of loss, and further 10 per cent, for our distribution loss, in order to account for the 25 lb . of water I require to be evaporate by the boilers." It is only necessary that the case should be thus stated to enable us to realise how utopian is the 2.5 lb . estimate. No boiler generally available for electri light work in towns where space is a consideration ca be made to evaporate 12 lb . of water per pound of Welsh coal. We very much doubt that it is possible to mak such a boiler at all, save for experimental purposes. The highest efficiency ever recorded is that of the boilers of H.M.S.Janus, designed by Lord Dundonald. These are said o have evaporated into steam 13921 . of water. The coal ased was hand picked Llangenech, and the healing surfac was enormous as compared with the evaporation. But whatever may be possible with a boiler worked steadil at its most economical rate for some hours, it cannot pos. sibly represent the fuel required when the boiler has to lie or hours with fires banked. Nor does it include the cost o getting up steam. If we take the total weight of coal delivered in twelve months at an electric hight work and the total pounds of water fed into the boilers in the same period, and divide the latter by the former, the result will be nearer 7 lb . of steam per pound of coal than 22 b ., or than the revised estimale 25 lb . of coal to that the highest figure, or anything near, it has been obtained, will, no doubt, produce them. He has not done so yet. His figures are simply an estimate, and w past experience. But the estimate about the engines is scarcely less sancuine than that about boilers. If thes last can make 12 lb f steam with 1 lb , of coal, and if 12 lb , of steam will develope a horse-power, it is clea that we shall have one horse power per hour per pound that we shall have one horse-power per hour per poun cumstances been attained. A horse-power for 1.5 lb . of coal per hour is generally regarded as the maximum practical performance of the steam engine. It has very rarely been beaten under purely experimental conditions, and the figures are open to doubt then. Condensin engines cannot be made under ordinary electric light wor conditions that will use but 12 lb . of steam per horse per hour year in and year out. Nothing of the kind has ever yet been produced. Nor is there any good reason for thinking that it may be, and this we say with full knowledge that a few exceptional engines, working under exceptional conditions, have given an indicated horse power for something less than 12 lb . of steam. Nothing uch done that can justify Mr. Crompton in framing he has simply ate. It is, indeed, more than probable thion, and that he scarcely intends them to be taken seriously
We come next to the consideration of the boilers, which are to evaporate 12 lb . of water per pound of coal. He begins by speaking of the locomotive type boiler, which has been very largely used for electric light work, and although he approves of this in a qualinied way, he goes on to make the following remarkable statement:-
"This type is in most respects satisfactory; but, on account of the level of the grate-bars being so much below the level of the fire-doors, it is difficult to properly clinker the fires-so much so that when a batc cult to un that cor wh cult to clean fiches is thereby much reduced. Fro this ause the ave is a this cause the average efficiency of locomotive boiler when th the mill bills, por pound of coal when taken from the ith in yupply, and 1 the cond an esy matter to bank the firsp olocomotiv aler in an economical manner." If Mr. Crompton when specifying for a conotive boiler would tole the troube state that linkers were likely to be produced, he could be supplied with a grate with a drop and which wonl save him all worry. Indeed, there are half-a.dozen clinkering grates ready to his hand. But furthermore there is not the least difficulty in so modifying the ordinary fire hole that it becomes as easy to clinker a grat in a deep fire-box as the furnace of a Lancashire boiler.
Mr. Crompton next proceeds to criticise the Lancashire boiler. We are not concerned to defend it; nor the economic ; nor the marine boiler. These are all too wel Mr. Crompton pins his faith on the Babcock and Wilcox boiler, and he states that he has got with it an evaporation of $9 \frac{3}{4} \mathrm{lb}$. with Welsh coal, a figure which is very probably accurate enough-for a trial. In dealing with orced draught he says: "There is another point to which of articles cas recently. A long and ater-tube boilers in The Engineer, in the course of which the writer more than once states that it is impossible to force any of the existing types of water-tube boilers, as any such forcing
invariably results in the production of wet steam, and consequent liss in the it difficult to know how the writer could have formed such an erroneous impression. My own experience is that the works where the best results have been obtained are those where the Babcock and Wilcox boilers have been forced the hardest. At works W, the boilers, which are nominally supposed to evaporate $11,000 \mathrm{lb}$. of water per hour, have frequently been forced to 16,000 , or about 50 per cent. in excess of the duty guaranteed by the makers, and at such times of heavy forcing there has never been any trace of priming or wet steam." The italics are ours. No statement
of the kind has appeared in The Engineer, as Mr.

Crompton will see if he does us the honour to read the articles in question again. It is very difficult mistake, considering how moplon could make such consideration of express boilers, such as those of Thornycroft and Yarrow. What we did say was, that
boilers of the Root or Babcock type, with several long nclined tubes delivering into a single header, could not e forced without making wet steam. In order to prevent the wetness from reaching the engines, enormous steam drums are imperatively necessary; and any one who has watched the gradual development of these boilers will find that the size of the drums has gone on augmenting, until instead of the small collecting drum at
first used, we now have drums 18 ft . or 20 ft . long and first used, we now have drums 18 ft . or 20 ft . long and
4 ft . in diameter, and not unfrequently two of them are used with each boiler. The statement made by Mr. Crompton, moreover, concerning the boilers at "Works Wr in no way controverts what we have said. There
are very many water-tube boilers of the type in use on the Continent, for example, which evaporate 31b. of water per square foot of heating surface per hour ; we suppose that these might easily enough be made to evaporate 50 per cent. more, or 4.5 lb . per foot per hour.
Surely Mr. Crompton would not call this "forcing." However, if Mr. Crompton will adduce figures to prove that any Babcock and Wilcox boiler in an electric light urface per converted dry steam, we will acknowledge hat we have fallen into an error, and that such impoge ments have been effected that the type will stand forcing We may be permitted to point out, however, that Mr. Thornycroft has got an evaporation nearly three times as great, and that 10 lb . or 12 lb . per square foot per hour is in no way excessive, so that 8 lb . of water per
foot represents a very moderate amount of forcing. foot represents a very moderate amount of forcing.
Interest in the question is caused by the suggestion that in forcing lies the best and simplest method of getting over the bad half hour when maximum power is required.
A glance at Professor Kennedy's diagrams in our next A glance at Professor Kennedy's diagrams in our next
impression will explain to the uninitiated what this means. Here we must stop, but before concluding we wish to add that, although we have criticised certain of Mr. Crompton's statements, we are none the less convinced
that his paper is a valuable contribution to our comthat his paper is a valuable contribution to our com-
mercial electrical knowledge. Anything that the author mercias electrical knowledge. Anything that the author It is long since a paper so suggestive of topics demanding all discussion has been brought before the public, and we believe that its writer's labours will be very fully
appreciated, not in Great Britain only, but on the Continent and in the United States.

gas and the klectric light

The complaint of the London gas companies that the brilliant weather of the last year or two has prejudicially support from the fact that the electric light is alleged to support from the fact that the electric iight is alleged to
suffer in like manner. Evidence to this effect was given at a recent meeting of the Metropolitan Electric Supply Company, when the chaila their receipts for the past year had fallen short of their estimate by $£ 10,000$, equal to a dividend of a further ${ }^{1}$ it per cent. While the electric light is thus subject to double battle to fight, having both the sun and the electric light arrayed against it. There has been a denial that the electric light has done the gas companies any harm; attributed wholly to the unusual extent of daylight. In this matter it is difficult to distinguish between one effect and the other; but it seems inevitable that the spread of
the electric light must tend to retard the consumption the electric light must tend to retard the consumption
of gas, whatever may be said as to the influence of the weather. We may admit that the meteorological argument carries the greater weight, and yet we cannot but assign considerable importance to the statement made
at the Royal Institution the other day by Professor at the Royal Institution the other day by Professor
Fleming, that there are now 700,000 incandescent lamps Fleming, that there are now 700,000 incandescent lamps
in use in the metropolis. These have to be taken in addition to the many arc lamps of large candle power employed for street illumination. The estimate given by Professor Fleming seems high, but we can hardly suppose hat so good an a lity wid lamps, we are perhaps safe if we employ an estimate of ten candles per lamp as the average working intensity. A power of sixteen candles is commonly claimed, but there are lamps with a power of only eight candes, on-
even less, while some are of high lighting power, considerably exceeding sixteen candles. With regard to the duration of the light, it is usual to reckon on 1000 hours per annum. If the light were obtained from gas, a per hour. For 1000 hours the quantity would be 312 cubic feet. But as it happens that in many cases the may be necessary to conclude that on an average only half the lamps are burning at one time. This brings the equivalent consumption of gas down to 1562 cubic feet per annum for each lamp, which for
comes 1093 million cubic feet of gas in the course of the year.
In considering how far the presence of the electric light is calculated to affiect the consumption of gas in London, two or three things have to be borne in mind. incand follow that the sale of gas in the metropolis would at once fall off to that extent. While a large number of persons gave up gas and adopted the electric light, a considerable of several thousand houses to the metropolis every year brings in a certain number of fresh customers to the gas companies, though gas is not applied to every house.
Something also has to be said as to the increased use of
gas for heating purposes, and for motive power. If the electric light were not in the field, the consumption of
gas in London must increase at a very rapid rate. Bu as there is this competitor, the progress of the gas indus try is simply the excess of a gain over a loss. Using
chiefly the figures furnished by Mr. Field in his yearly chiefly the figures furnished by Mr. Field in his yearly the average, 947 millions of cubic feet per annum. But in 1892 the yearly increase was rather less than 35 millions. This is the more remarkable, seeing tha
the increase in 1891 exceeded 1313 millions. Th cineck in 1892 was very decided, for while increase in the aggregate was but small,
of the companies exhibited an actual decline, the Light companies exhibited an actual decline, the Ga Light and Coke Company falling off by more than 115 million the leel , and he Commercial by nearly 1 i the South Metroselita Combegate being sole ty due to the South Metropoitan Company. Last year the retro decline, the Gas Light and Coke Company undergoing diminished sale of very nearly 873 million feet, the Com mercial nearly 83 millions, and the South Metropolita above 51 millions, the total deficit exceeding 1007 mil lion cubic feet. At the average price of 2 s . 10 d . pe £142,000.

A Parliamentary return has been issued, which enable us to make a comparison between the sale of gas by the three metropolitan companies, and by the companies throughout the United Kingdom. The return does no come so far down as to include 1893, but it shows th
 panies only increased their sale by $35 \frac{1}{2}$ million cubic feet the London sale, the increased a decrease. Deducting 1892 among the se, the increased consumption of gas th United Kingdom is found to be 1392 million cubic feet, or 3 per cent. Had the London companies increased thei aggregate sale in like proportion, their sale of gas would
have risen by more than 1000 million cubic feet, instead f $35 \frac{1}{2}$. Proceeding in the next place, to consider the statistics relative to the gas undertakings which belon to local authorities, we meet no signs of retrogression in he consumption of gas, taken in the aggregate, but there in the quantity for the year 1890 exceeded 2039 million in the quantity for the year 1890 exceeded 2039 million
cubic feet. In 1891 the increase was under 1840 million, while in 1892 the increase fell to 1536 million. But it should be observed that in 1889 the increase was less than 1105 million; while in that year the increase in the sale which by the London companies was 940 million feet, 817. Although the returns from the local authorities indicate something adverse to the growth of the gas supply provincial companies and the local authorities exhibit smaller advance in 1892 than in 1890, and the drop in that period is particularly large with the authorities But London companies show much the worst result, their increase for 1892 being less than a twentieth of their in crease in 1890, while the authorities maintained three fourths of theirs, and the provincial companies a ye higher proportion. London thus occupies a peculiar pout, andit seems inevitable that this is being brough been introduced. What the returns for 1893 may reveal with respect to provincial companies and local authories cannot as yet be apprehended, but it is not likely that they will show .h. extent of 1000 million cubic feet. As for the future extent of 1000 milion cubic feet. As for the future, it will be interesting to observe how the sale of gas is stimulated, and it will then be easier to find out the extent to which the gas companies are affected b the electric light. The figures wich worke probably be challenged; yet at least they will serve clusions as may be preferred. That the electric ligh is a competing force must be admitted, but this does not prove that it will conquer the entire domain. There are capabilities in gas which admit of large development, and the London gas companies will know how to turn these to the best account.

What will the mines eight hours' bill do ?
Now that the Mines Eight Hours' Bill has been read a second time in the House of Commons by a larger majorit, out of place, seeing that it has been before the pablic for five years, to endeavour to form some estimate of what it would secure for the miner where it to be passed into law. In all probabinity the outside public never knew less about the rea hoss outside bill than they do of the one under notice. To Bill will do away with serious hardships which miners hav o put up with, and secure an eight hours' working day. in, itis known, will do no such thing as secure uniformity has to travel to the coal face underground varies ; and wher men are employed at collieries which are mot mored it will seriously curtail their wages, and render it almost impossible for employers working such pits to compete in the the pit bottom. The idea thed colieries where the coal is nea secured by the men through their own organisations has bee souted; but it is an undeniable fact that eight hours and even less time are marked at present at the coal face in many most valuoble cotum 0 wh thiners Federation. The associations in Great Britain in October tone various ing the hours worked at collieries in every mining district in Great Britain, save Durham, Northumberland, and Cleve ours the return shows that in South Staffordshire eigh hours an the coit face is almost uniformly observed, there
shire a pretty uniform time is worked, only one pit running 9t, another 9 hours, and the rest from 7 to 8 and $8 \frac{1}{4}$ hours movement, canknot be said to work its miners very long hours The return relates to 145 pits, including the chief pits in South and West Yorkshire, and yet only six firms allow their men
to work 9 hours at the coal face, nineteen pits make 81 sixteen $8 \frac{1}{2}$ hours, whilst thirty-eight mate 8 , thirty-one 7 and thours. The Lancasi Mo as Arley Colliery 12 hours are
show so well. At the Moss stated to be worked and at two other collierieres 11 hours are returned. At thirty-eight pits from 10 to 101 hours ar made ; at sixty-seven 9 to 9 , at fifty-five 8 to 8, , and at
seven pits from $7 \ddagger$ hours to 7 , hours. Derbyshire, which has a strong miners' organisation, would probably reduce the
working hours by the Act ; but, according to the return, nearly 0 third of the pits; given do make only eight hours, One solitary pit, the Church Gresley Colliery, is returned as making 10 hours, ten pits make $9 \frac{1}{2}$, fourteen 9 , twenty-five rom 81 to $8 \frac{3}{4}$ hours. In the Forest of Dean, where fifteen instances are recorded, nine work 8 hours and six from pit is returned as making 9 , and seven where the miners wamshire, a rapidly-developing the coal face. Notting strates the fact that at eight pits 9 hours are wemon at one $9 \frac{1}{2}$ hours, and at fourteen from 8 to $8 \frac{1}{2}$ hours are makes less than 8 hours, for eleven pits only allow the miners to make 73, and six $7 \frac{1}{2}$ hours per day at the coal face. In Shropshire one pit makes 9 , and the rest 8 hours per day, make from 84 to $8 \frac{1}{2}$ hours, ten make 8 hours, and five from pits work 9 , eight from 81 to 83 , five 8 , and one only 71 seven The time worked in Scotland varies a good deal. In one instance $10 \frac{1}{2}$ hours are spent at the coal face. At three the o $8 \frac{1}{2}$ hours are registered; whilst in one instance $7 \frac{1}{2}$ hour are only accounted for. The South Wales and Monmouth pit makes $10 \frac{1}{2}$ hours, fourteen make 10, fifteen 91, thirty-one , nineteen $8 \frac{1}{2}$, and seven from 8 to $8 \frac{1}{4}$ hours. It will thus orked at the coal face; in fact, taking Yorkshire and Is now hire, two of the greatest strongholds where the movement is pushed forward, out of about 300 pits quoted in the return 20 were in 1890 working 8 hours and less. So that in some instances the Act would press hardly upon the men themselves where they have a long distance to travel underground.

over factory inspection

FActory inspection is in these days carried to an extent which seriously cripples manufacturers and renders the prosecution of many businesses, in the face of foreign com-
petition free from such harassment, almost impossible. Recent legislation and the multiplication of inspectors of a system of espionage and entrar their salaries, has led mployers striving to act justly toward themselves and those who work for them. This is strikingly seen in the majority of the prosecutions raised in the law courts, which are almost ithout exception of trivial and technical character, and ooked at from a common-sense point of view, certainly not Secretary, calling for legislative interference. The Home Secretary, however, apparently sees matters in quite a extending the operation of the Factory Acts by increasing he already formidable army of inspectors and enlarging their powers. The new departure will specially affect workpeople who take work to their homes. The inspectors are in ature to have the power of paying domiciliary visits to see rith the Bors are in accordance with the Board of Trade regulations. What good end is to be served by this excess of inspecting activity it is difficult echo by a large class of sentimentalists. It is a curious Parlimstance, in consideration of the jealousy with which Parliament guards what it regards as its privileges, that the Home Secretary has, by Act of Parliament, been vested with mpowered, without appeal such matters; and that he is mechanical or chemical, as "dangerous." He can then nstruct the chief inspector to draw up such rules and regula particular trade consider necessary for the carrying on of the
pegards as dangerous. It is true that members of the trade so scheduled may state objections to the prescribed regulations, but generally such objections are practically disregarded. It is a decidedly anomalous position of affairs that any individual should possess such arbitrary powers, and the manufacturing community should strive to prevent their being used at the present time in the creation are quite too many of them already.

NETV DEPARTURE IN FOPEIGN COMPETITION.

Too much publicity cannot be given to the following Vednesday paragraph which appeared in the Standard on Wednesday morning:-"Messrs. Cramp and Sons, the Ameri-
can shipbuilders, have been notified by the British Admiralty hat they have received their request for permission to tender or the building of two or more British warships, under the strictest conditions regarding the quality of the work and the materials." This is probably a bit of bombast, a something ntended to attract attention, and to tell us that the Ameriwhile Messrs. Cramp have no serious intention of tender ing. But we are by no means sure that such an explana get an order from the case. If Messrs. Cramp could pay them well to take it, British Government if would payticiently obvious reasons. Now if Free Trade principles are to be pushed to their full extent, is there any reason why the Government should not place a contract in the United States? We fancy, however, that Free Trade principles must in this ase take what Messrs. Cramp would term a back se Not hat the Admiralty authorities are too particular. What,解 torpedo boat dinghies from a German firm, while the German Sir U. Kay-Shuttleworth's Berthon boats in this country ? re the best that can be asserion that the German boat totally erroneous. We hope that Col. Vincent or some other Iember of Parliament will press the First Lord of the the truth of which we dispute

ELECTRIC TRAVELLING AND JIB CRANES
messrs. wimshurst, hollick and co., London, engineers

[م0 088 A NEW TYPE OF ELECTRIC CRANE.
Much attention has recently been directed to the question of increasing the day load factor in electric light stations, and some electric supply companies have offered low rates comparatively little has been done in the application of this form of energy; but there is no doubt that the great convenience and cleanliness of electric supply will commend itself to many consumers of power. At present the chief competitors with electric energy are hydraulic power and gas engines; but some progress has been made especially for intermittent work, such as the working of hoists, cranes, hair-brushing machinery, \&c. We had an opportunity recently of examining an electric crane which has been supplied to Messrs. F. B. Cameron and Co., at their wharf near Vauxhall Bridge, by Messrs. Wimshurst, Hollick, and Co., of Commercial road, E. This crane is used for coal-whipping,
that is to say, for rapidly unloading the coal that is to say, for rapidly unloading the coal usual to employ about four coal porters for each barge, and one coal skip is filled by two men. The crane lifts one or other skip alternately and slews it round to the stock heaps, where its contents are emptied by a fifth man. Electrical energy is supplied from off the mains of the Westminster Electrical Supply Company, and as the three-wire system is in use, advantage has been taken of the fact to employ a potential of The figures which we give in the table below were obtained by means of a standardised amperemeter, lent for the occasion by Mr Monkhouse, of the Supply Company. One of the chief difficulties in the application of electric motors to mechanical work is the necessity in almost all cases of employing resistance coils through which the current is sent at starting and in crane work the shocks which may be brought upon the teeth of the gearing by care-
less driving are very serious. If, then, some less driving are very serious. If, then, some armature shaft to the winding barrel of the crane can be discovered which, while giving ample driving power, still can be readily switched in or out while the motor is running such a system would be very advantageous. In the present crane the armature is allowed to run always, whether the crane is actually lifting or not, and the motor is shunt-wound. OI course, if a stop of many minutes takes place motor entirely, but the armature should al the motor entirely, but che armature should always gearing is put into action.
Fig. 6 illustrates the crane before the house for sheltering the driver had been put up, and this particular machine is designed for lifting loads The controlling handles are placed very conveniently close together, and a powerful strap brake is used. The
motor itself is enclosed in a wooden case, to exclude dust from the bearings. The chief point of novelty in the design of the
crane is the friction gear for putting the motor in and out of gear; this is illustrated in Figs, 4 and 5. Fig 4 is on elevation looking at the end of the armature shaft, and Fig. 5 is a side elevation. The armature shaft is lettered A, and upon it is keyed a small pulley B, made of compressed pape

Fig. 6-ELECTRIC JIB CRANE
turned up smooth. The paper is put on in the form washers, so that the edge of the paper is used. For driving C is a cast
drum, and D is another cast iron pulley carried upon a short sindle, which is supported by the links E and E^{1}. The two short levers H and H^{1}; it is therefore F, which bears the links E and E^{1} will move up or down, according as the lever G is moved. The pulley D and the strap K-which passes round the two pulleys C and D -can be moved around the centre of the spindle J, and thus the pulley B can be gripped tightly between the pulleys Cand D , and the power is thus transmitted from the armature shaft A to the spindle J, and so to the winding drum. A pair of adjustable links L at each side of the pulleys allow for adjustment of the pulloys C and D at a to leather for the gearing. The ampèremeter was placed in one of the mains before it reached the crane, and at a distance f about 4 ft ., so that the whole of the current employed was obtained.

Time. of currents. \quad Cmar' cm .

- Motor ruoning light.

Lifting and slewing at same time, fuill skip.
$\begin{array}{ccc}\ddot{\prime} & \text { ". } & \text { ". } \\ \text { tart. } & \text { " }\end{array}$
$\left.0 \quad \begin{array}{c}\text { start. } \\ \text { Lifting } \\ \text { course }\end{array}\right] " \Rightarrow$ slewing at same time, full sking at
The skips were both of the same size, and were filled to the ame amount each time.
Only the last skip with its load was weighed, with the result tents 14 owt. 3 qr .16 lb ., and the weight has been taken as accurate for all the loads. With regard to actual efficiency of the cranes, it was considered impossible to calculate this accurately while slewing and lifting were proceeding together; a few special tests were therefore made for speed of lift alone. The readings were uniformly 21 amperes for a lift alone with full skip. The speed of lift was taken by marking one of link chosen was one which never pece of wire round it. The the end of the crane jib. The skip while being filled rested on the bottom of the barge, and therefore a mark could be put on the side of the jib at the point where the link stood, with the chain taut and the full skip on the bottom of the barge. The lift now took place, and it was easy to note the time when the marked link passed a point at the foot of the jib. The load was lifted in fourteen seconds through 18 ft . 9 in . verical height, and this was checked several times. It was ound that a vertical wit of 18 ft .9 in . and a slew through 180 degrees at
Readings of t
Readings of the electricity meter were also obtained from the maker's fitter in charge of the crane. These are given in
The constant of the meter is 0.586 . The cost for electricity, at 5d. per Board of Trade unit, appears therefore to be about $\frac{1}{2} d$. per ton.
feel ablegard to the efficiency of the motor itself, we do not crane gearingive any exact figures, as the friction of the crane gearing renders it impossible to calculate exactly.

There is also the question as to whether the work of the
lifting chain and skip should be allowed for. But, taking the lifting chain and skip should be allowed for. But, taking the minute, and the actual current 21 ampères at a pressure of

Table II.

		Tons of coal got out of barges.	Moter reading	$\begin{array}{\|c} \text { Board } \\ \text { of Trade } \\ \text { units. } \end{array}$	Da
Beginning of work At end	0.	125	$160 \cdot 2$ $188 \cdot 7$	11	$\begin{aligned} & \text { Fob, } 5,1894 \\ & \text { Feb. 6, } 1894 \end{aligned}$
$\begin{aligned} & \text { Beginning } \\ & \text { End } \\ & \text { End } \end{aligned}$	$0 \cdot \mathrm{sid}$.	65	$\begin{aligned} & 18 \cdot 7 \\ & 200 \end{aligned}$	6.6	Feb. 7, 1894
Beginning End	$0 \cdot 49 \mathrm{~d}$	63	200 -	6.15	Feb. 8, 1534

203 volts-this is a corrected figure obtained from the Supply Company-we have :-
$\frac{1668 \mathrm{lb} . \times 80 \mathrm{ft} .}{33,000}=4.04$ commercial horse-power.
203×21
746
$=5.7$ electrical horse-power
04×100

72 per cent. commercial efficiency

This is, of course, not the electrical efficiency of the motor, which is probably about 80 per cent. at the speed, although only working at about half its load. The motor itself is have been obtained with a longer lift at low water, when lifts of 25 ft . were made in 17 secs., or at a speed of 88 ft . per minute, and with a current of 21 ampères, giving a commercial efficiency of 77 per cent., and there was a smaller pro-
portional loss of time in starting. The actual speed of the motor running light was 1020 revolutions per minute, and it did not appear to vary when put into gear.
The weight of the motor alone is given as about 8 cwt ., and the armature is 9 in. diameter. Figs. 3, 4, and 5 show the application of a similar motor to an overhead crane supplied
by the same makers to Mr. E. Robinson at his timber yard Quebec Wharf, Limehouse. It is designed to lift 5 tons at a speed of 16 ft . per minute, and the illustrations are so clear
that further description is needless. hat further description is needless.
We believe there is a great opening for the application of
economical electric cranes, fed from the mains of the supply economical

SELF-ADJUSTING SAND-PIPE NOZZLE FOR
 LOCOMOTIVES

Axongst the many recent improvements in locomotive details considerable advantage has been derived by the steam
or compressed air apparatus introduced by Messrs. Gresham and Craven, with which nearly all recently con
structed locomotives are now equipped, for effective y sanding the rails to in sure adhesion of the driving wheels.
A further improvement n this direction has been lately devised by Mr. A. oreman of the Callande and Oban Railway, by the
introduction of a selfintroduction of a self adjusting sand-pipe nozzle which is arranged to deposi the sand, under all circum stances, upon the rails tread of the wheels, even when the locomotive i running on a curve, which nce in preventing slippin ordinary arrang. With the fixed sand-pipes and s running on sand is often delivered out ide the outer rail an inside the inner rail on to he ballast, and therefor sinot of any benefit to the slipping wheels, and the sand is absolutely wasted Ir. Grafton has ingeni the introduction of flexible pipe, as shown in the illustrations annexed. Several trials of this apparatus have been made on he Callander and Oban Railway-a line abounding in sharp curves and heavy gradients-with very satisfactory

Referring to the illustrations, the apparatus may be briefl described as follows, thus :-Fig. 1 shows the general arrange ment of sand-pipe with flexible joint A; near the bottom of the nozzle a clip is attached to it provided with two arms B which can come into contact with the sides of the wheel to maintain the pipe nozzle in line with the tread of the wheel,
whether on a straight or curved rail. Figs. 2 and 3 show in detail the joint A and arms B.

JOSEPH TOMLINSON.

The death of Mr. Joseph Tomlinson, which occurred on the 22nd ult. at his house at West Hampstead, at the age of seventy, has removed from among us a familiar and highly
esteemed member of the engineering profession. Mr. Tomesteemed member of the engineering profession. Mr. Tomto which body he was elected in 1871, but it is in the sister institution, viz., the Mechanical Engineers, that his unassuming presence and practical experience will be chiefly missed. The deceased gentleman, who will be best remembered in connection with railway work-although his experience was by no means confined to this branch of engineering-was
elected president of the Institution of Mechanical Engineers

In 1890, and to him the success which attended the visits of pool in 1890 their summer meenings so shefmeld and Liver connection with rail period, as will be gathered from the following paragraph which formed part of his presidential address in the spring of 1890. He said:- "My recollections and practice lead me back to the early days of the locomotive engine, not, it is
true, to the very earliest, although I was born before any true, to the very earliest, although I was born before any
public railway was opened. My first knowledge of them as a public railway was opened. My first knowledge of them as a
boy dates back to the year 1837 ; and I may say that I soon fell in love with a live engine, and from them to now have ad a feeling of 'first love' for it. My father being at the
time passenger superintendent of the Stockton and Darlington Railway, it was nothing extraordinary that, with my predi ection for mechanics Works should be gratified. Mr. Timothy Hackworth, the then locomotive superintendent and also the contractor for
the working of the railway, was pleased to agree that I should the working of the railway, was pleased to agree that I should
have the ' run of the shops;'' and thus I began my working have." From the Stockton and Darlington Railway his first
life ife. From the soukt-Western Railway, where he appears to have held a somewhat important position, and was fre quently deputed to drive the engine drawing the Royal train to Windsor, and probably some of our readers will have heard him narrate how he has ondeavoured to explain the working of the locomotive engine to the Prince of Wales and his brothers when boys, and accompanying their father 0 and from London. From the South-Western Mr. Tomlinson transforred his services to the Midland Railway, then
congeries of lines. He next identified himself with the Taff Vale Railway Company, being appointed locomotive superintendent, and it was while he was connected with that line that be became a member of the Institution of Mechanical Engineers, namely, in the year 1857. In 1858 he read a paper-his first and only one-to this institution, entitled "The Burning of Welsh Steam Coal in Locomotive Engines," in which he described the results of his experiments made on engines belonging to the Taff Vale Company,
burning Welsh steam coal. Up to the time of these experiburning Welsh steam coal. Up to the time of these experithis class of fuel for locomotive purposes owing to the great rapidity with which the fire-bars were burnt out, a defect due, it was considered, to the clinker formed upon them. It may here be stated that Mr. Tomlinson was driven to the use of this coal by a strike of colliers in the Rhondda Valley, whence coking coal had hitherto been derived; ; but so successful proved his efforts to find a remedy for the defect above stated,
that the Rhondda collieries lost the Taff Vale Company's that the Rhondda collieries lost the Taff Vale Company's
custom thenceforward. The burning out of the bars was custom thenceforward. The burning out of the bars was
found to be easily preventible by covering them with a layer of small pieces of fire-brick, a process which resulted in the of small pieces of fire-brick, a process which resulted in the 00 miles per day.
Mr. Tomlinson afterwards severed his connection with the

Taff Vale Railway, and set up as a consulting engineor in Cardiff, where he interested himself largely in marine work In 1872, however, he again returned to his "first love," being appointed resident engineer and locomotive superintendent that time in a very neglected state. The works of this company consisted in what are now the running sheds at Chapelstreet, Edgware-road. These premises being utterly inadequate to the requirements of the line, Mr. Tomlinson selected the site for, and designed and carried out the present works at Neasden, which were opened in 1883, and even at present are so placed that there still remains ample room for extension. We should not omit to state here that, as Chairman of the Research Committee on Friction, appointed by the Institution of Mechanical Engineers, he carried out a in Edgware-road. In 1885 Mr . Tomlinson resigned his post in Edgware-road. In 1885 Mr. Tomlinson resigned his post the National Telephone Company in designing and superintending the erection of supports and structures for carrying the telephone wires. Some three or four years ago, in conjunction with Mr. Swarbrick, Mr. Tomlinson was invited to inquire into and report upon the working of the Taff Vale Railway, and it may be within the recollection of many of our readers that, as the result of this report, several of the directors of this company retired, and Mr . Tomlinson him-
self was offered and accepted a seat upon the board self was offered and accepted a seat upon the board.

Mr. Tomlinson was a very able engineer. While his age, xperience, and temperament taught him to be cautious, of the impossible from his mind. He believed that the ngineers of Great Britain could do anything ; but he also held that there were many things proposed which were not worth the doing. He at a comparatively eariy period earned the reputation of being a "safe" man. He had numerous friends. In many respects he was masterful, a good organiser, and one who made up his mind with deliberation, nt then took good care that his orderd sho be carried place will not be easily filled.

PARLIAMENTARY NOTES.

The whitebait at Woolwich.-The House was perturbed last week by the announcement that whitebait had invaded the tubes of the condensers at Woolwich Arsenal, but it was comforted by Mr. Campbell-Bannerman's sassurance that proper ratings had been fitted to the water inlets, and that in the of good whitebait.
Good whitebait
Government workmen-Mr. Keir Hardie took the Governhey took part in having warned their workpeople that if afy $\begin{aligned} & \text { airs they would be discharged. Mr. Campbell-Bannerman, }\end{aligned}$ factory
and with the approval of the House generally, stated that it vould be impossible to allow workmen employed in a factory to discuss questions concerning the business of that factory. To do so would bring the workmen into antagonism with those who control the department.
German contracts for the Royal
German contracts for the Royal Navy.-Colonel Howard Vincent asked the Secretary to the Admiralty whether an
order for boats for the Royal Navy had recently been placed order for boats for the Royal Navy had recently been placed to insure that the provisions of the English Factory Act and the fair contracts resolution were complied with by the firms who had undertaken these orders. To this, the Secretary to the Admiralty replied that a specimen life-saving boat of special pattern, adapted for service in torpedo boats and destroyers, was offered for trial in May, 1893, by the English
agents of a German firm. It was subsequently purchased and subjected to very severe tests. As a result it has been decided to adopt this type of boat in a number of destroyers now building. The contractors for the vessels have to supply the boats; they are not ordered by the Admiralty direct. The answer given by the Chancellor of the Exchequer on March 14th, 1893, applies to this case also. No steps were taken in regard to the points mentioned, as the work was to be done abroad. A further question was asked as to how many of the boats in question had been ordered, and whether Shuttleworth could not say how many had been ordered. It depends on the contractors whether they will be made Germany. Further questions are promised next week.
Patent agents.-A Select Committee of the House of Commons met on Monday to consider the Patent Agents Bill and the Patent Agents Registration Bill. Mr. T. H. Bolton was appointed chairman, and the Committee decided to meet to take evidence on the 8th of May. The Patent Agents Bill, as we stated on the 6 th April, seeks to amend the law relating to willing, and by empowering all patent agents, whether they join such corporate body or not, to elect from amongst themselves a council to keep the roll of patent agents and to be the governing body of the profession. The Patent Agents Registration Bill provides special facilities for the admission of patent agents to membership of the Chartered Institute of Patent Agents, and seeks to protect the public from deception by the unauthorised assumption of the title of patent agent. The promolers of this state that its object is not to create a monopoly, but to regulate ine profession of patent such as those of solicitors, veterinary surgeons, and dentists are regulated.
Locomotive Threshing Engines Bill.-The following is the
substance of this Bill, which is backed by Sir John Kennsubstance of this Bill, which is backed by Sir John Kennaway, Sir William Walrond, and others. After premising
that it is expedient that the restrictions upon the use of that it is expedient that the restrictions upon the use of
locomotive threshing engines should be the same as those now in force upon the use of locomotive ploughing engines, now in force upon the use of locomotive ploughing engines,
the Bill proceeds thus:- "Any provision in any Act contained prohibiting under penalty the erection and use of any steam engine, gin, or other like machine, or any machinery attached thereto, within the distance of twenty-five yards from any part of any turnpike road, highway, carriageway, or cartway, unless such steam engine, gin, or other like engine, or machinery, be within some house or other building,
or behind some fence, wall, or screen, sufficient to conceal or or behind some fence, wall, or screen, sufficient to conceal or
screen the same from such turnpike road, highway, carriagescreen the same from such turnpike road, highway, carriage-
way, or cartway, shall not extend to prohibit the use of any way, or cartway, shall not extend to prohibit the use of any
locomotive steam engine for the purpose of threshing within such distance of any such turnpike road, highway, carriageway, or cartway, provided a person shall be stationed in the road and employed to signal the driver when it shall be necessary to stop and to assist horses and carriages drawn by horses passing the same, and provided the driver of the engine do stop in proper time."
Factories and Workshops Bill.-Leave was given to the Home Secretary to bring in this Bill, and it is read the first time on Monday. By the Bill, it was proposed to make amendments in the general law relating to factories and workshops as to their sanitary conditions and safety. It
defines overcrowding to mean an allowance of less than denbic feet of space per man, and after 8 o'clock ins than 250 400 cubic feet. It gives power to the Courts, where premises are structurally unfit for a particular process, to require the necessary alterations to be made, and it prohibits the cleaning of machinery in motion by women and young persons, in addition to children, as at present. Next, as to the time of employment, the Bill provides that overtime, which was now capable of being allowed five days in any week, should not be allowed on more than three days; and it restricts the employment outside the factory, in the business of the factory, of children, women, and young persons-that is to say, if the is not to be allowed to take out work to do the daytime, it similarly women and young persons are not to be allowed to take out work if they are employed in the factory. The Bill proposes to include in the law as to factories and workshops certain industries which were not at present embraced; in the first place, laundries. Steam laundries are to be deemed factories, and other laundries are to be deemed workshops and special provisions are made for the ventilation of steam
laundries and the keeping of the floors, \&c., drained. There
are exceptions for what were called domestic laundries and laundries belonging to institutions，which would be under the general law．As to docks，wharves，and places where buildings were being temporarily constructed，they are brought for the
first time under those provisions of the Factory Act which deals with inspection，fencing of machinery，and notice of accident．Thirdly，and lastly，the Bill proposes in the case of What were called lenement factories，which are common in parts of the building are let out to small occupiers－forferent the owner responsible for the sanitary condition of the cactory the fencing of the machinery，and a number of matters of that kind．In the case of dangerous and unhealthy employ－ ments，the Bill gives power to the Secretary of State，in addition to his present powers，to restrict the hours employment and altogether to forbid the employment poses to amend，or rather to substitute for what was called the＂particulars＂clause in the Act of 1891，a new clause， the textile trades，and which would require pece－workers in those trades to provide to every worker paid employers in thase trades so provide to every worker paid by the piece a
plain，definite form，in writing，giving such particulars as would enable the operative to compute the wages payable to him in
upon．

THE MINORITY REPORT OF THE LABOUR COMMISSION．
Students of history find in the French Revolution nothing more remarkable than the astounding foolishness of those who slew their way to power．The Goddess of nd steps were taken in her name to ruin the nation． Every man and woman became equal－in name．The nation was poor：in paper money lay the panacea for all ills．Work was needed ；the Government found it，and paid for it－in paper．Factories on a purely Socialist basis were started．The fraternity of the workers led to free fights，and broke up the establishments．We all know now what the end was．
tending interests came a master spirit who enslaved a nation which had shed torrents of blood to be free．We look back at these things，and we do not say how criminal
the people were，but how foolish．History repeats itself． We see all round us a movement astir which reminds us of the early days of the revolution of a century since． The surrounding and controlling conditions are not quite he same，but human nature is the same，that never changes The minority report of the Labour Commission pre
pared by Mr．Michael Austin，James Mawdsley，and Tom Mann，lies before us．It is a very lengthy document Its authors have wisely summarised its ：conclusions here they are ：－
To sum up，we regard the unsatisfactory relations between
employers and employed as but one inevitable incident of the employers and employed as but ono inevitable incident of the
present industrial anarchy．The only complete solution of the industrial evolution which will assign to the＂captains of industry＂ as well as to the manual workers，their proper position as servants
of the community．Meanwhile the reations betwen capitaists and manual workers are enormously embittered by the demoralising
conditions in which great masses of the population are compelled conditions in which great masses of the poppuation are compenee
to live．Under any conceivable view of social development these
conditions demand the serious attention of the Government，and conditions demand the serious attention of the Government，and
constitute，in our opinion，the most pressing of all the problems of statesmanship．The eril influence of the＂sweated trades，＂the demoralising irregularity of employment，the insanitary condition
both of the workplaces and the homes of large sections of the community the inadeaceane wages obtained in all the the eless skilled
crades of workers，the excessive hours of labour which prevail throughout so large a part of the ind ustrial field，all call for imme diata action．
We think
the colleetive organisation of the community should be deliber－ ately，patiently，and persistently used to raise the standard of life
of its weaker and most of its weaker and most oppressed members．We regard this
as one of the primary functions of democratic government，whether national or local ；and，while leaving on one side，as beyond ou
 in some detail various immediately practicable reforms in this
direction．These reforms include：－（a）The explicit and widely． direct public employment，whenever this is advantageous，the eigh hour＇day，trade union conditions，and a moral minimum wage．（b） The extension of the Factory and similar Acts to all manual workers
in all trades，and their drastic enforcement in such a way as to sion．（c）The ework，and absolutely to proot eightrial oppres－ sion．（c）The securing by appropriate law of an eight－hour day for
every manual worker．(d) The thorough investigation and bold experimental treatment of the problem of the unemployed．（e）
The provision of adequate sanitary housing accommodation for the whole nation；as well as honourable maintenance for all its statesmanship must，in our opinion，henceforth be directed to the substitution as fast as possible of public for capitalist enterprise ；
and，where this substitution is not yet practicable，to the strict and and，where this substitution is not yet practicable，to the strict and
detailed regulation of all industrial operations，so as to secure to detailed regulation of aut industrial operations，so

In its way this is a touching production．There is a species of oly wion pitiable．It is impossible to be angry whith Messrs Austin，Mawdsley，and Mann．They are philanthropists pure and simple．They have read istory，if at all，to no purpose．They are dreamers of reams．Their report is beautiful，but it is not business． It is unnecessary to examine their proposals in detain． There are two fundamental obstacles to be altacked． There is an old story，well known，but worth re－telling here． The commandant of a certain fortress was in days gone by，taken to task for not returning the salute fired by reasons for not firing a salute，all very ingenious．The last on
the list was that he could not fire a salute because he had no powder．
In like manner a dozen reasons might be alleged why out．One surfices．The nation cannot afford it．The second obstacle is to be found in human nature．The essence of the hours of labour and wages，always provide employment all the year round for those who cannot
otherwise get it．How this labour is to be paid for

Messrs．Austin，Mawdsley，and Mann do not attempt to say．For the rest they seem to believe that men of ability or capacity would be content to bind themselves down to class status of the incompetent，and that Englishmen as a They have everything to learn of human nature．Their ideas are，as we have said，pretty and benevolent．That their proposals represent so much waste of paper is，per haps，scarcely to the point．The report will，howeve no doubt serve a purpose．But，after all，things will go on much the same as before－for a time at least．The nation has not yet quite lost its senses．

LETTERS TO THE EDITOR

the mechanical equivalent of heat
Sir，－In The Engineer of April 6th I had shown that the data of steam，in conjunction with the theoretic views of Carnot were consistent with the experimental value of the mechanical equivalent of heat，as determined by Dr．Joule，on the autb
of Lerd Kolvin，as follows：－The number， 1390 foot．t．pounds， tigrade scale，or $772 \cdot 2$ foot－pounds by Fah．，derived from
Joule＇s experiments on the friction of fluids，cannot differ by and probably does not differ by ${ }^{\text {sin }}$ ，of its own value from the the
value of the mechanical effect of the thermal unit．－ ＇Philosophical
 two relations may be consistent and yet neither be correct，is ado ritted．The grounds of his objection－variation of gravity yat
different places，and errors in standardising thermometers－is a omewhat surprising charge to advance against Regnault＇s deduc－ ions．I annot at present refer to these，but 1 have a vivid
recollection，when they were first published，fully forty years ago，of being impresed by the extremee care which had been taken to
remove all conceivble servatoire des Arts et Metiers，at Paris，I had an opportunity of nspecting the extensive and accurate apparatus with which M． Clarke a much more tenable uncertainty，which would go to liminish the value 772 ，and by placing it against his reasons for
dimereasing that quantity，I think he will see the conventional agree－ ment on 772 as the value is a practical compromise where experi－
nent and conflioting testimony seem inadequate to yield strict ment and
accuracy．
Preside
President Lincoln was wont to remark，＂That reminds me of a priate，one．The late Dr．James Themson－father of Lord Kelvin －whio．insisting upon accuracyey in theirisexercieses from his students， such as to render uncertainty unavoidable．He Huoted，in
sample， a learned German statist，who，baving occasion to estimate the gross population of our globe，condescended upon a
trict specific sum．So many hundred millions，thousands， strict specifice sum．So many hundred millions，thousands，
hundreds，and tens，ending with，cand three at mhich aoint
the worthy doctor，with a quiet chackle，would remark，＂The podantry of tbat three is very amusing！＂Kelvin in the＂Philo－
Next，consider the statement by Lord sopuical Transactions，＂＂1852，page 568．＂From three separate series
of experiments，Dr．Joule deduces the following numbers for the work in foot－pounds necessary to produce a thermic unit
Fahrenheit by the compression of a gas， 820,814 ，and 70 ．The largest of these numbers is most nearly conformable with Dr．
Joule＇s views of the relation between such experimental Julo＇s viewss of the relation betwen such experimental
equivalents＇and others which he obtained in his electro－magnetic researches ；but the smallest agrees，almost perfectly，with the
ndications of Carnot＇s theory；wo should expect，from the comperaturo in Dr．Joule＇s experiments，to find a a number between
1369 and 1379 as the result $"-i . e$ ．，for Centigrade scale，for
竍 Fabrenheit，these numbers reduce to $763 \cdot 3$ and $766 \cdot 1$ ．It would this quantity，which Carnot＇s views，properly applied，will enable
us to correct．This will be an obvious deduction from the ollowing statements，in the investigation of the analytical expres sion for the mechanical equivalent of heat，denoting this by μ ，on
referring to Lord Kolvin＇s＂account of Carnot＇s theory＂the result arrived at is，$\mu=(1-\sigma) \frac{d p}{d t} \cdot \frac{1}{k}$ ，with the inference＂for the saturated vapours of all different liquids at the same．tempera－
ture the value of the second member must be the same．＂In this σ denotes the density of the vapour，of which the latent beat is k p respectively．A note is added，＂In is，comparatively speaking，
of litte consequence to know accurately the value of σ ，for the factor（ $1-\sigma$ ）of the expression for less than 1 放 for all temperatures between 100 deg ．and 0 deg．C．
that unless all the data are known with more accuracy than we can $\frac{d}{d t} \cdot \frac{1}{k}$ simply，as the expression for μ without committing any error of important magnitude．＂If，however，we descend to minutie，such as the differences of the coefficients of expansion of
the various kinds of glass which compose the tubes of the thermo meters employed，wo cannot neglect a quantity which will cause a $1-\sigma)=1$ is to suppose $\sigma=0$ ；and if we make improper assump tions wo must accept the consequences．In my former letter
have pointed out Clapeyron and Holtzmann，misled by the usually －given as -267 by De la Roche and Berard－－had deduced the viluen $\mu=681 \cdot 7$ Now，a variety of phenomena，instead of -267,
by Professor Miller，were found consistent with the value -2389 Regnault＇s later careful determination very nearly agreed wit this，being given as $\cdot 2319$ ．Dr．Soule，by three direct experiment，
arrived at a mean value， 2300 ．The average of these，-2356, applied in correction，woald have yielded the value

$=681.7 \times \frac{\cdot 2670}{-2356}=772 \cdot 5$ foot－pounds．

In my preceding letter，by the relation between temperature an
expression for the mechanical equivalent $\mu=\frac{d p}{d t} \cdot \frac{1}{b}$ ，it was
shown wo bad $\mu=772$ ，whicb，had it been further corrected，as
pointed out in the foregoing，for the oomitted factor $1-\sigma$ would
have almost exactly agreed with the above result，and hence，from have almost exactly agreed with the above result，and hence，from
all the known facts，it eeemsm to me me 72 is a much more probable all the known facts，it sems to me
value than the 787 of Mr．Donaldson，to which mobl objected
Glagow，April 23 rd．
Robert Ms
tran resistance－english and american．
SIR，－Our American friends must，I think，have followed the precept of the survival of the hittest in compling that wonderfu
table No．II．，printed from the Railroad Gacett in you sidit table，No．II．，printed from the Ratirvocl Gavette in your edition of
April 13tb，which goos to prove that this partieular goods train ran with a resistance of only 3.51 lb ．per ton on the level．You
show conclusively in your article of April 20 th how utterly their oww concres fail to agree with each other，and you add：＂Our
oxplanation of the orror is that the dynamometer used on the explanation of the error is that the dynamometer used on the
American train was either itsolf wholly untrustworthy，or，was used
in such a way that the figures obtained are valueloss．＂I find in such a way that the figures obtanned are valueless． to nnd，
howover，that by allowing their dynamometer and oxperiments st
be correct，and allowing for the effect of gravity，the results come be correct，and ailowing for tor etifet of gravity，the resuits come
out very favourably for the English train，and as aravity counts for
about 35 per cent．in the American train，against 15 per cent．in the English train of the total work
any fair comparison if it is neglected．
any fair comparison if it is netlected．
By taking from Table I．the total gross or English foot．tons registered by the dynamometer，which are given as
857,578 for the English and American trains respectively，and adding to them the foot－tons due to gravity by the net fall of the two trains，we arrive at the total power actually at work in conveying the two trains their full journey of seventy－seven miles．
We have，therefore，in the case of the English train 77.6 tons by 17 have，$=138,413$ foot－tons
768,855 to bo at added tons，the the engine traction of
a total of 907,268 foot－tons；and the American train $833 \cdot 44$ tons by 515 ft ．$=454,225$ foot－tons，which， added to the engine traction of 857,578 foot．tons，gives a total o
$1,311,803$ foot－tons．Reducing these tons totals to foot－pounds， 1，311，803 foot－tons．Reducing these tons totals to foot－pounds，
and dividing them by the total ton－miles－reduced to foot－tons－ given in Table I．for train only，i．e．， 59,876 for the English train， and 64,710 for the American train，we arrive at a train resistance
of 6.43 lb ．per ton for the former，and 8.60 lb ．per ton for the American train respectively
These are probably very near the trutb，and show the North－ American train，which in view of the sharper curves and steeper grades，eausing some power to be lost in the brakes，seems only Bibao，A pril 30th．
Sir，－Referring to the partial report of＂Comparative Tests of the 13 th vilt．－perhaps I may venture to express a bope that you will give to your readers the concluding portion of this most interesting report，together with the seetions of the roads，and
the traction and indicator diagrams necessary to make it complete． Meantime I Itrust that you will allow me to remark upon one or two points，which are rather curious．First，the areas of the
traction diagrams which should，I take it，represent the net work done，only differ by about 4 per cent．；；while the power of the engines，the loads hauled，the traction in mile pounds，the draw－
bar pull，and the foot－tons of work registered differ from 9 to 12 per cent．，and the water evaporated by 40 per cent．Secondly，in Table No．2 the first trial of tho American train gives the resist－
Tace of train and track as only 2.381 b ．per New York ton，and this on the maximum rising gradient of 39 ．fft．per mile．In the next trial，on a falling gradient 5.67 lb are required，on a dead level
from 3.20 lb ．to 4.30 lb ，and on a rising gradient of 26 ft ．per mile，
If，as the Railroad Gaietle says，＂only a small part of the energy of coasting was used in ascending the grades，＂how comes it to pass
that a draw－bar pull of 567 lb ．per ton was required to descond them ？
Tipton，May 1st．
［We have already stated tbat the dynamometer diagrams have not been published，therefore we cannot reproduce them．The
portion of the report which we have not given consists mainly of description of the two engines，and supplies nothing which can throw any fresh light on their performance，or on the figures

THE R．A．S．E．TRIALS OF OL ENGINES．
te，so that Another Engincer seems to be another Russoline advo－ nly about three brands of Russian oil sent from Russio to this country，and if Russoline is amongst them！Also where do the London stocks lie？Upon his own argument，Russoline should not ost per effective horse－power is，with Royal Daylight 459 a penny，while with Russoline it is 473 of a penny，and upon 4 per cent．more power is obtained from a given engine with Royal Daylight than with Russoline．
The above caleulation is based upon buying Russoline in Liver－ pool，and Royal Daylight in London．If I buy both in London
Rossoline gets further behind．I did not，however，intend to raise discussion as to the morits of particular brands of oils，but to解 competitors at the R．A．A．S．．trials ；this seemed advisable owing which might mean anything in the shape of oil． Russoine or Russian ordinary would de a good oil to use，but
lot competitors know it．I would ask＂Another Engineer＂to realise a trial of steam engines in which the only condtrons known beforehand was，that＂the cheapest fuel＂would be used，this
bifferent oils，like coals， apparently being his argument．Different oils，like cools，act oil is to bo used undecided．Supposing the R．A．A．．E．．have decided as to this，but the information in in sot to be made known，is it not possible for one firm by indirect means to get this knowledge，and
so obtain a great advantage over the other competitors．It should be realised that although an oil engine may work on all the
ben ordinary brands of petroleum，yet to obtain the best possible trials
Ov TRUL
ith each would require different adjustments． May 1st．
the gigantic wheel．
Sis，－Referring to the article on the Gigantic Wheel in your same are leading to some confusion，as it might be，and is，under－ stood by some of your readers that our company has taken the contract for the construction of the wheel．Mr．Basset，one of our directors，bas taken the same，but as a private undertaking on his
part，and this company is in no way connected with the matter except that Mr．Basset has been kind enough to place with us the order for the axle and some of the driving machinery．
Lambeth，May 2nd．Chairman and Managing Director， $\begin{gathered}\text { Maudslay，Sons，and Field．}\end{gathered}$
Bhitish Assoclation for the Advancement of Science．－The ixty．fourth annual meeting of this Association will commence at
oxford on Wednosday，August $8 \mathrm{tb}, 1894$ ，with the Marquis of
of Salisbury，K．G．，D．C．L．，F．R．S．，Chancellor of the University of
Oford，as president the viee．presidents，the Earl of Jersey，
Of．
 Kennody，F．R．S．，M．Inst．C．E．E．E．（H）Anthropology ；president，
Sir W．H．FIower，K．C．B．，F．R．S（I）Physiology ；president，
Professor E．A．Schafer，F．R．S．，M．R．C．S．

GLASGOW SEWAGE WORKS
(For description see page 372)

Figs. 7 and 8-FLOATING DRAINERS

ENGINES OF THE S.S. TURRET-AGE.
OUR supplement this week illustrates the main engines of the s.s. Turret-Age, a full description of which novel vessel, along with several illustrations, appeared in our issue for the 16 th ult. The engines and boilers, like the hull of the vessel, are the production of Messrs. Wiliam Doxford and Sons, or
Pallion, Sunderland. The engines, boilers, and coal bunkers are placed right a ft, near the stern of the vessel ; this posi are placed right alt, near the stern of the vessel, hioving been fixed upon, as explained in the course of the description referred to, from considerations of trim conditions and facilities and of stowage capacity for bulk argoes amidships.
The engines are of the usual triple-expansion, surface-condensing type, having cylinders 23 in., 37in., and 60 in. by 42 in . troke of piston, all supported on cast iron columns, the back columns for the intermediate and low-pressure cylinders
being cast on to the condenser. The high-pressure cylinder is fitted with a piston-valve, and the intermediate and lowpressure cylinders with the D-type slide valve. The valve goar is of the link-motion type, and worked by means of a steam reversing engine. The crank shaft is on the "built" principle, being 11 in. diameter, and is made in three sec-
tions, each section being a duplicate of the other, and will tions, each section being a duplicate of the other, and will
therefore fit to either cylinder in case of a breakdown at sea. therefore fit to either cylinder in case of a bealaced at sea.
The engines are fitted with a turning gear, placed between the intermediate and low-pressure cylinders, and worked from the reversing engine. The whole of the hand gear for reversing engine, regulator and throttle valves, drain-cocks, and auxiliary starting valves, are conveniently grouped together on the high-pressure column, so as to be easily controlled by one engineer. The air pump, circulating pump, and feed and bilge pumps are all worked by means of levers,
links, and crosshead from the low-pressure engine. The diameter of air pump is 17 in., of circulating pump 14in., of feed pump 4in., of bilge pump 4in., all having 30in. stroke. The arface condenser inted with 959 brass tubes in. external circulating water being directed so as to pass twice through the condenser.
The boilers are two in number, of the single-ended multitubular class, having large combustion chambers. The boilers are each 14 ft . $10 \mathrm{inn}$. mean diameter, and 10 ft . 6 in . long, having three corrugated furnaces of 4ft. outside diameter. Each boiler has 262 tubes, 31in. external diameter,
and 6 ft . 11in. long between tube-plates, the total heating and 6 ft . 11 in . long between tube-plates, the total heating
surface being 4320 square feet. The working steam pressure surface being 4320 square feet. The working steam pressure is 160 lb . per square inch, and the machinery developes
1320 indicated horse-power in ordinary work at sea on a low consumption of fuel.
A minor, but noteworthy feature-from the point of view of economy of labour and general convenience - of the stokehold arrangements of the Turret steamers is the manner in which the ashes are discharged overboard. Taking the place of the usual hoisting of ash buckets is the hydro-pneumatic ash-ejector, patented and introduced by Mr. Horace See.
Briefly described, this apparatus consists of a hopper standing Briefly described, this apparatus consists of a hopper standing
a convenient distance above the stokehold floor, and fitted a convenient distance above the stokehold floor, and fitted
with a substantial cast iron cover. This hopper opens down into a large pipe, which is thence inclined up an angle of about 60 deg., and leading out through a flap discharge
valve in the ship's side, above the water-line. Into the valve in the ship's side, above the water-line. Into the
bottom of this pipe enters the nozzle of the ejector, from which a jet of water, forced by the bilge pump, is allowed to which a jet of water, forced by the bige pump, is allowed to
issue when wanted. With the water-jet flowing through this pipe or conveyor tube and discharging overboard, the cover simply shovelled in, being caught by the stream of water as
they fall and carried along with it, aided by the suction caused by the passage of the water. To prevent any risk of
clogging, air is admitted with the water, this being accomclogging, air is admitted with the water, this being accom-
plished by the presence of an air valve in the inclined conplished by the presence of an air valve in the inclined con-
veyor pipe. The ashes are removed as fast as they can be veyor pipe. The ashes are removed as fast as they can be
shovelled into the hopper, and the whole operation is simple and cleanly, and a considerable saving of time and labour.

THE CONVERSAZIONE OF THE ROYAL SOCIETY. Last Wednesday night at the conversazions of the Royal Society Dr. Alexander Muirhead exhibited at work the latest improvements in the apparatus for sending and recording messages by Atlantic cables, and the signals were sen electrical conditions of a real one. He also described the electrical conaitions of a real one. He also described the Heart's Content, in Newfoundland, in the autumn of this year. It is the heaviest cable for the purpose ever made. The deep sea portion, exclusive of the whole of the shore ends, weighs, including its sheathing, over three-quarters of a ton
per nautical mile. The copper conductor is extra large per nautical mile. The copper conductor is extra large,
weighing 650 lb . per knot, and the gutta-percha 400 lb . per weighing 650 lb . per knot, and the gutta-percha 400 lb . per
knot. No. 11 pure copper wire runs through the contre of the cable, and it is surrounded with strands of finer copper wire. The length of the cable is 1850 knots. At present from eighteen to twenty words per minute are sent through Atlantic cables; it is hoped to get fifty words per minute through the now one. The 1865 and 1866 cables between the 1873, 1874, and 1880 cables by that route are working and the 1894 cable, if laid successfully, will make the fourth. The example of making artificial Atlantic cables for home experiments was set by the late Mr.
C. F. Varley in early days. The artificial line used on Wednesday by Dr. Muirhead, made of folds of tin-foil with paraffined paper between, consisted of a strip of tin-foil sixarea. He also exhibited Lord Kelvin's syphon recorder, and his own automatic curb transmitter in operation in connection with the artificial cable of the same capacity and conductor resistance as the Atlantic cable, which is to be laid next July
by the Anglo-American Telegraph Company. The capacity by the Anglo-American Telegraph Company. The capacity
of the artifial cable is 800 microfarads; and the resistance of the artificial cable is 800 micro
of the conductor 3350 B.A. units.
of the conductor 3350 B.A. units.
The Rev. F. J. Smith, M.A., of Trinity College, Oxford, exhibibted a torsional ergometer or work measuring machine, used with a mechanical integrator and as an electrical governor for measuring the angle of torsion of the shafts of steamships,
and for other purposes. When the system of pulleys and shafts is rotating, the angular displacement between the ends of the shaft has to be accurately determined. He says that he has used three methods for making this determination. The first depends on the phenomenon of the retention of an image by the organs of vision for a small fraction of a second. The second method depends on the reversal of the motion of the image of a rotating object by means of a combination of and in the same direction. The third method is by the introduction of differential gear
Mr. Henry Wilde, F.R.S., of Manchester, has a theory the the exterior of our earth is permanently magnetic; also that an interior one is movable and magnetic, rotating in the plane of the ecliptic, $23 \frac{1}{2}$ deg., and loses one revolution in 960 years, or $22 \cdot 5$ of a degree annually; he assumes, also, two globes one within the other, and each containing a coil
of insulated wire, through which currents of electricity could be sent, and mounted so that their motions should be such as to agree with his hypothesis. By placing a compass over different parts of the outer globe, he obtains the same variaproved his case, or at all events has done so until some better prypothesis is brought forward.
Professor Sylvanus Thompson exhibited some illustrations of polyphase electric currents, among which one of the most striking was the revolution of a copper egg
magnetic field; ; t could not get out of the field.
Mr. Henry A. Fleuss exhibited a mechanical pump for the rapid production of high vacua, and vacuum tubes exhausted by it. It was a double-barrelled air pump worked by a driving wheel turned by hand, but the essential part of it he
keeps secret; all he says is, that in the valvular part is a keeps secret; all he says is, that in the
special heavy oil, totally free from water.
Mr. J. W. Kearton exhibited several of his magic mirrors, on which no image was visible to the eye; but when light wa thrown upon them from an electric lantern they cast reflected images upon a screen. His mirrors owe their
peculiar properties to curved elevations and depressions in peculiar properties to curved elevations and depressions in
the polished metallic face, the elevations producing figures in the polished metallic face, the elevations producing figures in
shade by scattering of light, and the depressions, figures in shade by scattering of light, and the depressions, figures in
light by condensing rays reflected from the mirror on to a light by condensing rays reflected from the mirror on to a
screen. The figures in relief and intaglio are first produced screen. The hortion of any suitable acid on the metal plate, and are then polished down until they disappear to direct vision, after which the surface of the mirror is electro-gilt.
Mr. Killingworth Hedges exhibited a model of his method of transmitting force by spheres or balls. Instead of water as a medium, balls, each having a crushing strain of fifteen
tons, are used : and any pressure on one end of the row of tons, are used; and any pressure on one end of the row of balls is immediately transmitted positively to the other, the tube in which they are contained running round corners, and up and down in the same way as the hydraulic pipe. At the
bends the tube containing the row of balls has to be made with care, and to be very smooth inside.
Mr. Hedges had on view a diagram suggesting the application of his invention to the opening and closing of the watertight doors of a ship from the conning tower. So far, experiments with the method have been carried on up to a
distance of 150 ft., over which, he states, the friction was distanc
slight. $\underset{\substack{\text { slight. } \\ \text { Am }}}{ }$
instrument the other objects of interest exhibited were an instrument for photomicrography, by Prof. Hunter Stewart
and Mr. Henry Cunynghame, in which for great steadiness and Mr. Henry cunynghame, in which, for great steadiness, which slides along an iron bed; the focussing screen is at one end, and does not move, and while the operator is sitting near it, he has the means of making all the necessary but distant, coarse and fine adjustments.

LEGAL INTELLIGENCE.

 QUEEN'S BENCH DIVISION.Before Mr. Justice Kennedy
mutrhead and another v. THE Commer
This was a very important cabdes, the owners of Muirhead's patents for dupticating subsmarine cables, to recover royalties from the defendant company in respect
of the use by the defendants of the patented inventions upon their two cables joining the United Kingdom and the United States, The claim in the action was for two quarters' royalty, payable under an agreement dated. the 2nd January, 1884, and amounting
to the sum of about $£ 3000$. But the real question to be decided in to the sum of about tesoo. But the real question to be decided in
the action was whether the defend the action was whether the defendants were liable to pay royalties
to the plaintiffs during the whole term of certain American patents, such royalties amounting in the whole to the sum of about
E45.000. E4, 000.
7th March last, and eaight days, from the 28 th February to the Justice Kennedy, before whom the action was tried.
The plaintiffs were represented by Mr. Finlay, Q.C., Mr. Bousfield, Q.C., and Mr. Pollard, instructed by Messrs. Trinders and Capron.
The
Q.C., Mr. Moulton, we.C., and Mr. Arther Sir Richard Webster, Q.C., Mr. Moulton, Q.C., and Mr. Arthur J. Walter, instructed by
Messrs. Budd, Johnson, and Jecks, whilst Mr. Carpmael beld a Messrs. Buad, Jonnson, and Jecks, whist Mr. Car
Under the tichalf of interested third partios.
Under the licence granted by the praintiffrtis. the defendants,
the defendants were antitled to nse inventions the defendants were entitled to use inventions patented by the
plaintiffs in England, the United States Canada plaintiffs in England, the United States, Canada, and France, and
the licence was oxpressed to continue so long as any of tho patents should "last."
The term of all the English patents included in the licence
expired on the expired on the 1st July, 1891 , but one of the American patents,
which had been granted in 1880, had been granted for the term of which had been granted in 1880 , had been granted for the term of
seventeen years, and would not expire till 1897 whist the seventeen years, and would not expire till 1897 , whilst the
Canadian patents would not expire till 1895 . The contention of the defendants was that the American patent of 1880 and the Canadian patants were granted for inventions which had been previously patented in the United Kingdom, and that hence by
virtue of Section 4887 of the revised Statutes of the United virtue of Section 4887 of the revised Statutes of the United States,
the American patent of 1880 , though on its face granted for the the American patent of 1880 , though on its face granted for the
term of seventeen years, expired at the sime date as the Engli term of seventeen years, expired at the sime date as the English
patent of 1876 , viz., in the year 1890; and that the Canadian patents, by virtue of the American Patent Act of 1870 , expired with the corresponding English patents, so that on the 1st July,
1891, when the last of the English patents expired and 1891, when the last of the English patents expired, all the terms of
all the patents included in the licence bad come to an that no royalties were any longer payable.
The real fight in the case was upon two points :-(1) Was the
invention contained in the Enalish 1876 . invention contained in the English 1876 patent the same as the
invention in the American 1880 patent? invention in the American 1880 patent ? (2) Assuming the iden-
tity of these two patents, did the American law cause the American patent, de facto and without any decision of any American patent, e at acto date of the corresponding English patent of 1876?
to lapse
As will be seart, As will be seen by the judgment of Mr. Justice Kennedy-an
extract from which will be found at the end of this report-all the extract from which will be found at the end of this report-all the
points of law which were raised points of law which were raised by the defondants were found by
the learned judge in their favour but he found in hle learned judge in their favour, but he found in favour of the
plaintifs on the question of the identity of the inventions; holding
the that the American 1880 patent was granted for an invention diff ferent to that contained in the English 1876 patent, and that the plaintiffs were therefore entitled to receive royalties during the
full term of the American 1880 patent In order that our readers may under
raised in the case, we have prepared a sketch the scientific points rase installation of Muirhead's duplex cable system, which was
plete ased at the trial, and which was designed and personally constructed by Mr. A. J. Walter, the defendants' junior counsel. Put
shortly, the 1876 English patent coner shortly, the 1876 English patent covered Muirbead's invention of
reducing the retardation of the current in the bridge reaucing the retardation of the current in the bridge arms by
substituting for the bigh resistance formerly used in the bridge arms-to prevent their shunting effect upon the current-split condensers, one in each arm of the bridge, whereby the shunting effect was equally well eliminated, and a much clearer and more sharply defined and quicker signal was obtained.
The general principle of the
The general principle of the duplex system is probably suffi-
ciently well understood by the general bydy of our readers ; but
put shortly it amounts to this.

The cable on the ocean bed, in addition to possessing, resistance, has also a Leyden jar effect, viz, it has a "capacity", An artiparaffined paper is prepared, corresponding in resistance and apacity to the real cable. A battery is arranged in connection
vith two keys, so that, by depressing one or other of these keys one terminal of the battery is put to eartb, and the other termina is connected with the apex of the bridge. The current flows
through both arms of the bridge, and into the real and artificial through both arms of the bridge, and into the real and artificial he resistance and capacity of the real and artifcial cables are the bridge, so that the potential at the points B and C in the diagram through the recording instrument at the sending station, bu he current passing through the cable reaches the recorder at the When, of course, and deflects the needle of its galvanometer. the action will be readily understood. Assuming that the operato at the end marked America has depressed his key and sent an
current into the cable and artificial cable, the potential at B and C omains constant, and no denlection of the recorder at the sending at the English end has sent a current into the cable by depressing his key, the effect of this will be either to raise or to lower the potential at the point B, and hence a flow of corrent is determined etween Band C, and the recorder at the A merican end of the instru the recorder at the English end is produced by the action of the operator depressing his key at the American end, and that hence the recording instruments at each end are only affected by currents The chief point, in which the cable.
The chief point, in which Muirhead's 1876 patent was an advance
ppon earlier knowledge upon the subject, consisted in the remol apon earlier knowledge upon the subject, consisted in the remova
from the arms of the bridge of the very high resistance of which they were formerly constructed, and substitutinn therefor arms of
low resistance, and a condenser in each arm of the bridge each of such condensers consisting of a series of plates of tinfoil insulated with parafinined paper and constituting a series of Leyden jars
interposed in each arm of the bridge and causing a break in the continuity of the metallic circuit of the same, as the inside of the Leydon jar is cannected with one part of each bridge wire, and the outside with the other part as shown diagrammatically in the model
at S^{2}, which consists of a couple of brass plates insulated from one another by a vulcanite plate, the whole being insulated from

model of muirhead's duplex cable system

It will be of course apparent that with the varying conditions
atmosphere and temperature to which the real cable is exposed, compared with the artificial cable, changes in the relative electrical resistance and capacity of the real and artificial cables would have
to be made from time to time ; and though in the 1876 patent no
 was given in evidence by the defendants' witnesses, and admitted
by the plaintiffs' witnesses, that in order to work the 1876 com bination, some means of adjusting the resistances of the arms of was usually done by the insertion of resistance-boxes of low resistance, in one or both of thee erms of the bridge.
In Muirhead's 1880 patent a heostat for In Muirhead's 1880 patent a rheostat for this purpose was introduced at the apex of the bridge, such rheostat being merely a resist
ance box in a convenient form, but it was alleged by the plaintiffs' wit nesses that the great advantage of this form of varying resistance was that, whilst it enabled a ready adjustment of the resistances of
the arms to be made by merely turning the handle of the the arms to be made by merely turning the handie of the
rheostat, it preserved constant the sum of the resistances in the
two arms of the bridge two arms of the bridge, as the effect of moving the arm of the into the other. The introduction of this rresostat, which was
included in all the claims in the American 1880 patent, was alleged by the plaintiffs to constitute a great advance in the electrical efficiency of the apparatus, and to dit
patent froun the English 1876 patent.
A large body of scientific evidence was called. For the plaintiffs
Prof. Silvanus Thompson, F.R.S., Lord Kelvin, F.R.S., Sir Fredk Bramwell, Mr. George. Mockeridge, Mr. John Imray, Mr. Herbert
Taylor, Professor J. T. Bottomley, Messrs. Muirhead, and Dr. Johr Hopkinson, F.R.S.
Jamieson, Mr. . S Swinburne, Mr. H. H. Kempe, of the Post-office Mr. John Gott, Mr. Frank Jacob, manager to Messrs. Siemens
and Sir H. E. Mance, lately in the Indian Governnent Telegraph The learned Judge, at the conclusion of the case, reserved
judgment, and on saturday last delivered a written judgment, from wrich we extract the following:
Mr. JUSTICE
referred to the wriskDy having outlined the nature of the claim, referred the the writen agreement or January 2nd, 1884, unde their patents. The only important part of that agreement for the purpose of deciding the case was, he said, the first article
thereof, viz. :-"The inventors grant to the company the right to apply this said patented duplex apparatus to the the
above-named cables. This grant is made for the whole period during which the patents shall last.
clause further bound the plaintifs - -the inventors - to The
give to the defendants all the beneits of any improvements which
they might make in their system anting the currency
of tbis licence. For the purposes of this action, his Lordship said, it might be taken that this agreement was carried out by bot partios up to July 1 st, 1891 , and it was the quarterly payments doe
subsequent to that date down to December 25 th, 1891, that the plaintiffs now sought to recover. Tho action had an interest far to recover them, it followed that they were entitled to similar quarterly payments for several succeeding years also. The issue
which was raised was, Was Mr. Alexander Muirhead's patent, No. 234,490 , dated November 16th, 1880, a patent which, in the language of the article of the agreement he had referred to, was
"lasting" after July 1 st , 1891 ? The plaintiffs contended that
 of which occupied several days. The plaintiffs pater, the of trial 1880
was granted by the American Patent-ofice, and was expressed to
be for seventeen years, from November 16th, 1880. Prima facie United States patent it was november 16th, 1897 ; but, being a onacted that " overy patent granted for an invention which bas een previously patented in a foreign country shall be so limited to expire at the same time with the foreign patent, or, 1 there term, and in no case shall it be in force more than seventeen
years," Having also referred to Rule 162 (United Stated Rules years." Having also referred to Rule 162 (United Stated Rules by the American cases that, although an American patent express grant of the patent rights for the full term of seventeen years, neerertheleses, by operation of faw, if the invention had, in
tect, been primarily patented abroad and the foreign patent bad act, been primarily patented abroad and the foreign patent bad expired berore the seventeen years term had run out, the America
patent would expire at the same time. It was also settled law nvalidating ab inition tion previously patented abroad, the grant was not limited, but was for the full term of seventeen years. The statutes were to be In other words, the curtailing the effect or daration of the grant the shorter term, and expires at the expiration of the onereign patent of which it is a copy. That being the state was that the plaintiffs' American patent of 1880 was for -viz tion which had been primarily patented in a foreign country" No. 2564, which expired not later than July 1st, 1891 - and that the American patent, being in substance the same as
that of 1876 , the former, by operation of American law, terminated that of 1876 , the former, by operation of American law, terminated
on July lst, 1891, though on its face it was expressed to last for plaintiffs raised two plaintifs raised two set of contentions, one purely legal and to
other partly legal and partly of fact and based upon the contruction of the English and American patents and the inferences The plaintiffs say that, as between a a patentee and a party charged with infringing the patent, the alleged infringer may, according to
American law, succeed by proving that the American patent has expired because of the expiration of a prior foreign patent granted or the same invention, although the duration of the American patent has not been limited, as it ouggt to have been, upon it face to the duration of the foreign patent, yet that line of defence
is not open to a licensee as against his licensor, because to establish
asistance placed at the apex of the bridge arms, and therefore in varyng the resistances so as to get the ratio which gave a balance, rms containtain the sum of the resistances of the two bridge On all the evidence he was clearly of opinion that the patent of 1876 did not contain the same combination as was fond in the American patent of 1880, and that in his opinion the latter was a good and novel patent. There would, the
he plaintifts for $£ 3566$ 18. 5 d ., and costs.
A discussion took place as to whether or not the plaintiffs were decided that the question should be subsequently mentioned to his Lordship, counsel in the menntime to agree as to the oxact
amount of such interest, if payable. Execution was stayed for amount of such interest, if payable. Execution was
twenty-one days to consider the question of an appeal.

high court of Justice.

April 27 th, 1894.
Before Mr. Justice Stirling.
ise and others v. metropolitan klectric supply company. The hearing of this case was concluded on the 27 th ult.
Mr. Graham Hastings, Q.C., baving been heard in reply upon Mr. JUstricg Strilisg proceeded to give his jadgment, in the Surse of which he said that this was an action brought by five
plaintifts, who were tenants and occupiers of houses in Manchester. treet, Manchester-square, against the defendant company, who had erected works in the neighbourhood of that street for the supply of electricity for lighting and other purposes
houses in the surrounding district, and sought to restrain th any from arrying on their business in such a way as to comphiffs by three different modes, viz, by vibra-年, noise and smoke, smuts and grit. The defences put forward arry on thany were twofold-first, it was said that they dion not visance to the plaintiffs ; and, secondly, that even if they did the 1 of the Electric Lemingiffs was by compensation under section ordamages. With regard to the second of these defences his ordship considered it unnecessary for him to go into the subject, irst commenced the identical question had been raised before Mr ustice Kekewich in a case decided by him during thefore Mr. Lighting Comx's Brewery Company r. City of London Elecetric ustice Kekewich appeared to have fully considered the question, and dealt with all the material points. If a
few of the points taken in this case had not been touched upon is
Justice Keke Kidich, they would have affected the conclusion at right for him-Mr. Justice Stirling-to enter into the not be again. He, therefore, should proceed upon the basis of the conclusion at which Mr. Justice Kekewich bad arrived upon the question of law, and accordingly must start with the assumption in such a way as to cause a nuisance to its neighbours. Upon that caused by the works; ; and, secondly, what, was the remedy of
the plaintiff in respect of it. On the question of what constituted a 4 D and S ., 315), where V.C. Knight-Bruce defined it as "an
(4)
inconvenience materially interfering with the ordinat physically of human existence, not merely according to elegant or dainty modes and habits of living, but according to plain and sober
and simple notions among the English people." That had been referred to and approved of in many cases, and particularly by
Lord Selborne in "Fleming v. Hislop " (L. R.; I1 App. Cas., 691),路 in substance, and very nearly in words, if I am not mistaken, that what causes material discomfort and annoyance for the stances of the particular case may raise, and that a though the evidence does not go to the length of proving that health is in
danger." His Lordship then referred to the evidence as to the danger. His Lordship then referred to the evidence as to the existence of the vibration, and to the means which had been
adopted by the defendants to get rid of it, and said that it must be taken upon the evidence that there was, in fact, a substantial amount of vibration in the plaintiffs
working of the defendants' engines. Did that in law constitute a nuisance? The test to be applied was that suggested
by V. C. Knight. Bruce, and adopted by Lord Selborne by V. C. Knight-Bruce, and adopted by Lord Selborne -
vz., did it cause "material discomfort and annoyance for the ordinary purposes of life " The plaintiffs spoke very
forcibly as to the vibration. They also mentioned the fact of noise, but it seemed that the real substantial complaint was as to
the vibration. The complaint as to the regarded as a kind of appendix to the vibration. His Lordship then further examined the evidence upon the question of the effect of tha vibration upon the houses, remarking that one of the most
remarkable features of it, as pointed out by the scientific witnesses was its fitfulness. Sometimes it would be felt more in one room and taking the evidence of the witnesses as honest statements giving a fair account of what was experienced in the houses, his Lordship came to the conclusion that a case was made out of interfered with, and there was evidence that the occupants were unable to enjoy their ordinary rest. The evidence had been given
with moderation and without exaggeration, though with moderation and without exaggeration, though, perhaps, a
little colouring had been introduced; but a substantial case of
 occasioned by the machinery, his Lordship did not come to the less so was the complaint as to smoke. He accepted the
statement of the defendants' engineer that during the coal strike inferior coal had to be used, which might have caused damages as to either noise or smoke. That, however, was not a
serious part of the case, and had not materially increased the costs anction and an inquiry as to damares. inquiry, however, would be postponed for a time injunction and had been unfortunate, and ever sinice October, 1892, they had done their very best to remove all ground of complaint. If they had not
succeeded, it was no fanlt of theirs. The case presented an engineering problem which was apparently entirely new and very completing the remedial works upon which they were still engaged. Having regard to the difficulty of the subject, and the uncertainty of the success of the means which could be
it was fair to suspend the injunction for three months. unction and inquiry as to damages would be confined from applying, if necessary, for a further extension of time. The defendants must pay the costs of the action.-Times.

[^0]
CATALOGUES.

Jardine, John, Notlingbam. Patent Special and Goneral Goods,
nclading, Plommer Blocks, Shafting, Collars, Couplings, Palleys, inclading Plummer Blo
Brackets, and Belting.
Lgeds and London Electrical Enginoering Company, Limited, Byzshaw, J, and Sons, Limited, Batley, Yorkshire. Wronght Iron Pulless, Shafting, and Friction Coupling.
Baidwhin, Jamest, Doronshire Brass Works, Keighley. Baldwin's
Patent Safety Accossible, Removable, and Renewable Feed Check
V Patent Safo
Valve, \&c.
Waterho
Waterhouse Electrical Manufacturing Company, Limited, 67 ,
Southwark Bridge-road, London. Waterhouse Arc Lamp. Wilkinson, G., and Sons, Keighley. Engineor's Machine Tools. surfacing lathes, dynamorret wire lappes two spinade boring machines,
planing machines, slotting maine planing machines, slotting machines, drilling, punching, and other
machine tools.
A nicely
got up catalogue with name on back. Ruston, Proctor, and Co., Limited, Lincoln. Fixed and
Portable Engines and Boilers, Winding Engines, and Traction
Hnlme and Lund, Manchester. Pumping Machinery, Valves, \&c.
Grantham Crank and Iron Company, Limited, Grantham Gertical Boilers of various kinds. Company, Limited, Grantham. Cornish, Lancashire and Marine type Boilers.
Riehle Bros. Testing Machine Company U.S.A. Designers and Constructors of Special Machinelphia, Pa Morley's Patent Goar.
Magnotic Filter C
Liverpool. Fiter Company, The ,32a, Euston-square, London, and M Menzies, James, and Company, Glasgow and London. All kinds Stover Manufacturing Company, Freeport, III., U.S.A. WindJeffrey Manul eed mill
Eggland; John Davis and Son, Derby. Coal Mining Machines, Elevating and Conveying Machinery, Chain Belting.
Platt Brothers and Company, Limited, Hertford Works, Oldham. M achinery for Opening, Carding, Drawing, and Combing Cotton,
Thornton and Crebbin, Bradord, Yorks. Makers of Iron and Stsolworks' Machinery, Shipbuilders', and Boilermakers' Tools, \&c. Caddy and Company, Limited, Nottingham. Caddy's Patent
Smoke-consuming Chilled.face Fire Bars for all kinds of Furnaces. Stoward, J . H. ${ }^{4}$, 406 , Strand, London. Photographic Apparatus,
Cameras,
Reectiform" Lenses.
Berend, O., and Company, 61, Fore-street, London. Special
Appliances and Materials, Accessories, \&c., for Electrical Mochanical, and General Engineers, Ironmongers, and Chemica Manufacturers.
Electrical Pow
E.P.S. Batteries
Exporral Export Association of Sweden, Catalogue of Swedish Association. Stockholm: the Royal Printing Office. This is
well got up give owhich will be foond useatuly English merchants
Dell, William . American" Turbine and the Fruen Water Wheel Governor Coward and Ihlee, Engineors, Bath. The Niiagara Pulveriser.
Robinson, A. E. and He, 78 , Great Bridgewater-street, Man chestor. The "H. R." Gas Engine.
Berond, .., and Co, Gi, Forestreet, London. Grease and Oil
Lubricators, Oil Cans, Grease Fillers, \&c. Whitmore and Binyon, Wiekham, Market, Suffolk, and London.
Roller Flour Mill Machinery. This is a nicely got-up quarto cata-
 various roller mills, and reduction machines for horse feed, six.r-oll
mills, scalping and dressing machines, reels, brand dusters, flour dressers, most of them being of Messrs. Whitmore and Binyon's mills, and describes a large mill fitted up for Messrs. James Tucker,
Lited Vanghan and Son, West Gorton, Manchestor. Shafting (Stee
and Iron), Couplings, Plummer Blocks, and various kinds Wiison, John H., and Co., Limited, Liverpool and London,
Manufacturers of Lifting Machinery, Steam Cranes, Patent Grabs dc. A nicely got up catalogue, showing fixed and portable jit
cranes for light and heavy work up to 70 tons, and with jibs up to
65 it making machinery, and steam winches. The catalogue easily Craft and Perkins, Bradford. Friction Clutches, Shafting, Belt and Rope Pulleys, Gearing, \&c.
Wrigt's Patynt Heater Condenser Company, 16, Great George-
street WWestminster. LDondon. Wright's Patent Machinery and street, Westminster, London. Wrigbt's Patent Machinery and
Combinations. This relates to feed-water heaters, steam and grease separators, evaporators and condensers, water softeners,
and to what the makers call their compound cylinder release ongine. Bavall, Robt. W., 39, Victoria-street, London. Agent for
Electric Railway, Light, and Power Specialities. Manufactured by Albert and J. M. Anderson, Boston, Mass., U.S. A. A nicely got up
Hunsiet Engine Company, Leeds. Locomotives. A catalogue of conveniont size of main line and contractor's locomo
tivesand locomotives for light and narrow gange railways, plantatio and agricultural purposes. Some usefol memoranda are given at
the end of the catalogue. The name is printed on the back. the end of the catalogue. The name is printed on the back,
Smith and Grace, Thrapston and Londo. Cast and Iron Pulleys, split and ordinary, with the makers well-known inter
changeable screw bush and boss, also Smith's adjustable swivel bearings and coupling for shafting.
Denison, Saml., and Son, Leeds. Machines and Weighbridges. Denison's Improved Weighing
Stones
 house scouttle, with air inlet and outlet ventilating arrangements. Mirrlees, Watson, and Yaryan Company, Limited, The, Glasgow.
Patent Toggle Pressure Regulating Apparatus for Cane Crushing fitted with which spring of the helical and volute form and of comparatively
small resisting power, are enabled to control the prossare upon small resisting power, are enabled to control the prossure upo
and movement of rolls working under very heavy pressures. This arrangement of spring toggles is one of those simple yet final
inventions which come once in a life to inventors. It is remarkably effective, and base now been in use over three years. It is the
invention, we believe, of Mr. John G. Hudson, M. Inst. C.E., whose name is well known to our readers, Side, Enfield, London.
Sporton, Henry, and Company, Chase Sid
Manufacturers of Semi-Positive, Rotary, and Automatic Registering and Wasto-detecting Water Meters-Sporton's Patents-\&c. and Stud Machines, Pulley Turning Lathos, Milling Machine,
Milling Catters, Gear Cutting Machines, and Screwing Machines. lescription, Light., Railway Material, Tippingo Wagons, \&c.. \&o.
Che interest now taken in narrow gauge and light rolling stock adds yalue to this catalogue, which contains illustrations, particulars, and prices, not only of standard gauge but of all kinds of narrow
gauge and light trolling stock suitable for lines from 18in. gauge and upwards. It also contains prices and particulars of permanen
way for light railways, and of portable railways for colonial and plantation purposes.
Mavor Coulson, 57 , West Nile-street, Glasgow. Electric

Light and Power. A well illustrated catalogue of the maker's
electrical mand Hay
Hayward Tyler and Co., White Crospstarreet, London, E.C. The
Gordon Duplex Steam Pums., This relates to the Gordon steam pumps in various sizen, from that suitable to feeding boilers
up to the large sizes required for waterworks. It is made as a duplex pump with compound engines both of the horizontal and vertical forp.
Dick Kerr
Dick, Kerr, and Co., Limited, London and Kilmarnock, Gas
Engines.
Relates to single and double-acting gas engines from about 1-horse power up to 300 -horse power in a single eyfinder.
Cobbett W W Cobbett, W. Willson, 82, Southwark-street, London. "Scandi-
navia" Patent Cotton Machine Belting and Elevator Webbing.
"Saturn" Improved Hair Belting and Belting Accossories Saturn" Improved Hair Belting and Belting Accossories.
Worthington Pumping Engine Company London. Worthington Pumping Enine, Horizontal and Vertica, Direct Acting and
Beam Patterns, High Doty, Triple Expansion, Compound Condensing, Compound and Simple. In this catalogue the vertical as described, and particulars given of both kinds and of the Worthington bydraulic pressure pumping engine fitted with compensating expansion gear
and Hookham, Limited, Birmingham. The Con Chamberlain and Hookham, Limited, Birminghan
tinuous Current Meter, the Alternate Current Meter.
Lancashire Beit, Belting, and Hose Company. In the mention
our last impression of this catalogue, the words " bottom belt ng" should have been "cotton belting.
Wood, Waltor A., Mowing and Reaping Machine Company, 36, Worship-street, London. Harvesters, Mowers, and Reapers.
Manning, Maxwell, and Moore, New York, U.S.A. RRivas
 nearly eleven hundred pages, illustrated throughout with excellent
catalogue engravings. T The catalogue is 13in. by 10in., and concatalogue engravings. The catalogue is 13 in. oy 10in., and con-
tains illustrated descriptions of every class of tool and requisite for not only railway works, but for engineering and manufacturing works of any kind. The tools and appliances for the numerous
industries not included in engineering work are also illustrated and the prices given. Agricultural machinery, tinsmith, road-
making machinery, sawmill machinery, and everything in fact makt can be required by a great railway company owning not only its own rolling sired sco buildaing works, but itsany own plang for road
making, and for conduct of the asricultural operations on form making, and for conduct of the agricultural operations on farms
for the growth of the fodder for its own horses.
It is, in fact, the largest catalogue of machine tools and applian
are acquainted, and is exceedingly well got up.

AMERICAN ENGINEERING NEWS

Draibridges-Two steel drawbridges are to be built across the Illinois and Mississippi Canal, both having centre pirs and arms of
equal lengtt. One of these will be a single track railway bridge
On 50ft. Iong, 14 ft . wide, and with 20 ft . clear headway above rai
evel. The pivot pier will be 36 ft . diameter, and the turntable is oo be 20 ft . diameter. The bridge will be turned by hand, the gearing allowing it to be opened in four minutes. The end lock or
hatcces will be operated from the middle of the bridge, and the
and bearings will be provided with cams. The floor will be of
 to the track slingers, and the guard rails will be of 6in. to 8 in.
timbers boxd ond bot and bolted gnd spiked to ties. The ive load
will be b500 out. per lineal foot of track, with a floor load of will be 5800 lb . per lineal foot of track, with a floor load of
$10,000 \mathrm{lb}$. per lineal foot on a wheel base of 15ft, supported on four equally-spaced pair of wheels. The other bridge will be 126 ft .
ong, 2 合t. clear width, with 1 ft . clear head way above the floor.
. The pivot pier will be 28 ft , diameter and the turntable 26 ft . bridge to be swung in a complete circle by one man in four minutes.
 and a wearing surface of 3in. ook planks, and the roadway will have
tin by 12 in . pine gaurd rails faced with angle iron and raised ooadway. A tramway track will be laid on one side. The end bearings will consist of wheel stands with rubber cushions, and wil be adjustable as to height. The steel is to be made by the open
hearth process, and contain not more than trength, 33,000 lb. elastic limit, and 10 per cent. elongation. distribation of steam in high-speed locomotives, it was shown that in testing stationary engines, the engineer bas succeeded in doing
away with a large part of the drum cord connecting the indicato with the moving part of the engine, and has eliminated entirely wie the moving part of the engine, and has eiriminated entirely
the indicar. He gets the indiator
directly upon the cylinder. It seems imposible to accomplish as directly upon the cylinder. It seems impossible to accomplish as
much as this in connection with locomotive work. In some experi. ments to determine the influence of the indicator pipe upon the
orm of the card, an indicator was attached close to one end o one of the cylinders of an experimental locomotive, and a pipe
arranged to connect the same cylinder end with a second indicato ocated above the top of the valve-box. The arrangement of the seond indicator was in every way similar to that employed in road
tests of locomotives. The pipe used was 31 ftt in length and diameter. It was carefullly bent to shape and covered. Series of
cards were taken from both indicators simultaneously, and the ndicators were then reversed in position and the work, repeated the form of the cards, those from the indicator upon the cylinder being always much smoother in outline than the cards upon the
ine. There was also an actual difference in the size of the cards The pipe enters into the results as a retarding agent apon the of the indicator pencil is slight, as during exhaust, both indica tors gave the same record; but when the exhaust valve of the engine closes, and there is an acceleration of pressure to be
recorded, the upward movement of the pencil of the pipe indicator is slower than that of the indicator on the cylinder. As a result
the compression line from the indicator upon the pipe runs lower than the compression line from the indicator on the cylinder Again, at the beginning of the stroke, the indicators start out efore and after cut-off the pipe indicator comes down more vith the expansion line from the indicator on the cylinder. sult is that the card from the indicator on the pipe is larger than the card from the indicator on the cylinder. The record shows that
for a speed of 561 miles per hour the mean effective pressure given by the indicator on the cylinder is to the mean effective pressur given by the indicator on the pipe, as 1 is to 1.17 ; or, if we accopt the pipe indicator is in error to the extent of 17 per cent. It i evident from the results of the experiments that the pipe affects
the accuracy of all data which may be derived from the card. hus the pipe indicator wise. Its record at the beginning of ression is nearly true, but at the end of compression it shows les steam than it should. Mechanical engineers in charge of locomo-
tives are beginning to realise the practical advantages to derived from a more general use of the indicator, and it is to be oped that the arrangeme
Watervorks dams.-In a paper on "Earth Dams and Reservoir England Waterworks Association, the practice followed for the oston waterworks reservoirs was described, and the accompanying lopes are 2 to 1 on the inside, with a berm 6 ft . wide about 8 ft. below the flood level. These slopes are paved on a broken stone founda-
tion. The slopes on the outside are 2 to 1 down to the berm-
which is 20ft. below the top-and 21 to 1 below the berm. This
berm is 5 ft. wide. The outor slopes are covered with at least $2 f t$. of loam. The site is stripped of all soil containing organic
of liter up in 4in. layers, watered slightly and rolled concrete plastered with Portland cement on the water side an
with an occasional buttress with an occasional buttress on that side to stop the creeping of
the water lengthwise of the dam. The core wall is in some cases
carrid carri parface. This wall is 10 ft . wide at the bottom and 2 ft . on top
sur Adjoining the core wail on the upstream side is placed selected nine and clayey matrial.
or whatever material may be convenient. The slopes, bowever, both inside and outside, should be of loose gravel to prevent the slipping on the water side when the water is rapidly drawn down, and to allow any leakage to pass freelly away on the lower slope.
This is an important point too This is an important point too often neglected. Where th
material on the slope is of a clayey nature a slide is place, sometimes taking the paying or rirpap dide wn with it to the
bottom of the reservoir. The width over the top of the dam is 15 ft.

One of the advantages of a masonry core wall is that no animal ca grow larger than it is in the case of clay puddle. In the section many of the be and easier to maintain than sharp corners. The berm on the exterior slope is for drainage purposes while the sod is forming
A gutter is formed in the berm, with slight slopes lengthwise of the dam leading to sod gutters running down the bank, to kee the loam from being washed away by heary storms. At one of the Boeton dams the lower outlet pipe, 4sin. diametor, is laid in masonry on a rock foundation on the side of the valley. The core
wall is carried over and around the masonry ; and besides these precautions, frequent cut-off walls have been introduced along the line of the pipe. Another outlet pipe at a higher elevation is
placed in a tunnel on a rock foundation, at the other side of the placed in a tunnel on a rock foundation, at the other side of the
valley. This pipe is placed in a tunnel, because it is to be under pressirsie of the core wall, which is continuous behind them The
just inside most satisfactory puddre used on these works has been that which contained the least water ; but it must be made perfectly homo geneous and thoroughly worked. In makidg a solid ank which
shall be free from sediment, more depends upon the rolling and ramming than upon the watering. High embankments for these
reservoirs have not settled more than $\$$ in, in 50 ft

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRIOTS.

THERE was a rather better business done 'on Change in Birming ham to-day-Thursday-than for several meetings past. Satisfac
tion is expressed t that the South Staffordshire and East Worcestorshire coal racae Wages board have been able to agree upon the
new sliding scale amicably without there being, as at one time wo some extent, an adrance of wages, but it is felt to be better that this shoolld be conceoded rather than that the io ion and coal
trades should be disturbed by fuel difficulties. It is the mone trades should be disturbed by fuel difficulties. It is the more
neeessary that matters should go smoothly in the local coal one in the other districts of the Kingdom which are affiliated to the Miners' Federation. By the revised scale, $1 \frac{1}{2}$ d. per ton, instead of 2d. as at present, rise or fall in the average seling price will
vary thick cool miners wages ld. per day, the csale affeecting thin
coal miners remaining the same aspo. scale, the present basis of 4s. 9d. for the average selling price,
and 3s. 4 d . and 2 s . 8d. for the minimum wages of thick and thin coal miners respectively, will not be altered. But the present
average selling price of 7 s . 5 d . may be reduced to 6 s . 9 d . with out altering the existing rate of wages of 4s. 8d. per day for
thick coal men, and 3s. 8d, thin coal. The old scale has been in operation since 1888 . The employers have suggested that the new saie should operate automatically every two months, as in
the iron trade. The men, however, prefer to continue the present rule, whereby an taudit of the books to ascertain selling prices can
be made every four months if either side desire it. The colliery proprietors have therefore conceded the point and allowed this rule to remain as at present. The men urge that it appears to them
highly probable that in the event of there being compulsory audite every two months some customers would take advantage of the new rule by withholding their orders when they thought the nex
audit would sho in the iron trade, and there seems to be no valid reason why it
should do so with regard to fuel. The real trouble seems to be that the men's representatives have sufficient difficulty already in each audit cooss men's ordinary subscriptions to the Board, and a comparatively small a matter should not, however, be permitted
to prevent the perfectly to prevent the pertectly a atomatic working of the seale, and
doobtless it will not be allowed to stand in the way much longer.
. concessions this afternoon both in coal and iron, though furthe than this no appreciable effect was observable. Northampton pig
 superior foundry 48s. to 50 5s.
M. .essrs. R. Heath and Sons, Biddulph Valley Ironworks, Stoke
on-Tr on-Trent, have dropped their quotations 5 ss . per ton, and now quote
their R. H. or R. D. Crown bars, £5 12s. 6d.; angles and tees,
E6 2. 6 . £6 2s. . d.; and plates, 5612 s . 6 d . These figures are for the
ordinary qualities. The Stour Valley Ironworks of the Corrugated
Thin Iron Company, Wolverhampton, are to be enlarged by the eerec tion of four more puddling fornaces. The puddled bars will be
rolled into sheots and then galvanised. The frm evidently do no this that steel is going to supersede the older metal entirely for this purpose.
Mechanical
general use of labour-saving machinery" to learn that "the more gun tended for the disadvantages sustained by the Birminghan suggested by the chairman, Mr. C Competition. This cure was they met to consider members of the Birmingham gun trade, when
ham and to transact other business. In order to seats of the indastry, two of the guardians recently visted arge. able to sell so much more cheaply, especially in the the there descriptions of guns and revolvers, is because of the many hours in most of the branches are from 20 to 40 earned by the men, which would earn in Birmingham for the same class of work. In the emales, and the inspection is also done by them, ard as perbaps apon it, the Liège manufacacturers shave in this way a reat advantage.
If the Birming ham makers are to retain their trade in low-priced
guns, they will, in the chairman's opinion, have to look to the
more general uso of laboor-saving machinery, and the introduction
of more economical aotho of more economical methods of manufacture. Birmingham, how-
ever, still retains its superiority in the manuacauture of the better
classes of guns and revolvers, classes of rutans and revelveriors.ty ine the membanufacture of the bether the gun trade hare
coen good customers to mechanical engineers for some classes of meachinery for many years past. It is satisfatory tome colasses of that
prospects are bright, not only for a continuance, byt likewise for prospects are bright, not only for
an augmentation of the demand.

NOTES FROM LANCASHIRE.

(From our oren Correspondent)

Manchester. - The opinion very generally.) expressed on the
Manchoster Iron Exchange is that the condition of the market
 practically no business of any weight it in coming forward, and the the
tendency as regards prices continues in a downward direction. The Fosition in the engineering industries remains much as 1
have roported for some time past; it does not get actually worse,
but there is no improvement, except, perhaps, that amongst mathinists there is rather more doing.
In the coal trade In the coal trade, as I have anticipated previously, the steadily
increasing depression and the downward movement in prices are
bringing bringing the wages question again to the front, and the pre
liminary stesp are being taken prior to some proposed reduction bing brought before the Board of Conciliation. The The Lencaction
coalowners held an important meeting on Tuesday with the object of securing the united support of proprietors throwhhout the dis.
trict, including those who are not actuall under the Board, when
the wase the wages question is brought forward, and it is anticipated that
this will be done before ever long.
The Manchoster Iron Exchange on Tuesday was fairly well Teo Manchester Iron Exchange on Tuesday was fairly well
attended, but the business all through was again reported as
extremely slow. In pig iron users still extremely slow. In pig iron users still go on buying only in the
smanllest hand-to-mouth quantities, and in most cases the order books of makers are getting very low, with the result
that there is an increasing anxiety to sell. For Lancashire pig iron makers still quote nominally on the basis of about 42s, for
forgo to 42 s. 6 d . for foundry, less $2 \frac{2}{2}$ at the works, and where they
have specially favourable rates of carriage, occosional orders secured atais somemourthing like thates of carriaguase, occasional orderse the lower prices at
which district brands are being offered are gradually driving them which district brands are being offered are gradualy drivng them
out of the market, and to meet tbis competition local makers are
not holding firmy to their list rates. Lincolosshire iron as rearards not holding tirmly to their list rates. Lincolnshire iron as regards
forge qualities is oasier, 40s. 6 d . net cash being now about the
maximum figure that is quoted, and this is not readily obtainable whilst foundry remains at about 42 s. net cask, delivered bere,
So far as outside brands coming into the market are concerned Middlesbrough maintains its price fairly well, good foundry
brands not being quoted under 44 s . 4d. to 4s. having been reduced by makers 6 d . to 1 ls . per ton, and delivered at the Lancashire ports. Eglinton is not now quoted more than
46 s . 6 d. , with Glengarnock averaging about 49s. to 49 s . 6 d ., net prompt cash.
The manufa gradually worse, and pricest the finished iron trade as getting
North
Stanfor to $£ 512 \mathrm{sin}$. 6 d. per ton, deliveret in the quoted at more thane thester district, and at a meting of the Hoop Iron Makers' Association on Tuesday, it was
decided to reduce the oficial list rates 2 s . . d . per ton, random
 Business in the steel trade continues extremely quiet, with a
general weakness in prices. Ordinary foundry hematites scarcely
 here. In manutactured goods makers of steel boiler plates are
easaier, $£ 6$ (10s. .oeing now a very general quatation although some
still hold out for $£ 6$ 12s. 6 d ., delivered in the Manchester district. Messrs. Nasmytb, Wilson, and Co., of the Bridgwater Foundry,
Patricroft, near Manchester, have just received an order from the Ship Canal Company for ten hydraulic cranes, to bo erected at the
Silford Docks. They have also booked orders for two plants of
hyd hydraulic pumping engines and presses of the heavy clase for
Egypt the work sent last year,
to which I Treviously reforred, haring given excellent results. I may also mention that Mr.
Thomas DDanies, M.I.I.E., who has been asesistant - manazarer at the works for the last
director of the above firm
I have previously referred to the very successful well-boring
operatios carried on by Mr. Thomas Matthews, of West Gorton,
Manchester, for obtein Mancheste,
quirements; and a couple of pumping plants $h e$ mas racenturing re quirements; and a couplo of pumping plants he has recently com-
pleted for Messrs, Joshoa Hoyle and Sons, at their mills in Bacup,
deserve some special notice. The above firm commenced to search deserve some special notice. The above firm commenced to searcha
for water in an old well, and after some months work found at a
considerable depth what they were advised ty the oek ineers would considerable depth what they were advised by the engineers would
be a permanent supply, but a pump placed in the bore-hole did
not produce ouite the anticipated result. They menced again from the surface, boring a 1 iin. hole, the work being
entrusted to Mr. Thomas Matthews, one of his patent pumps of sufficient size beipg placed in the bore-hole, and the firm bave now
secorred an ample supply. This was followed by bring opera-
tions at another of their mill, and they have now, after nearly
 engine driving it has 10 in. .cylinder, with 1ibn. stroke. The bore-
hole is, as already stated, 16 in. in diameter, and the pump bucket is placed 120 ft . below, the ram 16 ft . below, and the engie
on the surface. The pump lifts 10,000 gallons per hour when
running forty-eight revolutions p r minute, and the water is de-

 the pump bucket being placed 120ft. below, the ram 25 ft. below,
and the engine on the surface. When running thirty revolutions per minute, this pump puifts 2500 gallons per hour, and the water
is delived about 12tt. baove the surface in a constant stream.
Mr. Matthews, I may add, has introduced special methods for boring through the hardest strata, and his hised patecent arrangement of engines and pumps is specially adaptable for deep borings, where
only a small space is available, as a pump capable of lifting 10,000
gallons per hour can be placed in a bore-hale these pumps, which are sometimes driven direct, and sometimes with gearing, expensive sinkings and frequent lowering of the
pupps aro avoided, and the apper and lower waters can be
separated at any given depth, and raised from any portion of the bore-hole.
Although, in the coal trade, no general reduction in prices marks the beginning of the month, the Lancashire Coal lales Association
not thaving made any ofticial alteration in their list rates, there is
in descriptions of round coas the Mown Manchester frims. On one or two
down their hown their pit and wharf prices 5 d. per ton, and colliery proprietors
horo and there, in other Lancasire district, are also making
slight reductions. At the pit mouth prices still average, however,

 slack averages 5s. to 5s. 6d.; best slack, 6s. to to

For shipment the demand is very unsatisfactory, and Lancashir steam coal does not average more than 8s. 6d. per ton, deliverod a
the Mersey ports ; whilst coal at under even this low figure is coming in from other districts. trade this week, and sales have increased, especially on local account. Makers, however, do not report any accession of busines from foreign, continental, or colonial sources, but home sales are
greater, and there is, generally speaking, a foller consumption of greater, and there is, generally speaking, a foller consumption of
Bessemer qualities of iron. This to a great extent is attributable to the fact of triskness in the shipbuilding and engineering trades largely on account of Admiralty orders and the increased con sumption of Bessemer metal. There is, however, practically no
trade in forge and foundry qualities of metal, and smelters prouce very little now
Prices are easier at 44s. 8dd. sellers net cash, and 44s. 7hd.
buyers. Makers are quoting 45s. 6 d . for mixed Bessemer numbers net f.o.b. There are thirty-six furnaces in blast, one having been
ighted during the week at Cammell's works at Workington. In the corresponding weok of last year thirty-three furnaces were in
bast. Stocks bave increased during the week to the extent o
last Sast. Stocks bave increased during the week to the extent o
1647 tons, and now stand at 136,980 tons, or an increase of 42,357 ons since the beginning of the year.
The iron ore egrade is of ouiet, altho. angh there is undoubtedly an
increased local consumption consequent on additional furraces having been lighted. Therer is still a small export of iron ore Still
The B makers are busier in the Siemens-Martin departments, Her Barrow Steel Company have booked an order during the week
or 10,000 tons of ship-plates from Messa through their Barrow agents, Messrs. Hannay and Clarke. They Birkenhead. This is in addition to 5000 tons of plates booked by Armaments Company last week from the Naval Construction and
arices are steady at $£ 57$. 6 . for ship plates, $£ 5$ 1ss. for angles, and $£ 6$ for boiler-plates. A fow new
orders for stel rails shave been placed during the past few days. Tequest. Other
Shipbuilders and engineors are very busy, and quin all departments greater activity may be expecte
deluged by men seeking work.
The shipping returns show that the exports of pig iron during pared with 3216 tons in the corresponding week of last year, an
nerease of 2506 tons. The shipments of steel last week only
The reached 8602 tons, compared with 13,00 rons in the corresponding veek of ast year. The exports of pig iron this year to 30 th Apri
represented 133,85 tons, compared with 87,478 tons in the same period of last year, an increase of 46,347 tons. The shipments of
stel to date this year represent 114,898 tons, compared with
147,539 tons in the corresponding 147,539 tons in the corresponding period of last year, a decrease of
32,41 tons. Freights are low, and only a few cargoos are offering. Prices are unchanged, but deliveries are consumption to note. Price
rather more full than of late.

THE SHEFFIELD DISTRICT.
THE coal trade still continues as depressed as ever. Although it demand for household sorts, there is no perceptible difference in
the Motropolitan and Eastern Counties or local business. Merchants, however, have got the idea that values will not go much
lower after the els. per ton reduction usually made in May has come tocks are said to be rather been endeavouring to come to a common agreement about prices. They are, of course, naturaly reticent in grving information about intention is to endeavour to obtain an advance of 1 s . 6 d . per ton, or two colliery owners, the movement was abandoned. If the coal owners could obtain this advance, with a prospect of a corresponding
improvement in locomotive fuel, the situation would be very much mprovement in locomotive fuel, the situation wound be very much
improved from their point of view to the unprofitabele nature of work in the thin seams, and Messrs, day to the people employed at Tankersley and Newbiggin with a Mr. Chambers these pits. The noticos we affect nearly 000 hands compelled to tase this step as latterly they had been working compelied to take this step, as latterly they had been workig,
Tankersley and Nowhigin at a loss It is oblieed that other pro
prietors working the thin seams will be obliged to take a similar priourse.
cours.
Silkst
 qualities from 7s. 6 d . per ton lower. House coal varies very much
at present, owing to the competition of such orders as are in the market. There is a goood deal doing in steam coal from Barnsley being larger than is usual at this period of the year. Still, the demand is not brisk or great enough to secure an advance in prices
Barnsley bard coal does not make over 7 s . 6 d . to 8 s s. 6 d . per ton while other qualities can be had from 7s. to 8s. per ton. Thie
class of coal will no doubt be in better request when the uncer tainsty in price has seatled dow.. In manufacturing fuel, gooed
slacks command from $4 \mathrm{~s}, 6 \mathrm{~d}$. to 5 s . 6 d . per ton, which is rather poor price, owing to the supply being far in excess of requirements.
Smudge and small coal remain as dull as ever. Generally not more than two to three days a week are being worked at the pits,
yet the weight brought to bank is more than is needed Work now going at the Canklow pit of Messrs. John Brown and Co, who have recently completed a new shaft at their Aldwarke Colliery
There is some expectation, too of the Swallow Wood mine, whict was closed more than a year ago, being shortly re-opened.
A fall of 5 s . per ton in Staftordshire iron, the resalt. comperition, lowers quotations below the rates of January las
year. North Staffordshire
 to any great extent, as iron is largely made in our district to mee
local requirements. It is noterothy that while the Staftord hit makers are lowering their prices, those in Cleveland and the North are increasing theirs. In the Sheffield district prices rule from
$£ 510 \mathrm{~s}$, to $£ 5$ I5s. for bar iron at makers' works, merchants requiring the larger quotation for good lots. The demand for steel is again dusettled condition various causes, chief amongse which are the the Continent, the Colonies, and more distant markets. From
Germany and several other continental parts some good orders have recently been received for the higher class of crucible stoel lighter than it was at the corresponding period of last year.
Bessemer billets are quoted at $£ 5$ 10s. per ton ; Siemens.Martin
 Ironworks. Some good orders continue to come in for rail wa the home demand is helped by a revival in foreign markets.
In the lighter industries the Sheffield cutlory and plate firms are but indiriereniy ofployid. in the atter trade there has been large expansion of the siver and electro departments during the
last six months, Sheffield baving taken a decided advance in this
business. In general, cotlery trade appears to be getting even
worse. It is noteworthy, however, that several foreign and colonial Africa is aeconing an to order pretty freely once more. South that doubtedly follow. Superior grades of files, cutlery, and good tools are being sent to South America, and there are better account from Australia. The American demand is still paralysed by the
uncertainty associated with the Wilson Tariff Bill. Makers of spades, shovels, edge tools, and circular saws report that they are good work to Sheffield for cutlery and tools, and considerable quantities of low-priced goods are being forwarded to the Gold Coast to be bartered for with the Kafifrs. Several houses are ex
tremely well employed in files, particularly for Russia and Ger

many.
Mes
Messrs. Newton, Chambers, and Co. opened their new premises
at the Moorhead, Sheffield, on Monday, when Mr. T. C. Newton J.P.,.presided over the loncheon in the large room of the establish-
ment the other directors present being Mr. A. M. Cbambers, J.P., ment, the other directors present being Mr. A. M. Chat Bers, J.P.,
Mr. George Dawson, J.P., and Mr. . Y. Y. Cowlishaw. There were
als Mr. George Howson-and about 150 other gentlemen representing the professional and commercial life of the Sheffield and South Yorkshire districts. The building has been erected after the
Moorish style, and is arged by Mr Aitchiso Prial. This point was recently forcibly urged by Mr. Aitchison, Professor or Architecture at hat
Academy, and Messrs. Newton, Chambers, and Co., as large iron. founders, have been amongst the first to introduce it. The whole of the iron used in the construction was made by the firm. During the Co. had been in existence more than 100 years, that their output of coal reached a million tons per annum, and the produce of pig iron
in the same time about 30,000 tons. Mr. Chambers stated that at Thorncliffe the company, through the ingenuity of Mr. Thomas
Smith, bad practicaly overcome the smoke question. They turned heir smoke iato oil, and the inconsibe portions of it were carried to their boilers and burnt. By this means steam for a large
amount of work was raised and it was done without any The building is practically a complete framework of iron and stoel filled in with brickwork for the external walls of the upper floors, and left open on the ground floor, thus securing the greatest avail
able width for show window, and atthe same time revealing the iron construction, the latter being prominently displayed as a striking It has already been stated in THE EV Crowley and Co., Meadow Hall Works, and Messrs. J. Grayson
Lowood and Co., of Sheffield, Deepear, and Middlesbrough, are to

 Milton Works, in cutlory, files, wood horseshoe, and cabinet rasps,
\&c. The Hardy Patent Pick Company, will show their patent "Devil" disintegrator, "Multiple" "grinder and magnotic separator
in motion. At another stand the latter firm also exhibit a collec. tion of picks, hand-boring machines, hammers, shovels, forks, spades, and various kinds of agricultural and general tools.

THE NORTH OF ENGLAND,

THE condition of the market cannot be described as satisfactory at prosent, there being a decided lack of animation, and a tendency
in prices that induces consumers and merchants to hold off from further purchases, as they expect to be able to place their orders
on more favourable terms than those at present ruling, as contracts are getting cleared off the producers' boosks, and there will appa-
rently before long arise the necossity for securing others ; indeed in some departments this has already come to pass, for there are not enough contracts on the books to keep the mills in full opera-
tion. As a rule, however, no complaint can yet be made of any it has bemployment, and the production is on a larger seale than it has been for several years. The pig iron exports from the Tees last
month reached 81,378 tons, which is more than has been recorded in the corresponding month of any year since 1889, and is above good last month, reaching 35,086 tons, as compared with 34,409 tons in March, and 30,546 tons in April, 1893. Another good
feature which affords also testimony of the scarcity of Cleveland pig iron in makers' hands is the large decrease of the stock in the reduced to 100,587 tons on April 30 th, yet in spite of this warrants are weak in price. That there is great activity in or production and
deliveries isalsoapparent from the traffic returnsof the North-Eastern Railway, which show a much larger increase this half-year than £7956, bringing the increase so far this half year up to $£ 110,999$. But all this has no influence in streng thening the market, for conno criterion of what it may be in the foture. The general idea is that trade will be quiet in the summer, with prices more in favour of the buyers. Shippers have bought nearly all the iron they will
need to deliver during the spring navigation season, and are indifferent about making further purchases, when they expect that
yy waiting they will have less to pay for what they buy. Thus there is an absence of new business, which is very disappointing
after the promise of better times, which seemed a short time ago Thest certain to be realised.
what less than it was last week, and not only has less been lifered but less has been taken both by merchants and makers. Most of the latter hold to 36s.3 3d. per ton for this and next montth's deli-
very, and some of the leading brands are maintained at 3d. to 9 d arove that; but, as a rule, , byyers have only moftered 36 at, and have
found that they some of the producers, though the latter have sold at tbat to old customers only. Cleveland warrants, in spite of the large with-
drawals from store, have further declined, and holders who at the beginning of the week were asking 36s. 11d. casch, were offering at
36ss. 1d. at the closes on Wednesday. The seacrity of the com-
moner qualities of Cleveland
 35s. 3d, and for white 35s. 6d. The relatively high prices which
the producers are getting for these commoner qualitios renders the
oosition more tolerable for the producer than it otherwise would be, but even under the most favourable circumstances there cannot at present be much profit in the manufacture of pig iron. Hematite
pig iron is in quieter request, and lower prices are taken. The production appears to be in excess of the requirements, because month, or 5750 tons in March and April together, the quantity
held at 30 th ult. being 41,298 tons. Of course the situatio in branch cannot be accurately gauged, because no particulars
are available as to the stocks of hematite in makers' hands M. Nos. of East Coast hematite iron are quoted at 45 s , per ton,
but 44 s . 9 d . and even $44 \mathrm{~s}, 6 \mathrm{~d}$. are accepted, and consuers reluctant to give even the last-named, because warrants are lower,
thougb East Coast warrants have not fallen so much as West Coast The adoption of the eight hours' day at the Seaton Carew blast next the representatives of the Cleveland Blast Furnacemednesday ciation will have a conference with their employers at Middles. ystem. On Tuesday the Skinningrove Iron Company commenced the erection of two more furnaces at their works near Loftus-in.
Cleveland.
Situate in the extreme east of Cleveland, fully twenty
getting rid of thoir iron adrantageously until they constructed a stipping place in the bay oppositiot thier works aboy construarted a a
and now they can dispose of a good doal moro iron than their oxistion two furanacos aras makiog, all they produce being shipped.

 2 nearly hair-10,20 tos- wero sent to trona alon, while taty had and Aprilaverage, and the beat April roturg that has been made for
five veare Germany and sootland togethor took nearly five.

 wround appear that Scotch consumerrs received 32,223 tons of pig
 Middlesbrough, of which 2750 tons were pig iron.
 slacker, and someno of the bar manutact turer) are so badily off for for
contractst that thoy canot keop their establisments in full opera tion. They report that the inguiry is yery small, smaller in fact
than it was at any time hast year, and the spurt has entiraly died

Engineers are fairly well situated, but the strike of moolder
 masters orr men are yet in a mood to toleratate outsidid interference The men stick to their demand for considerably increased wages,
and the employers decllare that they cannot see their way to

 Whitrantide. patented anothor form of register stovere or froe. frate. BYy means of
 Yields sa much greater hast.
end has not been succeesful in securing by the Admiraty, Messrs. Hawthorn, Lestio, , nind Co. have 0 being boint at one of the royal dockyards. these ongines will coet over 1100,000 .
Th tho coald be tradery ig genenerally dull, veen in Northamberland, where it should be very notive now that most of the Baltio ports are
oppon, batititis
ogemewhat affected by the refueal of the miners to
 them thoy have no other honourable course but to accept. The
representatives of the owners and of the men will meet again representatives of the owners and of the men will meet again on aptat is proposed. In Dorham it is ilikely that such a board will be estabiliked bofore lon, ns all sestiono of the men are ind favour of

notes from scotland.

 dececininin wendencey in the pricas or warrants. On moost days the
transactions have been fow and comparativel

 Spain and Portuga, 5o; ther countries, 82; the coastimes ship total shipments for the year to dato amount to about 88,000 tons,
compared with 106,000 tona in the firrt four months of last tear , compared with coastwise shipmentss. The foreign trade, it will thus be seen, has the coastwise shipments show a decrease of about topoct tons, tut While e the outgoing trade is thas limited, there are substantial
increases in the imports into sootland of both Cleveland and amberland iron
An add
he Clyde Ironw furrane has been pot on hematite pig iron at

 have ben in former titmes
The steel trade is activo
The steel trade is active and continues oexpand, the demand
 appears to bo a rather firmer tendency in prices, although com. petition iis almost tas keen as ever.
The progress of the malleablei iron brach in the direction of im-
 extibiting signs of improvement. In the foundry trades there ie more doing, especially in general castings, some of the pipe.
founders being still, however, much in need of orders.
The re.

concerned. There is a good deal of restlessoness among some grade
of wages and partial strikes have occurred here and there ; but it is hoped that these difficulties wil
oe The shipments of iron and stoel manufact
The shipments of iron and steel manofactured goods from sewing machines, $£ 1936$; other machinery, $£ 7427$; steel goods, £8176; and miscellaneous iron goods, $£ 18,614$.
As regards the coal trade, the shipments in the past week week, being a full average for the season. The aggregate ship menrs
corresponding period of 337,140 tons The volume of the shipping businoss is thns fairly satisfactory, but prices have been gradually
receding, and the output all over is difificult to absorb. Tbe receding, and the output alt over is dinicult to absorb. Thich
absence of large contracts for the Continent this eeason, which per ton has been made in the price of household coals for domestic consumption. The
pricos f.ob, at Glasgow barbour have also been reduced main coal prices f.o.b. at Glaggow harbour have also been reduced, main coal
bing quoted 6 s . 10 d . to 7 s ; splint, 7 s . 9 d . to 8 ss ; ell, 8s. to 8 ss . d .; Ayrshire, Lanarkshire, and Airdrie and Slamannan were held in Glaggow on Wednesday when it was agreed to reduce the colliers' wages 1s. per day from

WALES AND ADJOINING COUNTIES

(From our ouen Correspondent.)

The coal trade generally has been quiet, and the price both o gentle, yet when prices at present are contrasted with those of a
few months ago, the contrast is marked, and compared with the highest prices obtained since the turn of the coal tide, very
perceptible. The leading figure now for best steam is 11s., to
 ben tudiched by best coats. The astateness of coalowners in
concluding very large contracts, some at a price exceeding present auotations, will now be admitted, even by the colliers, who once tinue, it is expected before the Whitsuntide holidays set
On' 'Change, Cardiff, the principal topic tbis week was that coal orders were coming in tardily, making the future outlook ratber
loomy. The result of the quietness has been an idle day now and gloomy. The result of the quietness has been an idle day now and
then at the collieries : and sidings have prosented a more crowded ook than is pleasant to note.
Big cargoes continue to bo in evidence. On the last day of April there was a large number of steamers dispatched with cargoes of
ver 3000 tons, and on the lst of May one notable cargo of 7400 ons for Bomba
The following prices ruied this week in Cardiff:-Best steam

 strong impression, especially as regards large and small steam, that,
as a coal broker expressed himself this week, "the bottom has been ouched." I should not like to venture on the same prediction as regards house coal.
In coke the
Rhy coke the state of things is voted bad. The stoppage of now comes into competition wwith that of the Phondda and other
districts. The Rhymney coal and coke wagons are being ener districts. The Rbymney coal and coke wagons are being ener-
getically worked. Cyarthta, formerly a large bayer, now turns prices are low. Quotations are down' to 14s. 6d. for furnace, and even lower prices are named, and foundry is at 16s. to 16 s. .6d. Patent fuel manufacturera are reducing their quotations, and best
brands are selling at Cardiff at 118. to 11s. 3d. Swansea prices from 10s., and only a small trade doing last week. The only cargoes despatched were to France 1380, Austria 1500, home ports
120 tons The outlook in iron and steel is better. A cargo of 670 tons of rails was dispatched to Drammen this week from Cardiff, and ironplaced within the last fow days in the district. Steel sleepers, small goods, and even Bessemer bars-considering the slackness at the tin-plate works-are in better demand. At Cyfarthfa works
there was a very good make last week of round and ordinary tinthere was a very good make last week of round and ordinary tin-
plate bars. There has been a considerable quantity of foreign ore brought in this week, Blaenavon and Dowlais taking a prominent place amongst the importors. Quotations are firm, and the selec.
ion offered at Cardiff will be seen to be a varied one :- Best Rubio, 11s. 6 d. to 12s.; Almeria Campanil, 14s. 9d.; Bibao Cam-
panil, 15 s ; Tafna, 11s. 3d.; Garucha, 11s. 3d.; Red Seriphos, 13 s ;
 iron warrant trade was stationary, and dilttle doing, , but a decrease
in the stocks of Middlesbrough and Scotth. For sbip-plates there in the stocks of Middalesbrough and Scotzs. For ship-plates there
was an improved demand, but the condition and prospects of the late thas passed by without one or more stoppages taking place and the effect of this is beginning to be seen in an increased
anxiety to lay in stock ready for the settlement of the tariff anxiety to lay in stock ready for the settlement of the tariff. It
was stated on Change, Swansea, that inquiries had been made for Corage room for the parpose. If a boom should occur, it will find
would-be buyers in a dilemma, and fancy prices would naturall bo a result. At present stocokson, anly conscis of prices. would now boxes, a very poor total to meet a rush ; and what is more alarming, the make
ast week only consisted of 49,291 boxes, ery small--30,140 boxes. At Briton Ferry there was an average where, the complaint of employers as to the but there, as else marked. The labour difficulties continue, the 36 -box rule being I note that the Royal Hungrout extending.
begun to run a new line of steamers from tom Company bas just the Mediterranean and Adriatic ports. The Swansea agent is Mr Geo. Lennard. The first steamer, the Mattekoritz 1905 tons net left last week with a general cargo of 500 tons, 1500 tons patent
fuel, and 454 tons coal; the Z rim 1 is to follow. 42s. 7 d .; Midatlastions this this week were as follow : Glasgow pig, 11d.; hematites, 44s. 11d. for mixed Uumbers. Steel: Rails, heavy, from $£ 315 \mathrm{~s}$, light from $£ 410 \mathrm{~s}$.; Welsh bars, from £4 $£ 15$. , sheets, from £6 5s.-iron the same.
Tin plate bara, Bessemer, from £4; Siemens from £4 5s. These are the low quotations ruling in
rivalry with the North of England.
Tin-plates are hardening, and present quotations are not likely
0 remain,
Bessemer steel coke, 10 s , to 10 s . 3 d .; Siemens, 10 s . 3d. to 10 s . 6 d .

 The sliding scale of the iron and steel trades decrees the continuance of the present wages. The meeting of the committeoe
was held at Abergavenny on Saturday. Present: Messrs. E.
 members Were Messrs. Williams, Jenkin Jones, Rudman, John
Jones, W. Davies, Geo. Davies, and Messrs. B. Edwards and E.
Jones, secretaries Jones, secretaries.
A ballot is to
A ballot is to be taken amongst the whole of the South Wales
colliers in order to obtain their opinion upon the "Eight Hours'
Bill"

A case occurred lately at the Albion Colliery which is worthy of notice, as showing that colliors are indicating more common-sense
views, and are not so ready in taking holidays as they wed to be views, and are not so ready in taking holidays as they used to be.
The hauliers at the colliery asked the colliers to support them in getting a half-day's holiday on the Tuesday succeeding the last
Mabon's Day. This they refused to day, and as the hanliers re. mained from work, did the driving amongst themselves. The fact was commented upon at the Cambrian Miners' Association meeting
on Saturday, and a resolution was passed complimenting tho There is a dispute at the Mardy Colliery as to to. eam being worked, the officials contending that it is the "Sive-foo seam," the men that it is the same as the Bute seam, for which
2 s .2 d d. per ton is paid, the "five-foot" scale being 1s. 5id. Hopes Mr. Thomas Lewis, of Hill's Dry
ust patented an invention for lowering boats into the water with facility and speed.
our disputes are not confined to tin-platers or patent fuel
The latest are a carpenters' and joiners' dispute at Barry, the stone masons of the Barry district, and the Neath carpenters with fow exceptions, stopped work, having given a month's previous notice. The complaint is about the hours of labour. At Swansea I mam glad to notity the favour
I am glad to notify the favourable opinion of the House of Lords
Committee upon the Bute Docks Bill up to the present, and the decision was announced to goo on with the other parts of the Bill. 1he diversion of the river Taff was directed to be struck out.
" From Bristol Cbannel ports to Birmingham" is the project
 it is seriously intended, I learn, to convert the present Worcester and Birming bam navigation into a ship canal, whereby 400.ton
steamships will be able to pass from tidal water to Birmingham, steamsbips will be able to pass from tidal water to Birmingham,
without discharging bulk. The coot is roughty given at t 600,0000 .
The The project has a more practical air than one discossed some years
ago in the colliery district, upon the feasibility of geting waterways to some of the large collieries, and so load at the pit's mouth.
This w sor This was evidently suggested by the method adopted in early coal
days of running small canals to the face of a coal seam, and loading days os running smat canals to the face of a coal seam, and loading
barges there. But the only way to load at the pits mouth would be to flood the valleys, which are great
principal, with over 200,000 inhabitants.

NOTES FROM GERMANY.

In all parts of this country the iron and steel trades continue in a very yatisfactory condition, the demand being well sonstained,
while prices exhibit considerable firmness. With the increasing inquiry for most sortto of pig igron, there is prospect that quotations
may finally improve ; in some instances this has already mase during the past week, but it was due mainly to temporary causes. Export demand for pig iron does not improve to any
appreciable extent; the only orders of some weight that bave been secured during the last few weeks were given out by Russian Chirms.
market, but the reports that come in from the vailesian iron ments, state the business generally doing to be of a decidedly satisfactory description. Pig iron is quiet but firm, while in the manu-
factured iron trade much activity is to be noticed. Bars and good orders from Russia have been booked lately.
 the same works. Plates and sheots are like wise in particularly
good request. Thesteel works continue but moderately occupied rails being decidedly weak. The Silesian rolling-mill
has raised the price for bars on M. 145 p.t., free station
Regarding the development of the eneneral iron industry in
Austria-Hungary most favourable accounts continue to be coming Austria-Rungary mot to Fee the demand for most articles has been
in employed ment, pig iron being in comparatively moderate request. The
business done in the smaller articles of manufactured goods conbusiness done in the smaller articles of manafactured goods con-
tinues rather limited on the Vienn market, while in Huggary as There is not much to note in connection with the iron and stee trade in France, demand and employment being, on the whole,
satisfactory. Inquiries on home as well as on foreign and colonia account have rather increased upon the week. Returns jus 77. . p.t. during the first quarter of the present pear ; for foundry
pig it wwig last year, average prices show a decrease of cif. p.t. for forge The Belgin iron trade is atil remarkably quiet and very fow orders are offering in any branch of the trade. the different sorts of iron show almost no change against those of The general tendenar
firm one, and there is of the Rhenisb. Westphalian iron market is or be so or the future. The activity formerly noticed in the pig
iron trade is undiminished, a number of fresh orders having come is recenty; there is generally much firmness to notice in prices. piegeleisen is quoted. M. 42 p.t. Rhenish- Westphalian forge pig,
No. 1 , is paid with M. 44 to 45 ; No. 3 , M. 40 p.t. Hematite stand
 uosiness is done in the malleable iron department, and most of the Prices for bars are at the present
much inclination to rise, inland demand being firm, and showing account there is still but little doing. The girder trade is fairly occupied as regaras the greater part of the works, but hitherto prices, and there is consequently still much cause for pay higher hoops continue in lively request at stiffening prices. A lively tion marks the plate business, and there is also much anima factory, buyers payingeet thopartment. Prices are fairly satiss
advances lately angest reluctantly, the slight industries, no specially new feature can be noticed, most of the
works having been but moderately following are the latest list guotations per ton at the week. Th merchant bars, M. M0. 105 to 110 ; angles, M. 115 to 120 ; girders,
M. 8.50 to $92 ; 50 ;$ hopp, M. 115 to 120 ; billets in basic and
Bessemer Beank ditto, M. 140 stoel plates, M. 140 ; tank ditto, M. M. 130 sheets, M. 135 to 140 ; Siegen thin sheets, M. 120 to 125 ; iro
wire rods, common quality, M. 112 to
 axies, M. 220 ; steel tires, M. 215 to 230 ; light section rails, M. 9
to 100.
burg, hatal beend during month of March, $1894,440,320 \mathrm{t}$., of which
 from January 1st to s11t. of Mabruary, 1894, it was $403,374 \mathrm{t}$,
produced, against $1,171,247 \mathrm{t}$. during the same period the yeare

AMERICAN NOTES.

(From our oun Correspondent.)
New Yorr, April 25th.
ous coal strike bas unTre great bituminous coal strike bas un-
expectedly introduced a new factor into the badly enough complicated situation throughout the and if successful in its organisation, it will affect regions producing 60 per cent. of all the coal
mined. At present the anthracite region is not mined. At present the anthracite region is not
affected. The public has been taken unawares. Rumours were common of a contemplated strike
among the coal miners, but these have become so common that hardly any one seriously regarded them. The coke regions are affected, and the first trouble will come from this quarter, as out.
side of one or two large consumers there is no side of one or two large consumers there is no
coke in consumers' yards. The iron trade will coke in consumers yards. The iron trade will
not be immediately affected; but dull as trade is, the country is not in any condition to endure a protracted contest with coal miners. The iron
busioess seems to be on the eve of improvement; but as in other industries, much depends on the consumers of mill products are waiting. The
only evidences only evidences of activity were shown in heavy Pescemer ppig for mills in Pennsylvania. This
promises to be followed by large contracts for promises to
steel billets.
Ereight reductions have been made on all the leading lines of road hauling iron and steel the New York banking interests and the National Administration, due to the understood purpose
of putting through legislation in favour of of putting through legislation in favour of
coining silver based on bonds. This measure is to be passed to enable Congrossmen to return to
their constituencies without fear of political decapitation, for the masses are in favour of N

LAUNCHES AND TRIAL TRIPS.
Messrs. Wosper and Co., of Portsmouth,
launched last week a handsome oil launch for the Saltan of Zanzibar. This launch was 40 ft . long by $7 \mathrm{ft}$. 8in. beam, and on her trial trip attained,
we are informed, a speed of 8 knots. She is very we are informed, a speed of 8 knots. Se is very
elaborately fitted with nickel-plated fittings and plush cusbions. The machinery consisted of a
four-cylinder, 12 brake horse-power engine, and, we are informed, the results are highly satisfac The sa Toreod bilt
The s.s. Torwood, built by Messrs. R. Craggs way and Ball, of Torquay, was taken out for trial
at the measured mile on the 25 th April the result proving very satisfactory to Mr. Ball and his superintendent engineer, Mr. Summers, of Mid-
dlesbrough, who were on board. The dimensions of the vessel are 178 ft. by 28 ft ., by 14 ft . 2 l in. moulded. The engines are by Mesrs. West.
garth, English, and Co., Middlesbrough, with
 steel boiler. Messrs. Westgarth's
On Saturday, the 28th ult., the s.s. Macedonia, Thorray-M-n-Tees, to the order of Messrs. A. . C.
De Freitas and Co., of Hamburg, for their Ham. barg and South American trade, was taken to sea or her trial trip, which proved highly satisfactory, a speed of 1 knots bing maintained. The vessel
is of the following dimensions - 288 ft . by 4 flt.
by 2 fft
 Blair and Co., Stockton. The owners werer represe.
sented by Mr.Heinr. Wiengreen and Captain H. F. Rörden, the latter of whom will take command of the vessel.
The es.s. Garton went on her trial trip a few
days back. She is a fine screw steamer built by Messrs. Wm. Gray and Co., for the Deddington Steamship Company, of Hull (Messrs. H. Samman Engine Works, West Hartlepool. Her length is moulded, 20ft. 1Oin.; and she takes Lloyd's 'sighest
elass. The engines are of the triple expansion type, the cylinders being 23in. by 36tin. by 6 6in.
in diameter, with a piston stroke of 39 in., and steam is supplied by two large steel boilers, work-
ing at a pressure of 160 lb . per square inch. ing at a pressure of 160 lb . per square inch.
The vessel left the harbour about 2.30 , and, after adjusting compasses, was run for an hour at full
speed, when it was found she made about 12 knots on 75 revolutions of the engines per minute.
Everything worked admirably and without the lightest hitch or trouble, the boilers maintaining the steam steadily at blow-off point. Amongst hose present were Mr. Samman, the managing
owner, Mr. Watson, Mr. Gibson, of Hull, and Mr. Walter Sage, under whose superintendence the Waiter Sage, under whose superintendence the
ship and her machinery have been constructed.
The shipbuilders were represented by Mr. Geo.
 nui Mr. The vussel is represented the the ongine
builders. Thmand of
the the trial she steamed away to Cardiff to load for
the Persian Gnlf. the Persian Gulf.
The powerful twin-scrow hopper dredger No. 9 ,
recently launched by Messrs. W. Simons and Co, rocently launched by Messrs. W. Simons and Co., Government, has just completed on the Clyde a
series of steaming and dredging trials, and will in a few days proceed to Libau. It has a capacity in its hoppers for 700 tons of dredgings, and the
ladder frame is fitted with an endloss chain of sadel buckets which are adapted to work at a
stepth of 35 ft . under water. The buckets are arranged to work at different rates of speed to
suit the nature of the soil they are dred The dredging gear is specially designed with ind rocko Famage to it when dred ging boulders the bucket ladder bas a recoiling motion should the buckets be suddenly brought to a standstill when working, besides which friction appliances barrelled, each barrel working conjointly or
independently, as may be required. The vessel independently, as may be required. The vesse
has two pairs of compound surface-condensing
steam is supplied by two steel boilers working at
100 lb . pressure, either pair of engines being 100 lb . prossure, either pair of engines being
engroes indicating fully 800 -horse power, and engnines indicating fully 800 -horse power, and
capable of working the dredging mackinery to to ts presence of representatives of the Russian Goveroment and the builders, everything working smoothly and satisfactorily. The speed of the dredger when loaded during a six hours'steaming and running trial on the measured mile proved dredging capabilities were also in excess of the contract.
Messss. Alex. Wilson and Co., Vauxhall Iron-
works, London, have just completed for Messrs. Page, Son, and East, Nine Elms-lane, London, a new tug, which has been named by them the
Orient, and which is intended by them for their railway traffic. The Orient is 65 ft t. long over all,
14 ft ., ward bam, and draws 8ft. aft, and has been built of extra strengtt Thames tugs are exposed in their daily work, the plates cylinders $14 \mathrm{in}$. . and 28 in . diameter respectively,
with a stroke of 1 in ., and are replete with every mprovement in detaii, the crank shaft and working parts being of steel, and having phosphor
bronze bearings of the best guality ant feature is the patent type of slide valves which have been used by Messrs. Alex. Wilson and co. for so many years with signal success on
all their compound engines. These valves are cylindrical instead of rectangular, and balanced
so that they work without friction driver can thus reverse them instantaneously with one hand. The propeller is 6 ft . 6in.
diameter, having three adjustable blades with arge surface for towing. Steam is supplied at ${ }_{102}^{102 \mathrm{in} .}$. pressume furnaces, each 3 ft . diameter. This boiler has the most modern fittings, including a patent filter for the parpose or it comes from thater from all impure it is passed back into the boiler. At the
befor
tin trial trip, which took place on the 26 th April, the engines when work-powr, and in ordinary every-
216 indicated horse-power day work may confidently be relied on to develope
200 indicated horse-power with a consumption of $3 \frac{1}{2} \mathrm{cwt}$. of fuel per hour.

THE EGYPTIAN IRRIGATION

 SCHEME.Mr. Somers Clarke, who has been spending the winter in Egypt, has written a letter to the summary, as given in the Times:-
A project which would involve a fearful and
wholesale destruction of monuments in Egypt has just been made public. The irrigation engineers have recommended a by a dam placed at a short distance below the island of Phile. The dam will create a reservoir of enormous extent, not only drowning the
island of Pbilex, but extending southward Nubia for nearly a bundred miles. When full, abovethe highest level of the pylon of the Temple of Pis at Phile. The rocks surrounding the
island island are full of hieroglyphic inscription ; these will spend many months under water, and there is yet much to
neighbourbood.
At Debot is a Ptolemaic temple, which retains its original girdle-wall, three great standing door-girdle-wall, the second being the doorway in a ruined plyon, and the third standing more imme.
diately before the temple. At Dimri are the remains of ancient structures still to be explored At Kertassi there is, in fair preservation, a small hypethral temple with Hathor-headed columns; a little south are extensive quarries, part of the
surfaces covered with graffiti chiefly inscriptions. Surrounding the village of Kertassi is a great wall enclosure. At Tafeb a small
temple, very perfect, is still standing in the temple, very perfect, is still standing in the
middle of the village, and near it are some re markably interesting specimens of Roman They are the lower parts of houses, reectangular structures with their internal subdivisions still to be traced. At Kalabsheh is the most magnifi cent structure in Lower Nubia. quay pierced by two stairways leading on to a
great approach from whice we rise to another terrace, paralle with the course of the river and lying in
front of the pylon front of the pylon. The wals of the temple are
very perfect, the roofs only having fallen in. Surrounding the temple is a girdie-wall o
masory. The entrance court of the temple is full of graffiti of the greatest historic interest, and between the crannies of the fallen masonry can
be seen many more now inaccessible. At Abu Hor are ancient remains and a a uasy standing by the river side; a place that needs cas of a terple
tion. At Dendūr are the remains of dating from Roman times. The names of many native gods and princes are carved upon the
walls. At Koshtemneb are the ruins of a great wrisk fort, and in one corner of it are the bases o the temple columns.
At Dakkeh is a particularly interesting temple
Stones of an early building of Thothmes III. and Stones of an early buiding of the nmes y. and
Seti I. have been found, but the existing struc ture was begun under Ergamenes, a native king, sumably Augustus. The pylon is absolutely per fect. This building would be engulphed. A
Kobban, opposite Dakkeb, are the remains of Kobban, opposite Dakkeh, are very large rectanguar
brick, some 370 ft. by 350 ft . The remains of a
ten temple of the emidale empire can be race ran
outside are the remains of temples of the XIXth dynasty. At Maharakah are the ruins of a very
late temple Its plan is nnique. In addition to late temple. Its plan is unique. In addition then
the places above-mentioned there are traces buried towns and of tombs in great abundance
The whole of these things will be submerged, and The whole of these things will be sabmorged, and
the inhabitants transported I know not where.

THE PATENT JOURNAL.
ondensed from "The Mustrated Oftcial Journal of Application for Letters Patent. *When patents have been "communicated" the the
name and address of the communicating party are
printed in italics.
19th April, 1894.
750. Boot Menders, J. F. H. Betts, London.
751. Oronss, ce., C. P. M. Gavioli, London.

Shs. Nindection Electr.cal Machines, F. Tudsbury
Shefield. trs9. Boor Sole Sewino Machine, J. and J. Cutlan
London.

 Cornwall
63. Whekl Tires, T. S. Marshall and A. H. Storey
and

 London.
Lockerbie London.
70 . Lockut Londockino the Wheris of Cycless, H. A. Lamplugh
 trksothenina Strap Hingess, w. b. Deming, United states. Cy CyLE Wheris, R. Kronerberg Tis. Suroical Irriantor or Syrinae, s. Kovacs
London Ondon. Gritinos or Strainers for Sinks, c. E. Challis
 Ty9. Cioarbitre Machinss; A: P. and E. P. Scarimanga. London
7 80. PBoroaRA

London. Li.f NEM London.

 Whins, Manchester.
Divisa CHENS
Velocipedes, J. Bardet Londo
Wivel Colourino Mattrrs, H. H. Lake.-(Mesrre

 London.

20th April, 1894.

TyIne Scarr
mingham.

Slides or Fisteners, A. Haseler, Bir | minghan. |
| :---: |
| 7817. |
| 818. |
| WAL |
| 1. |

wilson, Halifax

525. Decoratino Metallic-boxes, e. A. Jahncke

78z7. Maiduracture of Briquetres, C. E. Jolly and H

Collectiva Clear Rain water, J. w. Gibbe,

${ }^{7841 .}$ Indicators, ,
 3. Unbreakable Wooden Pulley, M. W. Smith, Producino Intensely Brilliant Pictures, \&e.
Glass, A. Corlitz, London. Compound Steam Enoines, M. W. Ash.-(
(taly.)
Clarinyine Oils and Fat, w. B. Leachman Clariyine Oils and Fat, W. B. Leachman
don. nt.
REEDS of LooMs, D. Smithies, Manchester.
GEAR CABE for CYCLEE. J. Ward, Birminghan T. WINDow-sAsh Locks, S. E. St. O. Chapleau,
N. Fulton, and F. Hurtubise. London.
 Burgum, London.
B54. Coanto METALs, w. A. Thoms and w. H.
Burgum, London. Burgum, Londen.
855 . STucco RNA ARENs, , C. H. Krieger and H. L. A.

Taroet for Shootino Practice, H. Fuchs, Mon.
MANFACTURE of Spirirs, J. J. Murphy, London.
Colourva MATrRe, C. D. Abel.- (The Actien

ALVV GEAr of Morors, G. M D. Clench and T.
Dg, London. S. King, Londo.
864. ALINRM, \&c., for Bulidiros, J. and T. Dew,
London. London
W8, GALVANio Battriise, D. G. Fitz-Gerald and A. S66. Horase RAKEs, J. H. and G. Howard and G. Gibbs,
Londo. London

 Lo. Swisorso and Rockino Beds, M. Reynolds, zi3. BEAN
Lo inos for Metal Plates, c. D. Garbutt,
 Londo Curative Galvanic Chain, f. Fritsche, London.
T876. RIVEriso the Borroms of Suips, G. B. Hunter,
London. rif7. Fire-kscapss, T. Boothby and w. J. Dean,
 London.

$$
\text { 21st April, } 1894 .
$$

is80. Flush Drawrr Handlis, P e. Ayton, Bir-

 Machectivis for WAssing Yarv, J. S. and G. Lord,

 TAO, J. D. Parrott, London
APPARATUS for BLEACHINO Smoke, J. T. Sands,
 BRikg for Flexible Safety Ladder, E. Bauer,

Robrer watrrproor Fabrics, t. Birnbaum,
Sankry Lock, R. w. Duncan and J. Graham,

7923. NEw ApphRatus for Dryina Live. Wiper 7924. Skif

 7928, skepikntino Flexible Filis, w. Cuthbertson,

7933. Hentina ${ }^{\text {Londontren }}$ by Electrictity, w. Corin,

 Liondonn
 (793. Cisk Germantan Oot Tobscco Piprs, E. Boggis-Rolfe, London.
794.
Londonerss,
Lese London.
79.5. Ovess for Bakiso and Ronstina, J. B. Cox,
London. London.
794. MANUPActore
London. London.
Thit Fokisa Facisa Lock Bars, H. Tunbriage,
Tondon. London.
This. Hand Planss, G. A. Brown and J. Brown,
L94. Res
 7950. Apprenurs
Guthrie, Lond
Ior
 London.
Tys.
London.
Wana, \&e., Threads, H. and L. Rogez,

28rd April, 1894.
7959 Valven for PNevantio Tires, Capon, Heaton,
and Co. Ld., and H. Haston, jun.. London.

 G967. Cans for Prootectivo WArcorss, J. B. Howard.-

 Biheckell, Bristol.

 F98t Corter for Mostr Moutiek of Doa CAKEs, J. H.

 Birmingham.
soos. Rephodiciva Pictures on PAfre, E C Marks,
Iondon.

 Rol. Torts, E. F. an an Bac
8013. MANOVACTURE of

 London.
sol.. Pomororaphic Apparatus, de., B. J. Edwards,
London. 8017. Bumburds, C. Ormerod and A. W. Cooper,
Tondon. London.
sois. Lubrourors, T. Kahle, London.
8019. HoLDER for VALANCE HANorsos,
 Schiller, Germany)
8o22. So A, J. H. Iredale and J. W. W. Huddleston,
Liverpool.

 soz7. CHiden. Lozs. Mineres' Lamprs, A. Morris, London.

 So34. Holdiso the Covers of Tires, W. Howard,
London

London. 24th April, 1894.
Lo37. HoLLs of Vessels, \&c., G. W. Schermerhorn,
London. So38. Appinatus for Preparina China, D. Radelyffe,
London Loondon. LABoratory Bussen Gas Burner, J. J. Pilley,
Sondon. Dio. Syoke Pryveyter for Chimenexs, A. Cliford,

 Hier, Farnworth.
Sis3 Cus. CuT, \$c.,
Londe B. Byman and A. C. Goodwin,
 Brighouse. ELETRIC Bells for Broyoles, W. G. Woolf,
 Oif7eshirer Unerlla Holder and Stand, E. M. Clarke,

 Soco. Twistriso Maccinves, E. and S. Tweodale and J.
Smalley
. Castleton
 chatel London.
sobs.
Shefout Cortina, T. B. A. and R. W. Clarke, Shefifild.
sobss CLiotrus' Horse and Lives Rail, J. Truman,
Sheffield sose Aftichanso Tips of Blulurd Cuss, R. Robinson, Shese simur-puricativa Pulleys, G. and E. Smith,
Northampton.

 $\substack{\text { Bristol. } \\ \text { soriol Procrooraphic Haxd Caxeras, T. H. Algate, } \\ \text { Bristol. }}$ Bristol.
 soficreperparina and Spinsing Fibres, J. w. Smith, Bradord.
sont. TRxTLE Machivery, J. MeQueen, T. Thompson,
and J Heywood, Manchester.

 Gos7.
soss.
Lon
Lon so . Poatiere Rods and Apparatus, c. wilon
 Lo9. Kond. KNikrbockrrs, B. Smolansky and A. P. Batemona, Bonv Rostler.es for Honsss, \&c, J. J. Wilson,

 8103. Fonstreniva Cardboard Boxes, J. A. Causton,

Iondon | Liond. BNo, |
| :---: |
| siond |
| S. N. Fuchs, T. Craney, and T. c. stokes, | 8105. BRAKE, J. F. Shepard, C. Bartholomew, and s.

H.

 Lil. Pdon.
PNEXMATIC Tires, C. Dierickx and C. Belot, Liondon.
sila
London
 8115. Tubes of Circular Skotion, F. E. Elmore,
London. 8116. PRDLLS for Cravk Powrrs, A. J. Hoyt, London,
8117. TREATMENT of SEwAEE, and REFUSE, J. Posno,

 Minchenchives for DriLhiva Purposes, W. A. Pearn,
si22. OII Cur for Vericle Wherls, J. A. Garvin,
London. London.
SMrrlas and like Sossimades, J. Forbes,
London.

 London.
siz. Indicativa Postal Scale, I. S. MoGiehan
 ITondon. London. and Book-LEaf Turners, J. W. Neumann,
 s132. Lousars, Invalid Coveres, do., w. J. Collins, Slis3. Dendingice for Holdina Reins, B. Seymour,
 8135. Con. Coupsible Tea Chest or Box, T. v. Macleod,
London.

coopor, United Slates.)
 Gormany)
sits Biccurs and Tricycles, W. F. williams, Li4. Don.
Songen
London. Rekl, w. Lee Van Horn and M. Yount,
 Rinke, London,
sift.
TREATINa Fibrous Material, G. Walker,

 S150. Poerblivo Travcass, G. G. M. Hardingham
London.
 25th April, 1894.
8152. Prpse H. Dinn, London.
8153. EABTHENWARE PIPE MA

 southampton.
S15s. Crecke Gear Casses, S . stone and C. H. Genders, Nottingham,
8159.
Construction of BaLL TAPs, I. Barnsley
 sibristoroppers for Botries, M. Weber and M. Lietha Si62. Postar EsvELopss, G. Davis and J. L. Lloyd,
 siw. Hive Pressina Machinery, C. and W. Stephen

 8ies. Automatic Exhavest Ventilator, w. J. Baker
 W17. Sivectman, Uustralia) Bollers, F. J. Rowan

 Southsea.
8174. Portable Water Container, T. B. Tyson, Long
 ${ }^{817}$ fie Condining Travellina bac, \&e, J. Franken.
 sticker, London.

 - (d. Dumas, France.

 Londan
8186. Controluina the Duls of Clocks, R., J., and J.

 C. W. S. Crawley, and A, Soames, London. . Timmis,
810. Miov itio CNxNo, J. Eastwick and I A. . London.
819. SPRino Moror. W. Martin, London. aceulloch
 Lig. Con. Cowined SAw and Plankr, G. Szekely,
London.
 S196. Luvprioutors for Bassingrtrs, J. Whitehead, Birmingham
sig7 Avoumatic OLl Gacoer, w. H. and A. F. Ross,
London London.

SELECTED AMERICAN PATENTS From the United States Patent ofice Official Gavette. 511,943. Stzan TRap, E. H. Gold, Chicajo, Ill- - Filed Claim.-(1) In a steam trap, the combination of an
automatically operated valve located within the s ane automatieacily operated valve eocated within the space
to be heated,
 Yalve and expansion device of a hand-operated valve
for closing the port normaly controlled by said auto Ior cliosing the port normaily controlled by said auto.
matic vatve, subustantialy as described.
steam steam trap, the combination with an automatically
operated valve located within the space to be heaty operated avive located within the space to be heated,
ane oxpansion device located outside the space to be
heated in a chat an expansion device located outsidie the space e bo be
heated in a chamber communitan with the auto.
matic valve chamber, and a connection het teen matic valve chamber, and a connection between suto.
valve and expansion device, of a hand-operated valive valve and expansion device, of a hand.operated value
adated to colos the port normally contonted by the
automatio valve, and a a second hand-operated valve
controlling a pasagae opening to the air and surround.
ing the automatic valuv chamber and the pusage [51.943]

connecting aad chamber with the expansion dovice
chamber, substantially as described. 512,010. Puxprso Exorve. E. E. E. Clark, Northampton,
Mass- Filed Petruary 20th, 1893 .

 high -pressure cylinders to thi valve chests of the elowpressure cylinders, in ocombination with the rockers
50 and 55 and the valve roos connecting the valve

of one high.pressure cylinder and of the oppnsite low-
pressure cylinder, the walking beams M M M and M

 walking beams, and the doube-acting pumps with
their plungers axially in line with the compound Mhir plungers axially in line with the compound
ongines and conedted the respective piston-rods
und crossheads, substantially 512,088. Plurzs, J. V. Ashereyt, Dunkirk, Ind.-Filed Claim- A piair of pliers consisting of a main log and
a seondary log composed of two parts each pivoted to a secondary log composed of two parts ench pivoted to
hed mair log and having their abtuting ends geared and meshing, one of said seeondany Seevers haaring
upwardy projecting ears forming bearings for an 512.086

adjustable locking device consisting of a pivoted
lever having a pin attached thereto said pin lever having a pin attached thereto, said pin being
arragge to pass trough a hole in asid seocondary
leer lever and to play in a lateral slot in the main leg when
the pliers are operated as aud for the purpose set
forth

 Claim. - A recoil press or brake for gun carriages,
onsisting of a suitable press having a spur, to be 512.120

driven into the ground, proiecting from the side of
the press cylinder, and a a piston or press cylinder, and a piston having a rod passing the etrial, wherebor the gyundard and canr connected with
limited recoil for the purpose specified.

 has the consistence of tes, of which it is now with
many beneficilly taking the phace. Its act ve

TRIPLE-EXPANSION ENGINES OF THE TURRET-AGE

[^0]: The landing stage at Braila connecting with the local passenger steamers running to Galatz collapsed on Monday when
 it was crowded by excursionists. The captain of the British steamsipes, but many were drowned.

