April 29, 1859

SOCIETY OF ARTS.
TaE eleve
pablic on
Adelphi.
If we a
hoped that hoped that the have another Great Exhibition in 1861, it is to be to use their most strenuous effortst in organected itit, ind will we cont rewarded
ty such a grant from the surplus funds expected to be realised as by such a grant from the surplus funds expected to be realised a
will enable them to afford better accommodation for these annual exhibitions. The rooms in the house at present belonging to thi
society are altogether untited for the purpose. The ocalitit is
centrical and well chosen ; but in the main requisites of light and space, the apartment in which the exhibition takes place is about
the worst that could have been selected in any quarter of London. the worst that could have been selected in any quarter of London.
There is this speciality in an exibition of inventions, they are not like pictures or statues to be understood and appreciated by merely
looking at them. Models of machinery and philisosphical instruments require not only to be esen, but handed and put in operation-
nay, many require to be taken to pieces, and, as it were, anatomised before they can be fully understood. Now, when half-a-dozen
articles are exhibibed within the space of one square yard in a dark, crowded room, all that a visitor can do is to look at his catalogue,
nud giance at the exterior of the mysterious objects before him.
Whe logue may be guessed, when we state that a considerable percentage
of the entries merely comprise the name of the exhibitor and the
article exhibited, while the majority of the detailed explo article exhibited, while the majority of the detailed explanations or
descriptions appended have been supppied by the exlibitors them-
selves; selves; and we are informed on the first page of the catalogue that
the council of the society wish it to be understod that they are not employed by the societt yin getting up and arranging the catalogue
have done their utmost to render the descriptions as concise and in-
 as they must needs be with inventive eccentricities of all descriptions.
Some of the exhbibitors apparred to think that explanation or descrip-
Stan flinging their articles in at the doors of the society's premises, and
leaving them to otand upon theirown intrinsic merits, which confiding mortals that they were) they imagined nobody could be so
blind but they must discern them. Nevertheless, with all these drawbacks, the exhibition is a most
interesting and instructive one, and judging from the crowded state of the room on Monday, popular and attractive.
That out of 450 new inventions collocted by an indiccriminate
appeal to all the patentes of the last twelve months, there would be
 of the inventions exhibited as either useless or frivolous. Good
things areslow of
frowthand and useful inventions rarely or never start
grown, from the brain of the inventor, but have to pass through rity. The gestataon of important tinventions are aprears to to follow the
same law as that which prevails among the eower animals it is pro
sam longed in proportion as the animal rises in the scale of development.
An ingenious and eccentric friend of ours, who has been the parent of several successfal inventions, is wont to disappear every now and
then from his usual haunts, and when accidentally met with and
questioned as to his anomalous behaviour, he is accustomed t on questioned as to his anomalous behaviour, he is accustomed to de-
clare himself occupied with the important and repposibile duties of
incubation. He has got a new idea, he says, and must sit close in tions exhibitited at the rooms of the Society of Arts, to say that it
contains a good many half-hatched eggs ; that is, ideas half worke out, and only requiring more study and attention to bring them to
maturity. Thiere is unquestionably, however, a cortain
of antion of aborive ideas-addled egss - that no assiduity will ever succeed
in converting into chickens. They have originated in confused or
 ward.
the estarched neceltities, was not all a faillure-th3 armfun of crumplec
linen which his servant was seen bearing from his dressing-room, of sesthetic laboratory, was merely an index of the price, or equivalen
he paid for the miraculous tie which soastonished the world in th
days of our grandfathers. Peace be with him! The beau was reall an inventive "enius; it was his unstaggerable impudence, or rather
his self-conidence combined with hiss perseverance and inventiv
capacity, which raised him to the dignity of autocrat of fashion capacity, which raised him to the dignity of autocrat of fashion.
We were glad to observe that staan engines, railways, and electri
telegrins telegraphs have not monopolised the attention of inventors, to the
exclusion of essi imposing but not less important subjects which
affect the comfort and oonvenience of every-day life. There is an
unfortunate propensity in inexperienced inventors to aim at improve
und umfortunate propensity in inexperiencect that it is much more difficult to
ments only in great things forgetful
suggest anything suggest anything new concerning what has occupied the exccusive
attention of men who lave spent a life-time in qualifying them-
selves for the task, than it would be to improve any of the ordinary selves for the task, of civilised life, which come more immediately
small apiance
under their notice. Thie apparent magnitude of the interests concerned in the ease of steam engines, locomotives, railways, electric
telegraphs, \&c., tends to hold out fallacious hopes to the inventor;
while, in fact, the fields of enterprise in theoe dire while, in fact, the fields of enterprise in these directions are more
overrun with inventive geniuses of the first class than any others,
so that there is infinitely less chance of suceess to speculative so that there is infinitely less chance of success to speculative
amateurs. At the present day a man who invents an improved pin
or needde. an improved andlestick, knifec-cleaner, carpet-sweeper, or
crinoline suspender or extender is much more crinoline suspender or extender is much more likely of arriving
remunerative results than if he spent his time and money in en
deavouring to improve the steam engine or the electric teley deasouring to mprove the stea.s prent exhibition of inventions at the
We are not sure that the prest
roms of the society adequately reppesents what has been doing
dumis during the past yearine. For instance, on looking over the patent
arts and manuactures
list for the last twelve months, we observe that in the departments of electric telegraphs and in breech-loading tire-arms there has been
a more than usual activity, which is most tassuredly not tindicated by
 light inventors of a higher and more practical class would be dis-
posed to send modeds and specimens, which they are edetrered from
doing from the uncertainty which prevails as to how they will be
seen. The models are divided into the following classes to facilitate their
arrangement:- 1 st. Eng gineering, Railway, and Mining Mechanism.
2nd. Maching
 Domestic Appliances. 7th. Miscellanes. A further subdivision of
the above casses is made by such inventions as are represented by
samples and models, and those of which drawing Int the class of engineering, mining, and railw only are given.
first place is very properly given to ontrivances for smoke burning
in locomotive and other engines. Those are represented by three
im in locomotive and other engines. Those are represented by three
models in the lower room and two drawing in the upper room.
The first in order is a model by Mr. Peter Brotherood, of the
Railway Works, Chippenham, of a Patent Conl-burning Loom Boiler, in which a combustion-chamber is interposed between the
fir-box and the tubes. Between this combutstion-chamber and the
fire-box there is an air-chamber which communicates with both, through a series of tubes, which in common with the air-chamber
are surrounded by the water in the boiler. Inside the combustion-
chamber and serving to defect the current of air which enters
through the air-chamber and its connecting tubes from passing
through the air-chamber and its connecting tubes from passing
directly to the tubes in the body of the boiler, there is a disc of fre-
clay which acts as a reservoir or accumulator of beat, and aids in
the combustion of the smoke. The idea involved in this invention
is a good one, and has in several forms been successfully applied. It is a good one, and has in several forms been successfully applied.
is the same principle which induces the chemist to have recourse t a disc of fire-clay on which to place the substance he wishes to analyse by the flame of the blow-pipe. In the common apparatus
for inflaming hydrogen gas against a mass of songey platinum and in the piece of lime use
illustrations of the same idea.
Another contrivance for smoke-burning is represented by a model
No. 2, of a locomotive fire-box, by Henry Ashton, of Birkenhead. This consists of a deflecting hood or shield, which deflects the current
of air entering by the furnace door down on the incandescent fuel of air entering by the furnace door down on the incandescent fuel
on the grate. This has, we believe, been applied with considerable succes.

Patent Smoke-Consuming, Boiler, No. \&, by Price and Dawes,
Peveland Works, Wolverhampton, is an arrangement by which horizontal return flues are attempted, to be got rid of by means of
hot oblique taper
of the shel.
Houston's Patent Smoke Consumers are represented by a drawing 375 , of an arrangement in which gas is introduced into the bridge of the boiler furnace and there set fire to, in order to burn the smoke.
Thomas Almond's Smoke-Consuming Furnace is shown in drawing 376 ; it is a modification of that described under No. 1, where heated air introduced by side apertures into the furnace. It will be seen that there is nothing very novel or striking in the appliances
suggested for smoke consumption, while some of the more recent and most promising schemes are not represented at all.
The ne cation of heat in the generation of steam. To economical appliArmstrong, of South Woolwich, exhibits a boiler with what he calls "double taper shape" generators placed across the current of heat
in the main flues. Gwynne's Patent Spiral Heat Diftusers put in an appearance of a rather imposing character. In principle the
remind us of the corrugations of the small intestines in the abdomin tubes of animals, but, like them, we imagine that, although excellent detritus, to the serious derangement of the animal economy. The
object aimed at is no doubt a object aimed at is, no doubt, a good one: it is to ensure the heated
currents of air passing through the tubes giving out all the available
heat which they contain. Well authenticated results can alone establish the economic elificiency of this arrangement.
steam boilers and pipes. This felt is composed woollen felt for coverin refuse from paper-mills, which is converted into a coarse pulp
in the ordinary rag engine for paper-making. It is put upon the boiler or steam pipes in a wet or pulp state, and matted
together by beating with a tat piece of wood; when dry it forms a
solid cake of about on inch thicknes, solid cake of about an inch thickness, and bears some resemblance
to a piece of cork. It is stated to be so efficient a non-conducter of
heat, that candles may be laid for weeks without causing then to melt for weeks upon boilers so protected
humble, but decidedly a more legitimate application of shudh more chat of making counterfeit broadcloth. The idea of utilising
beggars rags and tatters to clothe the steam engine is deserving of purposes. Jition. Left off clothes could not be applied to better put would dake most luxurious carpets - soft, springy, and warm -and
in many respects superior to Kamptulion. Of other stam rators and economisers we must notice Neville and Dorsett's drawing of a scheme for enereating steam, , introducing a small body
of water in the form of spray, and heated to near the boiling point metal, so as to dispense with the boiler and large body of water usually employed. The inventors seem to have overlooked the fact that steam and water are the best accumulators of heat. To employ,
metal plates for this purpose argues ignorance of the laws of heat, nditions under which it can be most safely and echically stored up for working purposes. The high specitic and latent
heat of steam afford advantages in this respect which no other material we are sequainted with can equal.
There are several varieties of marine
models and drawings, the object or which is to rotary engine, actuated by a jet of steam which impinges on the
curved bottoms of the chambers, and imparts a rotary motion to the sheel. Here, sure enough, is one of the added egrss we have
spoken of, which no amount of assiduous incubation will ever make
a chicken of.
Having now disposed of the principal inventions which concern
the economy of prime movers, we turn to the subsidiary contrithe economy of prime movers, we turn to the subsidiary contri-
vances which ensure their safety: of these pressure-gauges and
safety sare several with different forms of flexible discs, some of metal and
ares and some of india-rubber, presenting no great or marked feature of novelty,
if we except Mann's Safety Repistering Apparatus, which, by means of a pencil working on the end of a piston communicating with the
boiler marks on a graduated card, moved by clockwork, the varying boiler marks on a a graduated card, moved by clockwork, the varying
pressure of the steam at all hours; and also by the interruptions of
the pressure in the pipe leading to the indicator the occasions shen the engineman has used his gauye cock is recorded on the card
which thus becomes a species of tell-tale or check upon the engine-
man.
Peter Jensen's Marine Engine Spring Governor is worthy of
notice. It consist of notice. ot consists of a cylnder placed under the water-level ether
on one both sides of the propelle. This cylinder is fitted with a
piston, on one side acted upon counterbalanced by a spring; the piston is connected with the
throttle-valve of the engine. The more deeply the propeller of the
vessel becomes immersed, the more the vessel becomes immersed, the more the pressure on the piston
increases. The connection with the throttle-valve is so arranged
that against the springur opening the throttle-valve, and vice versa. We . We
have heard of a rather simpler arrangement invented by one of the
haviners of the Peninsular and Oriental Company on the occasio engineers of the Peninsular and Oriental Company on the occasion
of one of the engines breaking down. It consisted of a pendulous
weitht which followed the rolling of the vessel: when the wheel in
action dipped too much into the seat full action dipped too much into the sea, full power was not exerted
while, on the other rand, when the padde was ifted out of the water
the power was checked by means of a connection between the penduthe power the throttle-valve.
Passsing over anmber of minor contrivances, we come to Josepp
Halls Patent Alterative Slide Valve. This model, we observed, seemed
to puyl to puzzle most of the visitors: we overheard a party holding an
animated discussion upon its meritis an a new species of wassing
machine. The side has steam ports at each end, covered by flap
whichn open and shut The object aimed at seems to be to obtain something like the preci-
sion of tappet-valves in combination with the stide but it appear
to us to be altogether too complicated for practice and apt to ge out of order by the deposits and incrustations left by priming, which
woolldinevitably stop the working of the flaps, and prevent their
being steam-tight. An clastic piston and plunger metallic packing, by Parkin and
Co. of Bridg Foundry, near Sheffield, made by alternate radial
slots in oposite directions, and more than opposite depths, it
ingenion
 elastic ring, which we presume is of cast-iron, is needlessly heavy,
when a simpler and lighter sping would answer the same purpose,
The patent metalichland packing, by A. Anderson, of Fulkirk,
consists of four sections of brass with angular spaces separating consists of four sections of brass with angular spaces separating
thent and presed forvaras ase wear by helical spring
which envelope them. The multiplicity of parts would form the
greatest objection to this otherwise eflective arrancement. greatest objection to this otherwise effective arrangement.
Chadwick and Frosts Patent High Presure Piston Water Meter
is a very ingeniously contrived and compact machine. It has already
Wis is a very ingeniously contrived and compact machine. It has already
been described in our pages. With regard to the main requisites of
an efficient water meter, accuracy of measurement, and protection
from fraud by tampering with the register or working parts, we imagine this to be the very best working meter we have seim.
Whether the working parts would continue for any length of time in good order is a question alone will determine that point.
Proust's Patent Hydro-Syph
Proust's Patent Hydro-Syphoid Axle-box, lubricated by a com-
bination of thation of grease, oil, and water. The conomy of grease upon
this system is stated to be 75 per cent. The axle-box exhibited has been running eighteen months, and is in the same condition as when taken off the wagon on the Paris, Orleans, Tours, and Bordeaux Railway and is stated to have performed 34,788 miles withou any additional supply to that which was put into the box at irst
starting. This precious axle-box is protected by a glass shade, and appears in such a dirty condition that we were afraid to handien and water cisterns, \&c. If the cold cream mixture of grease, oil, and water, have been as efficacious as stated, it has certainly done something wonderful. We should feel inclined, however, to attach more importance to the manner in which the axie is shut in and protected from the entrance of dust as well as the means taken Alphene escape and waste of the
ubrication. This contrivance was recently described in requirin it consists of a system of friction rollers, surrounding the axle and retained at certain distances apart by means of elastic bands of vulcanised india-rubber. The advantage of this plan is that it rransfers the friction of the large axle to those of the small rollers ; it is not true, therefore, as stated in the description, that there is no
friction requiring lubrication. The number of parts, too, is an friction
objection.
Wallis and Haslam's Patent Self-Adjusting Spherical Bearings
consist in the use of spherical bushes forming a ball and socketjoint with the plummer-block, and capable of adjusting itself to the direction of the shaft passing through it.
Waiter Hall's Patent Railway Coupli is a contrivance to supersede the usual ball and lever arrang. This
and seemen means of screwing up the coupling, while the weirgt a convenient found a sufficient provision ayainst the unscrewing of the coupling. John Oxley's Patent Shackle consists of a cylinder of vulcanised order to deaden the jar and rattle of the wheels reaching the body of the is in the sample exhibited too small a body of it to be available with any advantage. There is a spring for the same purpose acting
by extension, and patented by Mr. Fowler, of Bucklersbury, which William Wright's Patent Buffer and Draw Spring is composed of levers. We ar ata the peculiar form of these springs. Circular dise springs have been
tried and found defective several years agoo the difierence presented by those exhibited is, that the plates are square-shaped, and are strung on a central rote.
W. Wilkins' rangement the blocks for each wheel are joined by means of right
and left-landed screws on a h herizontal rod work means of an universal joint. It certainly has the advantare of simplicity, and obviates the possibility of the axle or bearings being
displaced by an unequal strain on the two sides of the wheel ; the objection to it would be the time required to put it into
the tendency
the tendency of the universal joint to get out of order.
was described in The Evaiverr of 10th December, 1858. Mrakes and Burrell exhibit a Drawing of a Continuous Kailway Brake, in which a strong spring is used to take up the slack
ropes and levers by which the brakes are worked.
There are several varieties of railway chairs exhibited, but none calling for special notice. Of the systems of permanent way,
Christopher Hill exhibits some modifications, which are not immprovements on Mr. B. Adams's Suspended Gírder Rail. those patented by Mr. Greaves, with this diterence, that Greaves dish covers were plain, and had an opening at the top to admit the
packing. Mr. Samuelson has ornamented his by means of corrugated ribs, and placed the openings on the side ; as a friend redormer window and a scolloped roof. It is really absurd to see such trines patented. Brant exhibits what he calls Patent Argillaceous Railway
J. Sleepers, having cork cushions for the chairs
Whitworth and Gibson's Patent Improved Compensator and Receasing Rhil way Signal was shown in operation by means of a
nicely finished model, and appeared to attract a good deal of attenscription of it without a draving It was described in this journal with a tigure in September last; since then, however, the patentees for some time past on several lines of railway. The object aimed at in this patent is one of the very greace signalling is notice. The first speciality of this apparatus is what Messrs. Whitworth and Gibson call the Improved Compensator, by which the variations in the length of the signalling wires induced by the
alternate expansion and contraction due to changes of atmospheric temperature, are compensated by means of a weight, which is self-
acting, in place of the usual adjusting screws. Thearm of the working hand lever is attached to a quadrant, over which a short pinat one end, and with the balance or compensating weight at the
other The other. The lever, when moved for the purpose of operating on the
signal,
tatches, yy means of a hooked pall, into one of the links of to lce conm, eavaning the contraction or exp the balance weight.
to
Pasion Passing over R. M.. Ordish's Rigid Suspension Bridge for Railway
or ordinary Traftic, of which there is a very handsome model, and also Kennys Patent Balance Rolling Bridge, both of which would
require figures to render a description intelligible, we come to require figures to render adescription Whenls for Streets and Common Roads. These w. whis have a cast iron nave, malleable iron spokes
disposed in loops while the tyre is asposeded that the weight and cost of these wheels are about the
as stat as that of wooden wheels, there are certainly great advantages
sal in an indestructible article over the perishable commodities now in ase. There is one drawback, however, to their use, the rigid
character of the wheel would transfer the wear and tear from the to pieces. For agricultural purposes we should imagine them to be Davis' Patent Caoutchouc Carriage Wheels are deserving of
special notice. There is a loose tyre exhibited, which is stated to have been a considerable time in use on a Hansom cab. It is
slighty frayed at the edges, and has that kind of burr which a dog's
foot presents after a hard chase on a rough road. Some envious cal. man cut it through, to prevent his too successful rival from taking
away his fares. This form of carriage-wheel tyre has in various forms been before the public for the last ten years, but the
great difituly in applying them was found to be in tixing
them on the wheels. Mr. Davis has attempted to overcome thi chem on the wheels. Mr. Davis has attempted to overcome thi
difiticuly by forming the tyres with an elongated inner rib, which
is held in a recess in the rim of the whel The irst attempt to introduce elastic tyres consisted in using tube of compressed air, formed of India rubber. These were found to
five an exceedingly smooth motion on the roubhest read but wer liable to acecidents of a rather awkward nature. They occasionally exploded with a report which rather startled the by-passers. M
Fowler has endeavoured to form an India-rubber tyre with a combination of strong canvassswew made up with it in concentric layers,
as in the strong India-rubber hose used for fire-engines, \&e. It was
found, however, that although a tyre thus constructed was more
easily retained on the wheel, the canvass and rubber began to easily retained on the wheel, the canvass and rubber began to
separate from each by the internal working of the tyre when sub-
jected to hard work on the road. We believe that the general introduction of some form of elastic tyre, similar to that exhibited, is great desideratum. It would at once do away with the insufferable noise which renders conversation in our public thoroughfares so dis
agreeable; it would materially diminish the draught of all wheele agreeable; it would materially diminish the draught of all wheele
vehicles, and effect an immense saving in the wear and tear vehicles, and effect an immense saving in the wear and tear of
carriages and roads, to say nothing of the freedom from jar and rattling, which render a ride, in a wheeled-carriage of alm
description, so disagreeable on the paved streets of London.
Stephen Carey exhibits his Patent Channel Plates of
about which there is nothing special.
David Joy's Patent Hydraulic Engine for organ blowing is a nicely
finished brass model of a water-pressure engine of a simple construction.
James Braby and Son's Patent Wheels and Gearing for Carriages
propelled by Steam. This contrivance is intended to enable steam carriages to travel on common roads, and to answer the same purpose as have been aimed at in Boydell's and Bray's Traction Engines.
It is decidedly inferior to both of those arrangements. Indeed, it is It is decidedly inferior to both of those arrangements. Indeed, it is
difficult to see what good purpose it can answer at all. It consists, difficult to see what good purpose it can answer at all. It consists,
according to the description of the patentees, of an annular railway
or drum, having on its inner circumference a conical circular rail. The driving wheel works within the inner circumference, having a corresponding groove to the rail in the large wheel. Gearing is in-
troduced to give different velocities in travelling, and a crank comtroduced to give different velocities in travelling, and a crank com
municates with the connecting rod of the engine. There is also model showing the application of the annular railway to carriages propelled by horses. We are credably informed that this parti-
cular arrangement was seen at work in New York as far back as
1830 , and has been invented and re-invented several times. What earthly good purpose is achieved by it, which an ordinary spoked ceive; unless it be that it allows the body of the carriage to be course to a cranked axle, as in Hansom cabs, and in some descrip tion of low-hung street carts. This advantage, however, is more
than counterbalanced by the friction involved in such a complicated arrangement of wheels within wheels.
of Wharf or Pillar Cranes, which will repay inspection ; and also of Sharf or Pillar Cranes, which will repay inspection; and als the Suez Canal.
There are also drawings of Harvey's and Condie's Steam Ham-
mers, and a Patent Steam Rivetting, Punching and Shearing mers, and a Patent Steam Rivetting, Punching and Shearing
Machine, by D. Cook and Co., of Glasgow. engineering, mining, and railway mechanism. We will pass more present some distinctive importance or noticing
David Service's Patent Apparatus for Producing by one Operation
Direct and Reverse Moulds for Casting Printing Surfaces is Direct and Reverse Mouldsior Casting Printing Surfaces is a ne
and very interesting contrivance for facilitating the production of and very interesting contrivance for facilitating the production of
ornamental patterns for shawls and other fabrics. The patterns are
made up of a certain number of linear markings, disposed made up of a certain number of linear markings, disposed symmetricharacter. This is effected by means of a few punches representing
simple linear combinations of one or two lines. The symmetrica simple linear combinations of one or two lines. The symmetrical
arrangement of these markings, on the principle of the kaleidoscope, can be made very effective. The way in which the moulds for the compound patterns are made is as follows :-A block of hard wood
in which the mould is to be formed, is placed on a perfectly leve metal table, which leaves the under part of the wood exposed; this
is placed under an overhanging bracket, carrying a vertical reciprocating slide, to which is attached for heating the tools by means of gas jets. There is a corresponding
bracket and slide underneath the metal plate and block of wood. The two slides are connected together by a mechanical arrangement, tools being heated by the gas jets to a temperature sufficiently high to burn their impress into the wood, the upper and under
tools enter the upper and under surfaces of the wood at the same time, and in the same perpendicular direction, so that the marks burnt out of the mould block are directly over each other. By this means a right-hand and left-hand impress of the same pattern are
moulded, one on each side of the matrix, into which the type metal is poured in a fluid state to form the required printing surfaces. By double pattern is obtained. The effect can be varied by uniting radial segments, or other portions of the patterns cast. Several
examples of the work produced by the machine were exhibited along with it, and showed the perfection with which this double system of carving and casting could be carried on
An Indian "Churka," or Cotton Gin, was exhibited by the the machinists of this country to obtain a correct notion of the inventors misapplying their ingenuity in the production of costly
machines, which the natives are too poor to purchase, too ignorant to understand, and altogether incapable of repairing. The "churka" is certainly a very simple and primitive-looking machine, and f it could only be made to work more expeditiously would stand a competition with the most improved forms in use in the western
world. It consists of a rude frame of rough wood, supporting an ron axle of about three-fourths of an inch in diameter, having
wooden crank handle at one end and a metal fly-wheel at the ther; under this axle there machine yet invented can possibly
liameter. It is said that no mats separate the cotton from the seeds with less injury to the staple than does the "churka.

Patent Spiral-toothed Cotton Gin, in which a band-saw is wound

 spirally round a metal roler, cormed of the saw-teeth is, that theThe effect of this spiral arrangement of
fibre is drawn along continuously in the direction of the spiral, and is consequently less apt to be broken. It is stated by the inventors saw can be manufactured so as to bend round the rollers in the irection of their width.
William Jamieson
ircular saws are used with a moveable metallic gride, for regulating f cotton.
Registered Adjustable Vice of Albert Works, Sheffield, exhibit their eles to any tapered or other shape which the workman may wish foot of the front leg. The same firm also exhibit a Patent Ratchet Brace, with globular ratchet wheel, which enables the handle to be
worked at any angle, and in places where the straight cylindrical ratchet could not be used. Improved Foundry Appliances, one consisting of a core used without hay or strawbands. The core is made up of longi-
tudinal sections, hinged at one extremity to an end plate, so that cach section can be made to fall inwards and allow the core to be
emoved. The same firm also exhibit a drawing of Schmidt's Patent Ladles for Casting Metals, which consists in pouring the C. W. Siemens, of John-street, Adelphi, exhibits a Patent Re-
(${ }^{\text {Wenerating Refrigerator. The machine consists }}$. cylinder of copper, divided into several concentric compartments,
the whole being surrounded by an iron case, between which and the
copper cylinder is interposed a quantity of some non-conducting
substance. The refrizeration is effected by means of dissolving erystallised chloride of calcium in the first or central chamber. This solution rises up between the double walls of the annular cavity
surrounding the dissolving chamber, cooling the water in these two surrounding the dissolving chamber, cooling the water in these two
closed annular chambers to 32 deg. of Fah. This cooled water re acts upon the solution in the central chamber, and takes up 30 deg
of its heat as it enters. The mass of half-dissolved crystals thus 30 deg. below the freezing point of water. The cooling power of
the chloride of calcium is thus, as it were, doubled, so that conical copper tubes inserted in the central chamber, and containing fresh
water, have their contents rapidly converted into ice. The salt employed may be recovered by evaporation, either with fuel or by
the heat of the sun's rays in a warm climate, where such refrigerator are most required. The inventor states that average expenditure of for each pound of ice. The idea of this invention seems to be taken
from that of the Calorometer, used by Dulong and Petite in their experiments to determine the speciific heat of different bodies. We
have known ice sell in Calcutta at 6 d . and 8d. per pound; so that if
Mr. Siemens can enable our countrymen in India to manufacture ice at the rate of 1 lb . of coal, he will receive many blessings, and we hope substantial recompense, for his clever invention.
Peak, Frean, and Co., of Dockhead, exhibit their Patent Ma-
chinery for Making Erated Bread, in which carbonic acid is forced chinery for Making Erated Bread, in which carbonic acid is force supersede the use of yeast, which tends more or less to deteriorate
the bread. A figure of the machine is to be seen in several bakers
shop-windows in town, and requires littie explanation. There is strong oblong cylindrical vessel for making soda-water, to be passed
into another strong closed globular vessel, to be mixed up with the
flour by means of revolving arms, driven by machinery from without. Kneading Doughs and Cutting them into Regular Portions for
Making Loaves. It consists of a sloping platorm, which delivers the dough into a pair of steel rollers, working horizontally at the
end of it. The rolled sheet of dough then falls upon an endless web,
where it is cut by a stamp into the exact portions required to form where it is cut by a stamp into the exact portions required to forn
loaves.
Porqueree's Patent Self-registering Machine, exhibited by Messrs. Burgess and Key, of Newgate-street, scarcely adme the constant weight
without the aid a figure. Sutice it osay, that the
which is used on a combination of steelyards, is a cylinder, with progressive series of figures cut in relief upon it, and disposed
spirally from one end to the other. This cylinder is moved backwards and forwards by means of a handle, with a pinion working
in a rack on the steelyard. When the object to be weighed has
been accurately poised, by turning round this handle, and shifting the position of the cylinder on the steelyard, the same motion
rotates the cylinder, and brings the requisite number on the spiral coil opposite a piece of paper, which, by a suitable cam motion, is
pressed against the numeral types, so as to print the weight balanced. In the Departmene deserving of notice:-Edward Manic Permanent Groin, for the sea coast. It consists of an arrange
of hollow iron vessels, each a yard cube, and filled with stones. E. K. Calver, R.N., Admiralty Surveyor, exhibits a Wave Screen,
formed of a series of perpendicular piles driven into the ground at the are braced together at the top by a gangway, and are supported on one side by slanting buttress piles, which join the uprights about high-
water mark. Spaces are left between the piles for the volume of the water to pass through after the force of the wave has been
partially broken by the screen. There is thus sufficient protection partially broken by the screen. There is thas ander to vessels anchored under its defence, while the depth of water is maintained by the or sand or shingle, such as are apt to take place in rear of a solid breakwater
The same idea has recently been under discussion in the pages of
this journal, in allusion to Mr. Scott's paper read before the mantavanaz broken water to pass through between them.
Robert Griffiths exhibits a handsome model of his Patent Improved Screw Propeller. This is an arrangement by which the blades
of the screw, which are flat, circular discs, can be flattened or adjusted to any desired pitch by means of toothed sectors on the
fan seats gearing into a wheel on the shaft. The toothed sectors are
bedded into the spherical boss which terminates the screw-shaft, and are flush with it.
Thomas Spiller exhibits what he calls a Vertical Propeller, the
action of which is described by the inventor as being very much like action of which is described by the inventor as being very much like
the tail of a whale, dolphin, or porpoise. Its motion is vertical, the propeller assuming in its ascent and descent through the water an
angle which may be made to vary with the speed of the vessel. It is adapted for an auxiliary to sailing vessels, as it presents no
impediment to the vessel's motion through the water when under
sail. This advantage we concede to it; but we are at a loss to sail. This advantage we concede to it; but we are at a loss to
understand how, as the inventor states, it is capable of giving a
much greater propelling force in 7 ft . of water as the screw gives in apt to throw the water into the air, without obtaining any adequate o act hoorizontally, in place of vertically, it might be made available
for shallow water navigation in the manner of the Chinese sculls, which are constructed so as to give all the advantages of a screw of
variable pitch, capable of being efficiently worked in shallow water. There is a fine model of the Life-boat of the Royal National Life-
boat Institution, designed by Mr. James Peak, master shipwright in
her Majesty's dockyard, Devonport. This boat has been so frequently described elsewhere, that we need say very little about it here.
Captain Thomas Kisbee, R.N., exhibits an Apparatus for Saving Lives from Stranded Vessels, constructed from materials in all cases
at hand on board ship. It consists in throwing a line from the
vessel to the shore by means of a rocket. This line is made fast by
the people on shore, and a traveller, guided by it, is made to pull the
shipwrecked sailors on shore, supported by life-buoys, through the
surf. the people on shore, and a traveller, guided by it, is made to pull the
shipwrecked sailors on shore, supported by life-buoys, through the
surf.
Gresham's Patent Record Buoy is a hollow iron case, with a watertight cover, capable of containing books or treasure, so as to preserve
them in cases of shipwreck. The speciality of the invention, how-
ever, consists in the use of a silvered globe attached to the top of the buoy, which by the reflection of the sun's rays in all directions
enables it to be seen and recognised at great distances. James Taylor and Co., of Britannia Works. Birkenhead, exhibit a
very beautiful and highly finished model of their Patent Double
Cylinder Steam Winch, which is worked by means of two steam Cylinder Steam whe
cylinders bolted to the frames. A small boiler is placed in any
convenient part of the ship, and the steam pipes leading to the winch are usually carried immediately under the deck, with a branch lead
ing to the different holds, so that, in case of fire, it can be used as a bre extinguisher.
Joseph Maudslay, of Westminster-road, Lambeth, exhibits a
model of his Patent Breech-loading Gun. This invention consists in forming the gun with a horizontal chamber in the breech, within Fhich is placed a brech-piece, which rotates on an axis placed in and
hinder part, so that it can be moved out of the line of the bore, and
present the powder chamber to the outside, when it is required to Henry Revely, of Poole, Dorsetshire, exhibits a Rocket Gun, in
which the projectile takes the shape of a rude short cannon with the

 by the inventor, aln ingerese or dyamid power obeained by yhis
sion as indicating the relative dynamic power; for we are informed
that "the report of a one-inch rocket gun is quite equal to that six-pounder fired in the usual manner, and a small cqual to that of made to do the work of a larger, the form of the projectile being such as to secure its generally going head-first into the target!
Captain Norton exhibits hisW ooden Liquid-fire Rifle Shel the combustible liquid is supposed to be charged just before being
used. The shell, on striking, is split open by a wedge-shaped plug used. The shell, on striking, is split open by a wedge-shaped plug,
which closes the mouth of it. Each fragment of the shell thus be-
comes a separate fire-brand, not to be extinguished even by comes a separate fire-brand, not to be extinguished even by water.
Captain Norton's Jacketed Rifle Bullet is simply a leaden bullet covered with paper, intended, we presume, to assist the bulleti in
assuming the form of the rifle grooves ; although it is waggishl stated in the catalogue that the object is to prevent the oxidisising of
the lead, and the poisoning of the wounds inflictea on the enemy! This is about the poisoning of the wounds inflicted on the enemy
refinement in fire-arms we expected ever to In the department devoted to philosophical apparatus, unquestion-
bly the most interesting article exhibited is Professor Hughes ably the most interesting article exhibited is Professor Hughes
Patent Roman-type Printing Telegraph. It would be difficutt to
give a detailed description of this instrument without a figure ; we can only state, therefore, that the speciality of Professor Hughes
instrument consists, not in the mere printing of messages of roman type, but in the economical arrangements by which this
process is accomplished. The main peculiarities of the system process is accomplished. The main peculiarities of the system are
the use of a weighted spring, by regulating the vibrations of which perfectly synchronous movement is obtained in a system of clockwork
moved by weights at the two extremities of the wire. These springs ingenious arrangement first employed, we believe, by Prof. sor
Wheatstone in an instrument called the Metrophone. Professor
Hughes has applied this principle to his instrument with; rare felicity. Having thus established a synchronous movement at
each end of the wire, the next step is to employ regulated
portions of it to record themselves. This is effected in a very ingeious manner by measuring out portions of an electric current,
greater or less duration, which are made to indicate different
ders of the alphabet. But in place of using a mider of greater or less duration, which are made to indicate different
waves for this purpose, But in place of using a number of distinct waves for this purpose, as was the custom in the step-by-step
system in use on several of the continental telegraphs, Professor
Hughes only uses one wave for each letter, distinguishing the waves by their comparative length or duration. We lately gave a report
of the paper read before the Society of Arts on Professor Hughes printing telegraph and self-repairing cable, in our number of the 2nd
April, to which we must refer our readers We witnessed the self-restoring process of the cable, when in
cisions were made in the gutta-percha tube enveloping the semisuggested to his mind by the reparatory or healing process in the
animal economy. If the covering of a nerve is injured, there exudes a species of lymph, which coagulates, and in time hardens into the
same tissue as existed before the rupture. Nothing can be mor beautiful than the rapidity and certainty with which the healing
process is effected in the cable exhibited. We mer semi-viscid fluid is a preparation from petroleum, or one of thos hydro-carbons obtained from fossil vegetation, and which of late
years have been utilised for so many economic purposes. Mr. Hughes has several other preparations - some twenty or thirty of them, we
believe -which he says all possess the same property of hardening
when when brought in telegraphic with water.
Wentworth L. Scott exhibits his Self-registering Maximum Thermometer for Deep-sea Observations. The inventor of this
highly ingenious instrument recently received the silver medal of the Society of Arts. We can merely state the principle upon which
it is constructed, without attempting a description. The instrument is so arranged that any rise of temperature in the mercury in the into a closed reservoir surrounding the top. Upon cooling the mercury to the same point at, which it stood before the observation
was made, the deficiency is recorded by that which has overflowed from the open beak of the stem into the reservoir when the maximum
temperature was reached. The instrument is so graduated that i it were cooled to 0 deg. Fah., the level of the mercury would pre-
cisely indicate the highest temperature to which it had been perature, the mercury would stand as much higher in the tube, i. e. Fah.; therefore, to ascertain the maximum temperature, it is only temperature at the time the observation is made.
Dr. Page's Revolving Armature consists in the use of uncovered only cheaper, but allows of the introduction of a greater amount of H. Swaisland, of Great Sutton-street, Clerkenwell, exhibits a very Henry Johnstone, of Crutched Friars,
T. Edmund Anscombe, of Westbourne-street, Pimlico, exhibits Patent Apparatus for Taking Accurate Views. This is a very in G. W. Scott, of Old Compton-street, Soho, exhibits a Lay Figure E. Agneni, of Queen's-square, exhibits a New Species of Ar
Decoration on Mirrors. This consists in painting ficures on the back successful, making the figures stand out in very bold relief. The -It is first painted on paper prepared with gum-arabic and glue previously been smeared with drying oil. The back is then
moistened with water and left to soak. After a little, the paper is
res. to the glass. Mr. Agneni's style of decoration is extensively used favour in this country. of Stoke Newington-green, and Moseley and Son, of Covent-garden We imagine there is annually some four or tive of these fountain pens nvented and patented. The idea of supplying pens with self-acting
fountains appears to us to be a needless one for several reasons. In the first place, the operation of dipping the pen in the ink-bottle is stinctive. In the second place, as all fluid inks contain solid matte bottom and sides of the containing vessel, all the contrivances for
boter supplying ink to the pen in time get choked up and out of order;
while the constant oozing of the ink, when not required, is a fertile consist of vulcanised tubes to hold the ink, which is pressed out by expands the air left in the fountain, and, consequently, forces the of the fountain principle was that of the glass pen, with a bulb at the writing end, which was formed of a capilary tube, through which
the ink flowed to the paper in writing. But even in this case the capillary
the ink.
Abraham Pope, of the Edgeware-road, exhibits a System of
Tangible Arithmetic for the Blind, Taylor, F.R.S. The contrivance consists of a sort of board of guttapeing $3 \frac{1}{2}$ in. wide and 7 in . long. It contains twenty-eight octagonal The pegs are made with two small projections at one end, while at the other end the projection continues the whole width of the peg.
These projections, which are about one-tenth of an inch high, serve
to show which end of the per is spemomet and its position in tho
bole
By

 thiness of the elinidolotor bodi
 thesin. Mison Soot exhitist his spmmasopese, Cardial and A Aterial

if intitution of civil engineers. Sospri Locke, Esquril 12, 1859 .
Tus whole of the evening was oceupied by the discussion of Mr

Mevaster's Paper, ${ }^{\text {On }}$ On the Perpanent Way of the Madras | Railway, |
| :---: |
| It was |

 plates and
i.ied direetl

 and the chair, the timber being cut across the grain, was suggested
as an alternative. In defence of compresed keys it was remarked
that cause of the defect of the key, ks the way in which the keesss were
used. Twenty million of these fastenings had been supplied for
tor

 tightly packed keys the cakks wolld have burpt. It massion montand
that with proper care they would have remained without fault.

 Was ititle or no baillast on the course of the line, so that it would
have been difiticult to have found a f foundation for the ordinary

 entirely dispensed with, os that there were no projecting parts liabil
to fracture. Tie-rods passed through the neutral axis of the rail,
with sgaure washers, of unequal thickness, placed in the side
channels, securued both the andle and the
gauge. This chaneels, secured both the angle and the gaige. .hectis form or
sileper was stated to to be applicable to any ordinary section of rail, lueper was stated to be applicable soany orranary yestion of and
 facility than holes at or near the top. For slipment they could be stowed into one another, and save space. It was assumed that the
first ocos of a subbstructure on this system would amount to 5901
par per mile of single way, and on the ordinary system to $£ 551$ per mile,
taking the cross
deepers at 4 s. each, and the chairs at $\$ 410$. per

 nevertheless, and when the time arrived for the reneval, the timber
woond be valueless, whilst the cast iron would be worth two-thirds
 a period of twenty-one years, after allowing interest for the original
outuy in in orth ases.
In regard to the durability of timber sleepers, it was asserted that In regard to the durability of timber sleepers, it was asserted that,
when properly creosoted, they lasted much longer than would be

 sleepers for the East Indian Railway were weighed previously to
being placed being placed in, and when taken out of the cyinder, in whic to
they remained twenty-four hours under a pressure of 124 th. to the ineh, in order that 10 lo. of cresoset per cubic foot might be
forced into them.
Some triangular reesosed t timbers, which had been sent to India, had shown symptoms of decay, due, it was be
lieved to their being or hard wod and to the form not bieg the
best for the purpose as the angles were liable to be domaged, and
 stacked and properly seasoned before being creosoted and it had been
found that heart-wood was not so easily creosoted as young sapp

 Was observed, that it was impossible to subscribe to the principle
which had been advocated that wood of the lowest quality or young timber full of sap, and which sucked upa arree quantity, of ceosote
oil, should be selected for use, because it was avourable for creosoting. It was believed that the best results would be obtained, when te utmost care was taken in selecting the woods. A Aoor result was
tolerably certain under these e ircumstances; and in corroboration it Was mentioned, that timber laid in 1833, some of which was
Kavised, although the perparation mery entered to the depth of till the present t time, st. John's yellow pine had been peed, had lasted of the most durable woods, both for rail way slepers and marine
works. At the Liverpool and the Sunderland Docks there were inworks. At the Liverpool and the Sunderland Do cks there were
stances of its being quite fresh after being in use twenty years.
With regard to marine works it was said, that the worm would
not touch timber which was cresosted to the depth of two or three nchese around the pile. When, however, this coat was eut through
he worm would penertrate into the heart-wood b but wet it the crosoted portion, , it was stopped by the objectionable nature of
that taterial.
This had been prove to be the case at Lowestoft where the creosote was found to be eneralaly a preservative against
he ravarass of the worm. In all cases the timber should be cut to

 through the blackened portion, atthough the pile had been in the sea
orless than six monthe To this it vas replied that the diseolora ion of the wood afforded no correct test of the thed timber having been
proper
 enerrated by yome kinod of worm. Kyanising was asserted to have no efeet, as the corrosive sublimate combined with the sap of the the
wood and ormed a subtstance which was not poisonous, and could
be eaten by the worms with inpunitys It was thought that sufficient stress lad not been laid on the im-
 made available. Eighteen different samples of timber had been exin situations where they would be exposed to extreme variationso of tmosphere and weather. The drainage of rail ways in tropical liable to be carried away by the heary periodical rains. In reply it
was intimated that the neecesity for sending out timber slepers to Ydia arose from the eircumstance that the supply there could not be
relied on. There was great difitity in in determining the precise
 In closing the discussion, the great diversity of opinion that still 1o think his own plan the best, and naturally prefered to be guided
by his own experience, rather than by that of others. As to the

 here could ever be univeral agreement as to owhat war whe best
system of permanent way to be used under all conditions Atter the meeting, Mr. Curtis explained a system of he upper side of the axxle and descending

 ff eighteen monthn, in mance, cases hey been in use for upwards
without any oil being applieed but the had run for two months without any oil being applied, but the ordinary practice was
troduce about a wine ghassful of oil to each box once a week.

Raluway Sreep.-The following is said to be a correct calculation
 main sped, $36 ;$ express, $58 ;$ maximum, $\gamma 6$. United States, main
speed, $13 ;$ expres, $86 ;$ maximun, 100.' France, main speed, $40 ;$ United States there are lines of the length of 8,800 miles, the stations on which are at great distances from each other.-Mining Journal.
「More blunders could not well have been made in the same space.]

SCOTTISH MATTERS

Ir the etate of the trafif on the railways of a nation may be are in a sound and healthy state. The late weekly return from f16 167 an compared with the corresponding period of last year. The
comparison extends over 1087 miles, and the average receipts per comparison extends over
mile were 440.188 , 4d
Viscount Duncan, the member for Forfarshire, has received the

 with your note of yesterday. I suggest that the Flax Supply by it to sending out to the Punjaub some one verif acquadice w person
cilture and preparation of flax for exportation. Such a could go out, collect all the information neeessary, and return within six months. The cost of succh a mission need not exceed from 4700
to 8800 ; and if the agent left England early in October, he would have all the fine cold weather in India before him for travelling about and seing the country, The reports of alone woula acarcely satisty the Association, or the manufacturers heary duties which fully occupy their time and attention; and, mereover, cannot well know the precise data which would be
required of them.
infuen inftuerce would be very usefal the the great knowledege and personal
these would
nom "Mucho of the land lin the cheerfululy rendereal tre prejudices of the is nothing in the landed suited for the Lhe prejuaceso f the people, to prevent an abundant supply being
furnished. O on the contrary, the gain to the certain market for a valuable product would be funly appreciated. some instruction as to the proper mode of cultivation of flax for the English market ; and the opopht also to obtain some securitr the price. II shich they raised would dind a ready sale at a remunerative of its agent 1 I would thax Association were satisised with the report or its agent 1 1 would then recommend that it establish a a repular
agnenc in the Pujumb, which would manage
and and thus show the people practically the best mode of cultivating
flax. This fax. This agency would, with advantage, make anvances to
moderate extent tor similar cultivation, and buy all the good
fax learnt tho bexportation. After a few years, whe advances might cease.

"16, Montague-square, London, 16 th April, 1859."

Public Works in South Australia.-The sum of $£ 1,500$ has now being carried out for supplying Adelaide with water, we, Adelaide Observer, find that during the year the works at the reservoir have made steady progress towards completion. The basin of the reservoir, wich is to be greatly altered, has been enlarged, so as to contain in all 160 millions of gallons of water as seasons of drought, and a cottage has been erected as a residence for river weir has been e mpleted, but when the work came to betested at the commencement of the rainy season, it was found so faulty as to be ultimately condemned, and it is now intended to erect a smaller weir at a fresh site, of somewhat diferent construction, further up the engineer, and the carrying structure led to the resignation of the engineer, and the carrying out of the works generally is now in Messrs. Philip Levi and Co.'s contract, are fast being delivered. about one-third of the entire quantity ordered are now landed, and the remainder are probably shipped, or ready for shipment. The rate of breakage on the pipes has hitherto been higher than was
expected. The cartage of the 21-in. pipes to the line of the main the layigg directed to the relative advantages of lead and iron house servicepipsing, and we believe they have come to the conclusion that it is ${ }^{\text {applied. }}$
uotive Effects of Red Lead upon Iron.-Mr. Robert of one of the largest steam-packet make a report on the merits of certain compositions used to a large extent in Liverpool for the preservation of iron ships, and to prevent so far as regards the use of red lead, or paints containing lead quit, at variance with the popular notion upon the subject, by declaring the use of that pigment for coating iron vessels to be the most per-
nicious. And in this hypothesis he is contirmed by the opinion of Mr. Nathan Mercer, F.C.S., who, after inspecting the iron ship
William Fairbairn, the plates of which were coated with red lead prior to her late v which the iron had been corroded could not fail to attract the found the red lead coating covered with blisters a close inspection he on being opened, a clear tuid escaped, and left exposed on the
surface of the iron a number of brilliantly shining crystals of metallic lead. Mr. Mercer says each blister is, in fact, a galvanic must also be chemical action, the corrosion is easily accounted for. This action, he says, will continue as long as any red lead remains, and is necessarily at the expense of the iron. He also points out
that the "sweat," so well known to every person interested in iron ships, is not, as is generally supposed, salt water, but a solution of
chloride of iron manufactured in the blisters this sweating is due in a great degree to the use of red lead paint in should never be used as a coatiog for sea-gong vesser, special precautions are taken to prevent its coming into direct
contact with the iron. Southamptoy W ithaw pool Abion.

the engines at Mansbridge. The report spoke highly of the merits of Mr. Manwaring, the engineer, and said that the indicated power

 of the two engines ranged from $75 \frac{1}{3}$ horses, at nine strokes, and15 lb . pressure in the boilers, to 104 horses, at twelve strokes, and
23 lb . pressure. The effective power available for working the pumps was about 80 per cent. of their indicated power. The appli-
cation of the indicator to the engines had been useful in pointing out a better adjustment of the steam valves than was possible without
its employment. It has also clearly shown the advantages of in-
creased pressure of steam in the boilers, combined with higher degrees of expansion in the cylinders, and fitted to the pumps it has
established the cause of the increased shock on the pump valves, when working at the higher rates of speed. The consumption of the
small Welsh coal, at nine strokes, was $2 \cdot 385$ per cwt, per hour, ing to 3.151 cwt . per hour at twelve strokes per minute, and per
indicated horse power per hour 3.635 lb ., varying to 3.19 lb . of coal. greater. The quantity of water discharged was about 8 per cent.
pumps varied from 57,144 gallons, at nine strokes two pumps varied from
73,457 gallons at twelve strokes, and the loss in the pumps was con-
siderably greater at twelve strokes the because, if an accident should occur to disable the present engine
the town might be left without water general overhaul and repair, which must necessarily be required part of this time night and deny for five and anryears, and

CLARK, BRAITHWAITE, AND PREECE'S IMPROVEMENTS IN TELEGRAPH CABLES.

$$
\text { Patent dated 30th August, } 1858
$$

Thrs invention, by Josiah Latimer Clark, of Adelaide-road, Freof Bernard-street, refers, first, to improvements upon an invention for which letters patent were granted to J. L. Clark, the 20th December, 1853, for the use of asphalte and other similar dielectric substances placed around the insulated wires of submarine and subterranean telegraph cables, in order to lessen the induction and
consequent retardation of electric currents. These improvement consist in the means of more effectually applying and supporting the said non-inductive coating, and for this purpose the wire or wires already insulated with gutta-percha or other ordinary insulating material are covered with a coating of hemp or other fibrous material which has been highly desiccated and deprived of al
moisture, and then saturated with a hot mixture of turpentine moisture, and then salurated with a hot mixture of turpentine, such saturation being completed by passing the said materials through or placing them in air-tight vessels, from which the air is exhausted before the admission of the non-conducting mixture, and pressure. The air or the mixture can afterwards we injected under saturated mixture of fibrous and non-conducting material, which may either be laid on in a mass, or preferably in the form of strand wired around the wires, either with or without an admixture of iron by placing it in thus formed is again saturated with the mixture submitting it as before to the influence of a vacuum and vessel, and pressure. The wires thus become surrounded with a perfectly non and injury.

The manner in which the patentees carry this part of their in vention into effect is as follows:-They take a single wire or a suit-
able number of conducting wires, which it is preferred to have ing an elevated temperature. They lay or twist them into a bundle and pass them through a vessel of melted pitch, asphalte, marine glue, gutta-percha, or other similar and well-known insulating materials or mixtures, and as they emerge from the melted mixture
they cover them with a suitable number of strands of rope yarn or other fibrous material which have been thoroughly saturated with the mixture by previous immersion, and which pass through the hot melted mixture in the same manner as the conducting wires, and at the same time, as soon as they emerge from the pitch, they are
slightly twisted together by an ordinary rope-making machine, or plaited or braided, and they are then covered by a set of clean yarns, or them to be handled. The substances which are preferred to be used for these purposes are common pitch or pitch and gutta-percha.
When gutta-percha covered wire is employed, which will not admi of the application of so high a temperature as caoutchouc covere wire, pitch in a nearly cold state is used, and having laid up the
conducting wires and the saturated hemp yarns together, the whole is placed into or passed through an air-tight vessel, from which the air is exhausted, and the semi-fluid, pitch, or mixture then admitted. Pressure is then applied to drive the pitch into every cavity, and the rope is then withdrawn and covered with hemp strands, as before described. Such ropes or cables as described may be either laid or
drawn into underground tubes in the usual manner, or may be covered with iron wires to form submarine cables.
The invention consists, secondly, in a method of preserving submarine or other iron telegraph cables from decay, by surrounding
the iron or steel wires with a compound of pitch, tar, asphalte, or the iron or steel wires with a compound of pitch, tar, asphate, or
other similar well-known preservative materials retained upon and around the cable by strands or flat bands of hemp or other fibrous plaited, or braided round the cable, or coiled around the cable in
such manner as either to envelope it completely, or to form a worming such manner as either to envelope it completely, or to form a worming in the interstices between the wires.
The manner in which
The manner in which this part of the invention is carried into effect is as follows:-The cable, as fast as it leaves the covering
machine, is caused to pass through a vessel of common tar, and is led up vertically through a pipe in the centre of a cauldron or tank, and passing through is carried up from the bottow thereof. The cauldron is kept revolving at a convenient speed, and contains a quantity of the pitch or preserving material or mixture in a melted
state, kept hot by heat applied in any convenient manner. The state, kept hot by heat applied in any convenient manner. The
cauldron also contains several reels of spun yarn well saturated with the pitch. The reels revolve loosely on horizontal axes, and are wholly or partially immersed in the melted pitch; the yarns as they are unwound off these bobbins pass up over suitable guides, and
are wound spirally, or are plaited or braided in a hot state around the cable. Sometimes the wires and the saturated fibrous materials are laid up together and with the same machine; in such cases the machine at the same time, the iron wires a little in advance of the hempen yarns, so that they may close round the core first, and then become completely enveloped by the outer protecting yarns.
Thirdly, the invention consists in a method of preserving iron
cables from decay, by intermingling among them cables from decay, by intermingling among them one or more wires of zinc in place of iron, whereby the iron is kept in an electro-
negative condition, and thereby preserved from oxydation or decay The fourth part of the invention consists in a new method of joining the iron wires and the conducting wires of submarine and other telegraphs. A right-handed thread or screw is formed on the end of
one of the wires, and a left-handed thread on the end of the other wire to be united to it ; the two ends are then inserted in a screwed ferule or collar cut with corresponding right and left threads, and
by screwing it up the two ends are drawn into contact, and form a secure joint. Sometimes, and especially with small wires, the ends are not screwed, but are simply introduced into a plain ferule or collar, when by pressure or by the blows of a hammer both the the ends of the wire the wires are fattened about the centre, so that the ends of the wires cannot be drawn out of the collar.
Lastly, the invention consists in forming the conducting wires of heretofore customary to lay up several small copper wires torether into one spiral strand, so that any faulty place in a wire might not by its fracture destroy the continuity of the whole cable, and render it useless. But such compound strands have the disadvantage that their sectional area is not so great in proportion to the surface ex-
posed to induction as in solid wires, and also their effective length, posed to induction as in solid wires, and also their effective length,
measured along the spiral, is commonly greater by about 12 per cent. or 15 per cent. than the actual length of the cable itself. Both these causes combined tend very seriously to retard the transmission of the current, and to increase the amount of induction, and thereby to render their use objectionable. The improvement consists in
building up a solid conducting wire in segments, so that any defect or breakage in a single segment will not endanger the continuity of the whole cable, and for this object the circular section of the wire
is divided into five segments, by five divisions, in the form of radii, and the wires are drawn through templates, of such a form as to give each wire a similar section to that of one of the segments. Five
of these wires are then laid together, so as to form a single round wire equal in conductive power to a solid wire. The shape may be
further improved by passing the whole through a template, or be-
tween small grooved rollers, to close the segments tightly togetherIn joining such wires together each segment must break joint with the next, and the ends of the two segments be united to each other and to the neighbouring segments by a blow-pipe and fine or silver wrapping enall wire round it spirally in the usual manner, and
soldering the ends. In some cases the spiral wrapping is extended
along the whole length of a conducting wire, so as to ensure conFig 1
Fig. 1 represents on an enlarged scale the section of a wire formed Fig. 3 represents a solid central core surrounded by five segments outer cones.

ROYAL SMALL ARMS FACTORY, ENFIELD.
part ili.

IN our last paper upon this subject we described certain processes
upon the stock of the gun, and left it in a partly-finished state: it will be remembered that the last effect produced was to complete the butt-end with its holes and recess. The next process which we have to describe is the preparing of the peculiar shaped recess required for
bedding the lock in its place. The slightest inspection bedding the lock in its place. The slightest inspection will at once
show the obstacles in the way of producing this effect; but as all the show the obstacles in the way of producing this effiect ; but as all th
corners are circular in form, it lessens the dificiculty most considerably.
DESCRIPTION OF THE MACHINE FOR BEDDING THE LOCK IN THE STOCK, Fig. 5 shows a perspective view of this machine. To all appearbut this arises merely from its cutting spindles being five in number and, of course, all the gearing connected with them being repeated that number of times. In the first place thestock is fixed in position upon the sliding plate A; this is entected by the barrel groove being pressed by means of a cip up against a form made to nt the breech end, and screwed to two brackes, as shown. The plate A is movec
backwards and forwards, at will by means of the handle B, which works a pinion running in a rack underneath it. The five upright spindles C C C C C, with their handles, slides, and tools, are retained in their upper position by means of ring springs of steel, some of
which will be seen in the engraving behind the slides. To the right of the stock the mould D will be seen, an exact counterpart of the a pin, one of which, F , is shown in peition By deovided with slide the revoving tool is brought down to the work, and the pin
into the form or mould, the movements or tracing round being into the form or mould; the
given by means of the handles
The frame which bears the five spindles revolves on a centre shaft so that any of their numbers can be brought to bear. The strap F
when above, surrounded by a puard. This arrangement enables it to be slipped over any one of the five pulleys, as they are, one by one, brought into position; and the lifting and lowering is self-acting.
The first process which is performed by the spindle, shown
in position in the encraving, is that of cutting the recess from in position in the engraving, is that of cutting the recess from
the lock-plate. It will be seen that the guide-pin in this case the lock-plate. It will be seen that the guide-pin in this case
is armed with a cross-bar, which, on the tool being brought down to the cut, secures the proper depth, and yet allows it to ravel all over the top surface of the mould. The second process bedded. The third spindle is brought forward for the purpose of
cutting the hole for the tang of the sear (see Fir. cutting the hole for the tang of the sear (see Fig. 2, No. 6). The
fourth cutter is for roughing out the holes for the main spring; and the fifth is fitted with a very small tool, adapted for cutting out the small semi-circular corners into which No. 4 cannot go. The stock in this machine being placed in a horizontal position, the hole
as it is made, and also the mould, is likely to be filled up with the chips or cuttings which are made; these are blown away by means of
a small fan placed at the back of the machine a small fan placed at the back of the machine, having two mouthpieces depressed, so as to cause a stream
work; these are shown by the letters H H.
The cutters used in this machine are shaped like augers, having a cutting lip or side as well as a foot; this enables the wood to be cleared
away by a horizontal movement; and the tools being slightly eccen tric with their shanks, as their side edges wear away they can be brought forward again to the required radius.
We will
We will now pass on to consider the machine used for cutting the
ooles and recesses for letting in or bedding the trigger guard, which This by Fig. 2, B frmis machine is for making the required screw holes, and also for from working its into which is inserted a stop to keep the ramrod used. Fig. 6 shows a perspective view of the machine for bedding the guard in the stock.
mis machine consists of a square bed or frame of iron, standing upon four legs, and having a cast iron bracket rising from, each side,
and connected above by means centre spindle, on which revolves the frame that carries the four cutting tool spindles A A A A; these spindles, with their fittings, bedding the lock in the stock, and are provided with guide-pins in a similar manner, the levers havinc a vertical and horizontal motion; a similar arrangement has also been adopted as regards the drivingstrap, which will be seen running horizontally above, and which can oe brought down over any of the pulleys required, as soon as they are in position. It will be seen that the stock, in this case, is secured
in a vertical position, and is clipped in the manner before described. The frame or carriaze to which it is fixed, rests upon two bars of irregular form, one of which can be seen and is marked with the letter B; the carriage is fitted with a rack C, which plays in a a handle whereby to impart motion to the cradle or carriage. The first spindle being placed in position, and fixed by a selfacting stop, the tool is brought into contact with the wo handle just described, finishing the first process-that of making the recess for the guard; the second tool is then brougt into play,
which makes the recesses for the bosese; the third forms the screw holes, and the fourth the deep recess required for the trigger, and also the one for the ramrod stop. This machine, too, is fitted with a small fan, as shown by E: and it has also two blowing nozzles for clearing the work, F F. Having cut out all the complicated figure
reauired for bedding the lock and guard, and made a bed for the butt-plate, the next process is to tinish down the long fore end, so a to make it exactly of the right size to receive the three bands which are used for fixing or clipping the barrels to the stock, and also the nose-cap; these three bands are delineated in Fig. 1 , Nos. 6
7 , and 8 . This is done in a very simple and effective machine, which called the band machine

description of band machise.

This machine consists of a low frame, which is fitted with a form made so as to fit the barrel groove, and not to project so far forward as to are of similar shap to the form made so as to revolve in two bearine and is fitted with a wooden hand-wheel at one end, so that it be tround at pleasure The stock to be operated upon is pushed in through the cams, and screwed tightly down upon the form, so that it can be turned concentrically with the cam. Revolving cutter-blocks are provided of
the required width the required width, to cat the band and the recess for the nosepiece; these cutter-blocks can be brought forward at will to their
work; they are hung upon vibrating levers, weighted so as to cause them to lie away from the work, and fitted with treddles, so that on application of the foot of the operator they can be advanced at pleasure. All being ready, and the stock fixed in its place the
blocks are brought forward, and the man, having his hands still at

liberty, can turn the wheel round gradually, so as to give the re-
quired feed. This machine is not made self-acting for two reasons: quired feed. This machine is not made self-acting for two reasons: be a waste of time to have it so; and the other is, that the surface to be cut being of irregular thickness, it is better to be able to regulate the feed at will. Having formed the three spots for the bands,
and fashioned the end to receive the nose-cap, the fore end of the stock has to be finished to shape by rounding the parts between the the machine for cutting away the wood between the bands.

MACHINE FOR CUTTING
BETWEEN THE BANDS.
This mat in mare to consisting of a barrel mould, to which the stock is clipped, and

BELLANGER'S CAOUTCHOUC SOCKS OR CLOGS Patent dated 3rd September, 1858.
This invention, by J. M. Bellanger, of 41, Rue de Trevise, Paris, relates to an improved mode of constructing caoutchouc socks, or, as
they are usually termed in England, goloshes. The improvement they are usually termed in England, goloshes. The improvement
consists in the use of metallic springs, which are constructed and placed between the soles of the goloshes in manner hereinafter men-
tioned. placed
tioned.

In the manufacture of goloshes made in accordance with this invention, lasts made expressly for that purpose must be used, such
lasts being very much arched or curved, in order that the goloshes lasts being very much arched or curved, in order that the golosted
which are formed thereon may retain the same shape when removed.
The golosh having been formed, and while still on the last, but before the outer sole is attached, a spring of tempered steel or other suitable metal is placed longitudinally upon the bottom of the golosh,
the outer sole being then laid over such spring and the latter secured the outer sole being then laid over such spring and the latter secured
between the two soles by means of nails rivetted or driven in whilst the golosh is on the last, or otherwise secured by means of some analogous contrivance. The spring may be made of one piece of
metal, or in two or more pieces if considered desirable, so as to possess a jointed character.
Goloshes constructed as herein described are held firmly on the
foot by means of the said springs, which yield to the pressure of the feet so as to allow the latter to enter the goloshes, the free action of
to be taken away is large, and the surface to be operated upon ex-
tensive, the length between each band is finished by two cutter censive, the length between each band is finished by two cutter and back pair are alternately brought into action, and the whole length smoothed down and finished by the rotating motion given by the aid of the hand-wheel. This does away with much of the vibration which the stock would otherwise be endued with were the whole length of the cut taken at one time. All the tools and
cutter-blocks of these machines rue at very high velocities, and the surfaces which they leave are very good indeed; in fact, a slight surfaces which they leave are very good indeed; in fact, a slight
friction with a piece of glasspaper, placed upon a cork rubber, is all that is required, after the machine is complete, to leave a surface so smooth that nothing more requires to be done to them before they are handed over to the assembler. It may also be as well to mention here that the parts on which the bands fit are, if anything, a little
larger than the rest of the fore end. -
the feet in walking being in no degree interfered with, whilst the use of straps or other fastenings is altogether dispensed with and rendered unnecessary. In order to remove the goloshes from the is inserted in the heels and projecting therefrom about the eighth of an inch, when the goloshes will be readily removed. Fig. 1 represents a golosh constructed according to this invention, and showing the external shape; Fig. 2 represents a golosh in section,
showing the spring inserted and secured between the soles; Fig. 3 is a plan view of the spring with the holes which are to be used for fastening the same.

The Red Ses.- It may not be generally known that England bas lately made a fresh but peaceful acquisition in the Red Sea, in the purchase of the little island of Kamakan, which belonged to a
neighbouring Sheik, rejoicing in the name of Habesch-el-Sambara. neighbouring Sheik, rejoicing in the name of Habesch-el-Sambara.
It lies to the north of Perim, in 50 deg. north latitude, on the It lies to the north of Perim, in 50 deg. north latitude, on the
Arabian side of the Red Sea, and contains a safe and commodious harbour, the entrance to which is protected by coral reefs, leaving only an intricate narrow channel for ships to enter by.-China
Telegraph. Telegraph.
Coal.-M. de Carnal, one of the greatest owners of coal mines in
Prussia, in a statistical work on coal dirging Prussia, in a statistical work on coal digging, states that the quantity of coal dug in 1857 amounted to $125,000,000$ tons, a mass which, pied up 6 ft . high, would cover a geographical square
mile. The lands from which the coal is procured may be estimated at 8,000 square miles, and the mean depth of the beds of coal at
about 31 ft . The mass of coal then known to exist would form a about 31 ft . The mass of coal then known to exist would form a
cube of ten miles. If we compare this enormous bulk of coal with the quantity annually consumed, we may confidently affirm that there is enough to last for 36,000 years. The calculation of 31 ft . for the mean depth of the beds is perhaps too low, for the coal-fields
of Liege extend to 55 ft , those of Staffordshire to 151 ft ., and those of Ruhr to 134 ft . The coal dug in 1857 amounted in value to $£ 37,500,000$ sterling, a sum far beyond that realised by the digging of the precious metals. In England some calculations have been made with regard to the yield of coal in our own country
according to which the coal-fields of Great Britain yield $63,000,000$ tons of coal per year. A better idea of the immense commerce of England could not be obtained than by stating the fact that at Manchester and its environs a motive steam power equal to $1,200,000$ sumed 30,000 tantly maintained, to support which there are conmanufacture of sor coal per day, or $9,500,000$ a year. In the or 950,000 a year. The Transatlantic steamers from Liverpool and other ports consume 700,000 tons per year, and the manufacture of coal from England reached in 1858, 6,0;8,000 tons. It is extimated that England alone could furnish enough coal for the consumption

BASTABLE'S APPARATUS FOR THE PRODUC TION OF LIGHT.
Patent dated 14 th September, 1858.
Tmis invention, a communication to A. H. J. Bastable, of Belgrave Works, Pimlico, relates to apparatus employed in the production of light in which jets of ignited gas (ordinarily a mixture of oxygen and hydrogen) are projected against a surface of lime or other suit able material, to which a slow motion is given.
Fig. 1 is a side view of part of the apparatus. Fig. 2 is a plan of the same, with the parts above the line 1,1, rig.1, removed.
shown is intended for three equidistant jets. a is the table of the shown is intended for three equidistan
apparatus, having a circular hole through it at the centre, and apparatus, having a circular hole central hole, and at equal distances from it and from each other. In the central hole the case b for the lime is fixed; it is a tube of copper made to the form of the pieces of lime to be used with it, and having the collar b^{1} fixed on it, the projecting flange of which rests on the upper surface of the table, whilst its lower end passes through the hole, and receives a nut
which it is secured. The case b it will be seen is made in two parts which it is secured. The case b it will be seen is made in two parts,
one below and the other above the points where the jets strike, and the two parts of the case are connected by wires or strips b^{3} of platinum; but this complete division of the case is only rendered necessary when the lamp is required to illuminate the space all round the lamp. In Fig. 3, c is the lime within the case, and formed into a piece of suitable shape and convenient length. As shown, it rests at and recular speed by clockwork, or when mercury is employed to raise the lime, then the case is bent up into a \cup form at its lower end, or a separate \mathbf{U} formed tube may be attached to it, and the mercury being allowed to run from a reservoir in a stream regulated by a stopcock into one leg of this U formed tube, causes the lime in the other
leg to rise, floating on the surface of the mercury. The upper end of leg to rise, floating on the surface of the mercury. The upper end of
the case should be continued up to a sufficient height to contain the the case should be continued up to a sufficient height to contain the
lime which rises while the lamp is in use, or else a bowl may be placed at the top or back of the case, to receive the lime as it rises

The upper portion of the case is slit lengthwise to admit of the free passage of the lime in its expanded or decrepitated state when of the case so as to press the lime against the front of the tube, and thus to preserve the distance between the jets and the surface of the lime. In cases where a supply of lime is required for cylinder having a spiral groove cut on its surface to it, and to which the lime may be securely fastened by any convenient mode. This cylinder, so charged with lime, is made to revolve on its axis, at the same time that its axis receives a progressive movement in the direction of the length of the cylinder; by these means a supply may be provided for many days consumption. For which are screwed and project up through the holes in ends of they are each furnished with two nuts $e,{ }^{1} e^{3}$, which bear respectively against the upper and under surfaces of the table; the pieces are thus secured to the table, and can be adjusted vertically as may be required by making the holes in the table slotted; the distances of the pieces e, e, from the centre of the table can be regulated at pieces e, e, and furnished at their ends with to the upper ends of the of platinum. The gas is caused to pass through wire gauze in the branch pieces e, e, such as will render the apparatus secure from explosion and as heretofore employed. In each of the branch pieces e or attached thereto, are two stop-cocks e^{3}, c^{3}, to regulate, inde-
pendently the one of the other, the quantities of the two gases
employed as they pass to the jet. The two gases are led to the pieces e by six pipes h, h, h^{\prime}, h^{l}, two to each jet ; the pipes h, h, all
communicate with the union piece p, and the pipes $h i, h^{\prime}$, with the communicate with the union piece p, and the pipes h, h, , with the
corresponding piece p^{2}, and the pieces p and p^{1} are connected with corresponding piece p, and the pieces p and p are
flexible or other convenient gasholders, such as have
employed, and which contain the gases to be used.
employed, and which contain the gases to aply the gases in a com-
In cases where it is found convenient to aply pressed state, a uniform discharge or supply to the jets from the
containing vessels or gasholders may be eltected by a clock containing vessels or gasholders may be ettected by a clock move-
ment and escape valve of suitable construction, which shall permit ment and escape valves of sutabe gases to pass to the jets, the area of such valve ap
The gases usually employed are oxygen and hydrogen, but for advantage where it can be procured. As it is desirable that the lime should not be exposed to the action of the atmosphere, which
would speedily render it untit for use, it may be kept (after it has been shaped) in a glass or earthen jar, close stopped, or in a box
lined with tin foil or other impermeable lining, or the lime may be coated with an unctuous material, such as glycerine, linseed, or other oil, which, by closing the surface pores, prevents the absorp-
tion of moisture, and improves the illuminating quality of the tion
lime.

LETTERS TO THE EDITOR

We do not hold ourselves responsible for the opinions of our

new theory of dynamic quantity and intensity. Sir, - In Tre Exareser of 3rd December last, you said, in reply to a correspondent, "The relation of quantity to mensity is very little understood at present, but our electricians are making great advance the electric current
As this subject lies at the root of the important question of inducso much interest, I have been. led (in consequence of the recent dis-
cussions on that cussions on that question, in which I took some part,) to reconsider
the whole matter erery acefully; and the result has been a series o
conclusions and new views on the subject, onchusions and new views on the subject, as u
as they will be startling. I believe, to the majorty and to the scientic coord in general. They amount, in short, to
totaly newv theory of dynamic quantity and intensity - a theory
which not only reiders the whole subject so clear and plain as to be which not only renders the whole subject so crear and plain as to be
evel to the humblest capacity, but which perfectly accords in all its
竍 parts, and lead
renders clear an nd number of pairs, that is suited for any particular circuit; it ex-
 increase in the size of the battery-plates increasedes only the the quantity, and an
current.
I undertake to demonstrate in the most conclusive manner, and maticial formuske, that an increase in the, size of the plates, and an
increase in the number of plate, operate in precisely the same manner ; that in in the one of case, ase, operate well in precisely the same the other, we simply
increase the relative quantity of electricity thrown into current
 thousgnd fold, this simply arises from the fact that for any given
thickness and conductivity of the connecting wire there is a maxithickness and conductivity of the connecting wire there is a maxi-
mum limit, at and beyond which any increase in the size of the plates. produces no effect whatever, but that practically there is no increasing the number of plates.
Lastly, I shall show that the word intensity, as commonly used
by electricians in this country (though not in France or Germany), by electricians in this country (thoogh not in France or Germany),
has no proper meaning whatever, except as expressive of an
erroneous opinion which was once held by Dr. Fraraday regarding erroneous opinion which was once held by Dr. Faraday regarding
the nature and velocity of the electric current, and which I strongly uspect that great man has now abandoned.
When these new views occurred to me, they appeared so striking in themselves, so important in their results, and so widely at variance,
not only with the received modes of expression, but also with the common ideas upon the subject that I anniously doubted my own
judgment, and, therefore, resolved not to publish them until I should test them by Ohm's law in some of its most important deductions. This operation, though not yet concluded, 1 have already carried so far with such complete success as has surprised and gratitied me
beyond measure at every step, and has left not a shadow of doubt in my own mind as to the substantial truth of the theory, and the
value of the new light which it is calculated to throw on the nature and mode of action of the electric current.
Sir, to atford space for anything like a detailed exposition of what think, I may venture to call the new doctrine; but if you are disposed to allow me a couple of columns, or perhaps a full page, I shall
send you an which, I think, will deprive you of excuse for replyint respondents in future, that the nature of the relation of dynamic
res quantity to intensity is very little understood by electricians-while it was made by you, and even as generally applicable at the present
Glasgow, 27th A pril 1859
George Blatr, M.

puddeed steel.

Sin,-The article on "Puddled Steel" in Tue Exgineer of the 8th inst., and the late specitications of three patents for manufac-
turing that article, induce me to send you a few remarks which me turing that artice induce me to send you a fow remarks, which may
perhaps contribute to make the properties of pudded steel better known than at present. In the
puddled steel? Secondy, How is it made? And, thirdly, Where pudded steel? Secondly, How is it made? And, thirdy, here
is it made? And reply to these questions by stating, irst, that
puddled steel (so called) is a strong malleable iron, with a fine granular fracture, containing a greater percentage of carbon than
soft malleable iron of a tibrous fracture. Secondly, puddled steel soft malleable iron of a ibrous fracture. Secondiy, puddled steel is
made by smelting pig iron in a puddling furnace with a slag com-
posed of oxide of iron, silex, and other ingredients ; and by boiling posd stirring it, the impurities are washed out, until the thus porified iron agglutinates under the slag, at which time it is so-called
puddled steel; if, however, the agglutinated mass is raised above the slag, and remains exposed to the tlame, only for a few minutes, e ,
loses that percentage of carbon which causes it to be called sted and it becomes malleable iron.
Thirdly, puddled steel was, I believe, frst made above twenty years ago, by the celebrated steel-maker, Solley, from Indian charganese, common salt, and clay-which invention was patented by which these irons were made, containing but little manganese and cay, required those ingredients to be added in the puddling furnace and even then the change remained four to five hours, afd even
longer, in the slag.-bath before the necessary change was effected to produce steel. About ten or more years ago it was found in Westha use of mangsanese, clay, eco. ; and since that time the manufac-
heuse of puddled steel has gradually increased in Prussia and other
are ture or pudales steel has graud France, and last year was success-
German State, in Belium and Frought out at the Mersey Iron Works, Liverpool; before
fully broug
which, without the public being generally aware, it had been made
at Low Moor in large quantities for the Sheffield market. Amon at Low Moor in large quantities for the Sheftield market. Among
the many Prussian works at which steel is thus made, the Phoenix the many Prussian works at which steel is thus made, the Phenix
Company (who have above a million pounds sterling invested in their different establishments) make largely, and the men are ordered
 naces are used to make steel, a and since they bave commenced this
branch of business, no other steel is used in the manufactory for branch of business, no other steel is used in the manufactory for
fitters' tools or any other purpose. The puddled steel is, however, for
Ite fer the finer purposes. melted into cast steel. Puddled steel is also made
in France, and in Nassau at a large works I built in the last accounts I received, only steel for railway-wheel tyrese, was puddled there; so that from the foregoing it may be seen that
puddling pig iron into steel is an old-estabished operation. Now, Mr. Editor, as I have resided abroad for many years, and am not well posted up in the English law of patents, will you have
the goodness to inform me if for instance, myself or friends wished
to met to make puddled stel, should we be obliged to apply to Messrs.
Riepe, Clay Spence, or Benzon for permission to put pig iron into a
furnate furpace by little and little, or all at once, or to open and shut the
damper as our pudder wished or by the English law, should we be allowed to employ any of my old German puddlers, or any of Mr
Solley's old pudders, without interference from any of those gentle
men who have lately taken patents for a process which, it woul men who have lately taken patents for a process which, it would
appear, till lately has been unknown to them? From the foregoing
a would not
 it must be treated ditferently from iron; thre hammering, rolling, and
welding are conducted in a much more expensive manner-even the
in welding are conducted in a much more expensive manner-even the
same machinery cannot economically be employed; and those who may attempt it will find the truth of the assertion to their cost.
Middlesbro'-on-Tees, April 25 th, 1859 .
JoHN PLAYER.
submarine telegraphy.
SIr,-There can be little doubt, at the least in the mind of one important individual, that when your correspondent A Telegraph
Engineer" dies, wish his numerous letters which haveappeared in your columns- -especially
 dificulty in coming to a conclusion, that in "A Telegraph Engineer" words, to reiterate the criticism which his ignorance on this subject pportanites of trying any practical exp ts upon this subject nd if he had those opportunities, his letters were a sufficient proof
that he had not the ability to avail himself of them." What had not the ability to avain rate facts," he forgets that, so far from him, we have had neither and, therefore, when he tells us that it is "unnecessary to occupy
your columns with the examination of a question which has been so completely solved, both by theoretical deductions and experimental
inquiry, as that of enlarging the size of the conductor of any future Aquiry, as that of enarging the size of cation; it is so undeniable a fact that it admits of no discussion; there exists no difference upon
this point"-he is stating that which the discussion at the Society of Arts the other evening fully proves is not "accurate facts",
When in the discussion which followed the reading of Mr. Varley's paper, clever and ingenious as it was, Professor Tyndall, a
venteman noted for his higa scientific attainments, declared that enteman noted
the whor his hign scientinc atter was one yet to be solved and determined; ; and
Ir of the present day, who had spent a month in carrying out the most
areful and laborious experiments upon 2400 miles of the Atlanti able, and who since had been trying experiments upon five or six onductors of difierent sizes, declared that, so far as his experiments ent, they did not at all tend to Mr. Varley's conclusion as to the
ize of a conductor for a future Atlantic cable ; and when the hairman, in closing the discussion, stated that, in his opinion, the matter had not advanced one single step toward solving the dititiculty,
hat he quite coincided with Profesor Tyydal's remarks that we
ought to look for the laws which regulate these matters, and comought to ook for the laws which regulate these matters, and com-
plimented one side in adhering to a small, and the other a large O have jumped upon his legs with indignation, and Boldy told
Messrs. Walker, Cook, and Tyndall, that it admitted of no refuatation it demanded no discussion, there existed no difterences-in fact, that they knew nothing, but he knew everything. It is hardly necessary
os say such a course was not "convenient" for even "A Telegraph Engineer."
Of course it is not only " grossly inaccurate," but "highly ridiculous, to say that no improvements have taken place in the
construction of submarine cables, and if for no other reason than simply because your correspondent declares there have.
With a less presumptuous individual the ssertion of "A Telegraph Engineer" would have sufficed, but when, after declaring "the papers which have been read, the discussions that have ensued in
your columns, and the heaps of patents tiled, specitied, and completed, are so many proofs of improvement, and yet goes on in the very next
paragraph to declare, "if the cables of the present day difter but slightly in form from those primarily submerged, it is not that no progress has been made in their improvement, but that subsequent
experience and careful deliberation have shown that, very much to experierce and careful
their ceredit, the promoters of the first cable succeeded in obtaining a individuals like myself are apt to fall into the delusion that one of tilese two things must be incorrect.
If the present form of cable be prove the best, then the "heaps ot patents ned, specinet, and completed, antre which are supposed
to improve some defects in the present construction of cables, as a matter of course, are no improvements at all; if if on the other hand,
the present form is not the best, then, although it may be thought a
daring thing I reall daring thing, I really do not see what other conclusion can be
come to but that "A Telegraph Enginer," without the weight of
"a "a great respected name" to support his assertion, has not had the other great qualiicication of "accurate facts."
Why, Sir, in the short time which has elapsed since my last letter, stopped working; if your correspondent is really "A Telegraph
Engineer;" he must know full well that out of all the and sent submerged, he cannot name six in perfect working order; and
it is a very curious fact, in the face of the alleged improvements that the cables last submerged are in the worst condition. Take four
of the best cables down, the Emden, the Hanover, the Hague, and of the best cable
the Malta cables.
The Emden cable has stopped working, and attempts are being
made to repair it. After months of undermining and labour out of the four wires in the Hanover cable are in something like working order. Three wires out of the four in the Hague cabbe are
totally bad; and the Maita cable has broken twice within the last three months; and not a week passes without some of those still efticient requiring repairs.
It is one of those facts as clear as noonday, that the present form
of cable "has not proved to be of the best construction" the "heaps of patents" taken out to improve this state of things is
not sufficient in itself to convince even "A Telegraph Engineer" then a glance at the share list of the Times, or an attempt to raise money for carrying
the matter at rest.
And as to the conductors in these cables being the result of "pure be so; but the "mathematical conclusion" which determined the of the same size as the Malta cable some 400 miles, seems very much to have varied according to the idea of the parties who worked out "their experimental inquiries."
The "pure mathematical
The "pure mathematical conclusions" which led the Submarine
Telegraph Company to place a cable down
taining a conductor one-third the size of the conductor in the Hanover cable only 160 miles, must have had their basis upon a
far different class of "experiments;" and yet the smaller conductor been the result of "mathematical sertions based upon no "very accurate facts," for if the theory of submarine circuits, how does the reconcile the fact that the Ped lo conductor for an 800 or 900 mile circuit is only a very little larger
than the Hague conductor for mathematical conclusion" and "deep experimental inquiry" "pure not contirm your correspondent's theory of conductors, or they have
both been cerned. If "A Telegraph Engineer" will only look over "Mag-
net's " Ietter, he will see the right reason assigned for choosing the
conduter in the Ped Se the All those charges of " lamentable ignorance," "absurdity," and
"highly ridiculousness," of which your correspondent is Inghly ridiculousness," of which your correspondent is so lavish
I can well aftord to pass over; it would neither advance the solution of these dificult questions, nor become my mown selfancespect to bandion
personalities throuch your columns, even with so redoubted an But there is one portion of his letter-the coarse vulgar allusion to a gentleman, as eminent for his high scientific abilities as for his "a surgeon from Brighton"- which, although it will in no way injure the object of the abuse, still is very much calculated to injure the carried on so long as the amenities and courtesies usually practised I happen to know, personally, that several parties, well qualified,
from their vast experience upon the subject, to give your readers
and valuable information and practical experiments, are deterred from appearing in your columns from the reason that, at the least, one of your correspondents, who is most deficient either in arguments or
facts, is no way deficient in that other qualification which supplies the place of arguments with abuse. Let him endeavour to copp at
the least the courtesy of "X. Y. Z." If minus the ability, and if he caast the courtesy of tX. Y. Z. If minus the ability, and if
he cannot attanin either the talent or courtesy of "X. . Z. , "he less
he indulges in abuse, and the sooner he leaves the A BC of submarine telegraphy, the bette
In contrast, allow me to thank "Magnet" for the tone and courtesy of his letter. So far as the Red Sea core is concerned, I can only re-
assure him of the fact that it did cost considerably more than the
A. Atlantic; and why it did so, I must leave him and the Gutta-percha I am sorry that he so misunderstood my last letter as to suppose Nature Atlantic cable. I Inever imasined the idea; and the moment
futher
"Mane Magnet" can show a single practical experiment in favour of con-
siderably increasing the size of an Atlantic conductor, I for one shall be very glad to the sin his of ande; but stantic conductor, I for one
sar, practical experiments made upon directly the opposite principles to what is right. The beau ideal, the perfection op any cable, consists in the principle thet
no strain or tension whatever shall come upon the core; and the nearer a cable is made to this principle, the nearer it approaches perwetion. Allen s cable is nothing more nor less than a strand, covered with gutta-percha, the outside covering being a little harder than
the other. For insulation it may, no doubt, be very good, and to a certain degree will also lessen the induction; but if a strain or tension is put upon a gatta-percha covered wire, the result is that you
stretch both gutta-percha and conductor. The moment the strain is
relaved, the relaxed, the gutta-percha retracts, but the wire does not, and the
consequence is that the wire is forced out in an elbow shape; and II ave not the slightest doubt but that, with Allen's cable, the strain of cwt. or 6 cwt . would act with it in the very same way. Per-
sonally Ihave the greatest respect for Mr. Allen, and wish him
every success ; but the construction of his cable is radically wrong ; and however hard the outside surface may be the vitial injongines
even massive iron cables receive in paying in and out of ships I ane fraid, wedy dettor any outside I am glad "Magnet" agrees with me as to the value of "practical
xperiments;" those related by Mr. Hyde at the Society of having taken place by Professor Hughes upon the Red Sea cable
are most valuable. Take the speed Professor Hughes declares he obtained upon 2,000 miles of the Red Sea cable, with perfect insufrom four to six words per minute, taking into account that the 500 miles added to which would have made a difference in the rate of speed of fully 100 per cent, even by his own calculation, because
the rate of speed at 500 miles was twenty words per minute, an addition of 500 miles decreased the speed 100 per cents. from twenty decreased the speed more than 100 per cent. again, and eight or ten words came down to four or six; so that by taking these averages,
it will be seen that, had the Red Sea cable been 2,500 miles instead 2,000, from two to three words per minute would have been about
the speed. Professor Hughes also declared at that meeting that he worked ${ }^{2}$ words per minute through the Atlantic cable. A com-
parison
minute; ; Red Sea cablic, cable, very bad insulation, $2 \frac{1}{2}$ words per to three words per minute.
submarine telegraphy.

of Mr. Hughes' instrument, pray let us have that apparently beau-
tiful and practical machine taken to pieces by your correspondents, so that we may learn whether reason or prejudice sets it aside

SUBMARINE TELEGRAPHY.

Sir,-What "Magnet" chooses to designate as "simple facts," are anything but simple in practice, in connown to "complicate" his "simple facts" sady; and it is believed there are other facts-not yet known-which do so, and will, some time or
 Of this, however, we may be certain, that if the Valentia line of could possibly work, a fortiori one of 750 miles in the same, or, on the whole, it is believed, in better circumstances for working would be much more certain of doing so; and of course the working of be much more certain of doing so; and of course the worng of this short length (a shorter could be found, if necessa ry), would insure the complete sicces (650 nautical) miles is workable-as, judging a lemgth our experience in the Mediterranean, there cannot be any rational doubt that it is-we may be excusably sceptical in the highest degree that a continuons length of 2,000 miles or 3,000 miles highest degree that a continuous length of 2,000 miles or 3,000 miles could be worked; more especially atter our experienee, in addition to with the Valentia line. And are vast sums of mone those already thrown away, to be lavished on the merest uncer- tainties? Neither right scientifie nor commercial principles could, tainties? Neither riggi screse of for one single instant, approve on another by which success ss certain.
 But even supposing "Magnet's views were to some extent realisable, can lines 2,000 or 3,000 miles in continuous length ever com- pare, commercially, with one 2,200 miles in length, divided into pare, commercially, with one 2,200 miles in length, divided into three portions, each not exceeding 750 miles in length? For if an hree portions, each not exceeding 75 , miles in lingth? accident should happen the former, the whole affects the particular portion where it occurs. The beneficial effects of this in various ways would be very great, and need not be particularised, as they must suggest themselves to the mind of every one on the slightest reflection. Besides, by being divided into three short lengths, these reflection. Besides, by being divided into three short lengths, these, it is believed, would work with not only as great, but probably with greater speed than a very what in point of fact is denied, that the latter could work at all. And if it could work at all, there is great ground for apprehending that, at the best, it would only do so in a very intermittent, uncerthat, at the bes tain, fitful way
 "Magnet's" letter displays so strong a bias as to verge, in one instance, on what must be regarded as a very uncalled-for person- ality. This is very condemnable in discussing a question like the present-that being not what was, or is, any man's profession now or formerly, but which is the best course for the successful laying down of a suecessfully working telegraph to America; ; and, for the reasons assigned above, it is thought there cannot be the slightest daubt that its only solution is by the adoption of the route beland, and Greenland, as by this route success immediate H. K. and ample will be obtained, Edinburgh, 23 rd April, 1859.

agricultural engines.

Sir,-In your paper of the 8th inst. appears a concluding letter from your correspont on the Royal Agricultural Society's Show held at Chester last year. Speaking of the fixed steam engines, he says,
"The first prize was awarded to Barrett, Exall, and Andrewes
boiler, 16 ft . long by 4 ft .6 in . diameter, flue 2 ft .6 in . diameter, boiler, 16 fl . long by 4 ft .6 in . diameter, flue 2 ft .6 in . diameter,
circumference of flue 7 f . 10 in , depth of side flues 2 ft . 6 in , width of bottom flue 2 ft .6 in , giving a total surface of plate exposed to
the action of the flames of 210 square feet, including the ashpit, or 10 ft . per horse for a 10 -horse boiler.
He then goes on to say, "The Hornsby and Son's 8 -horse engine; boiler 12 ft . long by $4 \mathrm{ft}$.6 in
diameter, tube 2 ft .6 in . diameter, circunference of fire-tube 7 ft
10 in . plate surface of two side llue, 8 ft 8 in. 10 iin , plate surface of two side hues, 8 ft .8 in .; or a total surface of Now supposing the above data to be correct, your correspondent
will easily find that, in the case of the first prize boiler of 10 -horse
power having a total surface of power having, a total surface of 210 square feet, if the surface be power, and not 10 , as stated by him.
I now come to the data from which the above calculations are
derived; and here again I must ask your correspondent how he can derived; and here again 1 must ask your correspondent how he can
make it out that one boiler 16 ft . long has only 210 square feet of surface, while another of exactly the same diameter and size of flue, long only, can have a total surface of 192 square feet? If all things long only, can in both boilers except their length, it is obvious that if the length be divided by the horse-power we shall have 10 -horse power
$=1.6 \mathrm{ft}$. run per horse-power for the first prize engine; and for the second prize engine $\frac{12 \mathrm{fL}}{8 \text { horse power }}=15 \mathrm{ft}$. run per horse-power. Then taking the total heating surface in the second prize boiler, a^{s}
stated by "Implement Maker," as 192 square feet for a 12 ft . long
boiler we shouid have a surface due to a 16 - ft . long boiler of 256 soiler, we should have a surface due to a 16 -ft. long boiler of 256
square feet; and this divided by 10 horses, the power of the first prize engine would give rather more than 25 square feet of heating surface
per horse-power, and an excess over and above the Royal Society's per horse-power, and an excess over and above the
conditions, and vastly at variance with "Implement Maker's" statement. The only way I can account for this great difference is by cut in the society's report, and must have mistaken the front flue
doors shown in the elevation for the flues themselves, which are not shown.
After all, the quantity of evaporating surface depends upon the
amount of steam required to supply a given amount of power in a amount of steam required to supply a given amount of power in a
given time ; therefore, if one engine can be constructed to consume
t50 per cent. less fuel per horse-power than another, it is evident that t50 per cent. less fuel per horse-power than another, it is evident that
the edect will be virtually to increase the surface of the boiler the eifect will be virtually to increase the surface of the boiler pro
anto. This was the case with the tirst prize engine at Chester ; and anto. This was the case with the tirst prize engine at Chester; and
therefore it is, comparing the quantity of fuel used by this engine upplied with it is more than necessary either in theory or practice
Reading, April 25 th, 1859 .
JoHs Prscubeck.
steam traction and agriculture.
Sir, - I read in your valuable paper of this week a letter from John
W. Giles, of Size-lane, Bucklersbury, on the above subject, and the
concluding paragraph (if I read it aright) so exactly coincides with concluding paragraph, (if I read it aright) so exactly coincides with
my views, that I will beg a short space in your next for a word or two on the subject.
Mir. Giles holds the just argument, that whatever is brought to
substitute animal power should as much as possible represent the
animal itself. and he substuate animal power should as much as possible represent the
animal itself; and he goes on to say, "A horse or a man cannot exert
a tractive effort without the active aid of the laws of in either case, its efficiency does not depend on the friction alone obtained by the weight, but by the assumption of such a position of
the body, by which gravitation becomes active. No animal can exert a tractive effect if the centre of gravity of its body is imme-
diately perpendicular to the point at which the propelling foot comes
in contact with the earth : the body is thrown forward, its weight brought into suspension obliquely by the pressure of the foot, and
horizontally by the resistance of the weight to be drawn; traction is the result; and the muscular system performs but a secondary
purpose in the effect, and employs itself in maintaining the active operation of the law of gravity.
Now, Sir, it is but two or three years since that a long argument
was held, I believe, in your paper, and in the Mark Lane Express,
respecting Boydell's traction engine; he himself respecting Boydell's traction eugine; he himself asserting that the
earth was his fulcrum, and all the engineers in the kingdom opposing him by insisting that the axle was. I remember being of the same opinion with the multitude, and thought how strange it was
Boydell to assert that he gained anything by putting his pinion on Boydell to assert that he gained anything by putting his pinion on
the top of the wheel instead of at the sides or the bottom. I have made three engines of my own locomotive, and in doing so I discovered that Boydell was right. The patent engines of Clayton and Shuttleworth have their cylinders in the smoke-box; consequently the crank-shaft is more immediately over the wheel, and with a pitch chain which I use has a more vertical lift than their ordinary pull, of course from the top of the wheel, and as your correspondent pull, of course from the top of the wheel; and as your corresponden
justly observes in the words which I have quoted, with the horijustly observes in "the words which
zontal pressure, "traction is the result."
This problem is of the greatest importance, and, as a mechanica principle, ought to be decided at once, as a great advantage will be lost sight of if neglected. For instance, Mr. Boydell is convince on the subject, and puts his pinion on the top of his wheel. I say the other day, at Teddesley, a locomotive engine of the Marquis
Stafford's, made by Mr. Back, of Birmingham, who placed his pinion next the ground. If the axle is the fulcrum, Mr. Back may pos sibly get an advantage by going as close to the resistance as he can.
On the other hand, if Boydell is right in his argument, then Mr. Back loses the whole advantage of the wheel as a lever. So satisfied am I that Boydell is right, that, to prove it, I have
constructed a model engine on a raised platform, whereby I have an constructed a model engine on a raised platform, whereby I have an
opportunity of showing that a line over the hind wheel, pulling horizontally from the top over a pulley, with a $\$ 1 \mathrm{lb}$. weight, wil
propel the engine, with another line from the axle or enfine pulley, and raise a 1 lb . weight; thus showing a gain of 25 per cent
It seems natural to suppose that the axle must be the a wheel revolving on it; and so the is when there is no traction When the engine stops at a wet, slippery place, and does not pro-
gress, her wheel spins round, and instantly the axle bection fulcrum; but, be it remembered, she is stationary, and as soon a she proceeds the ground becomes the fulcrum, the axle the weight moved, and the top of the wheel the power applied; thus forming a
lever of the second kind, the same as the oar-the water the fulem the boat the weight moved, and the other end the power applied. I know I have got on tender ground with this argument, as I am
only an amateur mechanic, and I know I have got almost all the engineers holding a different opinion; but as your correspondent seems to argue the same way, and as our agricultural engines wit
ultimately be made to propel themselves from place to place, it is of the greatest importance that this question should be thoroughly

nderstood

I think of exhibiting my model engine, on Monday and Tuesday
next, at the Farmers' Club House, 39 , New Bridgestreet, Blackfriars, when any person can see for the
rom the top of the wheel or the sides
Baydon,
Baydon, Wilts, April 27 th, 1859.
Bam the top
RIFLED FIRE-ARMS,
SIR,-In these times the construction of rifled fire-arms has become
of so much importance, that any explanations illustrative of the of so much importance, that any explanations illustrative of the In an able leading article, inserted in The Enerneere of the 15th inst., you gave your readers some very valuable information; but I
cannot help thinking some of your observations admit of recon-
sideration. sideration. You observed, with reference to the Whitworth gur,-
" When we take to using solid pistons in our engine cylinders we
' When we take to using solid pistons in our engine cylinders we
may believe in it, but so long as we use elastic pistons, so long must we continue to use elastic packing in guns to prevent windage. To
use the Whitworth shot with so sharp a spiral, made to fit by planing With accurate machinery, is very like shooting a bont out on a me to show how the case of a piston working in the propelled from the barrel of a bire-arm? A piston moves to and fro
in its cylinder, and any leakage of steam, however small, is of consequence, and ought to be prevented. In fire-grmy the projectile is
driven out of the barrel, and the escape of passarased by a small
amount of windage is not material ; in fact, it is easy to conceive how in the case of an elongated projectile the escaping stream of gases as the steam cylinder, the loss of power and inconvenience caused by leakage are constantly increasing, but in fire-arms the exploding
gases of gunpowder are generated at every charge, and always in
excess ; and even if the windage be such as to cause a material excess; and even if the windage be such as to cause a materia
escape, the charge may be increased. In all muzzle-loading guns. enable the pieces to be loaded. Mr. Whitworth, in his work on ritled arms (page 81), describes how the requisite allowance for windage is
made in his system, while the projectile is kept steady, and concentric with the bore. It seems idle to speculate upon the practicability of the thing is actually done with success. The public journals, in-
cluding, I believe, THE EnoINEER, have given accounts of experiments made before official committees, when the Whitworth steel
projectiles were fired from the hexagonal barrel, and penetrated projectiles were fired from the hexagonal barre, and penetrated
through tinch wrought iron plates. The steel projectiles are no
found to injure the barrel, nor do they "jam." Again, the bras told, with wrought and cast iron shot. It must always be re membered that the advantages of any particular gun are to be point. Consider, for instance, the case in point-that of windage thertainy allows of the escape of gases; and, taking for granted
that this is to some extent a disadvantage, though, as has been
show shown, a small one, it may at first sight be thought desirable to remedy it; thas done by Richards in 1809, or by attaching elastic packing
as was don
to the shot, as was proposed by Lancaster in 1851 . In the latter system the idea of applying the principle of steam cylinder packing
was carried out, but it utterly failed. The use of the lead-coated projectiles has lately come once more into favour; but howeve
skilfally the system may be worked out, it will always be liable to grave practical objections. The cannon must necessarily be mad
breech-loading, and can only be used under favourable circum
stances, for the dust stances, for the dust or mud of field service would in all probability
soon "shut it up." Again, when the lead-coated projectile is rified
by forme by forcing it through a grooved barrel, the friction is enormous, an
the "leading," i.e., depositing of lead in the bore, is a serious difficulty; at the same time there will be a danger of the shot "strip-
ping," and of the coating of lead becoming loose either in store or when actually fired. These are some of the difficulties which far
outweigh the possible advantage gained by preventing all windage and though they may perhaps be surmounted when guns are tried
by experiments made "at home at case," they would tell fatally in actual service, when the pieces

With rainy marching in the painful field.

As in mechanics a bar is only as strong as its weakest part, so
in military matters the value of a piece can only be safely rated at the degree of efficiency which can with certainty be depended upon No system can be safely called an improvement, even on the old
smooth bore, unless it at least embodies its "aye ready aye" cha-
racter; and simplicity of arrangement, combined with efficienc under unfavourable circumstances, must be held to be indis
pensable.

LOCOMOTIVE IMPROVEMENT

Sir,-Your correspondent "Labor omnia vincet," in Tue Engiveer
of April 15th, states, speaking of the advantages of Mr. Dubs
patent single eccentric patent single eccentric direct motion for inside cylinder engines-
in There is another advantage with this motion, working expansively the lead remains the same, and the steam can be cut off to the greatest nicety at any part of the stroke required.
I do not see how Mr. Dubs' motion can have
I do not see how Mr. Dubs' motion can have any advantage over
the old " fixed" link motion in general use in any of the above
respects ; for, with a properly-adjusted fixed link motion-that is, a respects; for, with a properly-adjusted fixed link motion by raising or lowering the valve-rod and motion-block-the lead can be got equal throughout, and also " the steam can be cut off to the greatest nicety at any part of the stroke required, by making nothes in the reversing quadrant close enough to give that nicety.
Allan's "Straight Link Motion," patented two or
Allan's "Straight Link Motion," patented two or three years ago,
gives all these results, and has the advantage over ordinary link gives all these results, and has the advantage over ordinary link motions of requiring no balance-weight to aid in reversing, with one parter
ort
I
I think if "Labor omnia vincet" will take the trouble of constructing a model of either of these motions, he will find by the
results that what I have said is corroct-that is, providing the results that what 1 have said is correct-
I do not mean to say anything against Mr. Dubs' motion by these not possess any advantage over other motions in general use. not posil 23rd, 1859.

RAILWAY Cilair fastening.
Sir,-I send you the enclosed sketch as a suggestion of an improved
method for using oak treenails in securing railway chairs to the method for using oak treenails

A A are oak ferules fixed in he chairs, and through which the treenails are driven. The principal defect in treenails is their liability to abrasion in the I do not know whether this is an original idea or not. I have seen the ferules used with iron spikes, but never with treenails. Rugby, 16 th April, 1859.

peat fuel.

Sir, - In your paper of last week I was much pleased to see a notice arrow jat country. This is an indication of the decay of that narrow jealousy or neglect which has so long rendered valueless the
mineral wealti of Ircland. Vast as it is, its developmept need not be feared by the capitalists or manufacturers of this country, for a
market will be provided for it by the universally growing demand
for for engineering material, which
have stated, the iron of Irelan

 ree, havin isation. The preserving qualities of
tity of oak wood which it contains
Having long forescen the virtue of peat as a fuel for smelting, if at all properly managed, I feel contident of the success of the undertaking. In many instances these masses of fuel are surrounded by peat-fum, slean, and bog. Only the two last are suitable for smelting purposes, the tirst being too light and spongy.
Slean is a rather dense, brownish peat, composed
ayers; the forms of its components are slightly traceable in it. It ncreases in density from the surface downwards, and is generally
bout 10 ft . deep. In its normal state (when dry) it is about oneourth lighter than coal, and burns with a whitish ash. This class is the most generally diffused.
Bog is darker and heavier
nents is visible, except oak, and hazel and no trace of its compoIt is sometimes 30 ft . deep, and is generally situated in the gorges of he same weighte from it, after the fashion of the country, is about nost suitable peat for smelting. If cut with an angular spade in 6 in . or 4 in . deep, according to the degree of moisture, it will make an excellent smelting fuel, and might be delivered in the Midland It is my opinion that the use of this fuel will produce an article qual to the charcoal iron of
Birmingham, 25 th April.

glycerined paper.

Sir,- Will you do me the favour to correct an error made, no doubt unintentionally, by a correspondent in your
April 22nd, on the subject of "Paper from Wood ?"
It
It is paper was patented are claimed in patent No. $10,935,1845$, for facilitating the moulding of ior is mo claim (patent No. 524, 1857), or for improvement in the manufacture of paper (patent No. 1,623, 1857)
You will, I trust see on referring to the patents above quoted.
68, Leadenhall-street, 26 th April, 1859 .

sUPERHEATED STEAM

Sin,-I am sure the engineering world would be infnitely indebted
to Mr. Wethered if he explained why the mixed to Mr. Wethered if he explained why the mixed steam is superior to
plain superheated steam, both being same temperature; also the reason of its use being abandoned in the French neravure; also the The Government report on this subject proved the superiority of is, I believe, the general opinion.
London, April 25,1859 . C. E.

Gold In North Wales,-Messrs, S. Groucutt and Sons have discovered tracings, not only of copper and silver, but also of gold,
in their iron ore minerals at Cwm, having had some of their mineral analysed by brst-class men. A moderate per centage of gold, silver,
and copper has been extracted. - North Wales Chronicle,

REDPATH'S IMPROVEMENTS IN SHIPS' PUMPS.

Patext dated 14 th Skftember, 1858.

Turs invention, by C. J. Redpath, of Limehonse, Middlesex, refers
to improvements on the invention of "ships' and other pumps," for to improvements on the invention of "ships' and other pumps," for
which a patent was granted to George Wilkinson, 4th March, 1852 , Fig. 1 is a front elevation; Fig. 2 is a side elevation of Fig. 1; Fig. 3 is a vertical section of the valve barrels through the line y, y, and Fig. 4 is a sectional plan taken through the horizontal line $z z$, of the valve barrels of the same; Fig. 5 is a front elevation of another
arrangement of ships' pumps; Fig. 6 is a side elevation, and Fig. 7 arrangement of ships' pumps; Fig. 6 is a side elevation, and Fig. 7 ${ }^{\text {a }}$ a vectional plan of the same through the line z^{1}, z_{1}, showing the
water passages. A, A, are horizontal pump barrels, B, B, the
valve barrels and chambers ; $\mathrm{C}, \mathrm{C}^{2}$, the upper valve, and $\mathrm{D}, \mathrm{D}^{1}$, the valve barrels.
lower valve.
The invention mainly consists in the application of horizontal instead of the vertical barrels hitherto used for working the plungers of such pumps, together with the mechanical arrangements requisite for carrying such moditication into practical operation, whereby
two or more valve barrels may be operated by a single plunger The or more valve barrels may be operated by a single plunger. more of such barrels without the addition of valve barrels.

ALLEYNE'S WROUGHT-IRON BEAMS AND GIRDERS.

Patent dated 18th September, 1858.

together. The rivets may be placed farther apart in the centre of the girder than at the ends, as shown
in Fig. 13, the main point being to connect the ends firmly together. Each bar is rolled with a flange pro-
jecting on each side of one of its jecting on each side of one of its
edges, while the other edge is rolled with a recess or step or half lap a at one side, and a projection b at the other side. The recess a amounts to half the thickness of the vertical web c, so that when the two bars Fig. rivetted the vertical webs of both bars are in the same plane.
Fig. 2 is a section of another girder, very similar to that shown in Fig. 1, but with top and bottom Hanges of unequal size; Fig. 17 is a Fig. 3 is apper bar of this girder. girder, with a bead or thickened edge instead of a bottom flange; Fig. 18 is a section of the lower bar of this girder or beam; Fig. 8 is a section of a very similar beam, with a half bead or projection on
one side only of the bottom edge. Fig. 4 is a section of another girder, with a bead or thickened lower edge, and a single flange at the upper edge; Fig. 19 is a secFig. 14 is an elevation of this Fig. 14 is an elevation of this Great difficulty is experienced in rolling wrought-iron beams or girder. This girder is shown with a double row of rivets, and with
girders of great depth when furnished with flanges or enlargements
at both edges. By the invention of J. G. N. Alleyne, of the Butterley Ironworks, Alfreton, wrought-iron beams and girders are made in two or more pieces united by scarfed or notched or lapped or diagonal joints. The two pieces are placed together, and connected by one or more rows of rivets or bolts and nuts. girders or beams constructed according to the invention ; and 15 are side elevations of the girders or beams shown in section in Figs. 1, 4, and 7 respectively; Figs. 16, 17, 18, 19, 20, and 21 facturent sections of wrought-iron bars of suitable forms for manuin a roll girders according to the ierention. These bars are ream or girder shown in Figs. 1 and 13 consists of two similar wrought-
iron bars rolled of the sectional form shown in Fig. 16, and rivetted
girder. This girder is shown with a double row of rivets, and with
a diagonal lap or scarf at the junction of the two bars. Each bar is thickened a little at d, so that it may be flush with the edge of the
other bar. These variations are applicable to all the other forms of girders shown, and the joint of the girder shown in Fig. 4 may also ee constructed like those shown in Figs. 1, 2, and 3.
Fig. 5 is a section of another beam or girder, having a single flange at top, and a double flange at bottom. The two bars are When beams are required of greater depth
When beams are required of greater depth than can be conveemployed in a similar manner; thus Fig. 6 is a section of a girder or beam constructed of three bars rivetted together, the central or intermediate bar being of the form shown in section in Fig. 20, and being made with a half lap at each edge to it the corresponding hal
with the half laps on the same side as in Fig. 20, or on opposite sides half laps, as the upper and lower b. Fig. 7. Fig. 15 is an elovaing of the girder shown in section in Fig. 7. Two or more of these in termediate bars may be introduced between the top and bottom bars, if required, to obtain a beam or girder of sufficient depth. In some cases one of the bars may have its edge turned over or rolled, so as to form a flange at its junction with the other bar, as shown in section in These flanges may be used for supporting joists or for other purThese ang also serve to increase the lateral stiffness of the beam or
poses, and girder. The same result may be obtained by rivetting angle irons on one or both sides of the beam or girder, and the angle irons may be secured by the same rivets which connect the bars together, as
shown in section in Fig. 12. These angle irons may extend the shown in section in Fig. 12. These angle irons may extend the
whole length of the beam, or may be merely short pieces whole length of the beam, or may be merely short pieces rivetted to
the beam at the places at which they are required for supporting joists or for other purposes.

GRYLLS' APPARATUS FOR SUBMERGING TELEGRAPH CABLES. Patent dated 18 th September, 1858.
THIs invention, by H. W. Grylls, of 47, Mark-lane, consists in an apparatus to be used when a submarine or other cable is being either submerged or laid down, or when it is being again taken up, by means
of which, in case of fracture or other accident, a hold may be taken of which, in case of fracture or other accident, a hold may be taken
of the cable at any required distance from the stern of the ship, and of the cable at any required distance from the stern of the ship, and
the portion of cable saved, which may have been already payed out, if such fracture take place at any point between the stern of the

The illustration represents a perspective view of the apparatus, in which A, A, is the metal gaide ring formed in two parts or segments pass for the purpose of connecting the parts together. These arbors or bolts are made sufficiently long to pass through and secure the eyes of the shackles C, C; F, F, are thimbles moving freely upon
the shackles C, C, and to which chains, or wire or other ropes, may the shackles C, C, and to which chains, or wire or other ropes, may upon which the sockets of the jaws or gripers G, G, are placed, thereby forming a hinge joint fixed in position by the nut $I_{;}, H, H$, are staples securely rivetted to the jaws or gripers $G, G ; K$ is a staple or guide also securely fixed to the guide ring. When the apparatus is used for the purpose of saving a telegraphic cable in
case of fracture, it is made fast to the stern of the vessel by chains, or wire or other ropes of any required length attached to the thimbles F, F. Wire or other ropes or chains are also made fast to the staples H, H, and having passed through the staple or guide K , are continued to the deck of the paying-out vessel. The cable \mathbf{X}, \mathbf{X}, is passed through the guide ring A, A, and between the open jaws
of the gripers G, G. The apparatus being thus suspended to the of the gripers G, G. The apparatus being thus suspended to the
stern of the vessel allows the cable to pass freely stern of the vessel allows the cable to pass freely through it as long
as may be required; but should the cable part between the stern of the vessel and the part of the cable at which the apparatus is situated, the rope or chain attached to the stapes H, H, is immediately hauled taut by any convenient means. This causes the jaws or gripers G, G, to turn upon the hinge bolt D and collapse, thereby grasping the cable tigh
otherwise disposed of.

The "Mersey" Steamer.-The new paddle-wheel steamer Messrs, Samuda Brothers, of Poplar was taken out for an oficial trial yesterday (Thursday) week, in charge of Captain Bax, trial yesterday
appointed to the command of the ship. The Mersey ran the measured mile in Stokes Bay four times, and subsequently went down the Solent as far as Hurst Castle, her performances throughout the day giving the greatest satisfaction to all present. At the mile she averaged $13 \frac{1}{2}$ knots, the result of each run being as fol-

1st
2nd
3rd
4th
aught
m. . si
4.31
4.30
4.38
4.24
${ }_{13.333}^{13.284} \begin{gathered}\text { Average } \\ \text { knots per hour. }\end{gathered}$
 Mersey is schooner-rigged, and has accommodation for about 100 26ssengers; she is 1,000 tons burden; and 250 -horse power; length, by Maudsley, Sons, and Fields. She carries six boats, two of which are fitted with Clifford's patent lowering apparatus, which the company have also ordered to be applied to the three large steamers Parramatta, Shannon, and Seine) about to be added to their fleet. Discovery of Noan's Ark.-It appears that in the eastern portion of that good old State whose staple productions are "pitch, ar, turpentine, and lumber," some remarkable fossil discoveries have been recently made, among which is what appeared to be a portion
of a vessel's deck, some 40 ft . in length, and bearing a close r r semblance to lignite. The time has been when the discovery of such a remarkable fossiliferous specimen would have set all the geologists and archæologists of the country on their heads ; but at this enlightened period of the world's history, when the duty of not only managing, but explaining all things terrestrial, has devolved pon a class of men known as editors, it excites no surprise; for the discovered above or beneath, or in the waters around it, is certain of a speedy and satisfactory solution. See how easily the editor of the Wilmington Herald settles this fossil matter:-"How this vestige of human labour and art came there, is a question easy of solution. We understand that some erudite geologists say that somewhere in Baden If this be so if this is the known geological formation in the world. have been the first ready for the residence of man, and the first occupied by him; ergo, the Garden of Eden was somewhere in the Cape Fear region, which was then a better fruit-growing country than it is now. We think Adam must have settled somewhere around this way, for all the people claim to be descended from him. If Adam and Eve started life in eastern North Carolina, it is not probable that Noah when we consider the old homestead. This supposition gains strength have got so much or so Noan pitched his ark. Where ese colch her within and without? Following up the train of reasoning, why should not these fossil remains have come down from Noah-be, in fact, portions of his ark ? To be sure, the absence of Mount Ararat is a ittle in our way; but when we get to be philosophically regardess little trifles like this." - Sci ntific Americun.

TO CORRESPONDENTYS.
 J. V. H. che publiders are Messs. Spon, of Buckierberry.
 traction engines.

PUM PS.
To the Bitior of The Enginer.).
 Manchester. 2 thh April, 1859.

boat bullding.

 Or do you think p pa
April 55 th, 1856.

SUPERHEATED STEAM.

 April 20th, things.

Tzurfus.
meetings next week.
Socirty of Exarskrrs.-On Monday, and May, at 7 P.M., a paper will be
read on "Perspective."

THE ENGINEER.

FRIDA Y, APRIL 29, 1859.

the future.

Now that the suspense, with which the warlike preparations on the Continent have been regarded, is broken by the
actual commencement of hostilities, we have to accept actual commencement of hostilities, we have to accept events as they occur, and to be prepared for whatever the
destinies of war may have in store for the world at large The least timid cannot but apprehend, in the great crisis now before us, the general disturbance of Europe. How long England may keep aloof it is impossible to say, but
we have the most active defensive and precautionary measures in prosecution on all sides. The temporary political excitement in which we are now plunged will
soon subside, the abstract principles of Government now soon subside, the abstract principles of Government now
at issue having less direct and visible interest than the destiny of Europe, to which all eyes will be now turned. The great nations now pitted against each other, as
well as those which may become involved in the progress well as those which may become involved in the progress
of events, will become consumers to the extent of their means, whilst their powers of production will be greatly
diminished. Every ste in war is attended with a vast diminished. Every step in war is attended weith a vast consumption of material; and as this rises, production de-
clines. Agriculture, the great regulator of all national exchanges, will feel the shock in its most vital part. The legions of young men drawn from the plough-the deprivation of the land of so much of the intelligent physical
energy which underlies all the sources of national weaithwill tell with terrible effect upon the productive energies of
France and Austria. Superadded to this cause is the disFrance and Austria. Superadded to this cause is the dis-
turbance and anxiety which are left behind in field and turbance and anxiety which are left behind in field and
hamlet; the absorbing interest with which all not actually engaged in will watec the issue of war. Just as produc-
tion is disturbed at home, so must these nations become purchasers abroad. The price of grain must rise, as the crops to which millions are looking for their supply may shipping must extend; hundreds of thousands of men cannot be moved from one part of a continent to another,
and their supplies be sent after them, without a draught upon the general shipping of the world, what ever bottoms may be engaged in the actual transportation. America will have a market for millions in
value of her breadstuffs, the culture of which in the United States is assuming the proportions of vast commercial operations, employing many thousands of capital and even hundreds of men upon single estates. This movement
is withholding capital from domestic manufacturing operations, and to a corresponding degree extending the marke for British products. The new French loan of $£ 20,000,000$ to be immediately negotiated - mostly, probably, in France-shows the drain of capital which is likely to go
on from that European cash are to be sunk within two years, in prosecut ing the war now commenced. Whatever portion England may be compelled to contribute to this enormous loss of the world's means, there can be no doubt that her manufactories will be actively employed in the meantime in keeping up the standard of the world's production. Our exports for the first three months of the current year are largely in excess of those in the corresponding period of of 1857 , considerably more than those or the ial inflation. In the meantime our colonies are likely to progress with a renewed impulse ; India has now risen to the rank of cur principal customer, a position which that country will doubless maintain as long as it remains a depen-
dency of the British crown. In all the conflicting dency of the British crown. In al on the Continent,
course of events, of war and waste on the and peace and prosperity in our colonies and in the United States, England, at all events, is and and the gain largely on all sides. However speculation and manufactures and legitimate commerce must considerably extend tures and legitimate commerce, during the progress of the As is well known, thed a remarkable degree of commercial prosperity; and there is nothing inconsistent with the prosperity at an early period. In this view we do not, of course, calculate upon the contingency of the resources of Earope being annihilated in the contest now commenced although a reaction must come when the strie is ended Supposing every nation in Europe to fight as song ad of what-
a large share of the spoils would pass into the hands of whe a large share of the spoils would pass into the hands of whatever nation could maintain being, most likely, that nation, would reap the profit, as long as her customers had aught to trade upon.

superheating steam

THE daily press enjoys peculiar privileges, of which we, as representing a different branch of journalism, have per haps
no right to complain. The great financial or political luminaries, the "leading journals," may challenge admiration with a wonderful narration of any matter of practical
engineering or mechanics; for which narration an humble engineering or mechanics; for which narration an humble
sheet like our own, specially devoted to such matters, sheet like our own, specially devoted to such matters,
would be tabooed forthwith. We have lately had a most startling announcement of the great results attained with a superheating apparatus fitted to the Peninsular and Oriental Company's steamer Valetta, an announcement wherefrom we would have supposed that the respectable firm of
John Penn and Sons had achieved the greatest improveJohn Penn and Sons had achieved the greatest improve-
ment ever made in the steam engine since the time of ment ever made in the steam engine since the time of
James Watt. Stripped, however, of the imposing peroraion with which the "indefatigable reporter" of your morning journal is wont to introduce the discovery of a new planet or the advent of a new ferry-boat, the columu or so
in the Times of Saturday last, devoted to the subject of superheated steam, merely informs the public that another trial has been made with an apparatus long known and variously modified for such superheating; but to what
extent this apparatus will overcome the known objections attending the use of steam so heated, neither the trial itself, nor the authority of the reporter, can establish. We are
old, at first, that the Valetta's engines, of 400 -horse power, have been removed to a vessel of nearly double the tonnage, and engines of 260 -horse power substituted in
their place. Further, that, with the smaller engines, their place. Further, that, with the smaller engines,
the vessel is driven at the same speed as before, with an the vessel is driven at the same speed as before, with an
estimated consumption of 24 to 26 tons of coal a day, against 75 tons as formerly used. Truly, indeed, there
has been an improvement somewhere ; and the reporter has been an improvement somewhere; and the reporter
of the circumstance is only diverting us from the point by confining his observations wholly to the merits of the superheating apparatus. Without this apparatus, which only heats the steam 100 deg . over the tempera-
ture due to its pressure, would the vessel consume her ture due to its pressure, would the vessel consume her 75 tons a day as before? When such improvements are to have ben realised should by indicated distinctly as possible. In addition to "Mr. Howard and Dr. Hayeraft" superheating apparatus, consisting of steam pipes variously
placed in the smoke-box or furnace, has been applied by a placed in the smoke-box or furnace, has been applied by a J. E. M'Connell, John Wethered, Mr. Partridge, Mr. Pilgrim, and others. Major Fitzmaurice, in a letter to the Times, states that he superheated steam with encouraging results some dozen years ago. We mention these facts in of some good means of superheating, whereby all the intrinsic advantages of pure dry steam can be obtained likely to be considerably indebted to the eminent firm to whose recent attempt the Times has generously devoted so much space. Whether, however, all the conditions involved satisfactorily fulfilled in the new engines on board the Valetta," is a matter which must be determined by experience. So far as the description goes, there is nothing employed; it bw in the arrangemenpedients with which numberless trials have been before made, perhaps with apparent temporary success, but which for some reason it We believe that a full discussion, by competent parties upon the nature of the advantages of superheated steam, and of the best means of realising them in practice would now be of great value to the world. That such complish pecuiar properties, whereby it is enabled to ac nary anhydrous or saturated steam is well known; although it is not by any means yet settled upon what principle those properties are acquired. There are those who believe
superheated steam to be a distinct elementary substance Mr. Wethered professes to believe as much of we may, per superneated and those who hold thins under haps, ask the term "distinct elementary substance?" That and there a coll known, as also that orms of a there is a considerable condensation in mechanical suspension Whatever water is carried over in meckuch liet, without with the steam abstracts, of cou ine, so mbtless offers some producing any effect; whine itself That superheating, dynamic resistance in the engine itself. That super soll out of contact with the was these losses is quite apparent, as in the suspended water would be converted into steam; and in the rext a sufficient surplus of heat would be imparted to cylinders to prevent condensation. To what extent is desirable to increase the normal temperature of the steam is a question, and is, perhaps, to be regulated by circumstances. In some observations made upon the engine at the Woolwich Arsenal gasworks, steam superheated to 500 deg . in the pipes leading from the furnace was reduced to 290 on reaching the cylinder, showing a very extravagant loss by radiation. $1 n$ other cases resuls of appare of 350 deg with steam of 15 lb . pressure, and this is the temperatur reported of the apparatus on board the Valetta.
The surveyor of the navy says, in reply to the observations of the Committee on Marine Engines, For many years all doubt has vanished respecting the fact that considerable economy arises from the use of siph pected, upon the extent to which the principle is carried out, and upon the mode adopted for superheating the steam." This, indced, is the general opinion of engineers, nearly all of whom are more or less cognisant of such apparatus as has been applied to the Valetta.
Steam is, in itself, a lubricator; and if the interior of the cylinder were never exposed to rusting from condensed water when standing, the piston would run, we cannot say how long, without oil. We have seen a stationary engine cylinders, and it opening for oisfectly for upwards cylinders, no gradients down which the engines could be run without no gradients down which the a practice only to let tallow into the cylinders in very small quantities, just before noing in the engine shed, the tallow used being merely to po motins. In sperteating, much or the natural moisture of the steam is converted into a dry, elastic gas, destitute of any lubricating properties, whilst elastic gas, destitute of any lubricating properties, whist deg., or whatever may be the temperature of the steam. In one of the river steamboats, the steam an being in tensely heated in iron pipes passed directy through the fire, the temperature in the conducting pipes beaci ap is
wards of 500 deg. Whether or no increased packing is wards of 500 deg . Whether or no increased packing is been asserted that no additional quantity of tallow is required able the ordinary belief, but a wider practice may prove it to be
true. It will be an interesting question also, how long the heating pipes will last under the temperature to which they are exposed. We have the assurance or the parties interested in the patent that wrought iron lap-welded pipes have withstood nine months use in the crown of
the furnace. This fact, if it be confirmed by continued trial, is certainly encouraging, subversive although it be of received opinions in such matters. It is true that the steam is flowing in a constant current through the pipes ; but there can be no question that a furnace plate, once exposed to the full action of the fire without any protection from water behind it, is soon burned, however rapidly the steam may be passing off from the boiler
Considerable interest has been excited in behalf of combined steam" employed by Mr. Wethered. That steam a greater elastic power than can be obtained from either used separately. In the four years during which Mr. Wethered has laboured to introduce his system here and in France, he has made out a considerable economy in . Weth much greater temperature. We refer to Mr. ciation, and published in THE ENGINEER of 22nd October last (page 308, vol. vi). How steam, first superheated, and afterwards deprived of a portion of its temperature and work ty, and again permeated with moisture, can do more anomaly; and perhaps the circumstances under which the trials may bave been made do not quite establish it. The only attempt which we have ever known to be made to support this point by anything like a principle is, that the
thermo-electricity disengaged by the sudden mixture of the sudden mixture of enter the cylinder, produces an increased effect. As it is we doubt if anyone is able to disprove, without trial, what his belief he is certainly in a great minority, perhaps of one; and, nevertheless, it is for the interest of all who have o establish his propsition universal agencies of steam, value would be millions. It cannot be denied that dis tinguished Government authorities, whether unwittingly which we cannot say, have promulgated the evidence to venture the assertion that not one engineer in one hundred in this country ever comprehended the real nature of the proposition embodied in Mr. Wethered's plan, until his referred to. The utter absence of plausibility in his hypothesis has prevented its acceptance since among the hist even of probabilities. We only know that it is perhaps misgiving, that the challenge lately thrown out by Mr Wethered to Mr. Fairbairn will lead to some decisiv

In the meantime we fear we have heard the last of the apparatus initiated with so much Eclat upon the Valetta,
although most sincerely do we hope to have continued reports of its success. The difficulties in the way of success are wholly, as we believe, of a mechanical nature, and if not already overcome, must, in all probability, soon be,
although this reasoning was as good and as much in favour of success a dozen years ago as now. There is now, however, a much greater degree of attention petent determination to succeed; and thence do wo look for the final solution of the problem.

the engines of the navy,

The Lords of the Admiralty are not likely, we apprehend, to be dazzled by the amount of light thrown upon the
condition of the steam machinery of the navy, and the extent to which "its present construction and use are in accordance with the most scientific and economical principles," by the report of their Committee on Marine Engines. the subject we were led to expect an exhaustive exposition of all its principal details, such as, together with a col-
lection of general information upon collateral points,
would make their report a most valuable acquisition, not would make their report a most valuable acquisition, not
only to the Government, but to all in any way interested
in steam navigation. The report parades at great length in steam navigation. The report parades at great length of machinery, naval officers, clerks, boiler makers, and others who were examined upon the subject, and even includes
in the list the Surveyor of the Navy, who, in his "replies," in the list the Surveyor of the Navy, who, in his "replies, having been examined at all, notwithstanding he ha
expressly invited that distinction, and that the committe expressly invited that distinction, and that the committee
were acting, indeed, under the special suggestion to have "frequent intercourse with the Surveyor and the officers i charge. Sisto, too, the divisions of the report, as indicated
by the distinctive headings of its sections, are formidable in number and eminently suggestive of the most important practical deductions. Here, however, the report breaks embracing a list of the victims of the committee's inquisition, and a dreary procession of headings, under which
for our life, we can find little or nothing apparent matter in hand. Wherever the report ventures principles, the Surveyor's "reply" is judiciously interposed in less pretentious type as an antidote; and we must do the Surveyor the justice to say that, in nearly every case, whatever vitality may appear upon the surface of the
committee's recommendations is effectually extinguished in the corrective paragraphs in question. As for many of the conclusions of the committee, they are no more theirs than requiring and accompanying no argument; conclusions,
indeed, which nobody would think of disputing, any more than that ministers should be moral, or that gunpowder should be highly inflammable, or that eggs intended for culinary purposes should be of the best possible quality.
The committee, however, notwithstanding the painful lameness and obvious impotence of these conclusions, complacently characterise their production as a "necessarily pressively to the importance of the duty intrusted to them, They publish their anxiety "that no pains should be spared in gaining access to all existing sources of infor-
mation in connection with the object of the inquiry," and they refer triumphantly to the readiness with which these subpes have been opened to them by the individuals a charming candour, however, the committee finally declare properly, perhaps, what they what they have, or more all these advantages, and after so particular inquiries, it may perhaps be said that the resalt is inadequate to the corresponding accession of information has not been added to the previous stock of knowledge possessed by practical men. Our readers will, possibly, forgive us if we do not wordy attempt introduced by the committee to get clear
The first recommendation of the committee is altogether in accordance with the custom of similar inquisitorial bodies, and therefore safe, viz., that the accounts under
which their inquiries have been prosecuted should be more fully and systematically kept. It appears that the comaitce had been so mopprehend the relative to certain changes of machinery in one or two vessels; but the ready reply of the Surveyor first disposes such, form no part of his charge; and, again, that much of the information, the absence of which the committee have deplored, was placed before them and overlooked. Some of the additional information recommended, the Surveyor,
however, thinks it best hereafter to supply, and therefore promises to do so, stating, by the way, that such had been or some time in contemplation.
conduct on the pmendation is, that zealous and diligent promoted under a regular system; as well as that a corre sponding system of reprimand and warning should be established for the careless and undeserving. Very pro per as this recommendation unquestionably is, the com-
mittee do not make out that any other system has been mittee do not make out that any oesher syow that the report refers, by marginal note, to certain portions of the voluminous minutes of evidence; in which, however, no mention is made of any case in point. In one or two other in-
stances-all which were recited by the committee-the Surveyor acquits his department satisfactorily
The third recommendation-to reduce the number of stokers to a corresponding rank-is one upon which the committee offer no argument; whereas the Surveyor dis
poses of it by reasoning apparently quite cogent, showing-
what would have been naturally supposed-that such what would have been naturally suppose
reorganisation would be most inexpedient.
Nobody would dispute the apothegmatic proposition embraced in the fourth recommendation, "That care be taken to secure a full and practical acquaintance with the great principles of steam navigation
the command of steam vessels,"
The fifth, sixth, seventh, eighth, and ninth recommendations, referring to manner in which repairs should be Surveyor, who, we should say, had succeeded in making out his case, that little or no change is necessary. The committee bear testimony to tha excellence of modified-for plan-which, thow of the engines and boilers : upon which the Surveyor pertinently asks, "Why, then, deviate from it ?"
The committee's tenth recommendation amounts to a
commonplace which would have been equally good from meaner authorities; and under which any surveyor, no matter what class of machinery possessed his preference, complicated steam engines be abandoned, and none receive into the service but those which are marked in their construction by the most severe simplicity that is consisten Apropose execution say that very bad machinery shoul not be employed, and that good engines and boilers should be preferred. We offer our own suggestion to
sideration of their Lordships of the Admiralty, just taking occasion to remark that the committee do not show that any engines have been at any time patronised merely for
the sake of their complication, nor that any engines ever complicated, have been yet adopted without the idea that they were as sin
of their capabilities.
From hence to the fifteenth recommendation, inclasive, the matters embraced are chiefly political, and involving mainly questions of opinion, upon which few rigid rules recommendations are specific, the Surveyor quietly deserve only to show how much better an earnest and responsible officer is likely to understand his business than a formal commission suddenly appointed to a vast and comthe practical working of the system to be inquired into.

When, however, the committee come to inquire how far the present construction and use of the machinery of the navy is in accordance with the most scientific abd econo-
mical principles, we are led to hope for valuable information. The decision of such a question involves, to some extent, a decision as to what some of these principles
really are. It is here we look to the elaborate labours of a Government commission to enlighten us. Turn we to the document. Under the caption of "High-pressure
Steam" we have an historical abstract of the circumstances Steam" we have an historical abstract of the circumstances
under which it had been introduced into the navy, and a recital of the "obvious objections" against its use there These objections are, videlicet, "The noise made by the
blast ; the danger, in time of action, of damage to the blast; the danger, in time of action, of damage to the length of time required, in case of emergency, to get up the steam, and -so forth." To the first two objections it
might be replied that gunpowder was still more objectionable, as being both very noisy and very dangerous, whilst, as to the time employed in raising steam, the introduction of an artificial draught would render it much shorter than with ordinary low-pressure marine boilers. As forming a eferred to what Lieut. D. Bona Christave, a French naval officer, has written upon this point, in the introduction to his translation of Mr. Williams' work on the "Combus-quotation:-"C"est dans de pareilles circonstances (those where it is difficult to push the fires with the natura draught) que l'on apprécie tout l'avantage du tirage force et que l'on en regrette l'absence; car, avec le tirage force,
il est facile de pousser les feux, d'augmenter la quantité de chaleur latente dégagée, puisque l'on a la possibilité d'augmenter à la fois, et proportionnellement, l'air et le es navires américains qui sont preasue tous munis de ventilateurs, alimentent des machines de 800 cheveaux avec des chaudières qui seraient insuffisante pour nos appareils de 300 cheveaux ; c'est ainsi qu'ils obtiennent ces grandes des formes de carène supérieures. Il faut espérer que les marines européennes fineront par surmonter leur répugnance peu justifiée pour le tirage forcé et qu'elles se décideront à tripler à l'occasion le puissance des doubler et même de a translation of the whole of Lieut. Christave's essay in The Engineer of October 22nd and November 5th and 12th, 1858 (pp. 307, 347, and 365, vol. vi.). The translation under the auspices of the Minister of Marine, for the use under the auspices of the Minister of Marine, for the use
of the French navy; and it is to the French naval authoof the French navy ; and it is to the French naval
rities that the above significant passage is addressed.
Having led us, however, to the disadvantages, "obvious on the most cursory view," with which the use of highpressure steam is attended, the committee most adroitly get
behind a quotation from Main and Brown's "Treatise on the Marine Engine ;" which quotation is but a threadbare repe tition of the usual arguments about the advantage of a vacuum, lower temperature for radiation, \&c., with the inevitable reference to the use of high-pressure steam in of high-pressure as compared with low-pressure engines is of trifling consequence, and that the boilers of the former are heavier than those of the latter, the committee state that the great and paramount evil of the high-pressure engineis the necessity of using salt-water in the boilers committee do not even condescend to notice the subject of
fact that many tubular boilers, generating steam of mode rately high-pressire, have been worked successfully for years with salt-water, under a constant blow-off. Nor do the committee appear to have entertained the idea that high-pressure does not necessarily imply non-condensation, and that those who propose a higher pressure of steam do not all intend to dispense with the condenser. The committee abruptly dismiss the whole subject, after showing that some gain attended the application of a condenser to one of the gunboats fitted with high pressure engines, and boats interstitial remliendation in which the surveyor, in his So much for high-pressure steam; and we sincerely hope that no future Government commission, charged with a similar inquiry, will deem the subject exhausted.
Under the head of "Boilers," the committee go into some very general observations, and conclude that the prest, either for " high-pre with brass tubes, is altogether the the navy. They do not find even one other boiler which in the Government at sea, which is at all likely to answer and Summer's patent; and this the exception of Lamb trial, notwithstanding it is largely used in the merand for marine. At the same time to give no ofthe mercantile mittee can see no positive objections to such a trial. The committee appear, however, to have gone to a considerable extent into the merits of a boiler contrived by Admiral Tucker and Mr. Blaxland, and to have obtained some rather unpromising results from trials made upon it at
Sheerness. Beyond this enumeration, the examination of plans of marine boilers by the committee does not appear plans of marine boilers by the committee does not appear
to have extended. Whilst upon the subject, they gave some attention, however, to the working of two arrange ments devised by one of their number-Mr. Nasmythbeing respectively for preventing the leakage of brass
tubes in the gun-boat boilers, and for preventing the safety valves from leaking. Perhaps we shall be favoured, tained from these arrangements. The question of prevent ing smoke is disposed of in less than eight lines, in which the notable expedient, of which somebody in Glasgow has been guilty, of arranging hollow grate bars so as to heat a portion of the air on its way to the furnace, is mentioned ventilation of boiler rooms ; and with these the to the consideration of the boilers for her Majesty's steam navy closes. Truly, if, besides the matters mentioned favourably all others which, as connected with the subject of boilers are not even hinted at, are to be understood nevertheless as having been duly investigated with satisfactory results,
this portion of our naval machinery is all that could be wished.
As to the construction of engines, the committee consider engine by Maudslay and Field as the best for paddle pro pulsion. For the screw, the single piston-rod engine of Humphreys, Tenant, and Dyke, is recommended as the best under 300 -horse power; beyond which Penn's trunk engine and Maudslay's double piston-rod engine the committee consider the simplest and best adapted to the requirements of men-of-war. Although these conclusions would be generally acknowledged as judicious, the committee favour the Admiralty with no reasons, beyond those of the most general nature, for their discussion. The committee enginend that the list of contractors supplying marine by the Admiralty.
In respect to working steam expansively, the committee's report is more specific than usual. They refer to the diffigear in quick-working direct-action engines, and to the for the purpose. They protest against the use of cams, as altogether unsuited to quick-action engines, and give their preference to a "gridiron expansion valve," worked by a separate eccentric; an arrangement of which he Greenc The committee state, the working of this particular form of valve, that they had observed one instance wherein, with 25 lb steam, super heated or dried 8 deg. only, and cut off at one-quarter stroke, the consumption of coal was reduced to 25 lb . per horse power per hour, the speed of the vessel being at times 13 knots. To all this, the surveyor briefly generalises the conditions to which improvement in expansive working is limited, and quietly snubs the recommendation of the committee as to the particular form referred to
The committee, in dealing with the subject of superheat ing the steam, conclude that superheating is, after all, only state, asg the steare; and state, as their opinion, that if anything of the kind is to be
attempted in the navy, the steam room around the uptake may be increased so as sufficiently to answer the purpose. The report does not, however, raise the question as to the comparative effects of superheating in contact and out of contact with water. The Surveyor intimates, in his reply, that nothing which has engaged the attention of the committee, in respect of superheating steam, is likely to have been lost sight of by any persons interested in steam matters. Upon the form of vessels of war and the amount of engine power to be put into them, the committee and the turingor have considerable to say, the former hardly venthe limits of speculace, We shall endeavour, in our next number, to give some portion of the report to our readers, idea likely appears destitute throughout of any leading machinery of our navy, which, indeed, the report might lead us to suppose was, with a few trivial exceptions, almost nearly perfect already.

Few who were not dealing directly with the workmen of FEW who were not dealing directly with the workmen of
our engineering and manufacturing establishments would our engineering and manufacturing establishments would
be prepared to learn the extent to which the operations of
their amalgamated society for mutual aid are now carried on. The eighth annual report recently issued shows that the Amalgamated Society of Engineers, Machinists, Millwrights, smiths, and Pattern Makers, now numbers 182 branches, including points in Canada, Malta, and Australia.
The number of members in December of last year was The number of members in December of last year was
14,745 , a single branch-Manchester 3rd-having, if it be not 14,745 , a single branch-Manchester 3rd-having, if it be not a misprint in the report, as many as 926 members. The balance
in hand, which amounted in December 1857 to $£ 47,947$, had in hand, which amounted in December 1857 to $£ 47,947$, had been reduced at the date of the present report to $£ 30,353$.
During the year 1858 there were collected $£ 34,123$, and During the year 1858 there were collected $£ 34,123$, and
expended $£ 51,716$. The secretary observes that, when trade is very bad, sickness, and even death, appear to be more general among the members. The sick benefit which, in 1857, averaged 8s. 42 $\frac{1}{5}$ d. per member, was, in
1858 , 8s. 11d. Funeral benefits averaged 2s. $2 \frac{3}{4} \mathrm{~d}$ in 1857 and 3 s . $1 \frac{1}{4} \mathrm{~d}$. in 1858. In donation to members out of em ployment the expenditure in 1857 averaged 19s. $9 \frac{1}{4} \mathrm{~d}$. per
member, whilst in last year it was $£ 26 \mathrm{~s}$. 7d. In. In the two principal benefits-that to members out of employment, and
that to members in sickness-there has been expended, during the year 1858 , $£ 42,168$. The report observes-
"It requires no stretch of imagination to conceive the vast amount of misery that must have been alleviated by the expenditure of this large sum of money." To superan nuated members, and to those afflicted by paralysis or accident, and society has paid during the year 1858 the sum of $£ 5,200$. The secretary, with justice, remarks, "
think I am justified in saying that we have need to think 1 am justified in saying that we have need to
greatly proud of our institution; and the great benefit i confers upon society should be a source of satisfaction, no only to our own members, but to the country at large."

| The number of deaths reported for the year is 278,147 |
| :--- | having been members, and 131 members wives. Of the

whole number, 96 were from consumption, 23 from inflammation, 39 from unenumerated causes, and the remainde divided among 29 forms of accident and disease
The equalisation of funds, a feature which makes the operations of the society general and pervading
throughout all its widely spread branches, is fully stated in the report. Crewe remits as much as
$£ 409$ to various corresponding branches, and Lambeth is the recipient of £441 from Sydney (Australia)
Greenwich and Southwark. Manchester 3rd, and Leed North, draw each from as many as six other branches to replenish their funds, reduced by donations and transfers
The importance of the society's influence in ameliorating the condition of its necessitous members, as well as aidin those in comparatively comfortable circumstances, cannot be over-estimated. There is nothing in the nature of it
benefits against which any honest pride could take offence whilst in every part of the kingdom its strong protective
influence is fett in all the branches of labour included in one of the greatest assurance organisation for personal relief anywhere in existence. In this aspect it obtains the support of thousands who would never
subscribe to the life and health association, and of many who, but for the strong and timely aid of the society,
would be reduced, in times of need, to the most desperate extremities.

PROGRESS OF ART INSTRUCTION

THE public examinations in drawing held in the Metropolitan Dis-
trict Schools of Art, have just been completed, and show satisfactory 1,093 students have been examined, of whom 298 have taken
rewards of the second or higher grade; and 1,760 , being almost
 second or hhigher grade, of whom 113 obtanined rewarads; and the0
children of parish schools, of whom fifty obtained rewards in the
liden lower grade.
At St Martin's, 232 students in the second or higher grade, of
whom eighty-two obtained rewards; and 552 chldren of parcectial whomols, of whom eighty-eight obtained rewards in the lower grade,
school
At Goover-street, 102 stadents in the second or higher grade, of
whom thirty obtained rewards. whom thirty obtained rewards.
At Spitaffelds, 155 . At Spitalields, 155 students in the second or higher grade, of
whom ifty-two obtained rewards ; and 180 children of parochial
schools of whom fifty-twobtained rewards in the lower grade.
At Finsbury, fifty-five in the second or higher grade, of whom Atlve obtained rewards.
At Saint Thomama Chaterhouse, fifty-eight students in the second
higher grade, of whom eight obtained rewards ; and 774 childrem
 or parochaal
lower grade
At ambe of whom twenty obtained rewards; and 222 children of parochial
schools, of whom fifty-six obtained rewards in the lower grade
At Rotherhithe, thirty-six students in the second or higher
 lower grade.
At Hampst

LITERATURE.

New Resources of Warfare, with especial Reference to Rifted
Ordnance intheirchief Ordnance in their chief lnown Varities, including Authenticated
Weight, Measurement, and Mode of Construction of Arm strong's Wrought Iron Brecch-loading Guns; together with an Account of their Shells and Fuses, illustrated by Descriptive Dravings; being a Supplement to "Projectile Weapons of War
and Explosive Compounds." By J. Soofrerx. Longman, Brown, and Co.
We have given the title of this work in full, in order that our readers may be enabled to form a judgment as to the relations between promise and performance in Dr. Scoffern aturally lead one ene an exhaustive treatise on the subject: the book itself is a lanky and meagre affair of seventy pages of leaded type, containing searcely any
original matter, with a good deal of argumentative and theoretical exposition concerning the comparative effects of as a chemist of some repute, who has, for some time past, been engaged in experimenting upon explosive compounds, and who, if he has not added to our store of information on that subject, has at least popularised and systematised what was already known. The book has evidently been hastily written to meet the present demand for information there is a figure and description, differing in some trifling details from that given in the Mechanics' Magazine of the 25th February. With regard to the theoretical and argu mentalie matter, it reminds us not a little of Captain is too much of the "tiddle-taddles and pibble-pabbles" which is too much of the "tiddle-taddles and pibble-pabbles"
the valorous Welshman so emphatically condemned.
Dr. Scoffern opens with the following "dreadful note o preparation:
At no period since the discovery of gunpowder has the application
of science to purposes of destruction been more arduously attempted or more successfously achiestruction been more arduously duttempted
as to afford another ill the pastration ten years ; and as to aford another illustration of the providential co-ordination of
all things, some of the most deadly applications of science to swell the resources of warfare are (so to speak) matters of to-day, just
when Europe sems destined to be set on firt for the purpose
throwing anew light ton some disputed readingsof theTreatyof Vienn throwing a new light on some disputed readingsof the Treaty of Vienna
Perrapps never, in the whole history of projectiles, has an arm
destron destruction, large or small, awakened for itself so great an amount
of popular or lay attention as the Ammstrong cannon now formally
adopted in our service. adopted in our service. I am able to supply, for the first (?) time,
full explanation, accompanied by correct (e) drauxings of that gun;
matter of no little interest, it is assumed, at the present epoch.
The italics in this quotation are Dr. Scoffern's, and giv tifying to the author to find himself anticipated by the editor of what he calls a "technical illustrated journal." qualif 5 位-note he acknowledges this fact, but with the stated that he could not wouch for the perfect question ha the drawings he gave; "and, indeed," continues Dr of the gun (obtained from a reliable source my drawing can depend upon) in some important particulars. To cite an example:-The breech-screw of the Armstrong gun i perforated, as described at page 37, whereas the journa crepancy will be discovered by reference." us; but, after a most careful scrutiny and comparison, we have failed to detect any other discrepancy than the one alluded to. This is rather provoking, after the italicised the first time, a full explanation, "I am able to supply, for DRAWINGS, of that gun." On again referring to Dr. Scoffern's drawing, we find in a foot-note that it is no drawing at all! "This diagram," he tells us, "is to b So we must take the promise of "correct drawings" in functional sense.
With regard to the rather delicate question of publishing what he calls a scientific State secret," our author inform on behalf of scientific mene matters can only be expected in Government in Government employ, owes no allegiance (on scientific ground but to the spirit of inquiry and the force of
truth." ihis is certainly taking high ground; but we are at a loss to understand how "the spirit of inquiry and the divulged, We require "scientific State secrets" to be divulged. We were not before aware that science and
patriotism were antagonistic, or that the force of truth patriotism were antagonistic, or that the force of trath
required any Englishman todisclose information damaging Dr. Scoffern.
Dr. Scoffern seems to be but half satisfied with this If any lingering doubt had existed in my mind as to the propriety
of making known these facts to the British public, the doubt would instantly have been set at rest by the consideration that, before these
pages are issued, the secret which our Government would aftect to cuard so carefully will have been known, even to all its details by
the Governments of France and the United States. Sir Willian
Armstin Armstrong was necessarily associated with others in elaborating th
piece of ordnance which bears his name; and I am informed that
dispute 4spute of a pecuniary nature having arisen, two malcontents im
mediately set off, one to Franee and the other to America, with draw-
ings and all particulars relative to the

We have no wish to be considered hypercritical in the
to pass unchallenged. The editor of the il technical illus trated periodical" already referred to has, we observe State secret" of Armstrong's gun. After stating scientific Government had been exercising unwonted care in keeping believed it possible to prevent foreige Government if he learning all about it, he would support them in their course and would willingly refrain from divalging what he knew Russian gold to be had in this country for secrets of far less in every community unscrupulous individuals who would sell their souls for a consideration, if a purchaser could be
found for (in their case) an article of such questionable
value. We do not, however, see the cogency of the conclusion which the writer draws from his premises :
Knowing these things, we view all official attempts to suppress nformation in this as a challenge to the press; and we fee som
pride now, as on all other occasions, in showing that the British press can do as much for the British public, in the way of obtaining nformation, as bribery can do for foreigners.
We do not for a moment believe that our contemporary ever intended to lay himself open to the charge which his own statement would naturally involve. But he ha certainly not stated his case very clearly. If apology were required at all, it ought to have been simple and precise instead of which, we have a most involved
piece of circumlocution which condemns itself.
Whether the British press is justified in obtaining State secrets by unfair means, is a question which wa. answered not very long ago in the case of the Ionian despatches, and requires no comment from us. Whether an editor would not be justified in publishing them after they had once ceased to be secret, is another affair altogether. We would fain put this forward as the real apology in the case of Armstrong's gun ; but, with a most singular perversity, the editor referred to, with the view of rendering his information appear more valuable, repudiates any such palliation. He says :-
It was publicly stated last week, by a newspaper correspondent
hat the secret of the gun is out, and has been for weeks that the secret of the gun is out, and has been for weeks. But we
have as yet met with no public detailed description of the Armstrong gunc, and if the writer himself had been in possession of it he would not, we presume, have evaded it altogether. Judging from
he refusals we have ourselves met with, we believe no unofficial person will have had easy access to the information in question.
There are, hoverer, means of penetrating all such barriers as a Government like ours can raise ; and the following statement will show that

We have no desire to put ourselves forward as supe rior to the usual temptations which beset journalists that, although cognjustice to ourselves, avoid stating, has yet been published concerning the Armstrong gun, wo purposely abstained from divulging it in Scoffern or our wo had as mach certainty as euld not be kept; but, on principle war ranted ioing what we could not but condemn in others. To say that a certain piece of mischief will inevitably be done by somebody, and that, since somebody will reap advantage from it, we may just as well do it and enjoy the benefit as another, appears to us a very poor argument. It is precisely this style of reasoning tha to be kept. Where the assumes that if he do not divulge it his neighbour will, and that, therefore, he is warranted in anticipating him, there can be no hope of keeping it; but if, on the contrary his neighbour had spoken out the thing would be easy enough.
Having said our say about the objectionable part of bear testimony to its merits.
There is a very philosophical exposition of the present fuctuation in the balance of destructive resources, which powers of attack and powers of defence, mutually domine ing over each other, preparatory to a more nicely-balanced equalisation to be at length established between them." We think he might have added, that the cause of these state ons was due to the influence which the improve form and construction of warlike implements and appli,
Dr. Scoffern traces all the changes which have recently taken place, in naval and military armaments, to the intro duction of the Paixhans system of firing shells or hollow incendiary shot from long guns in place of firing them With rega
regard to the comparative functions of solid and
Whereas the force of an ordinary shot is determined (other thing being equal) by the distance it has travelled over-or, in other words,
by the force of its impact-the force of a shell, regarding it merely as to its shell function, is determined by the locality where it may hapCannon balls have often dropped on to a ship's deck, and wrought injury whatever. They have lodged in a ship's side, and their peesence there has been rather more advantageous than would have
been the hole resulting from their extraction. Performing the office of a plug, a solid shot has often kept out that flood of water which by rushing into the ship, would have sunk her. But contemplate a live Contemplate down on a ship's deck, or bedded in a ship's timber ration of a given short time, and bursting accordingly! The conse would destroy the largest ship that swam on ocean.-For a season
wor imagined that the only functions of war-ships are to be brought into
operation against other war-shins inevitable that shells discharghed horizontally, as ordinary shot woul
be-the system, in be-the system, in point of fact, of Paixh hans-murst necessarily
present advantages over solid shot, so various and so numerous, thy no unprejudiced judge could hesitate to accept them for naval arma It is not universalless, such recognition was not universally a accorded. adopted the shell system exclusively for their navy; in other words,
to abandonment of solid shot altogether. Even the French still re tain a complement of solid shot in their naval armaments, and our-
selves still more. Wherefore this discrepancy of practice? is the selves still more. Wherefore this discrepancy of practice? is the
question which may now be asked. Are there two rights and two wrongs on one and the same matter? If shells exclusively are best
for the naval armaments of the Americans, wherefore not for our
selves and the French? The selves and the French? The explanation is simply this:-Whilst
the Americans never contemplate the possibility that ships shal
operate otherwise than operate otherwise than against ships, the French and ourselves hold
in perspective a second vivew of a war-ship's functions-namely, the
attack of fortresses, -L tacck of Jortresses,- Let us pause here to notice an admission made
tacity, or overtly, by France, England, and America-namely, that
the Paixhans system is not adapted in the hir the Yaixhans system is not adapted in the highest degree to the
attack of stonework. Oeficers of the American navy, with whom I
have conversed, conceded the point at dream of attacking a first-class fortress in that way," they said.
"Other means would be taken."
Before proceeding to consider the kind of naval armament
best adapted for the attack of land fortifications, we must supply an omission in this estimate of the naval supremacy
of the Paixhans guns. The author states that the force of a shell, regarding it merely as to its shell function, is determined by the locality where it may happen to be at the time of bursting, and the power of its bursting charge. It shot drop innocuously on the deck of a shippend that they sometimes perform the office of a plug to keep the wate out ; but if the advantages of the Paixhans shells only came macy in naval exceptional cases, we fear that their suprePaixhans gun is not rifled, and consequently the shell can only be ignited by a timed fuse; consequently, the locality where it may happen to be at the time of bursting can only
be guessed at, within rather extensive limits of error. To determine with accuracy the locality where the shell is to object as a ship, it must be ignited by percussion, or, i aimed. But to do this, the projectile must be polar, or fly pact of collision on a fulminating cap or other contrivance and as polar projectiles can only be fired by rifled ordnance it follows that in the most important attribute of a shell-
that is, the determination of where it is to burst-the Paixthat is, the determination of where it is to burst-the Paix and must in the end give way to it. As to the second requisite of a shell, its comparative bursting charge, its capabi bursts. The Paixhans shells have an advantage in their superior dimensions over any riffed shell which it has Sir William Armstrong's. In naval warfare, however
it is to be presumed that precision of aim and consequent precision as to the locality where the shell is to
burst, is of far more importance than the amount of the charge which a shell can carry

To exemplify the present relations between the offensive Dr. Scoffern gives the following graphic comparison and analysis :
We will imagine the dramatis machinc involved to be ships of war
and a fortress. We will assume that those on board ship propose and a fortress. We will assume that those on board ship propose
the demolition of the fortress or the capture of it, whilst those on
land propose the demolition or capture of the ship. Both are armed with a certain complement of shell-guns, of course; but not yet the
refinements of rifled artillery. The opposing forces are at-say
1,500 yards distance, and the strife begins. Estimating the relative
advantages involved, let us glance at them. The fortress is staadvantages involved, let us glance at them. The fortress is sta
tionary, the ship can move: the estimate involves subtraction a
well as addition. The fortress must stand still to receive all the broadsides of the ship; whereas the latter may move about, and
thus disturb the aim of the fortress. But every advantage here is
on the side of the ship. Less probability is there of her being hit,
indeed, because of her motion; but that very motion interferes with indeed, because of her motion; but that very motion interferes wit
the accuracy of her aim. The fortress is a larger mark : granted
The ship to the probabilities of injury after. Teing hit, the advantages are
timmeasurably on the side of the fortress. Distant even 1,000 yards, a ship might as well fire a brodside of Chin
oranges at a first-class fortress, with the probability of inflicting
much damage as by the firing of iron ball siderable than 300 or 400 yards will tell for good. A ship, then,
which intends to finish her work that way, will have to take up the quite worth while to reflect on this small fact just now, when long
range ritle guns, of small shell capacity (Armstrong's), are in the
ascendant. Whether rifle gun or common gun, the projectile it hurl must either be shot or shell. If shot, the question is, not how far it
will go, but how hard it will hit at a given distance. If shell, then,
superadded to its hitting or penetrating power, comes the even more important consideration of its power of explosion. How much gun
powder or other explosive material will it hold? The powder
holding capacity of the largest possible Paixhans shell is quite i signimicant viewed as to its ability to batter down a fortification at the gunners of a battery en barbette, or even against an ordinary
uncovered battery; but casemated batteries may be regarded as proof against Paixhans shells; that is to say, shells fired horizon-
tally from unrifled guns. The next question is, whether the shells to which rifled ordnance may be developed and brought into prac
tice tice. Armstrong's rifle gun being that by which the greatest ex-
pectations are now raised, that arm may te accepted as our standard
of investigation. Up to the present time that weapon has been turned out but of two
and a length of 10 ft .6 in ; ; the diameter of the smaller being only
$2 \frac{1}{2} \mathrm{in}$. The largest projectile weighs 32 lb ., and is capable of con$2 \frac{1}{2} \mathrm{in}$. The largest pror
taining 1 lb of powder.

The 13 -in. bore unrifled monster gun, forged by the Mersey Iron Company, Dr. Scoffern declares (somewhat
hastily, we think,) to be a complete failure. It is already hastily, we think, tells us, cracked at the breech, and its touch-hole is rapidly burning too large for service. Our information concerning the gun in question was that a slight flaw had
indeed appeared in the breech, but not such as to occasion any fears as to safety under ordinary charges; as to the burning of the touch-hole, that is a casualty which all guns
are liable to, and is, moreover, one which wre liable to, and is, moreover, one which can be repaired without much difficulty or expense. There seems, however, at present, but too much reason to fear that there are all
but insuperable difficulties in the manufacturing malleable iron guns of large calibre, capable of being rifled in the manner of the Armstrong gan, and adapted to the discharge
of shells of sufficient weight and internal capacity to be used for the attack of first-class land fortresses. Elsewhere the author very pertinently remarks, in speaking of the re-

The conclusion forces itself irresistibly on my mind that to the end of breaching and demolishing tirst-class land fortresses, ordnance having a calibre so small as $3!$ in. will not be found large

 enough. Long range is a fascinating element of contemplation tothe public. To assume the little speck, five or six miles out at sea,
darting Armstrong bolts at Cronstadt or Gibraltar, is very attractive
But an important plish when they question remains. What can these bolts accom
To effect demolition is the intent of
their mission - and their means of demolition are limited aft all. To stance-it would fire to a town near the sea coast-Brighton, for inwould succeed in battering down a first-class fortress at long range
of these artillery on the iron-cased floating battery, distant only
from the Maytlower-whence the shots were fired-400 yards From the Maytlower-whence the shots were fired-400 yards.
Finally, as to burning or blowing up. There are functions which, Finally, as to burning or blowing up. There are froportionate to the
as I have already shown, must necessarily be proper
capacity for explosive or combustive matter. Want of capacity i capacity for explosive or combustive matter.
perhaps the weakest point of the Armstrong shell.
The description of the Armstrong gun and shell is very than that given in the Mechanics' Magazine. Indeed, wherver Scoffern's powers of exposition are called int play, he is singularly apt and
carries his reader along with him.
The Whitworth rifled cast-metal guns are casually noticed and condemned ; there are, also, short notices of the Wahrendorff rifled cast-iron gun, exhibited in the Crystal
Palace in 1851, and the Cavalli breech-loading rifled cannon, having a pyriform core of gun metal cast in the breech and a chase of cast iron enveloping it.

As a collateral influence in developing the recent improvements in ordnance of long range, the author traces with great clearness the progressive steps by which the
results already obtained have been arrived at. The Minié rifle was the first innovation which disturbed the relations which existed between small-arms and field artillery. As
mere round shot told for little against skirmishers loosely mere round shot told for little against skirmishersoth-bore musket was limited to about 200 yards and as grape-shot and canister were effective up to a range of at least 300
yards, the preponderance lay with the artillery; whilst with shells, and more particularly what are called shrapnells, which are effective up to distances of 1,000 yards, the superiority was so decided as to necessitate the more Minié rifle extended the range of the infantry weapon to
1,000 yards, the balance of advantages became in favonr of 1,000 yards, the balance of advantages became in favour of
the smaller arm. To restore the predominance of field artillery as compared with the modern long range rifle, the French set to work to improve the capabilities of field
guns for throwing shells. This was thought to be accomplished by a modification of the 12 -pounder long gun, which was shortened and lightened until it assumed somewhat of the form and dimensions of a howitzer. This field-run and the howitzer was found capable of throwing hollow shot with good effect to a range which enabled them to deal on something iike equal terms with the improved
rifled small-arms. Following up this idea, Dr. Scoffern thinks he has gained a clue to the nature of the jealously-
guarded secret of the new French field-gun. He says :guarded secret of the new French field-gun. He says :Notwithstanding the secrecy in which all relating to recent pro-
ceedings taking phace in French arsenals has been clouded, there
can be little doubt at this time that rifled cannon constitute the can be little doubt at this time that rifled cannon constitute the
arcanum imperii. This conclusion might have been arrived at from
a judicious correlation of disjointed evidence. Firstly it hat the French were throwing aside 12 -pounder tield-guns, and
adopting 4 -pounder guns in their place. Now it is not difficult to perceive that a 4-nounder spherical gun, i.e., a gun the bore of
which is competent to hold and project a 4-pounder spherical iron shot, must, except a rifle gun, be totally inefficient and contemptible
in practice-especially must it be contemptible as to its shell-launchin practice-especially must it be contemptible as to its shell-1aunch-
ing capabilites. But, if a rife gun, the case is altered. Then it
need not, and assuredly would not, throw spherical shot or spherical
hell. shells. Such rifled ordnance would be adapted to the launching of
elongated shot and shells, something like the Minie in form, or even more bolt-like. Such a nominal 4-pounder might thus be made to
launch projectiles, not of four pounds merely, but perhaps of twelve,
twenty, or even more pounds. Therefore the newly-adopted lieve, that the French rifled field-gun now accepted again is a
nominal muzzle-loading 4-pounder, two-grooved, firing an iron shell
elongated like the Armstrong projectile. The adaptation of the elongated like the Armstrong projectil
shell to the ritle grooves is accomplishe
out into wings on two sides of the shell.

The adaptation of the
a pewter band spread
We have not space at present to go
more minutely into the other portions of the work, or to enter into Dr. Scof fern's theory of rertical firing with rifled ordnance for the
reduction of first-class land fortresses. We believe that he is mistaken as to the capabilities of rifles for this purpose. It is conceded on all hands that the great artillery problem of the day is to get a means of enabling ships to attack
land fortresses on at least equal terms. For this purpose land fortresses on at least equal terms. For this purpose, iron, of large calibre (if such an idea is practicable) should be fired with mortar charges and elevation, from iron-cased batteries. In such a case, he assumes that the long range to be obtained by such a combination would be
utilised in the increased force of impact which a projectile of great weight would have in the descending trajectory of the curve due to its elevation. He seems to imagine increased propulsion to the projectile, and elongates the range. We have always understood, on the contrary, that the effect of rifling small-arms or ordnance was rather to shorten than extend the range; all that the rotation of the It is difficult, therefore, to see what advantage the rifled ordnance could give in vertical firing, where the principal force of be obtained is not so much accuracy of aim as igniting it by percussion, is, in the case of vertical firing of but questionble efficacy. Is it certain that, after per like an arrow, point downwards
With regard to the monster mortar of Mr. Mallet, Dr says:-
Just in proportion as ordnance are increased in size, so that the
weight of the projectile is proportionately increased-also just as rifle projectiles, of equal weight, and equal area of surface contact, are
more tightly impacted in the barrel -so, theoretically, should the
grains of gunpowder be larger. I should, for instance, have been well pleased to have seen Mr. Mallet's great mortar tried with gun-
powder having grains as large as horse beans.

As to the application of chemical resources to the charg ing of shells, upon which Dr. Scoffern ought to be able to engaged in making experiments with new forms of combustion and explosive shells, it is some relief to the philanhppin in thise community to lear to an extent whie of person not conversant with the subject would not imagine.

In relation with this subject, Dr. Scoffern relates an in-
cident of so ludicrous a nature that we cannot think of omitting it:-
A gentleman, to whose labours in the elaboration of explosive pro-
jectiles I have more than once borne honourable testimony, 2
 Naw awatavazix

 wifley

From the date of the next war which may occur between first-rate European Powers, will begin a new era in the history of civilised warfare. On land, as on the sea, the
tactics which have hitherto been adopted will be found obsolete, and will have to give place to a new system. Those who may not perceive the necessity of the change, traditions and strategic axioms of the latest European struggles, connected as they may be with the successes and列 convinced of this truth. But it behoves us all-now that inventors and thinkers, of our own country more than of any other, have changed the aspect of the battle-field, and tultified the latest combinations of naval warfare-to perfor us. It is not merely the deadly weapons we possess nor the newly-acquired and powerful means at our disposal hat can advance our success or ensure our safety. The same appliances are open to all. They give but wider
opportunity to strength and energy ; they are fortune's gifts to the brave and to the keen of intellect; worse than useless to others who cannot use her favours: for there has een hitherto no eureka that can remain ever more or less cosmopolitan in his broad sphere of vision, might look with alarm and anxiety on the exclusive posses sion by one nation or by one coterie of a terrible and unknown rfare. But, from the very nature of these pplian haps, more might in his own breast hold the secret power which, at any We, could turn the tide of war in hi country's We wish, indeed, the possibility of this had greater likeli would seldom occur, despite all the vexatious neglect which commonly meets the originator of signal improvements. It is our promptitude in recognising the conditions which depends the successful application our ne powers that must determine ou infaria Therent from mprovements in the means of warfare. There are me ever ready to follow in the wake of recognised success -
men whose powers of observation and judgment are sufficient to appreciate a fact that has been established an innovation which has stood the test of actual trial, and which also may have borne its chiefest fruits. But these re not the men which we shall require at a crisis which at ny time may arrive. In England's next struggle, whether on the tented field or the no fidence in an untried field of action, by the original obser ation, intuitive skill, and unhesitating determination, to which, when they accompany the knowledge of the true conditions of success, men give the name of genius.
It is a mistake to assume, as has been done, that these new appliances place the power of successful warfare solely in the hands of those nations whose vast resources enable them to command, in greater degree, the crude materiel of war. Power may indeed employ them against weaker States; but the same means may become more terrible in he hands of those who may have all to defend and but little to lose. Wealth may indeed supply its own defence, but cannot, with so much at stake, afford with safety to become the aggressor of lesser nationalities. The truth is that every new weapon of destruction, which is a gift to must use a desperate means for a desperate purpose.
With these remarks, which may be necessary to counteract some mistaken impressions which are prevaliat on the subject, of the purpose and value of our new appliances hope may be the first of a series of treatises on naval and military science, as modified by recent improvements. In the Introduction to this treatise, Sir Howard Douglas, in dwelling upon the probable effects and comparative advana moving which prevails abroad, that such innovation will operate to the disadvantage of Great Britain. This opinion is founded on the assumption that our naval successes and our supremacy on the sea have been hitherto due to our skill in anticipating the effects of changes of wind and tide, and
to the superior efficiency of our seamen in executing the manœeuvres rendered necessary by such changes. Granting that this is the case, and also that Great Britain will not maintain her superiority in naval warfare by her progress in nautical science and her advances in mechanical contrivance, the opinion might be well founded. Bat, as our author proves, there is nothing to justify such a producing steam machinery of the greatest power and perfection, and in obtaining engineers and seamen qualified in the highest degree for naval service, should enable our commanders to preserve their present superiority over those of the Continent, providing always that they are prepared to avail themselves of every improvement that science and practice can suggest.

The first section of the work is devoted to a consideration of the mechanical principles involved in the application of steam power to ships of war, most of the details being of the respective advantages and disadvantages of the paddle and the screw, preference is of course given to the atter; With renal to the desiption of thew bet fitted fir vessels of war, that of Messrs. Maudslay and Field, with which the ship may proceed under canvas alone, without which the ship may proceed under canvas ane we water and without the immersion of the screw offering any re sistance to the onward progress of the ship, receives par sistance to the onward progress of the ship, recenves par-
ticular attention. To prevent the fouling of screws by ropes, nets, ploy strong and sharp steel knife edges, fixed to the metal trunk in which the screw works, in such a manner that any rope that may have hitched in the boss may be acted upon, during the revolution of the screw, as a body
The second section which cuncludes the work words more particulerly the neval proesio, and which regards of paticalt the nals of the he adve min that gauge " will now be the result of a superior degree of speed gauge " will now be the result of a superior degree of speed
in the vessels of a steam fleet, for which no tactical skill on the part of the enemy can compensate. But it is also inculcated that, with an enemy willing to fight, the amount of steam power should, in order to secure efficient gunnery,
be limited to that which is barely sufficient to keep the be limited to that which is barely
ship under the guidance of the helm.

RAILWAY MATTERS

 pthe reserved fund. The report states that there is every probability
of the line being extended from Moerdyk to Rotterdam, and that the company will have the use of it on paying a reasonable toll, which
would have the effect of increasing their receipts and diminishing the expenditure.
EAsT MDNAN. - The directors of this company state in their report
that 21 milise of additional line were opened on the 1st of October
last; the line from the expected, be completed duriver Adje tha to cyesnthea, 24 tear, the nexes, will, it it ins
by June, 1860 ; the following 25 miles by by June, 1860 , the following 25 miles by the end of the present year;
and the remaining 25 miles into Rajmatal, by the autumn of 1860 .
The state of the next The state of the next division, 24 miles, is not quite so forward,
thourh 12 miles are ready for the permanent way; the succeeding
division, 26 miles, will, it is expected, be ready for the rais

 ready for the permanent way. The works on the Soane district,
78 多 miles, extending to the river Kurrumnassa, the boundary of the
Bengal division, and at sengal division, and at the Soane bridge, have been resumed, are
steadily progresing, and 43 miles will beready for the permanent
way bere next rains. The whole length thus included in Mr. Turn-
bull't report is the
 that 282 miles are ready for the permanent way matice, and
The baard reported on a former oceasion the steps which were in
preparation to meet the diffuly
the pleasure to staty of transport and they have now one has already been shinped for India, the hull of the second is
completed, a third will be tried during the next month, and the remaining, three eare well forward. Uuring the next month, and the
four pairs will engines is completed,
Oeady in about two months, and the last pair is Your pairs will be ready in about two months, and the last pair is
well in hand. There are seven barges, each cappable of carrying 420
tons, under contract: of these one is finished, four others Tons, under contract: of these one is finished, four others will be
ready in about three weeks, and the remaining two are well forward.
There are also fifty 45 -ton barges under completed, and the remainder nearly finished. The nurt number of
passengers carried during the half-year ending the 3 oth of June was
581,244 , of which 555,182 were third class, 28,051 second class and
 The number of passengers carried in 1858 was $1,172,852$ against
f1, 070,907 in the year 185 . The gross traffic receipts for the half-
year ending the 31st year ending the 31st December were $£ 85,972$, showing an incresse of $£ 16,639$ over the corresponding half of the preceding yenar. The
receipts for the year 1858 amounted to $£ 1666,81$ against $£ 133,640$ in
1857. The net traffice receipts for the

the 31st December, 1856, to $£ 29,269$; ending the 30th June, 1857, to $£ 40,215$; ending the 31 st of December, 1857 , to $£ 42,555$; ending the 30 th June, 1858, to $£ 45,170 ;$ and ending the 31 st December,
1858 , to $£ 12,978$. The last amount will be aftected to the extent of of $£ 4,744$, if the Government refuse to admit as a charge against revenue the cost of replacing the iron sleepers which were put down
 including an additional twenty-one miles for three months.
The net receipts paid to the East India Company were in The net receipts paid to the East India Company were in
1855 ± 31252, in 1856 E57,060 in 1857 © $£ 82,770$, and in
$1858 \pm 88,148$. The line from Allahabad to Cownpore has ben for some time past available for the use of the Government, but
the latter had consented to the line being opened for general traffic on the 3rd of March. In the prosecution of the surveys of the Mubbepore line, Mr. Evans, the chief engineer, and his assistant,
Mr. Limnell, were attacked and murdered by a party of rebels. Mr Mr. Limnell, were attacked and murdered by a party of rebels. Mr.
Limnell, whose qualifications were reported to be of the highest order, had but lately joined the service, but Mr. Evans was one the odest and most respectea of the company's ofticers. The total
amount of capital now reated for the main line is $£ 10,311,000$, the amount specioed in the contracts with the East India Company as
the probable amount of capital required for the construction of a distance to Delbi. In consequence however the remainder of the caused by the mutiny, and its effect on the cost of transport, labour, caused materials, this sum will not prove altogether sumficient to com
and
plete the line and provide the necessary amount of rolling stock. East SofroLk.-It is stated that this line will be opened, as far
as Woodbridge, on Monday, the 2nd of May. Some doubt exis as to whether the section between Ipswich and Woodbridge will be
 by special train, and arrive about noon at the Albert Bridge, Saltash. by special train, and arrive about noon at the Albert Bridge, Saltash,
where he will be received by the directors and the Government
authorities Frexch Ralways.- It appears certain that the railway from
Marseilles to Toulon will be opened to the public on the 3rd of May There are to ene two departures in the morning of omor in the afternoon, at 2.30, 5 , 7.10 thand and atin.
There is to be, moreover, an express train at 3.35 . The omnibus trains will perform the journey in two hours and a half, and the
express train in an hour and fifty minutes. Great Indian Pexiscola.-The report of the directors of this
company states that the portions of the railway under construction by contract, upon which operations have been carried on during the
past half. year, are the Bhore Ghat incline, past harry ear, are the Bhore Ghat incline, $13 \frac{1}{y}$ miles, the section
from Poonah to Shoapore, 63 miles from Wassindt the foot of
the Thull Ghat incline, 25 miles; the Thuil Ghat incline 9 miles, and from the summit of this incline to Bhosawul, 190 miles; to toesther,
$400 \frac{1}{4}$ miles. The board regret that upon the Bhore Ghat incline the contractor has failed to carry forward the work in such a manner as
alone could have secured its completion by the date fixed in the contract. Arrangements were in progress at the departure of the last
mail from Bombay to putan end to the contract. On the termina-
tion of the contract the most energetic measures will be tare prosecuting the whole of the works on the measures will be taken fhat
directors hope that the through commune. The the Concan and the Decan will be completed without any further
obstruction. The worlss on the obstruction. The Works on the other contracts continue to be
executed steadily. The portion of the railway from Poonah to
Decksal, distape of exccuted steadiny. The portion of the railway from Poonah to
Decksal, a distance of 64. miles, was sompleted and opened for public
tratfic on the 15 th of December last. Upon the line from Bhosawul to Jubbulpore, 332 miles, the contractors have been principally
engaged during the hall-year in the necessary preliminary arrangemens let by public competition, and is to be completed by the thes, has
been of
March, 1863. During the half-year the has continued to be safely and efficiently worked. It consisted, on
the 3 1st of December last, of $88 \pm$ miles in the Concan, and 106 a miles in the Deccan, total 1994 miles. The gross receipts on revenue
account diuning the half-year amounted to $£ 60,890$ and the expenses
to $£ 34,490$ Compared with the correspondings, leaving of net protit of
year an increase of $£ 28,022$ is shevious year an increase of $£ 28,022$ is shown on the gross receipts, an in-
crease of $£ 17,019$ on the net profits; and a decrease of 3.4 per cent.
on the working expenses. Leaving out of the account the receipts on the working expenses. Leaving out of the account the receipts
for seeventen dayy on the portion of the line between Poonah and
Decksal, the average receipt per mile from the remaining 1302 miles
 the board consider very satisfactory. The total unumber of fatasengers
conveyed during the half-year was 553,816 against 383,163 at the corresponding period of 1857 , showing an increase of 170,653
passengers, of whom 142,726 were third-class
and 1,583037 second first-class-the total
 interest account to the 31 st of December last shows that $£ 642,568$
had been paid by Government to the company as interest on paid-up the Government out of netucted revenue, leaving a a bay the company to to
companst the
company on interest account of $£ 5$, $9,3 \times 4$. The combined (London
 $£ 3,636,727$ expended, including $£ 1,475,733$ in Bombay; leaving a
balance of 6504,432, including $£ 2,965$ in Bombay.
Grest Souruerx or IvDL. - The report stated that, after conGreat Soutrierx of IndLA.-The report stated that, after con-
siderable difticulty and some opposition, the directors had succeeded
in obtaining the sanction of the in obtaining the sanction of the court to make the first section
the line. The directors, after a careful consideration of the whol
subject, wad determined to take the construction of the works in their own hands. The works, would benstruection of the works into
care under econemy direction of their own officers, who were fully competent to carry out the undertaking. Captain T. Nutting wished to
know whether the tuarantee was not for a capital of $£ 1,000,000$.
The chairman said that had been the for The chairman said that had been the amount proposed in the first
instance, but their entineer had ascertained that $\pm 500,000$ was the
nmount required for the first section amount required for the first section from Negapatam to Trinchin-
opply, and upon the latter sum they had a guarantee of 5 per cent.
per annum. In reply to questions, it was stated that the first section per annum. In reply to questions, it was stated that the first section
would be eighty miles in length, pasisig through a populous dis-
trict and could be constructed in
a-mile, including working stock. two years for less than $£ 7,000$
Artiriccas Masure.-Professor Hunt, in a lecture at Montreal,
said he was of opinion that from 100,000 to 150,000 tons of artificial
manure might be manuf manure might be manafactured annually from the waste of the
Canadian fisheries; and this equal to Peryvian guano. The Frene were aware of the importance of this manure, and were now manu-
facturing it, on a large seale, in the Straits of Belle Isle.- New Yorks
Journal of Commerce. Corroon rroar Austrana AxD AFricA. -The adaptability of
Australia and South Africa to the grovth of cotton of the most
useful, as well as the finest qualities, is placed beyond dout lo useful, as well as the finest qualities, is splaced beyond doubt by the
samples now at MIanchester of cotta recently grown in those
colonies. Thie Cotton Supply Reporton. (issued by the Mancheoter colonies. -The Cotton Supply, Reporter (issued by the Manchester
Association) of Saturday, publishes further correspondence received
from both these localities. The Governor of Sydney Sir We. Denison, takes a strong personal Governor of ine the quest sion of pro-
moting the cultivation of cotton in Australia, and Lieut.-Gover
Scott Scott, of Natal, is doing all in his power to further the same object
at the Cape. Private merchants and cultivators in both countries are turning their attention to cotton culture ; and we learn thies
500 labourers have been engaged to commence cultivation at Rocck-
hampton, in Australia.

TREES IN THE METROPOLIS.

We keep account of the buildings that are run up in the metropolis. Our statistics on most points connected with its popuation, trade,
shipping, and velicles are pretty accurate; but who can tell us how many trees have been planted in London and its environs last year -or for any number of years past? And yet the planting of trees is a matter of no slight importance in and about a great city, both
for ornamental and economic purposes. How little is done to relieve the dark grim ugliness of London in this respect! Long monotonous lines of streets and squares, sreat hotels and termini, public buildings of various kinds, docks, and railway stations, spring up in rapid
succession ; but no one cares to plant a tree to afford its shade-relief and pleasant foliage for the eye forced to wander over continuous The annual report to the Metropolitan Board of Works just the number of new buildings erected withinin the metropolis during the last three years cannot be less than 20,000 , exclusive of additions Now, if but the same number of useful and ornamental trees had
been planted in that period, what a beneit would have been conferred on present and future generations
and supported, in a series of articles, the advantagg of ams, suggested met with been very little geneted approbation in all quarters, but as yet have It cannot be because trees are unsightly. The Boulevards of Paris,
and the like-planted avenue-streets of the Contine and the like-planted avenue-streets of the Continent, are undeniably
picturesque and attractive; nor are the avenue high roads without charms. Indeed, the avenue is arecognised artistic resithout which many of our country mansions and parks profit. Who has
not wandered with pleasure under not wandered with pleasure under avenues of ems, and oaks, the
clustering chestnut tlowers, and the sweet-scented limes? We are
not recommending, however, what are the best trees for not recommending, however, what are the best trees for cities, we
are merely enforcing the opinion of the desirability of increasing our "Dinna forget to plant young trees wherever dou can set them,"
was the last advice of a shrewd Socth landhler was the last advice or a strewd Scotch landholder to his heir, "for
they'll grow up while ye're sleping." Any rich upstart can build a fine house in a very limited time, but he cannot build the old oaks.
Every year that we neglect to adorn our pent-up squares, broad thoroughfares, and suburban drives with trees, we are wasting the in the ground. It is not desiriatle to have trees to othmick, so andy
keep the sun entirely from dwellings ; but houses, streets, and walks may be partially shaded with very great advantage
It is related of the great Oberin, It is related of the great Oberlin, that he made every child in his
schools plant and rear at least two trees; and thus in a short time
the Ban de la the Ban de la Roche, a district naturally bare and rocky, was
insensibly covered with luxuriant plantation. In Bile, there is also an excelient custom. Six trees are planted on the occasion of every
marriage, and two at the birth of every child. An abundant supply of trees as thus systematically obtained. Here, on the contrary,
individuals are more prone to ell, , ooot up, and destroy trees than to
plant them. Something on a small plant them. Something on a small scale is doing in tree-planting in ference. We are glad to hear that the Crystal Palace Company are
about to form an arboretum about to form an arboretum in their grounds at Sy
will be an additional attraction and public beneeit.
It has been suggested that each district board
It has been suggested that each district board in the metropolis
should have a landscape gardener attached to it, who might be paid should have a landscape gardener attached to it, who might be paid a small yearly fee for suggesting and directing the planting of trees.
The vacated churchyard sites in the city, old Smithfield, and other
localities, might be adorned by a few trees and sluwbs, whild locainties, might be adorned by a few trees and shrubs, which could
be kept in order for a few pounds a year. There are several deserted
squares squares and groves, now devoted to dead cats and dogs and rubbish,
Whinch might also be reclaimed by the surveyors of the Board of
Works, and a few treeclimed Works, and a few trees planted.
When we cross the Chanel
 take a useful lesson for some parts, at least, of London and its suburbs. What can be more stately, and attractive than Berlin and
Potodam for their Linden, Strasse and Unterlinden, and Paris for its
Boulevard and Champs Elysees?
metropolis, suffered, however, in the destruction of those of the metroponis, sutfered, however, in the destruction of those of the
Boulevards some ten years ago, to serve as barricades, or to make
room for trees of liberty-trees which, however, never prospered. A classitied system of planting has recently been adopted by the
civic administration, and each of the Boulevards is to be clarac
lerised by the shat whether this uniformity will not have a monotonous eftect of tree; to be seen. Thus the Boulevard de la Ma Madolonine and des Capu-
cine are to be planted with planes ; the Boalevard des Italiens with Japan sumace, the Boulevard the Bountmartre with elmas, the
Boulevardes Poissonniere and Bonne Mound Rue Royale with South And Bonne Nouvelle with chestnuts, the
pace in front of the Gymnerie sycamore or maple, and the space in front of the Gymnasie with catalpas. This a
plantations will, it is said, be continued up to the Bastille.
There is ample scope for the introduction of trees, with great
benefit and picturesgue effect, in many localities of the metropolis: such, for instance, as the new roads formedites near the mentropolis;
Museum; the approaches to the new Chelsen
 Bow to Victoria Park; Victoria-street and Vincent-square, Westminster; Camberwell Green, and such like open spaces.
There is no neecssity for sticking trees round the Royal St. Paul's no nracessity for sticking trees round the Royal Exchange, or orthe similar circumscribed spaces;
but there is no reason why they should not adon the but there is no reason why they should not adorn the river bacesks,
or some of the railway lines and termini, the banks of canals, the
centres of squares, and open roads and streets Not only do trees attract and condense the moisture suspended in
the air and borne by the winds over the earth's surface, which fall-
ing ing from their leaves, keeps the oround below moist and cool but but
they can, by means of their roots, pump it up from a very considerable depth, and, raisining it in in the ants, pumposphere, it diftuse a very conser the face
of the country. Trees by the transpiration of their themselves with an atmosphere constantly cool and moist. They
also shelter the soil from the direct action of the sun, and thus pre-
vent evaporation of the But, aparattion of the water furrished by rains.
trees, he perating functions of such a large body of
venion of some 20,000 timber generation be no insignificant asset of the tres would in the next
There is scarcely of Works. property of this kind in its streets, place darmes, ramparts, and
peplanates
The Metropolitan Board has now the ownership of many thousand
acres of thoroughtares, and this area will be increased by the embankments, and by lapsed squares and commons, constituting, a large domain, and the apailable squares and commons, constitutiong
of bearing, it bearing, or capable Judicious plany thoussand trees. would go far to redeem the insigniticance of
many long lines of mean buildings, which now detract from the appearance of noble thoroughafargs, which now detract from the
other pubbic improvenents carrying out, or that anid the
general

Ramways and Prize Frouts.-The magistrates assembled in
general sessions, at Maider afforded bessions, the South-Eastorne Lailwe been discussing the facilities
persons who travelled on their line wampany to large bodies of part in prize frighted on their line with the avoved obsject of taking
mentioning that on the committing a breach of the peace ;
mas ship a special train of thirty-four carriages, containing nearly 2,000 persons, stopped for a long time minidway, between Headcorn and
Pluckley, the safety of those traveling by the ordinary thains bein

THE PATENT JOURNAL.

(Condensed from the Journal of the Commissioners of Patents.)

Grants of Provisional Protection for Six Months.

 40. BBx nastix Browse, King Wariam, street, London Bride, London, "A
new
by method of working or operating switches and signals on railways
 Mareh, 1859. Redorave, Tavistock-street, London, "An improved pillow

 and steel." SkRercouv, Ashby-de-la-Zouch, Leiecestershire, "Improve-

Inventions protected for Six Months by the Deposit of a Complete

Patents on which the Stamp Daty of $£ 50$ has been Paid.

 Patent on which the Stamp Duty of $£ 100$ has been Paid. 452. Jons Cand whr, St. Johnstrret, Clerkenwell, London.-Dated 2001 h October, 1852

Notices to Proceed.

2355. Patrack Robrrtson,

 nery or apparatus for tracing designs from an, nengraved roller, or from an
engravers sketeh upo steen or orther metallio surfaces sued as dies by
entrons

stopper or controller to stop and contron lthe running out of chanis and
roper

 2833. WhuLuIAM Beckerr Jonssos, Manchester, Lancashire, "Improvements,
in machinery or apparatus for preparing for joining the rails of railways."

 Surre, and Geong Ferky,
for imparting reciproating motion to mechinery, and more especially
pump

 Sconsath, Rue du Faubburg st. Hartin, Paris, "Using spart or Spanish
broom in manufacturing seats of all descriptions."-Petitons recorded 31 st 7. Jocenver, OLIVERE, White Bank, near Chesterfield, Derbyshire, "Improve-
ments in lubricators for steam engine cylinders."-Petition recorrded $1 s t$ 3s; ' Writitas DRAPRR, Gordon-terrace, Holland-road, Brixton, Surrey,
 and all other purposes where chanins are used."-Petitions recorded bil 59. Whithiris Eow ARD Newrox, Chancery-lane, London, "Improvements in
machinery for winding , twistig, and dobling fibrous materias.".-A
 Saxmund ham, suffok, "An improved arrangement of combined thresh
ing and dresing machine. -Htation reoorded 18th January, 1859.

 Jrinding saws and fat plates of steel."-A communication from E. T. for the manufacture of looped fabrics."-Pefition recorded sld Aprih
 ing apparatus for liquids, especially beer.-A communication from Jeai
Lours Baud
Apri, 1859 .

And notice is hereby given, that all persons having an interest in oppos of their obsections to such application, at the said ofice of the Commis
sioners, with thenty
Journal) in which enty nont

List of Specifications published during the week ending

ABSTRACTS OF SPEOIFICATIONS

The following Descriptions are made from Abstracts prepared expresty for The
Class 1.-Prime movers
Including Fixed Steam and other Engines, Horse, Wind, and Water

an oonening at the thep, through which the rod of the edsedin a case having passes
and by which steam passes from the boiler when the safty
 from the case to the interior of the furnace oor the boiler, and so dampe the
frio and reduces the pressure on the boiler. Steam is also caused to pass on
to to the fuel in the furrace when the water in the boiler gets too low. This
is acomplikhed by means of afoat in the boile, having arod attached o
it, which passes through a stuffing-box in the top of the boiler. This rod
also passes through a hole in a prolongation of the weighted roller, whicel
keeps dow the safety-valve, and on the end of the rod here san emhare ment which cannot pass through the hole in the lever By mishingeanc
 tever which keeps down the safety-valve, and allows the steam to pass on
lo
othe fuel in the furnace
 These improvements relate to apparatus for regulating the supply of
water to turbine or other water-whess, , and consist
hin connuecting the clow shattle or valve, the position of which is to be adjusted for the purpose of
regulating the speed of the water-wheel or other prime-mover wibl

 This invention comprises improvements designed for the obtainment of
 evaporating apparatus, and in part for indicating presure. Th
cannot be described in detail without reference to the drawing.

Class 2.-TRANSPORT

Including Raikays and Plant, Road-making, Steam Vessels, Ma-
clinery and Fittings, Sailing Vessels, Boats, Carriages, Carts, Har

 suatable hook or or chain ion formed in parts, adapted to each carriage, with
carriages
means at the ends, by which, when the contiluous; and in order that the band, or other connecting means, may
be alike effective under different stages of compresion of the bufers, and

 he buter apparatus, so as to be drawn up with the compression of the
buffers, and they are alas connected oth traction prings in such mamner
as to be lengthened by the extension of the draw bar.

 the hull of the boat or vesel sinking, be capable of automatically detaching
hemselves therefrom, and also of floating on the surface of the water, and nder the control of ter

 moveabie piston, and the hatier is connected, eldier ion of the stamirectiy
with the thro
 regulating cylinder increases, the greater is the force wherewth the piston
is thrust towards the cosed end of the chlinder, and the more tue anit
Detwen the piston and cylinder cover becomes compressed, and vicc ereac.-
Not proceded arith and 2327. J. SurirH, Nearport, Salop, "Rough-stooing beauts of draught and

 2335. W. E. Newrow, Chancery-lane, London, "Hanging and arranging of
cylind rical, wocicack, or sira stei railroad springs for railuay carriages."

 Yertically is very much less than they would require ir the springs wer
placed in pairs one above the other.
 bine, means of adapting the propeliling surface to the varying druyghts of
water of the vessel, with other necessary qualities. And the invention
. consists in employing propellers, each composed of a float board attached to
vertical rod or arms the upper and of winhec are connecteto to crank, nad
which are ombined with other rods and cranks in such manner that,
that,

Class 3.-FABRICS.

Including Machinery and Mechanical Operations connected with Pre
paring, Manufacturing, Printing, Dyeing, and Dressing paring, Manufacturing, Printing, Dyeing, and Dressing Fabrics, 8 ¢c.
 bomsining portions of the invention can be described without reference to
rem dirain 2300. R. R. JAcksox, Blackburn, " Apparatus for siteing yarn."-Dated 15th Ochioce, 1855 .
This invention consists in the novel application and use of a ball or other
float tap or valve as a mine

 zmil dumpus

Class 4.-AGRICULTURE.

Class 5.-BUILDING.-None.

Class 6.-FIRE-ARMS.
Guns, Swords, Cannons, Shots, Shells, Gunpowder, Implements of War

Class 7.-FURNITURE AND CLOTHING.
Including Cooking Utensils, Upholstery, Orrauments, Musical Instru-
ments, Lamps, Manuffactured Articles of Dress, \&s.
 of ten other like
 2299. G. Losus, Mancheter, "O ornamental fabrica for lat pee' dreveder with.

 18ise improvements are effectod principally by oortuin modifcations in
Thest

the cutting proses One of the prinipal resulta of these improvements is
the disponsing with eifbt seame, and the reduution of the number of seams
in the fingers of each in the fingers of each glove to four, whereby the manual labour and the superiority of strength, flisish, and elegance, hitherto unattained.

Class 8.-CHEMICAL

Including Special Chemical and Pharmaceutical Preparations, Fuel
and Lighting Materials, Preparation and Preservation of and Lighing Materials, Preparation and Preservation of Food,
Brewing. Tanning, Bleaching, Dyeing, Calico-Printing, Smelting,
Glass, Pottery, Glass, Pottery, Cements, Paint, Paper, Manures, \&c.
2307. G. F. WLsos, Vauchall, "Preparing compounds containing sulphur
jor preventing and detroying blight, muddev, and insects."-Dated 1 Sth
 ing them mechanically as heretofore.

Class 9.-ELECTRICITY.

Including Electric, Magnetic, and Electro-Magnetic Apparatus,
Electrical Apparatus, Galvanic Batteries, \&c.
 This invention consists in using wires which are not electrically insulated
from the water in which the same are required to bo immersed, and in so constructing or arranging an electric telegraph between two places separated
by sea or other water as to uso the intervenng water in forming the batery employed for working the telegraph. Each of the telegraph wires or con-
ductors used (which the patentee prefers to be of copper or alloys of copper) is submerged tin the water, so that the two ends thereof are brought to the
two distant stations on either side of the water. The ends aroreppectively
comnected to suitabie electrio telegraph instruments and a wire trom each
 the elements of a battery may be cmployed. "Inulating and covering
2321. C. W

 ausing it more effectually to protect the insulated wires or conductors from

 $\begin{aligned} & \text { seing } \\ & \text { breaknge. } \\ & \text { 2322. R. TiD }\end{aligned}$
 aph cables when paying them out, and dor
 way to the ees. These lighter ratts are wed only when payiny out eables
beeng umnecosary when caberes have to be raised. The ratts are towed by

 seith.

Class 10.-Miscellaneous.
Including all Patents not found under the preceding heads.

 constructed in this manner can be placed in various atutitues and positions,
and may be used for toys for tuition, for artistic composition, and for various other purposes.
2288. C. Cowrig

 ing in the usual manener, and is p parat in the mould made of caxt tin, or
 haif an hour to thre hours, the length of time depending on the proportion
of sulphur miled with the midi-rubber and other circumstances. Itis then
removed from the heat and the gutta-percha, which, by this time, is in a partially hardened state. Any a liquid compound or solution of india-rubber or gutt-percha, and are fitted again in the mould, care being taken to have the joints of the mould water-
tight during the heating proces by means of small strips of india-rubber inserted betveen the joins por otherwiseans The smats of the mould are then presed in the heit, leaving it here from about half an hour to three
ploceds, when the compound will still be partilly hardened. It is then again
hours,

 posed to the heat until the articles are completely hardened, which may
require six or eight hours' exposure to heat after which the box and opencd and the proces is completec., The form of the articles will then
be found to bo pertect, although somewhat maller than the mass originally
 ness of the article, and a little e practice will enable the workman to decide
whither one removal from the mould lis sufflicent or not. Articles of no great thickness, such as combs, are epartially hardened and the imperfections
repaired in the manner before described, and they are then replaced in the mould, and the vulcanising grocoessisisomp, pleted while they are in the mould
In articles of considerabie thickness the great contraction talkes place during the hast part of tho heating process; and the article not teing in contact
with the mould at that time, the contriction proceeds in a uiform manner.

 and carbonic oxide, in such a manner as to bring the molecules of tho
metalic bath int contet
seand

 mineral the oxy gen o a bar of iron or steel. Sometimes, instead or tacking
verting the ore int
romm the

 pipe into the chimney. When the mass of coke has become incandeseent,
apd anso hhe cartenware linitg. which con be seen by any convenient
opening, he closes the opening to the hearth hermetically by means of

 door or bonnet of the close chamber similiar to the head or end of a gas
retort In travering from top to botom throughout th mass of ocke
portion of the gas is deompoed. Tts oxy on unite with the incandescent
arbon to torm carbonico oxids

 one is stopped up whilst the other communicates by a tube, with the
generator ot the quadrupl curren. To effect the decarbonisation, the

 the entire masos of from the two hald of of the grationg of hollow tubes, and
This turning mass takes a rotary. movement

stam raised to more than 800 deg, of the centigrade, or 1,440 deg. Fah.
becomes decomposed its oxygen burns of the caron as well
partices the the
it

 to the centre of the lower part of the burning g mass a suitabie volume of air
mixed with hydrogen and carbonic oxide, raised to a very hightemperature
This triple

 which combines with the hydrogen and carbonic oxide The steam and
carbonce acid resulting from yheseombination sass of tino the atmompher
by the tube placed upon the head of the retort. The ore having lost its
 cylindrical retorts or in any other forms of gas retorts. And he can avain
himself of the heat esaping from coke furnaces to beat the retorts which
contain the ore and powderco charcoal.

 bender and upper surface of the vegetable matters so fed on to the endless
table, which sis arranged by reference in the form of an inclined plane from or table for the time out of action passes under the supporting rollers, and
there are trays under

 wire, and in some cases the pressing surfaces of the rollers are of ghass In
order to sparate the fuid oils from foots and forefign matters centrifugal
machines are employed. 2294. H. MAstis, old Kat-roud, "Improvanents in sparating starch from
gluten, in apparatus wed therein, and also in preparing cement from
 ciprocating irame is used carrying rollers, by preference four, although other
number of rollers may be used The doug which is to hate the starch
separated from the giuten is placed between the two end pairs of rollers,
the the frame is made to reciprocate, and a constant fifow of water is sulowed to
flow on the dough which wint wash out and separte the etarh from the
gluten the wash water continually flowing through the wire cauze into

 colours, employed may be such as are now ordinarily used in the above
mentioned processes of printing.

The nature of this invention consists in so improving the eonstruction of apeculiar form of oscillating value that when it is is position to leave its and also in soconstructing it that the springs which hold the separate parts of the avive agast its centre of motion seats shall not act on the spinde to force it from base or sides of the vessel to the centre, These channels commenece at one angle of the polygon, and run parallei to the sides, that in comnection with he

 crossed, connot possibly be earain retoreded oits former or uncrossed condition.
The apparatus reauired for corosing cheques on this system consists simply

 required, consist mainly in the application of a calender disposed and com
biniod in a peculiar mamer. 231. H. Fraxcis, Strand, "Springs of suryical truses." - Dated 164

 rielh.
2312.

 extend over the entire length of the layer of charcoal or other decomposin
material in the interior of theses latter. An essential part of the invention
consits

 will be in jected on these parts than on the remainder, and which regulatitng
may be eftected by increasing in these spots either the diameter or the
number projected on the decomposing material He prefers, however, increasing
the number of the perforations rather than incressint the diameter or sur
face of them, as it is very desirabie the steam should be injected in face of them, as it is very desirabie the steam should be injected in a very
divided state.

 are placed. The process of wasting is effected by placing the linen in
several lyart, separater by corruate oltate or frames mate of wicker
work, wood, or other suitable material, vevery alternate frame being moved

 ${ }^{2320}$ O. W. A. F. Powsle, Bristol, "Closing jars and lottles."-Dated 185 ch
 air and water tight joint when the stopper is presed home, On the upper
surface of the stopperthere are two grooves, at right anfles to each other, tor
the the reception of astring or wires, which, beting passed round the neck of the
jar or bottle, and tied over the stopper, secures it tightly in its place. - Not
proced

 the Fretch "cliainee epinglates"), and of links for the same, A quantwy
this metal wire, of which the chains or links are to be made, is wound upo

 to the wire by winding it partially roumd the said mandril. A klind ond die
is then advanced by another cam, shears off the bent piece of the wire, and,
still advancing, gives the second bend to the same. A spring arm or presese-
is then moved against the first bend, and forces the wire arround a second mandril, completing the link. The second mandril is then presesed out of
the link by a cam acting upon a lever attached to it or otherwise, the die it drawn back, and all the parts return to their firts positions, the finimhe process for makking the sinnle links; but if the links are to be tormedpecon
tinuously in the form of a chain, a kind of pincer or tool, with one poin

 this printed paper (which is printed on one side only) for use in the water
closets of all the Government offices, banks, railway stations, and other large estabishments, thus ensuring the notices being brought under direert
observation; and for wrapping purposes he intends giving away this part advertising paper.-Not proceded wieth

 wheel.-Not proceded with

Royal Mail Steam-packet Company.-The directors state in year exhibits an increase in freight and passage money, as compared with that for 1857, of $£ 7,647$, notwithstanding the unsettled con-
dition of Mexico. On the other side of the account, the item of dition of Mexico. On the other side of the account, the item of
coals shows a dimution, as compared with 1857 , of $£ 6,721$. Wages show an increase of $£ 4,005$, which is accounted for by the additional
pay of the officers and crews of the ships chartered to the Europeail
and Australian Company. In provisions, a decrease of $£ \leqslant, 312$ occurs, notwithstanding the increased receipts for passengers conveyed; this resull is to be attributed to the more complete organisa-
tion of the arrangement for victualling the company's ships. The the part of this company with the arrival out of the mails tained until sufficient time has elapsed for the receipt of final returns
from the colonies and the subsequent completion of accounts in the London office. The directors can only state, therefore, in general orms than the loss will be greater than was anticipated at the time deemed it prudent to appropriate the surplus beyond $£ 200,000$ to the credit of the insurance fund-viz., $£ 51,949$, as a provision to meet
such loss. The balance of the profit and loss account, available for that the ordinary dividend of $£ 2$ per share, free of income-tax, be
declared. Iron from Scoria.-It is said that a native of Germany has
discovered a process by which iron may be extracted from the scoria, or dross from the furnaces, which is always thrown away as com-
pletely useless. It has hitherto been a matter of surprise that this material, which is known to contain a great quantity of iron, has not been treated in the same manner as the ore from which it is pro-
duced. Attempts have been made to reduce it into the metal, but with results not commensurate with the expense attending the opecuting every plan yet suggested. These difficulties consist in its ex treme infusibility, in the large quantity of sulphur and phosphorus contained in it, and principally in the closeness of its body, whieh prevents access to the reducing gases. In Silesia, where the ore is
very poor and difficult of reduction, and yields iron of a bad quality, in the large furnaces heated with anthracite coal, as much as 25 per cent. of scoria is frequently added to the ore; but it is only in furcoria can be greatest dimension (60 ft . high) that this quantity The iron, besides, that is produced from this combination, is always result from bringing this refuse into use, incited the German rentle man we have alluded to to make the attempt. He set to work with ardour, tried numerous experiments, and at last found his efforts crowned with success. His plan is said to be simple and inexpensive, ngredients, is described as of good quality, and abundant. The apply for a patent to secure himself its advantares. - Bulletin-
Foreign and Colonial Jotrings.-A Society of Arts has been
established at Melbourne.-There are now thirty-six sugar plantations in the colony of Natal. The arrow-root plantations are also on the increase.-A committee have reported to the Common Council leakage of gas pipes, within four or five years, in that city.-Cotton
raised last year in Tunis, under very unfavourable circumstances, raised last year in Tunis, under very unfavourable circumstances,
the seed having arrived too late, has been valued by the Cotton supply Association at from 8d. to $8 \frac{1}{2} d$. per lo.-A diving apparatus,
of simple construction, is now in use in the Rhine. It is a wrought
iron tube, with double doors, and is 17 ft . long. It is lowered between two barges, the water is pumped out, and the diver goes down.-
The contract with Sir S. Morton Peto for the Oporto Railway, has been put to the vote, and has been rejected by the Cortes.-The only lighthouse, which is not yet finished. All endeavours to procure water upon it have failed, and but a scanty supply is procurable from the ad-
jacent coasts. Water-tanks have been constructed, which are chiefly supplied from Aden, and it is proposed to erect reservoirs to collect the
rain, as well as a condensing apparatus. Perim has never been permanently occupied by any nation save the British.-A simple
contrivance has been invented by M. Dagon, of Moret-sur-Loing,
in France for receiving swarming. It consists of an enlongated muslin bag, distended on cane hoops, and opening and shutting at the mouth by a running
string. This bag being attached to the branch on which the bees are swarming, and the inside rubbed with honey, all the bees will soon make their way to the bottom, when the mouth can be closed,
and the bees conveyed away in the bag. The same contrivance is
applied to abstract the bees from The Scutari monument to the memory of our heroic countrymen sacrificed in the late war is at length completed, the inscriptions in
English, French, Italian, and Turkish ou the four sides of its base having been finished during the past week. Stripped of its cloud of pedestal, base, and shaft towering aloft nearly 90 ft . in the air.
In France (says the Bulletin) there are thirteen railway companie the united capital of which amounts to $£ 120,000,000$; in Germany even compnies only, the capital of which amounts to $£ 55,520,000$. Two lines of these last-mentioned railways have not yet been opened. The French insurance societies possess a capital of $£ 9,440,000$; the
German societies of a similar nature, $£ 9,760,000 ;$ and the Russian
only $£ 2,720,000$. The mining interest in France reckons forty-nine companies, with a capital of interest in France reckons $£ 10,240,000$; in Germany 154 comthe united capital of which is $£ 2,720,000$. The silk yarn manufac
tories are eight in number in $£ 1,280,000$; in Russia there are but eight, but their capital
$£ 1,460,000$; and in Germany there are thirty-eight, the capital $£ 1,460,000$; and in Germany there are thirty-eight, the capital
which amounts to $£ 4,640,000$,

THE IRON, COAL, AND GENERAL TRADES OF
BIRMINGHAM, WOLVERHAMPTON, AND OTHER BIRMINGHA
DISTRICTS.
the consequence. Several rriages were entirely smashed, their completely blocked up. The drivers escaped by jumping off thei engines.
A few mornings ago a most singular accident happened on the canal at Coalport, in Shropshire, by which several boats on the
canal, besides the ferry on the river, were smashed to splinters, and canal, besides the ferry on the river, were smashed to spinters, and
several persons had narrow escapes of their lives. The two canals are connected by an incline plane, by which the difference of level is overcome, the loaded boat being let down from the higher to the
lower by means of a wooden frame worked upon wheels, and by means of a strong chain attached to a barrel, to which is applied brake. In the present instance the chain broke, and the boat, con just begun the descent together with the cak their own gravity, soon gained an amazing impetus, the fragment of chain dealing out destruction to everything within its reach. A man at the bottom, one of the bouts, hearing the noise, had the presence of mind to omp out and run away. It was fortunate he did so, for that a water of which they rebounded like balls into the air. The boat in which the man had been fell at some distance into the very centre the ferry-boat upon the Severn, from which several persons had just pieces, two men in the cabin narrowly escaping-first, being killed by the falling weight; secondly, being drowned by the sinking of the
The concluding coroner's inquiry into the circumstances attending the late boiler explosion at Weddesbury has been held. The wit-
nesses stated that the boiler was worked at a pressure of 30 1b. to the square inch, and was capable of bearing a much greater pressure; the plates were three-eighths of an inch in thickness, and in some and some other witnesses proved that the plates over the fire had been red-hot, and thus becoming weakenel, coud not bear the
pressure, so that the boiler exploded; the plates had become hot for tell the the boiler been properly supplied with water when the engine commenced working, it would have taken some hours for it to become
low. John Meakin was present, and after being cautioned by the coroner. made a statement to the eflice that he tried the buoy whe there was plenty of water, and that the buoy must have been out or
repair, and deceived him. (Another witness proved that Meakiin did try the buoy.) Meakin further said that the explosion knocke the engine, and prevented the men who were descending the shaft from going too rapidy to the botom. Mr. Longridge said that
there were slides to the shaft of this pit serving of every praise for applying the brake so promptly, for had he
not done so, and thus prevented the skip from running to the botton of the shaft, the lives of the seven men who wre descending must have been sacrificed. This showed how desirable it was that every
pit should be supplied with a proper brake and slides. The coroner summed up expliaining the law of manslaughter, and drew
tention of , he jury to the principal part of the evidence. The jury
after a short consultation, returued a verdict of "Accidental death A few days ago an explosion of fire-damp occurred at the Brad-
ley Green Colliery, in the parish of Bidduph, North Statfordshire, by which two of the workmen lost their lives, the irst man who
died being Peter Bottoms, twenty-nine years of age, and the other coroner, has held inquiries into the cause of the accident, when George eeaver, one of the colliers, stated that there had been fire-
damp in the works for some weeks, and on the morning in question and the gas would be liable to affect their lamps. The two deceased men with others were with him, and they had worked up to about
meven oclock, when the explosion took phace. He did not know from Whlese Ambury was open, and he did not thow whether any naked
Allen
candles were used. He (witness) was also burnt, and several of the In the lecture which Mr. Lional Brough, Government Inspector of Mines, delivered a fortnight ago at the Bristol School of Mines, which
lecture has been before noticed here, and which was prepared, in great part, for delivery to the miners of South Statordshire, the
able lecturer said that iirst in the list of mortal foes to the miner was that nwich, in te enicuan countes, was called "sulphur," a gas which, notwitusclangry that that name had been applied to it, did not often enough (too often) sulphur chemically and mechanically mixed wet ene caat that gave it out, but in the fire-damp itself, there was
decidedly none at all. It was, however, more correctly termed suband
dautly given out in most coal mines, and belolonged to an ext extensive
section in chemistry known as hydrocarbons, or more correctly as regarded its gases, the hydrocarburets. The whole class con-
sisted of gases, liquids, and solids, Our coal mine gas, or so-called sulphur and oleciant gas, were the aeriform fuidd of the family,
and they both contained but two ingredients, carbon and hydrogen
and Carbon was much disposed to mix itself with oxygen as welf as
with hydrogen, and hence the facility with which coal burned in a
and sumed, the two principal results were the vapour of water and car
bonic acid. But with imperfect combustion the watery vapour and
bnate the gases became mixed up with an undue quantity of uncombine
fuel, and formed the canopy of smoke which more or less hung over all large cities, notwithstanding the enforced "consumption or
smoke. The Black Country as South Staffordhire was allee
-was never without this dark Indian-ink-coloured covering. The quantity of muconsumed carbon which flew up the chimneys of Great
Britain with the acending gases amounted to thousands of tons of
coal per annum, which passed away into the atmospere, and seriousl
. contaminated it, without having secured any usetul eftect whatever
He need not point out to them that this was a great national loss of very valuable property. Unskilful furnace construction and ignoran
or careless firing were the causes of the phenomenon which the
termed soke. If they went into Cornwall, where coal cost nearly
a pound per ton, they but rarely witnessed enornous dark masse a pound per ton, they but rarce witnessed enororous dark masses
issuing from the stean-engine climneys. In that country they took
care to dissipate into space as little uncombined carbon as possible. care to dissipate into space as little uncombined cartoon that possid
Coall was to expensive in that part of the country to be treated in
such an unorthy manner. Feturning to his subject, Mr. Brough
gave a chemical explanation of fire-damp, or sulphur, and then pro gave a conemical explanation of ire-damp, or sulphur, and then pro
ceeded to mention another natural enemy to the miner, second in
danger only to fire-damp itself, toung destroying life in at otall
ditferent manner. The one burst into sudden tlame and loud explo

 the e reat economy of nature. It was almegether irrespirantle. II an
attempt were made to breathe it in its pure state, the epiglottis became spasmodically closed, and the air of the atmosphere was then pre-
vented from entering the lungs, so that suffocation was the inevitable and immediate consequence. This gas was a combination of two
the known great leading elements, in the proportion of two atoms o equivalents of oxygen to one of carbon. It was more than half as
heavy again as the air we breathed. Thus its tendency was to occupy the lower or more deep-seated parts of underground excava-
tion tion. Fire-damp sought the pit-holes and upper parts of a mine;
but their deathly "black-damp, was found under the level of ven-
tilation; and if a a candle were immersed therein it would immediately tilation; andished. As an approximate rule, when carbonic acid gas
was mixed with atmospheric air in the proportion of from 5 to 10 When they found a place a a ittle bit "dampy," as the Midland folks termed it, they should get in a sweeping current of fresh aso by
render the place, wherever it might be clean and wholesome render the place, whi for its presence was sometimes accompanied by an excess of nitrogen, another fatal gas. Colliers are by an excess of nitrogen, another fatal gas.
too often troubled with carbonic acid gas; and
such circumstances that government-road workings fill up with the damp, unless the building is made up tight,
and well rammed in. They would often find that, hold their
candle as they would, they could hardly keep a light. Whenever candle as they would, they could hardly keep a light. Whenever occurred was not in a fit state for men and horses to work in. If did not kill at once, it still had a material effect on the health of living creatures. It was not uncommon in Staffordshire, upon visitdampy this morning." All hands were at play, watching for change in the weather, or for the wind to chop about to another quarter. This little "dampiness" was a source of discomfort and men, and of great loss to the master. Yet there was no reason whatever why such a state of circumstances should pre-
vail. If the roads were but large enough, the sides of work well open, and the wind-ways all clear, there should be no stoppage on
account of "black-damp." A good furnace, and the air pulled sharp through all the openings, would cause the noxious gas to mix with the atmosphere under ground; and it would be sent flying creased temperature will be sure to occasion. "I do not like (said Mr. Brough) to see a lot of naturally industrious colliers playing on
the bank because the pit is a little 'dampy.' It is true that the bank because the pit is a little 'dampy.' It is true that you true that you can do away with its accumulating in dangerous quandifficulty as to any reliable statement of their comparative quantity and degree of danger under ground. He noticed, tirst, one that in
many counties was called "white damp," and in Staffordshire it was known by the name of "white sulphur." This gas was remarkable for its fetid odour, and it proved fatal when the lungs
inhaled it. It was inflammable, and consequently dangerous from that cause as well as from its poisonous quality. Its weight, which was rather heavier than the air we breathed, would sometimes be an yhydrocarbon, commonly called olenant gas, and consisted of two nearly approached that of our own natural atmosphere. It was which extinguished tlame, and was wholly incapable of supporting animal life. It was more especially present in a coal mine after an explosion of ire-damp. oubt its frequency. It was called "carbonic oxide," and was the heads of blast furnaces, and also might often be observed in the night-time flickering about the coke beds or an ironwork, exhi-
biting a beautiful blue flame. Its composition was one of carbon to nine that had a steam long since (continued Mr. Brough) a coal of a terrible calamity. By some careless act a door was left open, diverted into a wrong chamel and got amongst the workmen, ten of whom unfortunately lost their lives. Although carbonic acid gas had something to do with this fatal occurrence, I myself believe that the carbonic oxide generated by the burning of the coals under the boiler was the principal agent in this deplorable event." He
had now exhibited a formidable catalogue of dangers; carburetted hydrogen and choke-damp, were, however, the most dangerous foes
to the miner. At the same time the only remedy for all the six
gaseous compounds that he had described was, thorough, searching gaseous compounds that he had described was, thorough, searching
ventilation. If a mine was properly laid out, and an adequate furnace or furnaces kept constantly fed and arem had their duties to
were entirely on the side of safety. The men might, in a moment, undo that which had cost great labour and vast sum of money to accomplish. If the viewer was skilful, the dered almost as safe as surface operations. Mr. Brough concluded the value and use of the safety-lamp, respecting which it was not, he said, too much to say, that if we should now be deprived of its
use, the result would be a material whole kingdom; indeed, of all the civilised portion of the globe.
"Sir Humphry (Mr. Brough said) determined, with his usual was positively dangerous. This may really be said to be the prinhave been manufactured with twenty-six wires, or 676 openings,
hamp and I do not say that they are unsafe; but I do say,
that at twenty-eight the lamp is far more trustworthy.

NOTES FROM THE NORTHERN AND EASTERN COUNTIES.

The Electoral Convolsion - The Bansslex Minisa Distact - The Maschester Post-opfice Question-Geological featubes of the Man-
caester Distact-Isle of Man Telegaph-The Locomotive and Rallway Carmiages foa the pacha of Eaypt-Smoke Consictaption on Rail-
 Saefrield Trade - Boydell's Traction Engines - Manchester M The political struggle with which the provinces are now convulsed The Barnsley mining district is reported to be in anything but a
atisfaetory state as regards the feeling between masters and workmen. A year since a union was formed amongst the miners; but as
an opinion began to prevail that it was losing ground, a meting was held on Friday on the subject. Mr. Richard Mitchell, secretary to
the Miners' Association, was called to the chair, and in opening the meeting said, it was well known that the miners produced a great
deal of the wealth of the nation, but out of every twelve hours' la-
bour eight of them went into the pockets of the capitalists. Before The wealth produced by the miners was enormous, and it was wel
known that they were not sufficiently remunerated for their labour nor were they properly treated by their masters. It was labou
that produced capital, and the reason that the workmen were no
possessed of capital was because they had not sufficient knowledg and were not properly organised. Mr. Davies moved a resolution to
the effect that a irm organisation thould be maintained by the dif ferent mining districts in the kingdom. Mr. Davies denounced the
truck system, and asked why it was not prohibited? It was because of judging and thinking for himself, and had not the opportunity
in a position to get better remuneration for their labour themselve they might adopt means to enable them to obtain and maintain the
rights of labour. He hoped they would be determined to rive thei support to the Union, not neglect their payments, and then eventu-
ally they might be able to resist the system of oppression to which was because they did not combine torkmen could not achieve thi amount of confidence in each other. The resolution was adopted, and mutual co-operation is the only means by which the full reward of our labour can be secured or enjoyed by us." One of the supporters
of this second resolution said he consldered that the enormous sum collected to support strikes were so much money thrown away.
The Postmaster-General, in his elaborate report on the workin The Postmaster-General, in his elaborate report on the working of
his department during the past year, observes with reference to the
Manchester post-ofice the erection of a large new office at Manchester; but in deference to the erection of a large new ofice at Manchester; but, in deference to
the wishes of many of the leading inhabitants, it has been determined to saccertain whenther it is practicable to procere, on such terms
as the co cose will warrant, a site as the case will warrant, a site in substitution for this in another
part of the town, which it has been represented would be more conpart of the town, which it has been r
venient to the inhabitants generally."
At the last meeting of the Manchester Geological Society, Mr.
W. Binsey produced a district, coloured by himself, on which he he of Manchester and the district, colocored ty himself, on which he pointed out the principal
geological features of the country. Mr. Binney stated that the
geology was chiedy trias in the geology was chiefy trias in the nelybbourbood of the city, with bits of permian in the valley of the Irk, at Newtown and Collyhurst;
magnesian marls, and the lower red sandstone. In the rocks below magnesian marls, and the lower red sandstone. In the rocks beeww
Smedley Old Hall he had found a good deal of fossil wood, not in a
very only places where fossils would be found on that side of Manchester. The Manchester coal-field contained plenty of fossils, and an
abundance of the remains of fish. Going up the river Medlock, at abundance of the remains of fish. Going up the river Medlock, at
Mr. Woods werir, Philip's Park, he had found shales full of fish remains; whether they remained now he could not say.
The Committee of the Isle of Man Telegraph Company have
accepted the tender sent in by Messrs. Glass and Elliott for manufacturing and laying down a submarine cable between the island and England.
The Otodine
The Otodine has shipped the splendid locomotive and railway
carriages, built by Messrs. R. Stephenson and Co., and Messrs, J. and H. Burnup, for the Pacha of Egypt. They are, it is stated,
the largest parcel of machinery ever shipped from the Tyne the Aargest parcel of machinery e ever shipped from the yhne At Grimsby, the Manchester, Sheffiedd and Lincolnshire Company have again been fined ≤ 5 by the local magistrates for not
consuming the smoke caused by the use of coal instead of coke on their locomotives. The Eastern Counties engines frequently send forth a a ood deal of smoke, but the nuisance is allowed to pass
unnoticed.] The company afterwards antacked a man for not consuming his smoke, or, speaking more strictly, smoking a pipe on the
new dock, contrary to their bye-laws. The defendant was fined $£ 1$ and costs. It appears the company are determined to make an
example of all persons smoking on their works, in consequence of their having upw
under their care.
Ata meeting of shareholders in the Atlantic Telegraph Company,
held a day or two since in Liverpool, Mr. Stuart Wortley presiding the chairman described the present position of the company, and
pointed out the various applications that had been made to the with such success to the Red Sea and Indian Telegraph Company. The terms offered were as follow:-A guarantee of 8 per cent. upon
the carital to be emplo yed, not exceeding \&600,000. This guarantee
to be for twenty-five years, couditional upon the succeseful working to be for twenty-five years, conditional upon the successful working
of the cable, at the rate of not less than one hundred words per hour. A postal contract of not less than $£ 20,000$ per annum for the
business of the Government; any excess of work to be paid for at the company's ordinary tarif. The company's contract with the
American Government, whereby a further minimum sum of $£ 14,500$ is secured to the company, is to be allowed to subsist. So that, by
this arrangement, the guaranteed revenue of the company, inde pendent altogether of mercantile support, will be $\pm 34,500$ per
annum. The Government to allow $£ 20$, on of the guaranteed capital to be expended in efforts to resuscitate the old cable. The
company to transfer to Goverament that portion of their privileges under the agreement between themselves which containerd the exclu-
sive right to land cables from Europe on the shores of Newfoundland sive right to land cables from Europe on the shores of Newfoundland.
It was proposed to issue the new capital in shares of 55 each, with a view to popularise and extend the interest in the undertaking\%; and
that the sumary of what the directors would offer to the public over and above the national characterecof the work and dits value as a com-
mercial and imperial agent, would be as follows :- lst. A capital of mercial and imperial agent, would be as follows $:-1$ lst. A capital of
$E 600,000$, in 8 per cent. preference shares of $£ 5$ each, guaranteed by incour of dent of public support. 3rd. A policy of insurance upon the suceces-
ful extension of the cable from the shores of Great Britain and Newfoundland. 4th. A guarantee for careful management and electrical suceess under a contract similar to the one just described, whereby the
interests of the contractor are involved absolutely in those of the company. A resolution was adopted, approving of the policy sketched
out by the chairman. At the last meeting of the Liverpool Docks and Harbour Board,
the engineer was requested to order eight sets of Morse's telegraph instruments, eight tons of iron-wire, and 5,000 glass insulators, for the bill promoted by the dock board in Parliament had passed the third reading, and received the royal assent before the prorogation.
Mr. Maclver asked whether, that being so, the docks and quays and works committee would reconsider their determination as to the proposed steam-dock off the Huskisson Dock, and make it 300 ft. instead
of only 150 ft. wide. The chairman said the best way would be for
Mr. MacIver to communicate with the works committeen the subject At the last meeting of the Liverpool Architectural Society, Mr
Chantrell exhibited a model of a furnace for re-burning animal
 saving in fuel was effected; it would also, he said, be a very cheap way of producing peat charcoal for sanitary purposes.
A local committee etablished at Liverpool, in eonnection with a meeting to consider the subjects and allot the task of pre-
paring such papers as it might be deemed desirable to present, paring soch papers as it it might be deemed
regarding the interests of the locality, at the next annual meeting
of the said it was expected that the assoceation in Liverpool should
do exactly that which the association at large had done for the country; and, in order to effect this purpose, the committee
decided to direct attention to four departments. The subjects of inquiry were thus explained in the address which had been circu-
lated:-1. TT collect information as so existing (local) social evils and their fit remedies, and the available means and best methods of which such information may be imparted, and from which it may be
drawn. 3. To provide a medium through which means of social reform, suggested by the experience of other localities, may be pub-
lished and made available in this; and, 4 . To aftord, annually, an opportunity of considering, as far as may be in the presence of the
parties immediately concerned such portions of the information large, at its next annual gathering. In the discussion which fol large at irs next annual gathering. Mnestione of pubcussion healthich irect-
lowed, Mr. Higginson spoke on the questis
ing his remarks to the subject of infant mortality. In Liverpool they bad not the temptation which existed in some manufacturing
districts, to leave child deen at home under the influence of narcotics whistricts, the parents went out to work. He thought means should be
provided provided the euabbe working men just recovering from sickness to
have the beneits of fresk air out of town. He highly approved of
the drainage works which had lately been the drainage works which had lately been constructed in Liverpool,
his conviction beeng that it contrasted most favourably with the pound foolishness of the old system. Mr. T. Rathbone spoke on the
registration of lodinin-louses, and advised the substitution of Lord
Shastestury's measure for the local act. Mr. P. Rathbone spoke on the question of social economy, and said a great step had been made in the right direction by the "cental" in Liverpool. Alluding to trades' unions, he said the general association, feeling the importance of the subject, had appointed sub-committees in various towns
to report on the subject. Mr. T. Rathbone regretted the decision of the commissioner on decimal coinage; but congratulated the Liver-
pool corn trade on having adopted the cental. Dr. Gee congra-
tulated the town on the greatly improved condition of its working tulated the town on the greatly improved condition of its working
classes, as evidenced by the great decrease in zymotic diseases. That fact showed that the sanitary operations of the town had been successful. Mr. Danson moved:- "That this meeting, deeming it of vicinity, as well as of the kingdom at large, that the circumstances affecting and determining the social condition of that great and growing community now assembled on the banks of the Mersey should be adequately and systematically investigated, invite all persons disposed to take part in or to aid such investigation to commnnicate by due co-operition, be the better directed to the attainment of the common object." The motion was unanimonsly adopted.
Monday, May 2, is now named as the opening day of the East
Suffolk Eailway. It is feared, however, that the whole system will not be ready for traffic on that day. The delay is expected to occur between Woodbridge and Ipswich-
been more than four years on hand.
This is one version of the matter; but Mr. Ayres, the secretary of Woodbridge section, writes, to a local paper:-"During the past
week the works have so far advanced that their completion is now a question only of a foew days and as notice has completion ive now to the
Board of Trade for the customary Government inspection, the line may be expected to be certitied as ready for public traffic within a fortnight of this time. I will just add a few words as to the works
upon the line, which must be measured, in regard to time of completion, not by its length, but by the time required to complete any
particular portion. For months past most persons residing in the to time of the satisfactory progress made with the East Suffolk line, and of the unsatisfactory progress made with this companys woodrriage
line. The works upon the two undertakings appear to me to admit of no comparison, as the East Sutfolk line traverses for its greatest
extent an easy country, the works upon which are iight and in many parts insignificant, whilst the works upon the in addition to which there have been almost insurmountable withstanding the dificieuties briefly adverted to, it is doubtful-seeing that the East Suffolk line was inspected by the Government officer
about a month since, and the usual certiicate for its opening has not, 1 believe, yet been granted-whether the certificate for the opening of this company's Woodbridge line will not be first obtained."
With reference to a paragraph which appeared in THE ExGIxEkR of last week headed "Agricultural Railway Traftic," it is right to
correct an erratum. The pararaph, which otherwise deals with totals of large magn of four during the last twelve months. This
carried 550 sacks carried shold have been 550,000 sacks. The flour trade on the Eastern
Counties is alarge and lucrative branch of the traffic on that railw which was rightly designated by a former chairman a "bread and
cheese line." The Sheffield Independent has the following on the trade of that compliaints of the oftwoss which pxrevepions, in me host of our staple
branches. Those firms who, from the extensive nature of their operations, may be relied on for correct information, express decided opinions that the state of trade is not so encouraging as it was at the
opening of the year. While some of our rolling mills are but partially employed, others are moderately off for work on sheets and wonderfully. There is more activity in the spade and shovel trade. The pearl handle cutters are busy, all the trade being for a time,
from peculiar circumstances, in the hands of a very few individuals. As may be expected, from the unfavourable state of the continental so strong desire ont the part
not our manutacturers to undertake any
but most timited contracts," but moss limited contracts.
Boydells tre
of attention. It is understood that Mr. Mexting with a fair amount
Wo the St. Nicholas Works, Thetford, Norfolk, has been lately engaged with two of the
engines for the Indian Government, while another has been ordered for the Govermment estabisishments sat Woolwich and a fourth is about to be despatched for the Pacha of Egypt. It was stated some
months since that Mr. Boydell had expended a very large sue ome $f 15,000$, in maturing his invention, and it is, therefore, high, ime that he should bevin to reap his reward.
The directors of the Manchester Mechanic
tising for a secretary, to enter upon the duties of the oface in Jun next. This step has, been neeersitited by the resignation during the
past week of Mr. E. Hutclings, who has for about seven years held the secretaryship.
Two other disagreeable instances of railway carriages becoming on Friday, was approaching Warrington, those persons standing the platform discovered flames rising up from the last carriage. By
gesticulating violently the porters succeeded in attracting the attengesticulating violently, the porters succeeded in attracting the atten-
tion of the engine driver. The speed was suddenly slackened, and
the burning carriage rin. he burning carriage run under the waterspout which supplies the imminent peril. The whole of the luggage packed on the top of the carriage was on fire, the flames only being got under with consider-
able dificulty.-As the parliamentary train which leaves Londo at 7 a.m. was midway between Atherstone and Nuneaton, on
Thursday, the passengers in one of the third-class carriages were diarmed by signs of fire in the roof of the carriage. The attention of arrested, the gaurd in advanace signalled, and the train stopped. The
luggage at the top of the carriage had become ignited, most probably luggage at the top of the carriage had become ignited, most probably
by a spark or cinder from the engine, and on the removal of the ooverings the whole was discovered in flames. The passengers in
the carriage were speedily removed, and the burning luggage was quickly thrown off, though not before part of the carriage was in
fames. A goods train came up in the opposite direction ot the time names. A goods train came upin the opposite direction at the time,
and by the aid of water from the tender of the engine the flames were extinguishec.
It was stated reently in these columns that the beachmen at
Yarmouth- and, it may be added, at one or two other places on the east coast-entertained objections to the new life-boats with hooded ends supplied by the National Institution. At a meeting a
Yarmouth last week, attended by Captain Ward, the society's inspector, it was decided, arter a long consultation, that Mr.
Beeching, who obtained the prize offered by the Duke of Northumberland on the subject, should prepare a plan of a life-boat, and
consult the beachmen with the view of meeting their views as far as possible-the plan to be delivered to the inspector in a few days.

Londos Mechanics' Instritution.-Upwards of $£ 2,000$ are reported in the Times as having been already subscribed towards the
purchase of the building and relief of the trustees. $£ 3,500$ are required. Exports for Masci.-The Board of Trade returns for March show an increase in our exportations equal to that presented in the
preeding month, the excess over the total for the corresponding month of last year being $£ 2,312,954$, while as compared with March, 1857, when the false mintation of trade was at its height, there is also
the large augmentation of $£ 856,880$. The exports for March, 1859 , were of the value of $£ 11,313,228$, and for March, $1858, £ 9,000,274$. The aggregate value of our exports during the irst three monthh of sponding period of 1858 , showing an increase of $£ 7,010,504$, or 30 per cent., which has occurred as follows :-
-

Compared with the same period of 1857, there has been an increase
of $£ 1,693,301$, or nearly 6 per cent.

SCOTCH PIG IRON REPORT.

a. M. mancyactured iron
 Glascow, 27th April, 1080 Our pig iron market sinco this day weok was comparatively yinactive up
to this morning the prico
 The demand for shippent has seen yood, nad hast week the exports wero Suaw axd Thoxsoz, Metal Brokent

PRICES CURRENT OF METALS.

British Metais aro quoted Free on Board; Foreign in Bond - Extina
sises are charged for the the rates arged by the truio. Brokeraso
is not charged for buying except on Foreign tin.

 socrer Pro prox than been exceedingly dull durning the past weak, oviligg

 Very lang gidid and Straits are quoted $\ell 1$ per ton lower.
April 28, 1869.
MOATE and CO., Brokers,
E5, Old Broad-street, London.

GLycerrise--Under a process lately patented in England, this
substance is stated to be obtained from spent soap-lees by forcing dry steam of a temperature of 400 deg . Fah. through them. By this means the glycerine is evaporated, and condensed in a separate vessel, upon the common principle of distillation. Glycerine has
also beea used lately in EEngland mixed with paper pulp, whereby the paper so made is rendered soft and pliable, and especially useful than this, glycerine thus employed in the manufacture of paper enables it to be printed upon when dry, and the impressions are
even more sharp and require less time to dry than upon ordinary damped paper.]
SHEFFTELD

Halifax. - Sheffield also was noted for its whittles the blade to the Briton for his beef, and the savage for his "long-pig"- to the Red Indian for scalping a foe, and the civilised
American for "solving a difficulty"- to the brigand for cutting a throat, the sailor his tobacco, the priest lisi sacramental bread. One
great branch of Shefield's industry in these ays great branch of Sheftields industry in these days consists in the
manufacture of that mysterious article of feminine apparel which is the essential bue female form its Sthe thives on the new fashion, which almost makes up to it for the decline in the tomahawk business con-
sequent the old industrial towns, now hardly able to hold its own against its younger rivals.
otherwise by its name of terror to to thieves.
". From Hell, Hull, and Hituas, goo Lord diver us!" was a part of the ancient thieves
litany, the last being dreaded the most for its bloody law, by which felons taken within the liberty, either "hand-habend, back-berand,
or confessand," halfpenys, were liable to be beheaded within three days by a species of guillotine. Not the least important of the manufacturing towns shoddy. This is the famons rag capital - the tatter metropolis, whither every beggar in Europe sends his cast-off clothese to be
made into sham broadcloth for cheap gentility. Of moth-eaten coats, frowzy jackets, reecky linen, effusive cotton, and old worsted greasy pulp by mighty toothed-cylinders, the much-vered fantics reasy pulp by mighty toothed-cylinders, the much-vexed fabrics
ree-enter life in the most brilliant forms-from solid pilot cloth to silky mohair and glossiest Tweed. Thus, the tail coat rejected by sthe Irish peasant-the gaberdine too foull for the Polish beggar-are
turned again to shining used reappeaif it may be in the lustrous paletot of the sporting uses, reappearing, it may be, in the tustrous
gravian belle, or the sadi-sleek the deicate riding-habit of the Bel
grment of her contessor. - Westgravian belle,
minster Reviex.

