EXPRESS COMPOUND PASSENGER ENGINE, WITH SINGLE DRIVING WHEELS, NORTH EASTERN RAILWAY. - WORSDELL AND V. BORRIES' SYSTEM.
In our issue of January 3rd we mentioned that Mr. T. W. Worsdell had built five compound engines, with cylinders 20 in . and 28 in . in diameter and 24 in . stroke, with single driving wheels, 7 ft .7 f in . in diameter, and we stated that at some future period we should be able to give more particulars. We now, through the courtesy of Mr. T. W. Worsdell, locomotive superintendent of the North-Eastern Railway, have pleasure in placing before our readers illustrations of these handsome and powerful locomotives, the latest development of the compound system, specially designed to work the ever-increasing East Coast traftic, which at the present time is one of will, with the opening of the Forth Bridge, be further
men in charge as possible, and every facility has been provided for their ready control. The personal comfort of the enginemen has also been attended to, so that they can perform the duties that devolve upon them under the No. 1517, was circumstances. The first of these engines, the other three-the fifth will be exhibited at the forth coming Exhibition in Edinburgh-has been working the fast passenger traffic between Newcastle and Edinburgh regularly, the number of vehicles varying from ten to twenty-two, in either case these engines have no difficulty in running within time.
On one occasion a trial was made between Newcastle and Berwick with a train of thirty-two empty carriages, the distance being sixty-seven miles, and the total weight of train 270 tons; the time was seventy-eight minutes, or three minutes less than that of the Scotch express, and with the heaviest loads it is quite unnecessary to provide an assisting engine, an important consideration in the an assisting engine, an important
economical working of a railway.
The consumption of coal is indeed much lower than
was drawn. ${ }^{1}$ There are many novelties in connection with Mr. Worsdell's engines which our illustrations fully explain; particular notice should be taken as to the way in which the 20 in . and 28 in . cylinders are got between the narrowspaced frames, as they are placed on the same centre lines as all the engines that Mr. Worsdell has constructed for he last nine years, whether compound or non-compound, name. several more of these large engines. It should be stated that the boilers have been constructed and tested to carry a working pressure of 200 lb . per square inch, but it has not been required to exceed 1751 l ., at which pressure hey are now working. Following this will be found a table of the leading dimensions and particulars of these engines :-
Particulars of Compound Express Passenger Engine, with a Single Pair of Driving
Borrie' System.
Cylinder (high-pressure)-
Diameter of cylinder
Strok of piston
Length of ports
Width of steam
Length of ports
Width of steam ports.
exhaust port
Distance from centre line of cylinder to valve face .
Lap of slide valve . . .
Maximum travel of valve
Maximum travel of valv
Lead of slide valve
Inside clearance of valve
Distance apart of cylind

Diameter of rocking shaft ..
Wheols (east steel)- ..
Diameter on tread, bogie

Diameter at whecl seats
Dear
", $\begin{gathered}\text { bearings } \\ \text { centre }\end{gathered}$
Distance between centres of bearings
Length of wheel seats
Length of wheel seats.
bearings
Diameter of crank bearings
Length
Diameth
Length
Distuc
Distunce between centres of cranks
Bogie axle (steel)-
Diameter at wheel seats

Length of wheel seats.
Distance betwings
Distance between centres of bearings
From centre of bogie to front buffer beam
Centres of bogio whecels
Centres of bogie wheels
From centre of bogie to
", $\begin{gathered}\text { driving } \\ \text { trailing to back ", trailing of frame }\end{gathered}$
Distance apart of frames
Thickness of fre
Distance apart of frames
Thickness of frame
Thickness of frame
Distance apart of bogie frame
Thickness of bogie frames.
Thickness of bogie frames.
Boiler (steel)-
Boiler (steel)-
Height of centre of barrel from rails
Length of barrel
Length of barrel
Diameter of barrel outside..
Thickness of plate
Thickness of plates $\begin{gathered}\text { smoke-box tube plate }\end{gathered}$
Pitch of rivets
Pitch of rivets
Diameter of rivets
Fire-box shell (steel)-
Length outside
Longth outside
Breadth outside at bottom
Breadth outside at bottom
Depth below centre line of boiler, front
back
Thickness of throat plate . ".
sides and top plate
sides and top plate
back plate
Pitch of copper stays
Diameter of copper stays
Roof stays, cast steel girder section.
Inside fire box (copper)-
Length of fire-box-ipside at bottom
Trep of box to inside of "shell
Depth of box inside, front.
ubes (brass)-
Tubes (brass)-
Number of tubes, 203 .
Length between tube
Number of tubes, 203.
Length between tube plates
Diameter outside

Grate area
Working pressure
Weight of engine (empty)-
Driving
Drailing :"

Total weight

Weight of engine (full)-
Bogic whecls ..
Bogiv wheels
Driving "
Trailing
Total weight

$46 \quad 13 \quad 2$$\begin{array}{cc}\mathrm{ft} & \mathrm{in} . \\ 4 & 9 \\ 6 & 4 \\ 6 & 4 \\ 4 & 5 \\ 3 & 9 \\ 0 & 9 \\ 0 & 3 \\ 0 & 5 \\ 0 & 10 \\ 0 & 6 \\ 0 & 78 \\ 6 & 10\end{array}$

Wheel baso-
From front buffer beam to centre of leading whee
,$"$ centre of leading \quad middo \quad middle
traing
trailing wheels to back buffer beam
Wheels- " $"$ Diameter of wheels on tread
Dinal
$\stackrel{9}{3}_{3}^{4}$
Diameter of wheels on tread
5
10
6
7
10

anticipated. At the end of October, No. 1517 engine averaged 26.4 lb . of coal per mile, which must be con sidered splendid work, considering the service it is
engaged on. These engines steam well and run exceed engaged on. These engines steam train of eighteen six wheeled carriages a speed of about ninety miles per hour the highest on record by several miles, was obtained, and at that speed there was not the slightest inconvenience in
moving about on the foot-plate or front end of the engine miagrams were taken on this trip which we hope to illustrate in a future number. We give below examples of diagrams taken at various speeds, and combined by Mr. Worsdell. One set it will be noticed was taken at a speed of eighty-six miles per hour on the level. The speed was carefully measured by stop-watch and mile posts, the quarter mile posts being frequently registered during the trip, the shortest time was just over ten seconds per quarter mile. The highest indicated horse power was obtained at this speed, viz., 1068; the weight of the train, including engine and tender, was 310.6 tons Last week we gave a longitudinal section and plan this week we give an end view; and a general elevation on almost the same scale as that to which our illustration of Mr. Webb's compound engine, Marchioness of Stafford,

simply stating that in the last few years about 600 have been built and put to work, and the demand for them is steadily on the increase. Numerous attempts are now being made to produce compound locomotives of similar design.
Mr. Worsdell has done a great deal to develope the compound locomotive. From the first he has adnered to the two-cylinder principle, in order to keep the machine as simple as possible, Joy's valve gear facilitating matters very materially. While locomotive superintendent of the Great Eastern Railway he designed the first compound passenger engine on this principle, with cylinders 18 in . and 26 in . diameter respectively, with 24 in . stroke and coupled driving wheels 7 ft . in diameter, and having run this for a considerable time built ten others to exactly the same dimensions, there being no alteration in any parti-
cular. Since going to the North-Eastern Railway he built the first compound passenger engine on very similar lines and dimensions, but with an improvement in the intercepting valves and in the main valves of the cylinders, making all ports larger, and in these alterations finding a reater economy. Then he extended the number of goods engines, and has built a large number of six-wheeled coupled goods locomotives with tenders, and also tank engines. Both types have been illustrated in our pages, ${ }^{2}$ keeping exactly the same dimensions of cylinders, so that at the present time he has on the North-Eastern line, working and under construction, 32 compound passenger engines and 162 compound six-wheeled coupled goods engines, with tenders and tank engines.

2 See The Enaineer, January 14th, and February 25th, 1887, and
October 26th, 1888 . October 26th, 1888.

COMPOUND EXPRESS ENGINE, No. 1518.-(WORSDELL AND V. BORRIES' SYSTEM.)
COMPOUND EXPRESS ENGINE, No. Toine, Tender, and Train, 310 tons 6 cwt. High-pressure cylinder, 20in. dia.; Low-pressure cylinder, 28 in.; stroke, 24 in . Driving wheels (single), 7 ft . $7 \frac{1}{4} \mathrm{in}$. diameter.
Cards 1, 3, 4, and 5, H.P. valve $\frac{1}{4} \mathrm{in}$. lead, $\frac{3}{1} \mathrm{in}$. inside clearance $)$ January $20 \mathrm{th}, 1890$.
Cards 1, 3, 4, and 5, L.P. valve $\frac{1}{6}$ in. lead, $\frac{1}{4} \mathrm{in}$. inside clearance
Cards 2, 6, and 7, L.P. valve Łin. lead, łin. inside clearance, January 10th, 1890.

High-pressure cut-off.... ... 63 per cent.
Loir-pressure cut-off" 78 per cent.
$\begin{array}{llllll}\text { Speed } & \text {.. } & \text {... } & 17 \text { mile } \\ \text { Boiler pressure ... } & \text {... } & \text {... } & 180 \mathrm{ll} \text {. }\end{array}$
Mean effective pressure, high-
pressure cylinder 9425 l.
Mean buck pressure, high-
pressure cylinder 56.75 ll .
Mean effective pressure, lov-
pressure cylixder 45.9 ll .
I.H.P. $\left\{\begin{array}{l}\text { High-press.cylin. } 224.0 \text { H.P. } \\ \text { Lor-press. cylin. } 214.0 \text { H.P. }\end{array}\right\}$ Diff. 10 H.P.

Total $\overline{438}$
1 in 170 up .

High-pressure cut-offi... ... 63 per cent. $\quad 78$ per cent.

Card No. 3.

1 in $200 u p$.

REVOLVING CYLINDER ENGINES.

No. I.

ROTARY MECHANISM.
The mechanism of a direct-acting engine consists of a piston reciprocating in a cylinder secured to a fixed frame, a crank shaft revolving in bearings arranged in the fixed frame, and a connecting-rod jointed to a crank pin on the shaft and to a pin formed in the piston or piston-rod. During a complete revolution of the crank shaft in its bearings, the crank pin makes a complete
revolution in that end of the connecting-rod to which it is jointed, and the other two joints, the piston in the cylinder and the pin in the tail-end of the connectingrod, reciprocate through a limited stroke and a limited angle respectively. This disposition of mechanism always seems to be indirect on account of introducing a reciprocating piston, when the motion of a revolving shaft is the object to be attained. Many efforts are continuously made to obtain direct action, but none seem to effectually attain their object. Amongst a crowd of efforts of various characters, one principal seems to be attaining
an increasing popularity; on it are constructed what may be termed revolving cylinder engines.
Two shafts or frames are arranged, which revolve around two parallel axes a little apart, and are coupled together by a piece which reciprocates respectively to each; generally one of the reciprocations is rectilinear and the other angular. Though very different in appearance, yet these engines bear a close analogy to the ordinary fixed cylinder engine. In fact, the complete cycle is the same as in that engine, but its order relatively to the fixed frame altered. If, instead of

COMPOUND EXPRESS ENGINE, DIAGRAMS.

High-piessure cut-otf
Loir-preasure cut-oiff
speed.
Boiler pressure
Meuneffectice pressure, high
Mressectice cylinder
Mean back pressure, high-
pressure cylinder
Card No. 4.

Mrenn effectice prexsere, loir-
pressine cylinder.
50 per cent.
68 per cent.
H. $\{$ High press, culin. 41.0 ll .
I.H.P. $\left\{\begin{array}{l}\text { High press. cylin. } 291.5 \text { H.P. } \\ \text { Lor-press. cylin. } 338 \cdot 1 \text { H.P. }\end{array}\right\}$ Diff. 46.6 H.P. Total $. . . \quad . . \overline{629.6}$

1 in 461 up.

Card No. 5.

Card No. 6.

High-preasure cut-off.... ... 47 per cent.
Lore-pressure cut-off 67 per cent. 75 miles per hour.
Lecel.

Card No. 7.
High-pressure cut-aff...
Lor-pressure cut-olf 53 per cent.
Loir-pressure cut-olff.
Speed 70 per cent.
Boiler pressure . 86 miles per hour.
170 lb .
Mean effectice presserve, highl-
pressure cylinder
pressure cylinder 170 lb .

Mean buck pressure, high-
pressure cylinder
pressure cylinder $45 \cdot 68 \mathrm{l}$.

Mean effictive presserve, loor63.4 ll .
pressere cylinder 21.92 ll .
I.H.P. $\left\{\begin{array}{l}\text { High-press. cylin. } \\ \text { Lov-press. cylin. } 550.6 \text { H.P. } \\ \text { Lis. }\end{array}\right\}$ Dift. $32 \cdot 6$ H.P.

$$
\text { Total } \overline{1068 \cdot 6}
$$

Level.

arranging that the link or frame which holds the cylinder and main bearings be fixed, we arrange that the crank arm or frame which contains the two revolving pairs shall be fixed, then we come at the pattern that forms the subject of this article. Supposing this to be done,
we have that which was the fixed frame making a comWe have that which was the fixed frame making a com-
plete revolution relatively to the now fixed crank arm, and that which was the connecting-rod making also a complete revolution to the crank arm. These two revolving pieces are coupled together by a piston or reciprocating piece, which moves backwards and forwards in forwards through a limited the one, and backwards and Some such constructions may be readily understood and holding two cylinders symmetrically placed as shown. The pistons of these cylinders are connected by piston-rods to a common crosshead, the centre of the crosshead being jointed to a pin fixed to a circular frame revolving about a centre B. In this instance the cylinders revolve absolutely about the centre A , and the pistons approximately about the centre B. They would revolve absolutely about that centre if the crosshead were rigidly attached to the frame B and they were shaped with a spherical surface where they pair with the cylinder, and thus accommodate themselves to the
various obliquities imposed upon them. Fig. 4 is an example invented long ago by Mr. Ward, and is on the same principle. This engine has one cylinder, whose axis is placed so that it directly radiates from the centre, round character, devised by Mr. Benham, and differing but little from it, except that as many as eight cylinders are constructed in the cylinder frame, these radiating directly away from the centre of revolution. *The above arrangements are sometimes varied by radiating the cylinders towards the centre of the cylinder frame, instead of outwards. It requires no explanation to see that the main features of such mechanism are precisely of the same character. Figs. 1 and 2, the Morey engine and
the Cary engine, are examples. The similarity of parts can be followed by the lettering, which is used in each to indicate the same parts. Many other engines have mechanisms, though all possess the peculiarity that piston and cylinders revolve round centres.
The above re-arrangement does not at all alter the character of the mechanism, though at first sight it might appear as though all reciprocation had been eliminated.

The close analogy which has been shown to exist between it and the ordinary direct-acting engine would cause such a claim to be looked upon with suspicion. In these engines the piston, though revolving, reciprocates
relatively to the revolving cylinders with which it is relatively to the revolving cylinders with which as as in paired, and hence the necessity, in the new engirection the old, to alternate the action, first in the one disken and to send the piston to the opposite end of its stroke, and
then in the other to return it to its original position.

Though this return be effected by making the cylinders double-acting, or by adding another single-acting cylinder, another peculiarity of reciprocation exists, that of dead points at each end of the stroke. The defect arising from this can only be counteracted in the new engine as in the old by adding extra cylinders with their gear, and thus no particular advantage is gained.
Some of the revolving cylinder engines are so designed by giving them suitable proportions and disposition of

parts, that it would appear that a third peculiarity of
reciprocation is done away with, that of absorbing power reciprocation is done away with, that of absorbing power to overcome the inertia of the reciprocating parts. This, considered from a point of view of wasting power, is no defect, for that power which the reciprocating piece may
absorb during the first part of its movement, absorb during the first part of its movement, or during the time its velocity-is being accelerated relatively to the piece to which it is paired, is restored again during the latter part of its travel, or while its speed is corre spondingly retarded relatively to the cylinder in which it works. The evil that this action does produce is, that it throws a recoil in the opposite direction to the force
acting upon it, and this being communicated to the fixed frame, causes it to be unsteady, or at least to subject it to vibration.
As it has been shown that altering the disposition of he engine mechanism with respect to the earth does not obviate the necessity of counteracting the main essential features of reciprocating, that is, returning the reciprocating piece to its original position and the existence of dead points, so it may be shown that this evil of recoil is not alleviated. Take any one of these engines, say the Cary engine; here the cylinders revolve round one common centre and the pistons round another, each having an absolute revolving motion, be the fixed frame holding the two main centres, these pistons have a revolving movement, but with respect to the cylinders a rectilinear reciprocation, and with respect to the other rame or excentric frame, an angular reciprocation. Con
$22 \frac{1}{2}$ or 36 revolutions. As a rule, one engine and pump was found sufficient, it being only necessary to run the two
together on days when the influx of visitors to the tower was considerably above the average. The consumption of dry steam did not exceed 11.6 kilos., or 26 lb ., per horse-power per hour, measured in water raised.
Fig. 1 of the illustrations shows a side elevation of the steam cylinder, with the governor and variable expansion gear, while Fig. 2 gives details of the valves and gear at the back end of the cylinder, with section-longitudinal as regards the valve, but transverse with reference to the cylinder-through one valve and its seat. The valve nearest the cylinder end, serving only for the exhaust, is closed and opened uniformly through the well as admission though serving for variable cut-off as well as admission, though opened through the excentric, is weight and, in obedience to the governor s action, oy a weight and
steam-jacketted cylinder, of $0.65 \mathrm{~m},=2 \mathrm{ft} .1 \mathrm{~g} \mathrm{in}$. diameter and $1.066 \mathrm{~m} .=3 \mathrm{ft}$. 6 in . stroke, is mounted on its bed-plate of $1.066 \mathrm{~m} .=3 \mathrm{ft}$. 6 in . stroke, is mounted on its bed-plate of plunger of the pump being keyed on to a prolongation of the piston-rod. The air and hot-water pumps of the condensersee Fig. 3-are worked by a bent lever and connecting rod off the main crank pin.
As in the Machine Hall engine, the valves are long and
narrow grid slides, working on corresponding faces which form nearly cylindrical plugs, cut away to receive the slides, and driven in tight. All the four valves of a cylinder with their seats may be replaced in a quarter of an hour. Thanks to the very narrow facing strips on both valve and face, the surface in contact is so slight that friction is reduced to a minimum, while the valves are almost
balanced. The slides-see Fig. 2-are driven by short balanced. The slides-see Fig. 2-are driven by short
curved levers and links, so arranged that they act at the greatest advantage for overcoming the inertia when the facing strips are in contact, but give a greater speed of travel after that inertia has been overcome. Dotted lines and arcs in Fig. 2 show the oscillating travel of the valve spindles, the arms of their levers, and the lever giving the trip action for determining the cut-off. The upper ends of the exhaust valve levers are actuated by the excentric con necting-rod, while their fork pivots give intermittent motion to the levers fast on the expansion valve spindles. The metho by which the expansion valves are opened is described in con of the present drawings shows more clearly the cut-off motion of the present drawings shows more clearly the cut-off motion given to the expansion valves at each end of the cylinder by
means of the governor. Referring to Fig. 1, the horizontal means of the governor. Referring to Fig. 1, the horizontal
arm of the bell-crank on each expansion valve spindle is pivotted to a weight, whose force is increased by a spiral spring pending to draw it down. The weight and spring keep the valve closed until their resistance is overcome by the vertical arm of the bell-crank being pulled by the plate on the upper member of the fork, which is drawn by the bent lever of the admission valve, owing to the throw of the excentric. The release from this action, permitting the weight and spring to close the valve is effected by the snug B-that is to say, the outside one a each end of the cylinder-on the socket of the short lever which is loose on and pendent from each expansion valve spin dle. In Fig. 1 the valve at the pump end of the cylinder, or lef side of the figure, is shown closed with the weight down and the spring compressed, while at the other, or crank end o the cylinder, the expansion valve is in the position of open
the weight being lifted and the spring distended by the bell crank. The snug B, however, is about to raise the lowe member of the fork, and therefore lift the plate clear of the block, so as to allow the weight and spring to close th valve. The pendent levers carrying these snugs are moved by the horizontal rod of the governor, that at the crank end being worked directly, and that at the pump end through spur gear, as shown. Greater or less resistance may b offered to the governor's action so as to alter its régime by varying the tension of the spiral spring on the horizontal rod the position of its fullest distension being shown by dotted the engine is running.
In this engine also, in the event of the governor or it gear failing, the balls therefore dropping and the horizontal rod moving from right to left, the snugs $00-$ those inside as regards the cylinder ends-on the sockets of the pendent levers, come into permanent contact with the lower arms of the forks and prevent the opening of the valves, and therefore any further admission of steam. This occurs at least when the stop is in the position P, shown by the
full lines; but not, while stopping the engine, in the position full lines; but not, while stopping the engine, in the position
P , shown by dotted lines. The slot in the lower or vertical arm P^{1}, shown by dotted lines. The slot in the lower or vertical arm
of the governor bell-crank is to permit of the setting of the of the governor bell-crank is to permit of the setting of the
valves. When this is accomplished the pin of the horizontal rod of the governor is clamped in position. The single rod of the governor is clamped in position. The single
excentric is generally keyed so as to make an angle of about 55 deg. with the crank and behind it. Increasing this angle 55 deg. with the crank and behind it. Increasing this angle has the effect of increasing the lead, but of diminish-
ing the admission both at the front and back end while it also renders the exhaust earlier, but increases the compression, both front and back. Lengthen ing the excentric rod or excentric connecting rod diminishes the compression forward, renders earlier the exhaust forward, and exerts a contrary effect aft, while it retards the admission forward and renders it earlier aft. Lengthening the rod which connects the levers of the two exhaust valves increases the compression aft, retards the exhaust aft, advances the admission aft, and exerts no effect orward. Lengthening the horizontal connecting-rod of the governor increases the admission both fore and aft, while no effect forward. Lengthening the conneeting-rod and correspondingly shortening the coupling rod, on the contrary in creases the admission forward and exerts no effect aft. Finally lengthening the exhaust valve links retards the exhaust and increases the compression, the port being less uncovered, while lengthening the admission valve links retards the admission, the port being less uncovered, and no change taking place in the detent.
The stop valve, in the middle of the cylinder's length, has a conical seat, and is opened and closed by a screw at the end of its spindle, kept tight by the pressure of steam against its collar, and turned by a star wheel, as seen in Fig.
The Girard double-acting pump, shown by Fig. 4, is
$0.29 \mathrm{~m} .=11$ in in diamer $0.29 \mathrm{~m} .=11 \frac{1}{2} \mathrm{in}$, in diameter. The two barrels, cast with wide bases, and each with its suction and delivery valve boxes, are bolted together. The valves are faced with leather and weighted by laminar springs. The delivery litres $=220$ gallons capacity. As this drawing is only for the Girard pumps, the Wheelock valves are not shown on the steam cylinder.
The pumping engine on the left bank of the Seine, for the

Fig. 1-steam cylinder with variable expansion giar.

Section through E.F of Elevation

Fig. 4 - Girard double. Acting pump.

Section through C.D of Plan.
motors in the Machine Hall, similar to the above, raised
220 litres $=48$ gallons of water per second 220 litres $=48$ gallons of water per second to a height of 49 m .
$\Rightarrow 160 \mathrm{ft}$. 9 in., while four similar engines of 400 -horse power and one of 150 -horse power have been supplied to the Paris Municipality for the water service.

the opening of the forth bridge.

All the world now knows that the Forth Bridge was opened on Tuesday last, the 4th inst., by the Prince of Wales, and with imposing ceremonial. Thus, in exactly ing has repeated itself, in that British engineers and contractors have again accomplished that which was widely
proclaimed to be impossible. The Britannia tubular proclaimed to be impossible. The Britannia tubular
bridge was not less an impossibility in the opinion of critics than was the far-grander structure now carrying
trains across the Forth. But like the big tube, the bigger trains across the Forth. But like the big tube, the bigger
cantilever is an accomplished fact, and engineers have cantilever is an accomplished fact, and engineers have
once more proved that their part in the world is the removal of the impossible. Engineers may be said to
create the necessity for their existence, and then create the necessity for their existence, and then
to exist and provide living for others from that
necessity. This, of necessity. This, of course, means that they must
ever be originators, and in proportion as they origi-
nate must cope with what to the world seems impos. nate must cope with what to the world seems impos-
sible, and if further follows that they must be the sible, and
great providers of fields of labour. Much has been said of the stupendous character of the great bridge which has
now commenced to do that which all engineering now commenced to do that which all engineering work is
intended to do, namely, earn money directly, or to do so intended to do, namely, earn money directly, or to do so
indirectly by saving it. Nothing that has been said or will be said in its praise can praise it too much, and a proof
of the general acknowledgment of this is found in the distinctions which have been conferred by the Queen, on the recommendation of the Prime Minister, upon the chairman of the Forth Bridge Company, the engineers,
and upon the leading contractor. Upon the conspicuous and upon the leading contractor. Upon the conspicuous
ability displayed by these men we have dwelt on previous occasions, and our readers have been made fully acquainted with the main features of the marvellous structure which the Prince of Wales declared open on Tuesday.
Two facts in connection with the bridge may
Two facts in connection with the bridge may be added to the many which have been given from time to time, with the object of conveying some idea of the bigness of
the Forth Bridge. One is that if a pair of scales be imagined big enough to carry in one scale the whole of the metallic superstructure, then into the other scale a weight equal to that of the whole of the British army would
have to be put to balance it. Another is that if the whole of the working time occupied in the building of the bridge be taken, and the whole cost of the bridge, then
it will be found that in the spending of the two and a-half it will be found that in the spending of the two and a-half
millions of sovereigns, which the bridge has cost, one sovereign has been paid for every working minute Something like $£ 350$ per day must be earned, directly or
indirectly, to pay 5 per cent. on this cost, and, of course a much larger sum to pay that rate of interest on the greate cost of the bridge and the new connecting railways.
The ceremonies of Tuesday may be said to have com
nenced with the starting of two special trains from the menced with the starting of two special trains from the
Waverley Station, the first carrying one of the largest gatherings of railway men or leaders in cognate affairs
that has perhaps ever been brought together, and the second carrying the Prince of Wales, the Duke of Edin burgh, and other of the Prince of Wales' party, including
the directors of the Forth Bridge Railway Company. the directors of the Forth Bridge Railway Company
There was probably no intention in sending the lon train on ahead of the Prince's train, to make a pilot of it, but as pilot it acted, and not a few of the party felt
some relief when this first journey was over, for although there was no danger of any kind, there was novelty of position which gave rise to mixed feelings. To be nearl girder hanging at the end of a lever 680ft. from the point of support, is to be in a position that for comfort
demands faith in the skill of engineers. To those who had several times visited the bridge in course of construction and had been up to the top of the
piers, there was no such excitement left; but even those with faith crystallised into an unshakeable belief in the eternal residence of the great structure and its perform-
ance of its duties, were not a little surprised at the ance of its duties, were not a little surprised at the
absolute freedom from vibration which the bridge ex hibited even in the very centres of the spans when the train was rocking, shaking, and clattering in the fury of straight on to the bridge without any stop at Forth Bridge Station, or any other place, and crossed at about and some rain fell. The train continued to Inverkeithing party alighted, and from below and from the distance saw the Prince's train moving slowly across the bridge. rom this point a good view of the bridge is obtained stration of the fact of the insignificance of the rolling loads to which the bridge will be subjected. An engine when on the mighty structure, and the veriest tyro can see how vast must be the strength required
to carry the dead load, and that that necessary for the train is nothing in comparison with it, or with the strength required to meet the wind pressure with Sir John Fowler and others, entered a small steamer and steamed round the piers and under the great spans, and saw, as well as the roughness of the estuary
would permit, how various parts of the structure look far and near. The best view is, perhaps, from the estuary shores, from a half to three-quarters of a mile away from train then embarked on board the steamer William Muir train then embarked on board the steamer William Muir,
and they also saw as much as a gale and blinding spray would permit. However, they did not remain long on
over the bridge. This time another experience was obtained, for the wind had risen, and was blowing a gale.
Some of the more careful visitors wondered whether the Some of the more careful visitors wondered whether the crossing of the bridge would be made before the fury of
the wind abated somewhat, the memory of the ill-fated Tay Bridge being still fresh in their memory. Others however, who knew how very much stronger are the who also reasoned that as the wind was not strong enough to lift the train clean off the rails it would do no harm to the bridge, said there was no reason for delay, especially nearly nearly across, on their return journey, the trains were
stopped, and the Prince of Wales alighted, turned a cock on the hydraulic rivetter pipe with a silver key, and thus, with Mr. Arrol's assistance, completed the bridge by putting in the last rivet of copper with a gilded
head. Further on-just within the South Queens ferry Pier-the Prince again alighted, and by strong effort to prevent his hat and himself from being carried away by the gale, he remained long enough to
say-"Ladies and gentlemen, I now declare the Forth Bridge open." At least, he is said by the one or two it being quite impossible to remain for further ceremonial remarks. This was at about half-past one oclock. The wind was very gusty, and shook the carriages as though it would lift them, and upon
opening a window even a few inches on the weather-解 was blowing at about 15 lb . per square foot, but at times accompaniment to the proceedings, for it gave the visitors some idea of what the men have had to contend with very often during the past seven years. The perfect
steadiness of the bridge under the gale also helped to steadiness of the bridge under the gale also helped to
confirm that confidence in it which is felt by all connected stanfirm
conth it.
After the bridge was declared open the trains drew up at the Forth Bridge works-now partly dismantled and cleared-and the visitors entered the big model-room which had been very effectively converted into a great
banquetting hall. Over the middle of the chairman's banquetting hall. Over the midde of the chairman's
platform there was a magnificent canopy of crimson and gold plush, surmounted with the Royal arms, and bearin underneath the motto of the Prince of Wales on a gold
scroll. On the walls there were shields bearing the arms of the different railway companies interested in the bridge, and of the principal towns of England and Scot land through which their lines pass. On the tables, may be mentioned, a four-paged menu was placed for
each guest, illustrated and decorated in a most tasteful manner, every page contaiming some appropriately-
selected quotation. It contained, amongst other engrav ings, the likeness of Sir John Fowler, Sir Benjamin
Baker, K.C.M.G., and Sir William Arrol. The quotation over Sir Benjamin Baker was, "Thy judgment fair, lays every project well, and equally appropriate were those given to Sir John and Sir W. Arrol.
The Royal party and guests arrived at the banquet hall shortly before two o'clock, and were received by the company standing. Sir M. W. Thompson occupied the chair. On his right were the Prince of Wales, the Earl Mr. John Dent, Lord Provost Boyd, Herr Mehrtens, General Ellis, General Lyttelton Annesley, Lord Colville, Mr. Calcraft, Herr Krueger, Sir B. Baker, M. Van
Hasselt, Mr. Campbell-Bannerman, M.P., the Earl of Haddington, Captain Vander Meulen, Hon. W. J. Col ville, Hon. A. Colville, M. Ogekelin, Sir Lowthian Bell,
the Marquis of Huntly, M. Eiffel, Sir Charles Tennant, Captain Zelenoi, and Mr. Leopold Rothschild; and on his left were the Duke of Edinburgh, the Duke of
Buccleuch, the Marquis of Tweeddale, M. Picot, the Earl of Wemyss, M. Tasafini, the Lord Provost of Glasgow, the Marquis de Guigne, Sir John Fowler, the Bishop of Lichfield, Baron Reillie, Lord Balfour of Burleigh, M. Vallon, Sir Matthew Ridley, M. Doppler, Sir W. Thomson, M. d'Oissel, the Hon. R. H. Dutton, Sir W. Arrol, Mr. Armitage, Lord kingsborough, the Mod
The Chairman, who was received with loud applause, pro-
posed the toast of "The Queen. He said he could carry bre posed tecollection to the time when her Majesty the Queen ascended the Throne. It had been his great fortune
to watch the career of her Majesty, and he observed that she always acted up to the duties of her position. No
matter whether the Ministry of the time was a Liberal or a Tory Government, her Majesty was always up to the occasion and acquitted herself admirably as the sovereign of a great
country, and her decision, given often in momentous drumstances, was always respected. The toast was
drunk with enthusiasm, the band playing the National Anthem
The Chairman then gave the toast of "The Prince of very highly of the manner in which their Royal Highnesses performed the high functions which devolved upon them. The toast was pledged with great enthusiasm.
The Prince of Wales, who was received with loud cheers, said: I feel very grateful for the kind words which have
fallen from the chairman in proposing the toast, and I thank ou all most heartily for the cordial way in which you have received it. The dy has been a most interesting day to all
of us, and especially so to me, and I feel very grateful that I a ceremony as the one at which we have all and important a ceremony as the one at which we have all assisted. I had
the advantage, nearly five and a-half years ago, of seeing the Forth Bridge at its very commencement, and I its successful accomplishment. I may, perhaps, say quest of the Canadian Government, hand. At the re-
I performed the opening ceremony thirty years ago of opening the
Victoria Bridge over the St. Lawrence at Montreal, putting in the last rivet, the total of rivets being one million. To-day I have performed a similar ceremony for the Forth Bridge, but on this occasion the rivets number nearly
eight millions instead of one million. The construction eight millions instead of one million. The construction
of the bridge has been on the cantilever principle, which
has been known to the Chinese for ages, and specimens of it may be seen likewise in Japan, Tibet, and the North-
West Provincss of India. Work of this description has hithert been carried out on small dimensions, but in this case the engiwater, at the height of 150 ft . above high water mark, and crossing two channels, each one-third of a mile in widt Had it not been for the intervening island of Inchgarvie the project would have been impracticable.
interest you if 1 mention a few figures in connection perhap construction of the bridge. Its extreme length, including the and the actual length of the cantilever portion of the is one mile and twenty yards. The weight of steel in amounts to 51,000 tons, and the extreme height of the stee structure above mean water level is over 370ft., above the bottom of the deepest foundation 452 ft ., while the rail level above high water is 156 fft . Allowance has been made for the extent of lin. per 10oft. over the whole bridge. The wind pressure provided for is 56 lb . on each square foot of area, amounting in the aggregate to about 7700 tons of lateral pressure on the cantilever portion of the bridge. About 25 paint. As I have said, about eight millions of rivets plates used in the tubes, about the distance between and Glasgow. Two million pounds have been spent on the it in building the foundations and piers; in the erection of the nasonry, timber, and concrete; on tools, cranes, drills, ther machines required as plant; while about two and a-half £ 800,000
expended on plant and general charges. These has been give you some idea of the magnitude of the work, and
vill assist you to realise the labour and anxiety which all hose connected with it must have undergone. The worl were commenced in April, 1883, and it is highly to the so stupendous and so exceptional in its character should the bridge must necessarily produce important opening of changes in the railway service of the east coast resuits and and it will, above all, place the valuable manufacturing and meral producing diside of the Firth of Forth. When the Glenfarg line, now nearly completed, is opened for traffic the distance between Edinburgh and Perth will be reduced from sixty-nine to forty-seven miles, and instead of the journey an express will be able to do it in an hour. Dundee like-
wise will be brought to within fifty-nine miles of Edinwise will be brought to within fifty-nine miles of Edin
burgh, and Aberdeen 130 miles, and no sea ferries will have the enterprise of four important railway companies - (1)
North British-the bridge is in its district (3) Midland, and (4) Great Northern, and the design is that Benjamin Bost eminent engineers, Sir John Fowler and Mr and the present Tay Bridge and the bridge which Arrol inaugurated to-day will be lasting monuments of his skill that on the recommendation of the Prime Minister, the Queen has been pleased to create Mr. Matthew William
Thompson, chairman of the Forth Bridge Company, and o
the Midland Railway engineer-in-chief of the Forth Bridge, baronets of the United Kingdom. The Queen has also created, or in
tends to create, Mr. Benjamin Baker-Sir John Fowler' colleague - a Knight Commander of the Order of St. Michae and St. George; and to confer on Mr. William Arrol,
the contractor, the honour of a knighthood. I must
not allow this opportunity to not allow this opportunity to pass without mention-
ng the valuable assistance which has been rendered indefatigable secretary, who deserves special praise for portant financial arrangements essential in a scheme my pleasure at seeing here Major-General Hutchinson an Major Marindin, two of the inspecting officers of the Board of Trade. Although in this country great undertakings
of the kind which we are celebrating this day are wisely wholly left to the enterprise and genius of private ind connection with these particular works, Parliament, I am Trade with those practically engaged in the construction of this magnificent bridge from its commencement, by requiring the Board of Trade to make quarterly reports to be laid before Parliament as to the nature and progress of the works. by Major-General Hutchinson and Major Marindin; and now congratulate them on the completion of their responsible duties, which they have carried out in a way that re-
dounds credit to themselves and to the they so ably serve. Allow me again, gentlemen, in thank toast, to assure you of the great pleasure and gratification it inaugurate this great success of the skill of this occasion Sir John his great success of the skill of engineering. Bridge, said he begged to return his most grateful therk his Royal Highness the Prince of Wales for the flatterin manner in which he had spoken of their work. It was now commenced, but up to two years ago they had to endure no only the legitimate anxieties of their duties, but the attacks those who undertook engineering work of novelty or the manner of retreat of these prophets of failure Th results had proved them to be mistaken. He could tel that day he felt that he could afford to be magnanimous, an he would say nothing ill-natured about them-not even about they were sorry for themselves, because since the failure of their predictions about the Forth Bridge cautious people which they had discovered. Personally, he believed in astronomy, and in the planets, but he did not believe in pointed out how, from the nature of the materials which had been used in the construction of the bridge, and from the
struction, the bridge possessed an international character.
But besides strength and solidity, the esthetic considerations But besides strength and solidity, the æsthetic considerations him a little concern at first, for he read rather stronglyyorded lectures, and altogether they seemed to be likely to Society of Arts conceived the idea of settling this matter in a very summary fashion. Accordingly they called to their help two famous artistic authorities-Mr. William Morris, famous for his power of attack on the bridge; and Mr. Benjamin
Baker, famous for defending it. The result, he believed, was that Mr. Baker and the bridge were entirely victorious; and as this society never allowed any appeal, the esthetic ques-
tion was settled forever. They had two materials in the Forth tion was settled forever. They had two materials in the Forth
Bridge-granite and steel. They would agree with him that Bridge-granite and steel. They would agree with him that
in Scottish granite connected together with English cement they had durability and union of parts for at least a thousand years, and with the permission of the Chairman and
thir Royal Highnesses he would postpone any further consideration of that question until that period had expired. woo cause steel mignt be disation. Vibration could only produce injurious action when the maximum strain to which
it would be habitually exposed by use approached one-half of its ultimate strength, but as the Forth Bridge could never have as much as one-half of the strain of the ultimate strength, he
thought they might dismiss vibration as a source of injury. With regard to oxidisation, that meant gross neglect by those who were in charge; it meant that the painting was so
negleceted that air had access to the steel, and he would not do those who had charge of this important work the injustice
of supposing that such a contingency was possible of supposing that such a contingency was possible. He
wished that time permitted to mention the names of the
contractors and the able assistants who had done such good work, but he must content himself with mentioning Mr experience from the first; Mr. Arrol, who had shown such conspicuous ability and originality, and his excellent
secretary, Mr. Biggart. And now, the last but not the least,
he claimed for the foremen and thousands of workmen who he claimed for the foremen and thousands of workmen who
had been engaged on the Forth Bridge the highest praise for their skill and their bravery. In that hall where they were
now assembled the drawings of the engineers were drawn out to the full size, and from those drawings moulds were made they were taken down to the shops where by hundreds
skiful men, with admirable machines, many of them skiful men, with admirable machines, many of them
designed by Mr. Arrol specially for the work, the steel wa
drilled made ready, and put together very carefully. It wa put together with the greatest exactitude, then taken down
again, and carried to the site of the bridge. For severa years, often in very inclement weather and at an elevation of
one, two, three, and four hundred feet above the water of the Forth, those brave men worked, and never knowingly scamped a rivet.
Sir W. Arrol
sir W. Arrol alco responded in a few well chosen words.
Sir Benjamin Baker was then most Sir Benjamin Baker was then most vociferously called for
by the audience, and although his name had not been on the list, the call was so unanimos and spontaneous that the Prince through Lord Colville asked Sir B. Baker to reply.
Sir Benjamin Baker said he was there as a visitor.
siderd that personally and practically his connection with the Forth Bridge was over when his very severe friends General
Hutchinson and Major Marindin expressed their unqualified satisfaction with the work they had visited. Being a visitor, and not being on the toast list, and also being extremely sur-
prised at the honour which had been accorded him, he need prised at the honour which had been accorded him, he need
hardly say that he was not quite prepared to made a speech.
But of course it was perfectly But of course it was perfectly easy after one had finished a somewhat difficult undertaking-it was pleasant to receive
approbation. The approbation which the engineer valued
most he the most, he thought, was that of his own conscience, when he
had done the best he could for the job. He could answer fo his colleague Mr. Stewart, and his friend Mr. Biggart, and the whole staff of engineers, that they had the approbation that he could. Next to that, perhaps, was the approbation of their brother engineers, for they were best able to appreciate the
kind of difficulties that they had to deal with. He was not altogether sorry that the elements had been such as they had
been that day, because it would give them some idea of those difficulties which they had to overcome. And, last, they wished the approbation of the general public, and they had
some evidence that that also had been achieved. Of course they had had dark days during the construction of the bridge, thought they had succeeded-in not being unduly oppressed. His Royal Highness had done them the favour, which they so much appreciated, of being present, he might say on
behalf of the engineers that they were not unduly elated and that the flattering remarks which had fallen on them would not turn their heads. He hoped they would under-
stand that they did not less heartily thank them for the extreme kindness and cordiality with which they had received
the toast of the engineers, directors, and contractors, and he the oast of the engineers, directors, and cont
Mr. John Dent Dent then proposed the
The Earl of Rosebery returned thanks.
The Earl of Rosebery returned thanks.
Herr Mehrtens, of the Prussian Railway Department, also Saxony, Austria, and Hungary
M. Picot, on behalf of the railway engineers of France
also replied in a speech in which he eulogised the bridge and also replied in a specch in which he eulogised the bridge and
its engineers and contractors.
The Marquis of Tweeddale proposed "The commercial
interests of Scotland."
The Lord Provost of Edinburgh and the Lord Provost of Giasgow acknowledged the toast.
The Prince of Wales arose and stated amid cheers that he had received a telegram from the Queen and from the
Princess of Wales. Both took the greatest interest in the Princess of Wales. Both took the greatest interest in the
undertaking, and both wished success to the Forth Bridge.
The proceedings, which had throughout been of the most agreeable nature, then terminated. The Prince
and the Royal party then drove off to Dalmeny, and were loudly cheered.
During the banquet the band of the Cameron High-
landers played a selection of mnsic, and the pipers of the regiment marched round the hall, their inspiriting strains being apparently greatly relished by the foreign guests, who were enthusiastic in their applause. After each toast the band played an appropriate air.
The French railways were very fully represented, as will be seen from the following list of names:-

President du Conseil d'Administration ; Noblemaire Directeur de la Compagnie ; R. Picard, Chef de l'Exploitation; Henry, Ingenieur-en-chef du Materiel et
Traction; and Denis, Ingénieur-en-chef de la Voie.
raction; and Denis, Ingenieur-en-chef de la Voie.
Chemin de fer Paris et Orleans: Messieurs Jui
Marquis de) Administrateur de la Compagnie; Heurteau Directeur de la Compagnie; Rougier, Directeur -des Travaux; and Salacroup, Ingénieur-in-chef, adjoint Ingénieur-en-chef du Materiel et de la Traction.
Chemin de fer du Midi-
Chemin de fer du Midi : Messieurs Ancoc, Vice-president du Conseil d'Administration; Picot (Georges),
Administrateur de la Compagnie; d'Elchthal (Eugene), Administrateur de la Compagnie; and Blage, Directeur Chemin la Comie.
Chemin de fer de l'Ouest: Messieur Desbriere, Administrateur de la Compagnie; Blount (Henry),
Administrateur de la Compagnie; Marin, Directeur de Administrateur de la Compagnie; Marin, Directeur de
la Compagnie ; Morliere, Ingénieur-in-chef de l'Entretien et de la Surveillance de la Voie; Foulon, Ingénieur Chemin de la Direction.
Chemin de fer du Nord: Messieurs Hottinguer, Administrateur de la Compagnie ; Pièron, Ingénieur-en-
chef adjoint à l'Ingénieur-en-chef du service Actif; Sauvage, Ingénieur principal de l'atelier des machines;
and Aguellet, Ingénieur-en-chef des services centraux des and Aguellet, Ingénieur-en-chef des services ce
Etudes du Matériel des voies et des batiments.
tudes du Matériel des voies et des batiments.
Cheminde fer del'Est: Messieurs Imécourt (Marquis d'), Administrateur de la Compagnie ; Reille (Baron Victor Administrateur de la Compagnie; Barabant, Director de
la Compagnie; A. Picard, Chef de l'Exploitation adjoint; la Compagnie ; A. Picard, Chef de IExp
M. Alfred Sire, agent in England of the Northern of France, and M. T. Visinet, the representative of the
Western Railway of France in this country. Western Railway of France in this country.
Altogether there were nearly six
Altogether there were nearly six hundred present at the ceremonies, and thousands of people collected at North was, in fact, a general holiday, and in spite of the very inclement weather every spot of vantage ground supported a sightseer
The representatives of the French railways who were present on the occasion of the opening of the Forth
Bridge were entertained, on Wednesday evening, at a banquet given by the chairman and directors of the
London, Chatham, and Dover Railway, in the marble salon of the Grand Hotel, Trafalgar-square. The chair
was occupied by Mr. J. S. Forbes, who made all arrange. was occupied by Mr. J. S. Forbes, who made all arrange-
ments in connection with the trains by which these gentlemen travelled from France and in this country, supported on his right by the French ambassador.
part of an ordinary local or even ordinarily placed main ine, could not pay. It is, however, through the important connections which it and-its railways will enable the com-
bined guaranteeing railways to make, that it will pay; and more especially since it is fully expected that the further amalgamation of the North British and Glasgow and
South-Western will be effected; and thus, with the Western lines, including the new Helensburgh and Fort William Railway, which we illustrated and described in our last impression, a grand and far-reaching net-work
will be controlled by the guaranteeing companies. The monopoly of the Caledonian will be broken, and the
Western Highlands will become much more accessible. Western Highlands will become much more accessible.
Some of the visitors on Tuesday remained long enough at Forth Bridge Station to see the starting of the first goods train for Dunfermline. The bridge was opened for traffic on Wednesday, but there are several branch lines
nnvolved in the general scheme. On the Fifeshire side is the North Queensferry and Inverkeithing Railway, length of about two miles; and on the south side there is with the junction at Dalmeny. There is also the Winch-
burgh and Dalmeny line, four miles and a-half, to con burgh and Dalmeny line, four miles and a-half, to con nect with the main line between Edinburgh and the shore for some distance to Burntisland. The Glenfarg line trikes due north between Loch Leven and Perth.
Referring again to the four-page menu already mentioned, it should be noted that under the words "All reap at last the actions they have sown," the names are given
of many who have been actively associated with the of many who have been actively associated with ene or of the contractors. The names thus given are those
which follow:-Tancred, Phillips, Falkiner, Bakewell, which follow:-Tancred, Phillips, Falkiner, Bakewell,
Biggart, Westhofen, Hunter, Lilljiqvist, Aitken, Neville, Middleton, Main, Law, Gray, Wood, Stewart, Cooper, Meik, Schluter, Scott, Moir, Carey, Bourke, Symons,
Tuit, Fitzmaurice, Blackburn, Harris, Campbell, Mayor, Webster, Chalmers, Knowles, Martin.
the institution of civil engineers.
RAILWAY BRIDGES.
Ar the fourteenth ordinary meeting of the session, on Tuesday,
March 4th, Mr. Berkley, vice president, in the chair, three papers March feh, Mr. Berkley, vice
were read on railway bridges :
I. The Hawkesbury Bridee, New South

The railway system of New South Wales had hitherto con-
sisted of two separnte divisions-the one starting from Sydney sisted of two separate divivions- the one starting from Sydney
and branching thence in a westerly, southerly, and south-westerly
direction, while the direction, while the other originated at Nowcastle, on the sea
coast, about 100 miles north of Sydney, and communicated with the northern part of the Colony and with Queensland.
Hawkesbury Bridge was situated upon the connecting link
nailway which was designed to railway which was designed to unite these two systems. It
crossed the mnin channel of the Hawkesbury between Long
Csland width of about 2800 ft , and a a point where the channel hax animum depth of 77 tit., while
and
its bed consisted of a deposit of mud extending to a depth varying from 6oft. to 10 Offt, beolow high-wwter mark, and overlying
the sand. For the construction of this dificuit work the colonial Government invited tenders, accompanied by competitive dosigns,
and took steps to make the competition world wide. A com-
mittee, consisting of Mr. W. H. Barlow, past president Institution

report of this committee had been supplemented by others from
Sir John Fowler, past president Institution of Civil Engineers air ohn Mrowler, past president Institution of Civil Engineers,
and Mr. John Whitton, M. Inst. C.E., Engineer - in. Chief
for M. and Mr. John Whitton, M. Inst. C.E., Engineer - in - Chief
for Railway, New South Wales., it was finally decided to
accept the tender of the Union Bridge Company, of New York,
who undertook to complete the bridge within two years and a-half, who undertook to complete the bridge within two years and a -half, For the sum of $£ 327,000$. The accepted design consisted of seven
spans of 415 ft . from centre to centre of the piers, the foundations
being carried down in steel caissons upper portions of the piers and the whole of the abutments were of masonry. The girders were formed of built steel compression members, and solid steel eye-bar tension-rods, all the connections
being made by steel pins. The cross girders and rail bearers were of rivetted steel plate. The two main girders of each span were
of 410 ft . long from end pin to end pin, and 58 ft . deep at the centre, ing two lines of railway. In the execution of the foundations it was through the erreat depth of mud that bad a truly vertical position the sand could be reached. The tendency of the caisson to before the process of sinking to draw away from its true place during delay, and in some cases could not be entirely overcome; and the
author was of opinion that this dificulty due to the form in which the caissons were constructed. In plan the caisson formed a rectangle with, rounded ends, its length,
transversely to the bridge, boing 48ft., while its outside width was
2ftt. The outer shell of the caison, a vertical prism for the greater portion of its contour, formed
the lowest 2 oft., the walls were splayed 2 ft . outward , but in
 the rounded ends. Each caisson contained three circular
dredging wells, fft . in diameter, placed along its axis
distances splayed outward at from centro base in conical form, the wells being
outcr shell, and to meet the outcr shell, and to come to a cutting edge, at the periphery of
the caisson, and alaso between the wells The lower part of the
caison was built on shore, and, being temporaily fitted with
a false bottoit, was floated out and sunk to the bed of a false bottom, was floated out and sunk to the bed of
the river. The space between the wells and the outer skin
was then loaded with concrete, and the caison was sunk was then loaded with concrete, and the caisson was sunk
through the mud by dredging the material from the bottom of the
three wells. If the coiss three wellss If the ceisson showed any tendency to cant trans-
versely to the bridge, it could be righted by dredging one or the
other of the wells in advenco other of the wells in advance of the remainder; but when it canted
transversely to the axis of the caisson, the central position of the
well well precluded the use of any such means of righting it. It was
also believed that the splayed form caisson enhanced the tendency to cant over, as the sinking of the
splayed shoo would leave around the walls of the upper portion
an empty space, which would afterwards beoome filled up in an an empty space, which would afterwards become filled up in an
irregular manner, depending upon the consistency of the mud.
Fog structed of sufficient size and stability to carry a complete span of the superstructure elevated above the deck upon staping high
enough to command the piers, whose summit was 4oft. above enough to command the piers, whose summit was 40it. above
high water, the range of tide being fft. At a convenient point mile from the bridge, and on this gridiron the pontoon was
scuttled and allowed to remain, while the stelwork of a complete span was put together upon the top of the elevated
staging above the deck. For the voyage of this craft out to the bridge a favourable conjunction of tide and weather wa
selected, and the seuttling values of the pontoon having been
closed at low-water, the vescel floated off the gridiron at the rise of the tide, and was warped out to the bridge by 6in. hawsers
worked by steam windlasses, the operation being facilitated by the of the tide steam-tugs and by the flow of the tide. At the tol of the tide, the pontoon was in place between the piers, the ends of
the main girders being then a few inches above the bearings on
the piers, and the vesel, being moored in this sosition, was allowed to fall with the ebbing tide until it left the girders supported upou
the piers In some cases scuttling. the poontoon. The process was hastened oy partially described the numerous
vicissitudes of the voyage which was repeated in similar manner
for each span, and also, the was correct or to remedy the canting of the caissons. It was morthy of
remart American firm, yet the whole of the steel and ironwork was pro
vided and manuffactured in the United vided and manufactured in the United Kingdom, excepting only
the swelled heads of the eye-bars.

```
                                    To be continued.)
```

SOCIETY OF ENGINEERS.
THE APPLICATION OF WATER PRESSURE TO MACHINE AT a meeting of the Society of Engineers, held at the Town
Hall, Westminster, on Monday evening, March 3rd, Mr. Henry Adams, President, in the chair, a paper was read by Mr. Ralph
Hnart Tweddell, M. Inst. C.E., on " The Application of Water The author referred to his previous paper read before the Society in 1887 , and to the preatly evtended read adoptoone of the
his
system of hydraulic machines and appliances during this interval. system of hydraulic machines and appliances during this interval.
He eave figures showing the continuall increasing power and size
of this class of machines of this class of machines during the quarter of a century which the relative advantages of hydraulic, pneumatic, and electric transmachine tools and the appliances in connection with taking the Work to and from them.
fulfilled in the designing of a "complete system" of machins to be fulfilled in the designing of a "complete system" of machine tools
are very different from those affecting a "single machine,"pro-
ceeded to point out the great number of conditions to bo fulfiled ceeded to point out the great number of conditions to bo fulfilled
by any motive power when applied to working machines varyin greatly in their individual character and requirements. Dividing the subject of the relative merits of these three motive powers into
(1) the convenient storage of the power, (2) economy and facility cation to machine tools and the appliances required to take then to and from their work, (4) adaptability to perform work of the
lightest and heaviest description, the author stated that, while lightest and
electricity fulfil those of the most importance in connection with the class of not onicable to the working of machine tools and the appliances for lifting and transporting the materials operated upon by them. The
author then referred to various improvements effected by himeelf and others in hydranlic machines now required to meet the altered
conditions of rivetting, flanging, drilling, \&c., in order to make condition
sound
pressure
The author then proceeded to describe the rivetting up of large
bridges in site, and referred to the first bridge so constructed
namely, the Primrose-street Bridge, in London, which was rivetted
up on the author's system in 1873. After alluding to many other
bridges, the author pointed out the absolute necessity of a largely
extended use of labour-saving appliances in workshops, such as
cranes, lifts, capstans, \&c., which are necessary, not only on
account of the greatly increased weight of the work now machined,
aut also to keep all elasses of machine tools in more continuous
work. In conclusion, he pointed out that bydraulic pressure was
as suitable for working these appliances as for working the"machine

RECONSTRUCTION OF THE NEWARK DYKE BRIDGE, GREAT NORTHERN RAILWAY.

the newark dyke bridge
Fig. 7 -Removal of old structure, eastern half.
Railway, only weighed about 60 tons with tender included. \mid the thorough overhauling of all the parts. It was then found The express locomotives and also the heavy yoods on the
Great Northern system, now weigh nearly 78 tons tenguence of the defect in the method of carry-
(ing the flooring the inner links of the diagonnls
 nowing the new bridge in the process of being olaced in position. Beforo eproceeding further with the description of the new structure, it may be interesting to state a fow facts in relation to the old one concerning the kind of structure, and why it was thought necessary to repliace it.
The old bridge was of the form known as
the "Warren" truss, and was the orgest the "Warren". truss, and was the largest span of its kind in this country, it being
$259 f t$ from centre to centre of its bear. ings. There were two single bridges, one Oor the down and one for the up inee. Mhe
trusses were composed of cast and wrought iron, cast iron being used for the top or compression member and the diagonals, the normal state of which was compression, and wrought iron being used in the bottom or tension member and in the diagonals that were subject to tension only. The top member consisted of a cast iron tube, varying in diamoter from 13 inin. diagonal struts were cast with a jaw at diagonal struts were cast with a jaw at
the top-end to embrace the tube, and the top-end to embrace the tube, and
tawards the bottom tie. The bottom tie consisted of a series of links 9 in. wide and enlarged at the ends to $16 \frac{1}{2}$ in., to allow a connecting pin $5 \frac{1}{2} \mathrm{in}$. in diameter to pass through, the diagonal ties being exactly like the bottom tie. The bottom tie graduated from fourteen links at the centre to four at the ends. The diagonal ties graduated from two at the centre to four at the ends, the thickness varying from in. original bridges. The main trusses were on the whole well constructed, the iron being of the very best quality and workmanship. The wind bracing at top and bottom was hardly in keeping with the main trusses, being badly designed and loosely" fitted. The cause of the bridge wearing so badly was the manner in which the road was carried by the main trusses, cross timbers 8 in. deep being placed across from truss to truss, and resting directly on the bottom tid, so that when the timber deflected during the passage of the trains all the pressure came upon the inner links, and as centre, the leverage tending to cause rup ture of the inner diagonals was considerable. The bridge was erected in 1849 and 1850, and was calculated to take a maximum moving load of one ton per foot run. The load was, at the time the bridge was erected, thought to cover any possible increase that might occur in the rolling stock
of the future. This of course was a par-
 putting all the stress on to the outer
links. The method of laying the floor was then altered, and arranged in such a manner that all the members did their share of the work that was required of them. In 1888, fresh signs of weakness occurred, and as they were beyond the possibility of a remedy Mr. Johnson decided on a reconstruction, and with that end in view instructed his assistan, L. Duncan, to prepare designs for a new steel struc-
ture. Upon this design, the directors inture. Upon this design, the directors inand in November of that year accepted one sent in by Messrs. Andrew Handyside of the Britannia Ironworks, Derby. The work has taken rather longer than was contemplated, but the causes of the delay did not rest with the contractors, both steel and timber being difficult to obtain.
The design of the new bridge is of the class of truss known as the "WhippleMurphy type, and itismade entirely of steel, the steel used being made by the basic produring manufacture at the Staffordshire Steel and Ingot Iron Co.'s works, near Wolverhampton, and also by Mr. David Kirkaldy, the tests in all cases showing a remarkable uniformity. The company's specification stated a minimum of 28 tons, and maximum of 32 tons per square inch of area of specimen before straining; and the average breaking strain was about $29 \frac{1}{2}$ tons, with about a variation of a little less than 1 ton per square inch more or less.
structed in situ, structed in situ, a staging had to be formed one; in order to do which piles varying from one; in order to do which piles varying from the side of the embankment and across the river. The piles were driven five abreast, two outer ones 5 ft . apart carrying longitudinals, the full width of the stage being 33 ft . Upon this stage the girders were constructed between two lines of rails-see Figs. 2 and -apon which twenty-four trolleys were phaced, twelve on each side, each trolley Thang an hydraulic jack in the centre. ions, and ceys were divided into four secwere then connected up; struts and ties Each section of jacks was of each jack pipe passing along the length of that sec tion, a connection being made with all the six jacks. These pipes were fed from four tion. By this means the pressure was applied simultaneously in all four sections, and donable error, when we find that the "monster" locomotive, of the rolling stock of the company was a serious thing for the the whole bridge lifted and carried by the twenty-four jacks, of the period, the Lord of the Isles on the Great Western I old structure, and in 1879 Mr. Johnson gave instructions for $\begin{aligned} & \text { or }\end{aligned}$

fig. - General view of old structure before demolition.

fig. 5-operation of lifting the old bridge off the cast iron end frames

fig. 3-new bridge placed on trollies ready for moving forward.

Fig. g-removal of old structure western half.
as shown by our illustration in our issue of February 21 st last, and when the centre of the new bridge was directly in line with the centre of the old one, two large trolleys, each rumning on twenty-two wheels, were placed under the ends, and the
twenty-four jacks lowered until the bridge rested on the twenty-four jacks lowered until the bridge rested on the
large trolleys at the ends. The twenty-four small trolleys large trolleys at the ends. The twenty-four smath trolieys
were then disconnected and pushed back to where the bridge was built up.
was built up. iron frames ; a part of this work is shown in Fig. 5,
where two jacks, each capable of lifting a hundred tons, can be seen placed under the end strut. Four of these were used, two to each truss. The bridge was then lifted 3 in. and the cast iron frames removed, and the lifting proceeded with until it was 20 in . above its old position. A timber
diagram of operation

FROM LONDON

trolley, as shown in Fig. 7 , was then fixed, and the jacks
moved to the other end and the same operation carried out. When both endswere lifted and securely fixed to the trolleys, the bridge was hauled out sideways, as shown by Fig. 7. As soon as it was placed on the stage between the two lines of
rails, the trolley carrying the hydraulic jacks were pushed

THE BEHAVIOUR OF STEEL.

Iv compliance with the suggestions below, the following ques
tions were raised for discussion:-
What experiences and phenomena can you describe as to the conduct of steels under the conditions in which you were using
them? How much allowance is wise in shrinkage fits with steel? What is the best form of cross section to adopt for steel castings
a complicated nature, in order to secure solidity and freedom from a complicated nature, in order to secure solidity and freedom from
shrinkage cracks ! How often must the skin of steel be remosed shrinkage cracks ? How often must the skin of steel be
in grinding true gauges, \&c., before change of form ceases?
in grinding true gauges, \&c., before change of form ceases?
Mr. H. D. Hibard: In discussing Topic No. 66, I would lik to call the attention of the members to the inportance of giving as
far as possible the history of the steel under consideration. To nesessarily engage to those eng its maged in thacture, steel is steel, but not not
of its manuss the history
of of its manufacture is known, much of the other information about it is uneless. Even with the chemical analysis known, which is
essential, the great variations in physical properties due to different methods of manufacture and subsequent treatment, may account
for any anomalies, and, unless these are known, the mysterious element of the symposium will not be kept at a minimum. As no
two plants are alike, no two methods alike, and no two men alike, the most complete description of the steel would include the name of the firm, and the man who made the steel. Then would follow
the subsequent manipulation to put the steel in shape for use. never be known. Ph The lowest tensile strength I have ever found
Mr. Wm. Kent
in steel was 42,000 lb, per in steel was 42,000 Ib. per square inch. It was Amcrican open-
 great ductility desired. Some three years ago I procured
thirteen samples of watch springs, and tested them for tersile
trength in a erude apparatus, in which atron was used to indicate the strain, in whe springs included a Jurgensen mainspring, an English, a Waltham, a Waterbury, and several
other springs of
arious sizes and different tompers. The tersile strength of the whole lot of thirteen varied between the limits of
$300,000 \mathrm{lb}$. and $375,000 \mathrm{lb}$. per square inch, a much less variation than might be expected, considering the variety of sizes, tempers,
and sources from which they were obtained. The samples exhibited in connection with this paragraph are trusses for
torsion balances, with spring steel wires stretched upon them, and have been under test for some months past in tho factory three wires on the double truss has been twisted through an angle $7,100,000$ times. The two shorter wires on the sits, normal positusestion,
been twave
wires wered trimogh an angle of 16 deg., $2,200,000$ times. These the staff respectively. After they had been twisted $1,000,000$ thimes each, thee tone owas tried again and ane one of the wireses appearred
to have a tone half a semitone higher, and the other was about half a semitone lower than when the test was begun-possibly a
mistake in the orienina tuning. After they had been twisted
$2,000,000$ times each, the tone was found to be the same as it
 punching sheet brass for reeds, both block and tongue, for use in
their organs. The steel was No. 4, Sanderson Brothers Stee
Compan Sy. planer, heated in a charcoal fire, and annealed in wood ashes
They were then planed to various sizes and thicknesses, ranging
from from It $\times{ }^{1} \times 3$ to $\frac{1}{t} \times 3 \times 3$. These were heated to a bright red,
in accordance with the instructions printed upon the label on the
in bar of steel, hardened in water and ground without the temper
being drawn in the least. They were then subjected to grinding in an emery grinder to the proper sizes. They were ground on
iname but not confined, remaining loose so as to allow the stel to frame but not confined, remaining looses so as to allow the steel to
move, if there were any tendency in that direction. As the skin
was removed upon one side, the surface was slightly concaved, was removed upon one side, the surface was slightly concaved, and times before they ceased changing their form. The various blocks
were planed -10 thices ing. They were ground $0001 \mathrm{in}$. . alternately allow for grind
 nearly every one was ruined by reason of this tendency. In
some cases they would break into a dozen pieces nime cion with Sanderson Broathers a Steel Company, and they attri-
niter
buted the fact to overheating; but the description " a a bright red had been strictly followed, and had been none too high for simila steel for a like use. Samples of this were sent to Sanderson
Brothers and tempered by them, and the temper slightly drawn
but it was not Mechapical discession by the members of the American Society
Topicinal
Engineer. At the Nashile meeting, in the discunssion on

diagram will help to illustrate the transposition of the new on com girders respectively:-No. 1 , new .No. 2 , old moved from D to B and on to $\mathrm{A} ;$ No. 3, new bridge moved from C to D .
o steel No. 5 , same make, which had precisely the same treatment s first described, and which has resulted in no case in breakage. The work performed by the sample returned ous oyt re-grinding
sons was the punching of five thousand redds sithout
while the No 5 will punch twenty thoussand, and with some thick while the No. 5 will punch twenty thousand, and with some thick-
neises even more. The dies were perfectly square, and were set with a piece of tissue paper .
cutting a perfectly smooth edge.
Mr. Chas. L. Huston: In the discussion at the Nashville meeting as to the significance of the peculiar carved lines which
appear in the disturbance of the surface scale of steel boiler plates caused by the strains of shearing, some of the members claimed
that it was only a scale disturbance, and dia not indicate any injury to the metal. Se a piece of plate, which had been so affected and afterwards was plainly that the metal had been strained beyond its elastic limit. not only upon the surface, but to some depth, as shown on the
ed ges of the test piece, so that, when afterwards it was stretched edges of the test piece, so that, when afterts, leaving elevations of slight extent upon the surfaces The lines on this sample are not so much the peculiar curved ones the res ane narrow scrap at
they are those resulting from the curling of the the shears and the subsequent straighteming to prepare for testing
Ihave observed, as also have many other workers of steel, that meta of some degree of ductility, when subjected to strains, will some times crack like glass, showing no evidence of ductility at the
point of fracture. I noticed, some five years ago, one striking caine of a \& plate of American-made basio steel, which was sent to a
locomotive works to try its flanging qualities. It was flanged into locomotive works to try its flanging qualities. It was flanged into
a locomotive throat sheet, the edges being first turned down, and then the concave end worked out. The
next morning a crack appeared at the
oppe next morning a crack appeared at the
opposite end A, which had not been
heated at all, and had had the roughess
of shearing removed by planing. This
crack coñtinued to extend for a weel. or
to ten days, until it reached the whole way
across to the part that had been heated.
This, of course, was due to the contracting This, of course, was due to the contracting
strain at the flanged end, and the sides of
the crack showed little or no evidences the crack showed little or no evidences of
having reduced or stretched at the fracture. I I had a test piece taken from one
side of the crack - as ast $\mathrm{B}-$ and prepared, $\underbrace{2}_{\text {A }}$ so
face of the crack for one edge of the test
pien piece. The test taken nearly across the grain of rolling showed
tensile strength of $68,580 \mathrm{lb}$. per square inch, and a reduction aren of 42 per cent., with a fibrous fracture. I I end one end of this
piece, wwich, however, is almost to old and rusty to show its
character. Some curious tests made by my father were published character. Some curious tests made by my father were published
in the Journal of the Franklin Institute. One series, 1878, show that steel and iron both, when raised to about 600 deg. heat Fah.
lose in ductility and gain in tensile strength; this is also corro 1ose in ductility and gain in tensile strength, turose and trans
borated by bending and tensile tests made in Euron
lated for the Journal of the Franklin lnstitute in 1885. Another set of my father's tests shows the effect of straining iron up to
nearly its elastic limit and continuing the strain for twenty-four hours or more, the result being in some cases raising the elastic
limit almost to the ultimate strength of the material.
Mr. W. W. Dingee: In reply to query 66, I will say that the
J. I. Case Threshing Machine Co. use large amounts of machinery steel in the manufacture of thresking cellinder teetth. This stee
cannot be hardened with any certainty by any of the cannot be hardened with any certainty by any of the usual
methods. The chief trouble with it comes from its uneven texture. It is not rery uncommon to find a bar which may be broken like
cast steel ; when within a short distance of the break it can be
Mr. Chas. T. Main: During the year of 1883, when re-arrangin the driving system at Lower Pacific Mills, it was thought that stee iron. Accordingly, quite a large number of these, of tin. and cient to diameter, were put in ported by hanger seart the pulleys, and were firmly held. In leess
than a year, two 5in. hafts had broken in one place, and one in than a year, two 5ind shafts had broken in one place, and one in
another place, and fure 4in. shafts had broken. These were conditions of lood, speed, \&.c., , the bearings remaining the same as
before. The 5in, shafts are still running under the same condi tions. The tin are still running, although the conditions have
tore recently been changed. more recently been changed. The other steel head lengths which
did not brean were all changed for iron with one exception, which Mr. Georre R Steto
Mr. George R. Stetson : Having taken part in the discussion on
steel at the Nashville meeting, and learned through the anthority of a member that electro-plating tempered steel is another illus
tration of the " unexpected which constant reminders in the same line, I should be interested and instructed by the continuance of the discussion of this topic. I
forward, for exhibition, the drill spoken of at Nashville. The singular regularity of the fracture is peculiar. The brake was not
at a shoulder, but about an inch therefrom. As I stated at the meeting, this, piece of steel broke during the night, after having
been in the hands of a workman for several hours This shank was forged from larger stock and cooled by dipping in water.
There was heat enough to harden it somewhat, as shown in the groove. The cooling no doubt caused the fracture, but why it
should have taken several hours before the break occurred Id do not understand. The steel stood rough handling, but broke
during the night while lying on a machine, the part shown being
found on the floor. I think it is not good practice to hurry the
cooling of steel in this way, although the water annealing of steel
is usually satisfactory, if carefully done. This breaking aster is usdaily satisfactory, if carefuliy done. Tomet unusual, sometimes not developing for several days. One of the members spoke of such an incident happening atter months.
clock and watch springs break durin frequently than at other times, and that a razor is improved in
cutting qualities after lying unused for some time. I exhibit also part of a large tap broken in hardening-the imperfection
of the steel is apparent. Such a fracture is common with tools; but whether large tools that do not break have this imper fection or not it is impossible to know. The majority of sizes 4 in and above that do break show irregularity in grain somewhat like the sample. The question naturally arises, Why should so slight a
cause produce this result ? The most common breakage of taps in cause produce this result
hardening is at about one diameter from the entering end of the hardening isk absut owe dianeter from an over the end of the tool
tap. Ithink, by screwing in washer to keep the water from it, this breakage could be lessell Thi screw and holding the washer against the tool by this screw. I
exhibit als the larger loss from breakage on drilis larger than din. show this phough the samples are towards the shank or solid part of the though the samples a peculiar uniformity in the fracture the
drill. You will notice a per dril. the hundres. I I have noticed, the fracture never is reversed or
and
pointing toward the shank. I am convinced that this brake is pointing toward the shank. 1 am convinced that this brake is
from solid stock, not being caused by an imperfection in the Mr. W. E. Crane: The peculiarity of steel shrinking when
hardened is valuable in many industries, such as dies for hardened is valuable in manayindustries, such as dies for drawing
tubes, rivets, \&c. When a die becomes worn, it is a simple matter to take it to the blacksmith and have it re-hardened and shrunk. If steel would do this indefinitely, these dies could all be worn out on one size, but there is a limit to the number of times that the
same piece of steel will shrink, this number being from five to same piece of steel will shrink, this number being from five to
seven, after which it does not shrink. It is possible that steel might be rebeated and cooled seven or eight times-if it would
not be injured-and then the tool ground to size and hardened and

Mr. Eara Fawcett: We had occasion some time since to make some large taps and dies for bridge bolts, and, being in a hurry,
the forger in annealing left them in a bed of charred -bituminous -coal on the forge over night, to give them a good "sooking," as
called it. On working the steel, we found it to have e very coarse, crystalline structure and brittle. Needing them immediately, we finished them up, tempered, and put them to work,
One of them broke after threading some hundreds of nuts, but did oot show as large a crystralline structure as before tempering ; the thers have been in use ever since. The steel was ordered for the had every appearance of being first class. Mr. Thomas S. Crane: I am surprised that no one has alluded
to the peculiar formation of the ingots from which high carbon steel is produced, and I will call attention to the tact that all such ingots are defective at one end, and that such efect is embodied
in the bar when the ingot is worked up, and is only eliminated by atedious process of inspection in which arise in hardening from the peculiar sbape of steel articles, most of the flaws and cracks are existing in the ingot and afterward preserved in the finished bar. High carbon steel, used for making tools and for other purposes
when hardness is required shrinks a great deal in cooling, and the ingots, always have a pipe in the upper end, extend-
ng from one-quarter to one-half of its length downward When the ingot is worked down into a bar of any size whatever, Che lack of umion between the opposite sides of the pipe forms a
flaw or seam, which is quite discernible to the eye when the bar is foot after foot from the end of the bar to remove the injured portion, so that the remainder may be sold with confidence as a
sound article. It is very evident that a point in the bar would be
reached where the defect would not be perceptible to the eve, reached where the defect would not be perceptible to the eye,
but exist in sufficient degree to cause a crack when the
metal was exposed to any internal strai in hardening. It
is not merely a theoretical conclusion " ithat a crack would arise when hardening where the defective union between the
sides of the pipe remain, as it would weaken the cohesion of the
ites steel at that point;" but it is a matter of common practice in
testing samples of steel for such defects to break a piece from the end of the bar and harden it to see if it will crack. No system of
inspection is perfect enough to prevent infallibly the existence of
such cracks in the steel, or pipe in the ingot to which we must trace many of the extra-
ordinary cracks which arise at peculiar and unexpected points in steel articles when hardened. I hope to present a paper at the
next meeting have some interesting examples of the defects caused by the pipe (To be continued.)

Lightrouse ox Capk Hatrerass, - Bids will be opened in
the ofice of the Lighthouse Board, July lst, for the erection of a
ighthouse on the Outer Diamond Shoal oft lighthouse on the Outer Diamond Shoal off Cape Hatteras, N.C.
The total cost of the structure is limited, by act of Congress, to
500,000 dols. A lighthouse on the outer shoal undoubtedly, saved many vessels, as the nearest light on Cape Hatteras is invisible in bad weather. A light has never been
erected on this shoal before on account of the extraordinary
engineering difficulties in the plated will be the greatest undertaking in the line of lighthouse
building in the world There are but two lighthouses in the light situate at the mouth of the Weser River in the North Sea, and the Fourteen-Foot light at the mouth of the Delaware
Bay. The tower is to be 150 ft . high from low-water mark to the light in the lantern. The Lighthouse Board does not specify what method shall beadopted, but it is generally understood that an
immense caisson, soft. to 100 ft . in diameter, with a hollow iron cyliner projecting from it sinally at the site, it will be sunk rapidly
venient port. When it until its cutting edges rest on the sands, of the shoal. As the
sand beneath the caisson is excavated and carried up through the tube the sharp edges will sink lower, until finally bed-rock is reached. When all the edges rest firmly on the rock, the entire
caison and the tube will be filled with concrete toa height of 30 ft. stone almost as firm as a granite monolith. It will be protectel stone aimost as frm as a granite monolith. It wil be protected
by a rip-rap packing of granite blocks, weighng not less than two
tons each. Above this solid structure will rise an iron and steel tower divided into ten stories, including the watch room and
the lantern. Work is to be commenced within the dantern. Wherk is the approval of the conedract, and the one contractor
the date
is to fix the time within which it is to is to be me time within which it is to be completed. No payment a year. Notwithstanding the unusual difficulties in the way of carrying out this work, a number of large engineering firms will
probably bid, and it is thought there will be no difficulty in entering into a contract. The primary question to be settled here is
the question of securing a foundation. It would be well therefon to separate the proposals for the foundation from those for the
lighthouse itself.
One is a question of engineering, the other a
 establish a foundation in the shifting sand of Hatteras shoals
might not be willing to undertake the unfamiliar business might not be willing to undertake the unfamiliar business of
putting a building on it. The foundation should be carried suff.
ciently above the water to assure the shfety of the structure

RAILWAY MATTERS.

Grear preparations are being made by the Russian Government to begin
pring at both ends.
A proposal is under consideration by the Indian Council to convert all the narrow-gauge lines of railway in India
to broad-gauge lines, at a cost of twenty millions sterling.
The Ceylon railway line is now laid to within a
The Ceylon railway line is now laid to within a couple of miles of Bentota, and most of the stations are nearly completed;
but the line cannot be opened for traftic until the arrival of the We learn that the surveyors bave found an easy trace for the extension beyond Bentota, but the bridges over the large rivers that have to be crosed will, of course, form a costly item.
Great activity, says the Indian Engineer, is being shown by various railway officials in Southern India, several com-
panies being anxious to secure some new lines proposed. The agent of the Madras Railwar, haning proposed to undertake the
survey of a line on the broad cauge from Nepore to Guntoor, Government has placed Rs, 20,000 at his disposal fore this purpose.
This line will be an extension of the Madras Railway, ultimately be extended to Bezwada.
Last Tuesday morning, at about three o'clock, the Scotch express ran through Carlisle station, where it should have
stopped, and at an estimated speed of about thirty miles stopped, and at an estimated speed of about thirty miles an hour
dashed into the engine waiting to take the train on. It is sup. posed that the brakes failed to act, slippery rails ane also spoken
of in connection with the aceident. Four people were killed and ereral seecerely injured. Enongh is not yet knowle were killed and
definite report to be germit any
The work of changing the tracks of the West Shore rail-
way at FortClinton to make room for the westerly tower of the Hudway at Fort Clinton to make room for the westerly tower of the Hud-
son Suspension Bridge at the water front is nearly finished, and the bridge company expects that the ground will soon be cleared to
permit the beginning of work upon the tower foundation. The
Railioad Gaedte says the company is invetignting Raiirrad Gasette says tho company is investigating the use of
electricity with a view of hastening the operations at Bull Hill
Tunnel, through which is to run the railroad from the western end Tunnel, through which is to run the railrood
of the bridge to Turner's Station on the Erie.
Gradually the electric motor is being enlarged, and it is rapidly approaching a size that gives it a capacity not much
below our average switching steam locomotive. An American contemporary syys:-One of the latest moves in the direction of a
higher capacity electric motor is that of the Thomson-Houston Company, who are now building some electric locomotives for the
West End Street Railway Company, of Boston, capable of drawing a losg train of cars, that is, there will be a powerful motor car
drawing a number of cars, as is common with cable systems of
IT is reported that the Imperial trains on the Nicolai,
Moscow-Koursk, and Warsaw railways, have each been fitted up Moscow-Koursk, and Warsaw railways, have each been fitted up
with the Westinghouse new quick acting brace ; also that the
North-Enstern Railway of England, the State Railways in Hungary, Baden, Wurtemberg, and Bavaria, and several lines in Switzerland,
have adopted the new brake for all future equipments. As regards
the Wurtemberg State, it is officially anounced the with the the Wurtemberg State, it it of officially announced that with the
completion of the year 1890, all pasenger trains will bef fited with
Westinghouse brakes, and the necessary appropriation of $\overline{7} 4,786$ Westinghouse brakes,
marks has been made.
The electrically driven snow sweeper in use on the West End Street Railway, in Boston, consists of a platform car,
mounted on a four-wheel truck, two Thomson-Houston motors of 15 -horse power each being attached to the axles. Underneath
each end of the car is a large cylindrical brush made of rattan, set eat an angle of about 45 deg., and reaching across the tract. The
an an and
brushes ane revoved very raidly by power from a 15 -horse power
electric meoter electric motor, which is on thaidy platform of the car. The sweepers
are propelled precisely the same as the electric cars, the long pole are propelled precisely the same as the electric cars, the long pol
reaching the trolley wire being fixed to a post on the platform.
A serious accident occurred on Tuesday afternoon to the Flying Dutchman, between Slough and Paddington. It appears that
the right-hand front-axle box of the hind bogie of a central carriage heated, and the journal end of the axle was twisted completely off.
The wheel that was freed kept rolling, and that at the other end of
the the axle dropped to the sleeper; but the carriage was prevented
from falling by the two wheels behind. A platelayer at Langley
saw the boy fine saw the box fring, and got the signalman there to telegraph to
West Drayton, but Hayes was reached before the train was stopped. At this station the passengers were transferred to the
foremost carriages, and the injured coach was left behind. The
Referring to the tests of locomotive engines with view to testing the superior economy of the compound system, the
Raironed Gazatele ayys.-This suggests a fact relative to compound
locomotive to locomotives to which our attention has again been called, this
time by Mr. H. H. Westinghouse, who has probably experimented more with compound stationary engines of sizes difirering but
mittle from locomotive dimensions than any other manufacturer in
lithe this country, and as much as any other in the world, unless it b
the Willans Engine Company, of England, which has made speciality of tripleexpansion, stationary encines. The Wade a
house enging
hite experiments show conclusively that with a ploin condensing, compound engine it matters but littlo, so far as coconomy is concerned, whether the cut-off in the high-pressure
cylinder be at tyee-fourths or one-half stroke, and that a decrease of the cut-off below half-stroke rather decreases than increases the
economy; and further, that below one-half stroke a throttling covernor is quite as economical as an automatic cut-off, so far as
the high-pressure cylinder is concerned. Some tests made a few that at curly cut-offs it was quite ns economical to throttle the steam as to use the automatic cut- off, and than at very early cut
offs the throttling plan was the more economical. In view of the application to Parliament for the
absorption by the North British Railway Company of the Glasgow
and South-Western Railway, an che suouth to the the Rill, has been bentered int agreement, which the which is
Rnilway Company. Under this agreement the Midland Company
cond consent to support in Parliament the proposed amalgamation o the two railways in question, who, on their part, agree to forward
annually, by the Midand route,, n minimum proportion of English
tand equific under their control, from Glasgow and places west thereof
equal to
by both nailways, caleulataportion of on the traffic already forwarded yis January, 1889. The Midland Company further agree to make
Jist a fixed monthly payment to the amalgamating companies- based
on a three years average - in lieu of the hitherto fluctuating
payment relative to the apportionment of through traffic. On other hand, the amalgamating comparies ngree to maintain express Casenger and goods train connections with the Midland services at
Carlisie, and also to work passenger trains between Balloch and
Helensburgh respectively and St. Enoch Station, in connection with the Midland morning and evening up and down express trains
hetween Glasgow and Condon. It is also agreed to grant the
Midland Cose Midiand Company running powers between Carlise, Perth, and
Dundee, over suuch portions of their system as the Midland Company do not at present poseess running powers. This agreement,
which is to barried out by a oint committee, to be ealled "The
Midland and North British Throngh Traffic Committee," is to be onstrued, in the event of any difference arixing, by Lord Grim-
horpe or Sir Theodore Martin, whoe decision is to te final

NOTES AND MEMORANDA.

The deaths registered last week in twenty-eight great towns of England and Wales corresponded to an annual rate of
25.6 per 1000 of their aggregate population, which is estimated at 9.75,559 persons in the middole of this year, Whe rate varied from
16.5 tat Cardiff to 43.7 ma Bolton. In two other towns it exceeded 40 and in six 30 .
In London, 2560 births and 1802 deaths were registered last week. The annual death rate per 1000 from all causes, which
had been $20 \cdot 6,21 \cdot 3$, and $21 \cdot 8$ in the three preceding weeks, decline again last week to $21 \cdot 3$. In Grenter London, 3380 births and 224 corrosponding to annual fates of $30^{\circ} 6$ and 20^{-4} per 1000 of the estimated population.
At a recent meeting of the Paris Academy of Sciences, a paper was read on "The state of the Magnetic Field in Con
ductors of tree Dimensions," by M. M. Joubin. The results o
these these researches, which ngree with experience, show that the
magnetic field produced by a current exists in the medium traversed by the electrcic flly as as well as in the exterior medium
Another paper was read on "The Mechan Another paper was read on "The Mechanical Actions of Variable
Currents, "y M. . Borgman. In reproducing, with the limited
resources of a laboratory, the interesting experiments exhibited by resources of a laboratory, the interesting experiments exhibited by
Prof. Elihu rhomson at last year's Exhibition, the author ha
obtained some fresh results, which he described.
In a recent number of the Comptes Rendus is a paper
"On the Electrical Resistance of Iron and its Alloys at High On the Electrical Resistance of Iron and its Alloys at High
Temperatures, by M. H. Le Chatelie. The electrical resistances alloys have been examined. When the resultt are graphically
shown, the curve for ferro-manganese- 13 per cent. Mn.-1s found shown, the curve for ferro-manganese-13 per cent. Mn. - is found
to be regular, just as is the case with platinum or platinum.
rhodium alloy, while the curves for mild and hard steels show rhodium alloy, while the curves for mild and hard stels show
distincty two singular points at 820 deg and 710 deg., and a
silicon steel $\mathrm{Si}=3$ per cent.- shows the former only. Ferro-nickel- 25 per cent. Ni-behaves very peculiarly, as belo
50 deg. two modifications having quite distinct properties exist,
and nickel itself shows a sudden change of curvature at 340 deg.
The value of metallic products of the United States
in 1888 is piven as follows by the Engineering, and Mining
Jourral $;$ Pig iron, $6,489,738$ Iong tons, 10700000 dols, spot
value silver, $45,783,632$ troy ounces, $59,195,000$ dols. coining

 San Francisco, ; platinum, crude, 500 troy ounces, 2000 dols., a
New York; total, $256,245,403$ dols.
Dr. Sedgwick Saunders, the medical officer of health and public analyst for tho City of London, has presented his
report for 1889 ge
proportion of 202 analyses were made during the year, giving a proportion of 202 persons to ench sample examined, and of these
only eight
thamepely six of milk and two of water failed to reach Company's water supply to the city, and of the various artesian
wells, gave very satisactory result, and in the only two instances
where pollution existed it wes directly trace where pollution existed it was directly traceable to contamination by surface drainage, and steps were at once taken to prevent such
waters from being used for potable purposes. Adulteration in grocerios, drugs, ,c., would appar to be practically non-existent
in the City, sinee none of the various samples. failed to pass the test
The Royal Society of New South Wales offers its medal and a prize of 225 for, amongst other things, the best original research or observation upent conchtaining the forlowing sub sub
jects:-The silver ore deposits of New South Wales ; on the occurrence of precious stones in New South Wales, with a descrip-
tion of the depositt in which they are found ; to be sent in not Zealand, and Tasmaniaxt. Thatomy meteorology of Aus life histrory of the Echia, New
nd Plat and Platypus; the microscopic structure of Australian rocks; to
be sent in not later than May 1st, 1892. On the iron ore deposit of South Wates ; on the coals and coal measures of Australasia. The competition is no
residents in Australia.
At the last meeting of the Meteorological Society, paper whe Circulation of the Atmosphere, and of the Develop F.R. Met. Soc. The author has made numerous observations on the motion of dust in various parts of the world, especially on
deserts on the west coast of South America. He finds that the
wind sometimes blows dust into wind sometimes blows dust into streaks or lines, which are analo-
gous to fibrous or hairy cirrus clouds ; sometimes into transerse ridges and furrows, like solid waves, which are analogous to certain
 analogous to a rare cloud form called "mackerel scales, some
times into whirlwinds, of at least two, if not three varieties, all of which present some analogies to atmospheric cyclones; sometime gous to simple cumulus topped squalls; and sometimes into forms intermediate between the whirlwnd and simple rising eloud, some
of which reproduce in a remarkable manner the combination of rounded, flat, and hairy clouds that are built up over certain types
of squalls and showers. Excessive heating of the soil alone does of squans and showers. Excessive heating of the soif ulone doe
not generate whirlwinds, they require a certain amount of wind sion is that when the nir is in more or less rapid motion from cyclonic or other causes, small eddies of various kinds form them-
selves, and that they develope the different sorts of gusts, showers, squalls, and whirlwinds
On the physics and chemistry of the Challenger expedition there is an excellent article in the last number of Nature
Special reference is mado in it to the work of Van der Waal on
the continuity of the liquid and gaseous states; and Professor Spe continuity of the liquid and gaseous states; and Professor
Tait is very vigorously called to account for his omission Tait is very vigorously called to account for his omission
to refer to this work in the Challenger report or for not
knowing of the work when he wrote the report. There is also significant and amusing reference to Propessor Tait's book on
int." Other indications of a lack of admitted acquaintance with what has been done by others are not wanting. Taking
$p(e-a)=$ constant, as the equation to the isothermal of a gas, and assuming that it applies approximately to a liquid, the author con cudes that water [at 0deg. C.] can be compressed to somewhat
less than three.fourths of its original bulk, but not further." He
adds that "the whole of this speculation is of the roughest cha racter," but makes no reference to the converging lines of evidenco which indicate that liquids could be compressed to from 0.2 to 0.3 of thear bulk at ordinary temperatures and prossures. The
ing values are found by different methods for the volume of the matter in the unit volume of water under standsrd conditions:-
Deduced from observations on the refractive index of liquid water L. Lorentz), 0.2061; deduced from observations on the refractive
 specific inductive capacity, 0.23 ; doduced from the molecular
oromes of $H_{\text {g }}$ and anir given by Van der Waal's theory, 0.33 .
Profesor Tait's value is 0.717

MISCELLANEA.
The London Association of Foremen Engineers and Draughtsmen give their annual dinner on Saturday, the 15th, at
the Cannon-street Hotel, Mr. W. H. White, Director of Naval
Construction, in the chair. .
Last week the Forfarshire Road Trustees had under their consideration the appointment of a rood surveyor for the
Forfar distric. Mr. George Wyllie, surveyor, Coupar-Angus, was, we are informed, awarded the position
Ir is reported that the owners of the leading smelting
vorks of tho United States have formed a trust with a capital of works or tho nnited Statos have formed a trust with a capital of
2,500,000 dols, the object being it it said, to place their interesta
beyond the control of the Lead Trust.
The United Asbestos Company, Limited, have removed House, Billiter-street, London, E.C., lately in the occupation of the East and West India Dock' Company
The Cardiff Coal Trimmers' Benefit Society had a stormy meeting this week; questions of "ton and turn" and relations with
"hobblers" have caused some disquietude. The latest strike in Cardiff has been of a novel character-amongst the women un
loading potatoes. They demand 2 s . 6 . instead of 2 s . per day lond upon one oceasion during the week kept fifteen vessels from
and
being unlonded. A Large and influential deputation attended from
Doncaster on Wednesday to present an invitation to the Royal Doncaster on Wednesday to present an invitation to the Royal
Agricultural Society to hold the show of 1891 in that borough The site offered for the show was the famous Town Moor, and
list of subscritions already promised towards the local fund list of subscriptions already promised towards the local fund
amounting te t4000 was laid on the table. The council resolved
that the invitation be accepted, and that the show of 1891 be held that Doneaster.
The manufacture of ordnance on the Tyne has hitherto Coen exclusively in the hands of Messrs. Armstrong, Mitchell and
Co., but it is officially reported that Sir C. M. Palmer and Co. ar about to open a department for the manufacture of ordnance and
gun carriages. The management of the new ordnance works ha been confided to Colonel English, R.E., n now of Woolwich. Opera tions are to be commenced as soon as possible, but the scheme is
be brought into existence without making a call upon the present
shares. TThe shareholders will have the first opportunity of subscribing the large amount of capital necessary for the new Tus.
The new vessels launched from the Clyde shipbuilding yards in the past month aggregated 38,192 tons, as compared with
77740 in the same month of last year, and 520 tons in Fobruary
888. The output of the first two months of the year has reached 56, i2d tons, which is the largest that has taken place in any corre-
sponding period in the history of the trade, comparing with 31,70 ons in the first two months of last year, and with 18,286 in 1888 ,
But while the tomnage launched is thus exceptionally large, the place. Only somed have been quite inadequate to supply its
placed, 4000 tons of new shipping has been都

The ultimate fate of the two great French engineering enterprises-the Panama Canal and the Corinth Canal-is
coupying considerable attention in Paris, owing to the steps that are being taken for their resuscitation. The future course
to be etaken with regard to the Panama Canal will not be known antil about the middle of May, when the decision of the works is issued. The delegates have been extremely reticent with regard to their recommendation, and this fact is generally regarded
as adverse to the completion of the canal upon the lines laid down by M. de Lesseps In the meantime M. A. Monchicourt has been ppoin as iquid
The Bute Docks Company's tippers, in conjunction with Messrs. Worms, Josse, and Co.'s trimmers, did, by means of
the movable tips on the west side of the Roath Basin, last weel some remarkable work in coal shipping. The steamship Byron,
carrying 3104 tons, commenced loading on Monday afternoon, and carrying 3104 tons, commenced loading on Monday anternoone and
finishod on Tuesday afternoon. The steamship Syria followed and took 3002 tons, finishing on Wednesday afternoon. The steamship on Thursday evening. The three steamers were loaded in succession at the same loading berth, and only occupied it seventy-three hours altogether, in which time they received 10,250 tons of coal.
This is a shipment rate of ooer $1,000,000$ tons a-year, from a loading berth for one steamer. The time actually occupied in loading
the 10,250 tons was only twenty-nine hours. The movable tips referred to wero constructed under Taylor's patent.
The land of liberty manages some things rather badly. Street cleaning by private contract on a large seale has been
tried both in Now York and Philadelphia, and it has always ended in lamentable failure both in economy and general efficiency; but the American Engineering Ners says "the reason therefor is
plain enough. Instead of the honest work now performed on Brond way, for private paymasters and under their personal ingpec
tion, in the cases mentioned it took but little time for the municipal faction to transform the working force into a political pension ureau and the contractors into second-rate political leaders. It
vas practically the same condition of affairs which exists in the public departments, where every employe regards his position as a
eeward or bid for political service. Politics and good work never will mix well together; and it is after all merely a matter of form direct employes of the city. Honest constant work, under rigid ard intelligent supervision, is the only thing that will keep our
atreets really clean ; and the one remed that we can suggest is to remove this service out of the realms of pelitics by reorganising it
 is the only measure of permanent employ.
On Wednesday a demonstration was made of the working of the electro-motives and their two carriage trains on the City
and Southwark Subway. For some time these have been at work yi means of current supplied by a dynamo and ongine,
rily placed at Great Dover-street, near the station in that street on the new line. As it is now proposed to move this plant, the
xhibition of the running of the electro locomotives was made the permanent plant at Stockwell being not yet ready. One of the each geared by steel pinions to steel idle wheels, which in their There is another locomotive in which the armatures are placed direct on the driving axles. The electro-motives weigh about ive miles per hour, with two long carriages on bogies. The current
conveyed by an iron insulated rail, and taken off by a slipper in is of lione locomotive. It is an inverted channel iron on glases brake. It attained a speed of about twenty miles an hour, between King William-street and the Elephant and Castle, a distance of a mile and a quarter. The number of visitors carried was about a
nudred, and with this load the locomotive dealt easily, the distance from the Elephant to King William-street being covered

FOREIGNAGENTSFORTHE SALE OF THE ENGINEER

PUBLISHER'S NOTICE.

FORTH BRIDGE.

\because Rolled copies (snitable for framing of the Four-page Engraving
of the completal Brodis, isued vrith our Spepal Number of
December 13h last, can be had, price 1s, post free.
 Supplement, and subscribers are requested to motify the fact should

CONTENTS.

TO OORRESPONDENTS.
Registered Telegraphic Address...". ${ }^{\text {ENGINEER NEWSPAPER, }}$

 stamp, in order that ans
antion
ucith these instructiotions.

CHain DRIVING Belts. To the Editor of The Enginer.

SiR,-Wo shall be obliged to any yeader who will give the names and
H. AND P.
diteoseen of makers of fhain driving belts.
gauge glass for paraffin tanks.
 connection with paraff
Neath, March nd.

Asbestos machinery.
To the Editor of The Enginer.
(To the Editor of The Enginerer.)
Sire, - I rhall be glid if any of your readersw would give me nemes
makers of machinery for crushing and opening crude asbestos.
Sin,-1 Rhall be ghad if any or your readers would give me the names
of makers of machinery for crushing and opening crude asbestose
Rockdale, February 2 oth.

meetings next week.

DEATHS
On the sth March, at Queenwood, Gipsy. Hill, Auprep Pexsy, M.L.C.E.E.

THE ENGINEER.

MARCH 7, 1890.

factors of safety in the navy.
In our last impression will be found a description of H.M.S. Trafalgar, one of the most recent additions to the British fleet. On the same page we gave an account of the
experiments carried out with her armament. The report is experiments carried out with her armament. The report is
in a sense official. The results of the trial are sald to be satisfactory in the highest degree, and apparently
everyone concerned in the design or construction of the everyone concerned in the design or construction of the
ship congratulates himself and his fellow workers on this. We cannot read the report, indeed, without feeling that everyone is thankful the trial is over, that no one has
been killed, no gun damaged or deck blown up. Now this frame of mind is not, it appears to us, that which the modern naval architect, gun maker, or engineer,
should enjov after a trial of a man-of-war. There ought should enjoy after a trial of a man-of-war. There ought
to be no occasion for congratulation. The success of the ship, in all respects, ought to be a matter of course-a certainty in fact, tempered with a very remote chance of
accident. When a locomotive superintendent turns out accident. When a locomotive superintendent turns ont
a new locomotive, he does not congratulate himself that a new locomotive, he does not congratulate himself that
it does not break down during the first week. The maker of engines in the mercantile marine does not hug himself with the thought that nothing goes wrong during a trial trip. We do not suppose that Sir John Fowler
or Sir B. Baker are specially delighted to find that the or Sir B. Baker are specially delighted to find that the Forth Bridge is an enormously strong structure. The locomotive superintendent, the marine engine maker, and the bridg: builder, aim at attaining certain results, and if they did not attain them, they would be
astonished and disappointed. One or two failures wonld lead to professional ruin, indeed. But there is nothing at all approaching to this certainty about the Nary. No intended to do. If it is a hydraulic buffer, for example, there is jubilation if it takes up recoil without pipes bursting. It is a matter for wonder and delight if a gun when fired does not rip up the decks. As for the engine a success or a fois, anything may happen ill this seems wrong, and is certrinly perplexing. There is not less talent, or skill, or industry, or money available in the construction of ships and engines and guns, than there is in any one of dozens
of other undertakings. Why should the results of their expenditure be so different?
The answer is, we think, that there is a great deal too much attempted, and that consequently the factor of margin left for contincencies, and in this the British Navy stands out, we think, in strong contrast to the result of all other work done in Great Britain, always excepting
the performances of the jerry builder. Instances and examples crowd upon us. We may select one or two.
A certain class of small ships was produced intended to possess high speed; it was perfectly well known that the possess high speed; it was perfectly well known that the
required speed could not be obtained with less than about required speed could not be obtained with less than about
4500 indicated horse-power ; it was also well known that 4500 indicated horse-power; it was also well known that
such a power could not be exerted without putting a such a power could not be exerted without putting a
severe strain on the hull. But the hulls of these ships severe strain on the hull. But the hulls of these ships
were made of such light scantling, that when the engines got near the required power they threatened to pull the vessels to pieces. The trials had to be stopped, and the hulls will have to undergo a costly process of strengthening. It is clear that no margin of safety was allowed. It is not necessary to say anything about boilers and engines. It has been tardily admitted that the attempt
to reduce weight was pushed to a ridiculous to reduce weight was pushed to a ridiculous extreme with disastrous consequences. Concerning guns, perhaps the
less said the better. But let us look less said the better. But let us look at the report of any
trial of gun carriages, and what do we find? Either that there has been a failure of some kind in some detail, or that there has been a perfect success, which fills every one with surprise. The Trafalgar is fitted with heavy
guns which she is intended to fire, otherwise wooden yuns which she is intended to fire, otherwise wooden
dummies would be much cheaper and would be easier to carry. Yet it was only on the most urgent repre-
sentations of Mr. White that the sentations of Mr. White that the authorities consented to have these guns fired in any way that might possibly injure the ship. If these guns are specially mounted for firing over the decks, it seems evident that the decks
should be made specially strong to withstand the effect of the air blast. We learn, however, from the report that the decks only just withstood the shock and no more. A deck beam was forced down 2in. and a stanchion was broken. Just fancy what would be said if a railway
bridge intended to carry a certain load deflected 2 in. when that load was put on it. Obviously, there is no sufficient factor of safety allowed in the deck beams of the Trafalgar. Immunity from injury can only certainly We secured by taking great care not to fire the big guns. We know quite well what the excuse or apology or ex-
planation will be. It is that if stronger beams had been used, they would have represented more weight than could be spared to them. It is the same thing all through -more is aimed at than can possibly be secured, and this
ve think, a most mischievous policy. It is perfectly well known, for example, that in a squadron of men-of-
war, the breakdown of one may render the others cally useless. It is agreed, however, that out of half-a. dozen ships the chances are that only one will break down, and that it is worth while to give up the margin of safety and take chance, rather than make the whole
squadron slower. It is only necessary to state this pro squadron slower. It is only necessary to state this pro-
position to render its absurdity manifest. The attempt to do too much is the cause and source of nearly all the tronbles that beset our ships of war. It is high time that the imperative necessity of providing a factor of safety in the
Navy was recognised. The results might, in the first Navy was recognised. The results might, in the first
instance, be regarded as vexatious, but in the long rum they would be satisfactory. Our guns burst because they are overloaded; our gun carriages fail because they are not heavy enough, and therefore not strong enough to bear
the strain put upon them ; our boilers leak because they are expected to make too much steam; our engines break down because they are overdriven. It is not that the
guns and carriages and boilers and engines are not as good as it is possible to make them. The failures are all due to the insane desire to make a fine show on paper, and to
get results which can only be had by running excessive get results which can only be had by running excessive
risk. What would be thought of a railway company which called for tenders for a great bridge over a deep river, and insisted that the weight of the bridge should be so small that the steel should be stressed to fifteen tons on the square inch? A course precisely analogous to this is pursued in the Navy; and the most strennous exer-
tions of men who are not afraid to face facts will be required to prevent the perpetration of a most mischievous polic
The pr
The principal agent in eliminating the factor of safety is, no doubt, the desire to keep down the weight. But,
can it be said that we have really attacked this weightproblem in the proper way or the right spirit? Is it not raturi a fact inalestight has been piled up because a
multitude of interests have had to be considered? The naval architect and the engineer have not been left a free naval architect and the engineer have not been left a free
hand, and adventitious structures of all kinds are added here and there as the work proceeds. It is not remarkable that a ship should float a foot, or even two feet, deeper state of mind of the naval architect who finds himself called on to put weight into a ship that he never contemplated; and how, in his desperation, he will cut and carve and reduce here and there and everywhere, until the margin of safety has totally disappeared. It is to be hoped that our new ships will be completed as designed; and, we believe it is not too much to say that on this point, the Chief Constructor's Department is very firm.
We may say-not in a a spirit of censure-that with much of may say-not in a a spirit of censure-that with much
of the criticism to which our ships and guns and engines of the criticism to which our ships and guns and engines
are submitted we have little patience, because it is at are submitted we have little patience, because it is at
once ignorant and exasperating. But, on the other hand, it is part of our province to direct attention to the failures of the past in order that they may not be repeated in future; and it can do no harm, and may do much good, to tell the official man exactly how official congratulations strike a non-official journal. It does not appear to be a delighted to find that a big ship can fire big guns, with full charges, without hurting herself or her crew. If a proper factor of safety existed, there could te no possible reason for anticipating anything else. About joyful surprises
nothing would ever be heard; they would cease to exist.

The Corporation of the City of London are not disposed to let the question of the water supply rest in juiry into the subject, ard in order that the result may
carry due weight they are anxions that the Government should appoint an expert to conduct the proceedings.
For the purpose of defraying the cost the Corporation are prepared to expend $£ 2000$. This sounds rather small for so important an undertaking, and rather suggests the iden that the scope of the inquiry is to be
somewhat limited. The County Council, who think it somewhat limited. The County Council, who think it
is only due to their dignity that they is only due to their dignity that they should be in
possession of the water supply as well as of sundry possession of the water supply as well as of sundry
other things, are about to ask Parliament for permission to spend $£ 5000$ of the ratepayers' money, City and
metropolis alike, for a similar purpose. The Council, it is to be observed, seek power to "negotiate" as well as to inquire, and are feeling their way towards getting the power of purchase. The authorities of the City are more particularly impressed with the cost of the supply,
and are annoyed with the system whereby the water rate and are annoyed with the system whereby the water rate
of business premises is levied on the basis of rateable value. Warehouses use little water, but pay big
rates to the New River Company, and the consumers are looking about them for some kind of deliverance. The Commissioners of Sewers have been trying for the last three years to sink an artesian well,
but have not yet succeeded in getting any water; and when they get it, if ever they do, it is not very clear
that they will be able to do anything more with it than supply their own property and give the rest away. The is interesting to observe that the day before the Court of Common Council resolved on setting up a public inquiry
on the water question, the fraction of an adventurer's share in the estates and interests of the New River was sold by public auction at a price representing nearly forty years' purchase. A rate of interest equal to no more
than $2 \frac{1}{2}$ per cent. per annum does not appear very encouraging, but there is a tempting prospect held out to continually increasing, and there is no statutory limit to the dividend. Of all sources of income, there is nothing better than a share in the New River Company. The revenue comes not only from water, but from houses and
lands. The Company possesses large and important estates in London, and in the counties of Middlesex and Hertford, the entire area extending over hundreds acres, capable of yielding splendid revenues in days to the heart of London, and the ground rents now received will in twenty years begin to give place to the rack rents,
onsequent on the falling-in of the leases.

When terms were arranged in 1880 for transferring th London water supply to a public authority, the landed the bargain. But the magnitude of thas not included in water rates is itself remarkable, as also the rapidity of it growth. A statement has been issued showing that the streets, water sold in bulk, and income from othe sources," has never decreased during the last twenty years. How these sums are made up we do not know sources. But taking the net water rental of the New Board, we find a decrease exceeding $£ 2000$ in 1883 , an again in 1885 . But still there is the fact of a rise from
$£ 400,816$ in 1880 to $£ 453,016$ in 1888 . The dividend paid is now more than 12 p the shares. It is also stated that whereas the dividend paid on an entire share in 1868 was $£ 1340$, that for 1888 the advo. Despite the enormous increase thus exhibited, gression." But it is this kind of progress which threatens the very existence of the Metropolitan water companies In the statement promulgated by the eminent firm which with ed the recent sale of the New River shares, we mee which, although designed for business purposes are so far correct that they seem rather perilous, as likely some drastic measure for extinguishing so profitable monopoly. The cause of the increasing income is said to be not only the extension of the metropolis, but the improvements effected in it, and the conse which the water rates are charged. It is added that "continuous extension and improvement in the future even if, perhaps, not so rapid, must conduce to corresponding increase." No one need object to an extension of the metropolis; but the feeling is otherwise when a mere rise in the assessment is accompanied by an increased charge for the water supply. The wate companies are technically justified in taking the benefit of acting within their rights, this process is doing more than anything else to bring about a crisis in the history of the question. No doubt the water is better in quality than change in the last eight years, and yet in that period we find water, on the whole, getting dearer. There are metropolitan the rise in price, for four out of the eigh 1880, but the other four more than counterbalance this reduction, the effect being that water in London has risen, in eight years, from $£ 2716 \mathrm{~s}$. per million gallons to River water has risen from $£ 3816 \mathrm{~s}$. per million to $£ 41 \mathrm{10}$. The advance in price would have been still greater had not the Legislature interposed with the Water mean "rateable value ;" an enactment in harmony with Dobbs' case in 1883, though we must conclude that the new Act went somewhat further, as otherwise it would not have been required.
If the London water companies are to be bought up and the supply transferred to a public authority, it is

Although something has been done to check the growin London is enough to furnish a serious annual increment The growth of the New River interest is a case in point To enhance the value of the shares in the market, it is
remarked that building operations are now proceeding remarked that building
Hampstead Hosey Fin Hampstead, Hornsey, Finsbury-park, Edmonton, Enfield new buildings are constantly rising throughout the com pany's districts in the more central parts. Attention is called to the fact that it is on this large and increasing annual value that the company enjoy the
right to charge." The fact that the New Rive Company has added more than $£ 50,000$ to its net water rental since 1880 is indicative of the pro cess that is going on. If we include all the companies,
we find the total increment to be very nearly $£ 288,000$. we find the total increment to be very nearly $£ 288,000$ This must be paid for, however ingeniously the terms may be arranged. Very good reasons can be given why splendid incpply should remain where is it grows and glitters before the eyes of the London County Council and the Corporation, we may be assured that these authorities will be anxious to deal with it in some shape or way. The to collect information, of which indeed there seems to be enough already, but to promote certain designs, such as may not tend in all respects to benefit the public. We doubt wh
manage the the companies have done. The New River Company stands at the head, and it is rather entertaining, though still spoken of as "a great historic undertaking, beyond the reach of fluctuation, possessing in itself all the elements of security, regularity, realisability, and improvement, combining the simplicity of a Government annuity without the dreaded loss of income, the profits of a trading proprietorship wout its risks, and the prestige of lination of an Elysium and an Eldorado can hardly fail to rouse the energies of the London County Council for the acquisition of such a prize,
loss of the Coal Duty
wreck caused by a lighthouse
We have on several occasions in this journal referred o the progress made with the lighting of the many points dangerous to navigation on the coasts of our among such references we named the approaching completion of two lighthouses of an important character on the shores of Ceylon, the coasts of which island have been particularly fatal to vessels. According to a
published in the Ceylon Observer, no less than thirty-four steamers-including at least five of the fine vessels belonging to the Peninsular and Oriental Company-have therefore since 1857 upon its shores. The imporgerous localities along the seaboard of Ceylon will, it is certain, be fully recognised. The two last completed of these Barberyn and on the Dondra Head, and a Board of Trade notification, published as far back as October last, intimated as follows:-"Ceylon-Barberyn Island: Early in November, 1889, a light, showing a quick white this island in 6 deg. $27 \frac{3}{4} \mathrm{~m} . \mathrm{N}$., 79 deg . $57 \frac{3}{4} \mathrm{~m}$. E. Dondra Head.-Early in December, 1889, a light, show150 ft . will white flash every twenty seconds, elevation point of Ceylon-in 5 deg. $55 \frac{1}{2} \mathrm{~m} . \mathrm{N}$., $80 \mathrm{deg} .35 \frac{1}{2} \mathrm{~m}$. E." It is certain from these notifications that every master a a vessel would rely upon ascertaining his wherenamed.
It is certainly most astoniṣhing to learn, as we have neither of the beacons referred to in the Board notification had been lighted; nor is it discoverable that any intimation of the delay in doing so had been either in the ed to the maritime authorities of Ceylon or notified course been followed, proclamation of that delay would in the ordinary course have appeared in the local Governwould Gazette; while in the second case every precaution throughout all shipping ports. Owing to want of any intimation that to the intentions of the Board of Trade effect could not be given, the s.s. Norsa, while on a
voyage from Middlesbrough to Madras with coke and railway material, was wholly lost on the coast near to Barberyn. The commander of that ship, Captain Lilienskjold, pleads that, seeing no light in the position from the shores of Ceylon, and, the night being very foggy with squally weather, no evidence of the ship's proximity to danger was apparent before she struck in the is a new vessel of about 1800 tons burden, built only in last year, and at the time of her loss was on her maiden voyage. She was owned by Messrs. Herskind and Wood, entlemen, or the underwriters with sure that those insured the ship, will demand that the fullest inquiry shall be made into the allegations we have above given upon the authority of what has appeared in the papers pubhished in Ceylon
city. It will be admitted, we feel sure, theceived pubcan be controverted a very grave responsibility will rest upon those officials of the Board of Trade whose duty it is onee that every possible publicity is given to all matters guidance of which ocean navigation is carried on. The dates we have quoted show-if the allegations made can be
fully established-how negligent of such duty the respon. was advertised to appear early in the November of last was advertised to appear early in the November of last
year. Until the date-January 16th, 1890 -of the Norsa being lost, fully two months must have passed since it must have been known to the Board of Trade that the promise made by it had not been kept. The telegraph world in a few hours' time; while there was even ample time for fuller details than could be given by that agency presuming such to have been necessary-to have been dispatched to every port throughout the East by the
ordinary mail routes. Unless the default alleged is sus ordinary mail routes. Unless the defauit alleged is sus. conjecture, a very serious dereliction from duty has occurred which must demand the strictest inquiry,
Unless steps be taken which shall render it-human Unless steps be taken which shall render it-humanly speaking-impossible for such a failure to recur, the course of lighting of which we have hitherto spoken in nare, rather than a safeguard, to the whole navigation of the world.
We are curious to learn what may have been the causes which gave rise to the non-illumination of these wo important lights. As yet, the only explanation we paper before alluded to thy a cursory reference in the ournal it has been stated that the non-arrival of the expected supply of colza oil was the reason of the default made. But surely, considering how many other lightthese thave been erected in Ceylon, and Ini a thing must have upon the neighbouring shores of India, there supply could have been drawn. Are we to conclude that the Board of Trade permits such a hand-to-mouth supply only that not even a limited draught on its stores, either hreaghout Ceylon or India, could be aforlaye to the administration of that department. But even in such a case, it can hardly be conceived that for temporary use only some alternative illuminant could not have been found. The island of Ceylon is a large oil-producing country, many kinds of its productions, such as cocoanut degrees of fineness, some of which approach in purity the standard of colza; and it does appear most extraordinary should have been known to those locally in charge of the Board of Trade's department, of the serious results which the non-appearance of these lights according to notice might entail, some effort was not made to use one or by no means desire to prejudice the case which the Board of Trade may have; we can only say that, judging by the will have to make out a very clear one to rebut the statements which at present seem to record so heavily against them.

the chemical manufacture

There are rumours that a "chemical syndicate" is being eal with them much as the salt trade is being dealt with It is certain that there have been negotiations in progress with this end in view, but it is by no means so certain that the end will be attained. The different position of the two branches of the chemical manufacture will be found to be one
of the chief obstacles in the way. One of these two--the sroup of makers who use the Leblane proces be said to be in a flourishing condition, many of them no having, as companies, paid a dividend for some time; and as the tendency of prices over a period of years has been
towards decrease, and as the cost of production has advanced, the Leblanc chemical manufacture must be lot upon as being one that is not profitable to any general extent The production of bleaching powder has been so but since the expiration of the Bleaching Powder Makers' Association, the price of that article has fallen, and shows no sign of
recovery. But, on the other hand, the makers of alkali by the ammonia process have made, and are still making, ver large profits, and the number of their products is augmenting.
In this divergent position of the two branches of the chemical manufacture, there is, it will be at once seen, a practical bar to any union, unless on terms that would allow the further growth of the profitable branch of the trade and would check profitable. Whether there will be any union of either of the be seen. Such a union of the groups of works-remains to adjust production so that the output of bleaching powde would be under control, and the price might again be raised to the profitable rate of a year or so ago; but it would be by no means so easy to adjust the production of alkali to the makers by the other process surrounded by difficulties, , and it is by no means improbable
that the solution will be found only in that commercial competition which in the end adjusts supply to demand For somen the makers has limited the number of the Leblanc m, but, despite the limitation, of the centres of production. Whether this decrease will continue in the open competition is a question which may be postponed whilst the trade revival enlarges demand, but the postponement will not be of an indefinite length.

strike and its perils

Many and grave are the questions which arise out of a quently pourtrayed picture of a coal famina with the fre quenty pourtrayed picture of a coal famine; the scores of
colliery villages struck with a stillness as of death, the men lounging sullenly about, the women and children begging defiant, minen the miserable bands of half-starved, yet stil appeal for help, while the workmen of other industries,
deprived of employment through their folly, look on half in anger, half in sorrow. No coal means no work for at least one
half of England's industries, and it means as well incalculable suffering for every person who has to earn his bread by the
who do. Closed collieries involve the blowing-out of iron
furnaces, the staying of steel-melting, and all the trades of iron and steel paralysed as a man seized with the palsy
Industrial life would leave the whole land. Even our iron Industrial life would leave the whole land. Even our iron
highways and our canals would be silent. Without coal the finest engines in the world would be so much useless engi-
neering lumber: the barge and the bargee might retire from neering lumber; the barge and the bargee might retire from
business; and the stateliest ship which sails the sea would business; and the stateliest ship which sails the sea would
have to lay up in port, "as idle as a painted ship
and upou a painted sea." But there is another aspect
of the calamity which sems to strike few people. If
at such a time we should get involved in war, where would we be? What cf our matchless fleet, if there was no cool in the bunkers? Where would our first line of advance be?
What of their thunder-speaking guns and impenetrable hide of steel and iron? The coaling of England's Navy is a
matter of immense magnitude. If the war-cloud burst even as the strike was ended, or the strike ended because of the war--loud, the disadvantage to this country would
be tremendous. It would require weeks to work up
arrears, and these arrears, and these weeks would be of the most priceless
importance-possibly meaning all the difference between victory and peace, disaster and humiliation. In such an extremity, the Government is as helpless as a private manu
facturer without collieries. Large iron firms, with coal pits of their own, can to some extent provide against the huge dispute between capital and labour devastate the land, the comparatively small wants of the private manufacturer can boards of conciliation we hear much when depressed trade aftlicts us, but very little when the boom of business arrives.
It would seem, from a national point of view, as if it were more important for the Government to be coalowners than to be steel and gun makers. There is so much liberty in the
land that it is in the power of agitators who happen to be commerce of the country, and to imperil mischier to the safety. If that power cannot be restricted or controlled within reasonable imits, prudent men at the wheel of state must devise some other m
magnitude may be averted.

the world's coalfields.

Wrrt a view to allaying fears as to a rapid exhaustion of
the coalfields of the United States, and the consequence resulting therefrom, the Consul-General of that country at industries of Germany some statistics from a cerman source to the effect that coal is spread over a large portion of the
globe, and that ten millions of years will elapse before the coal known to exist will be exhausted. The Netherlands
Switzerland, Sweden, Denmark, Germany, Bohemia and Switzerland, Sweden, Denmark, Germany, Bohemia and
Silesia, have 59,000 square miles of coal deposits; Austria Spain, south-west Poland, Portugal, Italy, Greece, Turkey miles; China, 410,000 square miles ; at Pekin there are seams The Falkland Islands coalfields. The larger part of southern Chili is a coal bed Brazil has wide extending coal, with seams varying from 17 ft . quality, and beds of bituminous coal far down under the sur face. Mexico, Vancouver Island, and New South Wales have
25,000 square miles. \quad Queensland, Western Australia, and ictoria, 14,000; New Zealand, 29,000. There are coalfields in Tasmania, New Caledonia, Natal, Alaska, and other parts of the world, aggregating 100,000 square miles more. The coal
deposits given do not include any mines already opened, nor any coal lands in North America, except those of Alaska and the coalfields of the Dark Continent. It will be noticed that there is no mention of the Belgian, British, or French coal
fields in the preceding statistics felus in the preceding statistics.
the coal trade.
GAs engineers are by no means the least influenced class trade. It is a fact that numerous gasworks in the chief centres throughout the kingdom are at prosent getting very
short of supplies of coal. Indeed, there are not wanting practical authorities whostate that a strike at present in the coa trade, affecting, as it would do, gas coals, as well as other
sorts, would, if it were prolonged for a few weeks, very ness. If such a statement is England being in dark
not accepted in toto tion of output, which would follow upon either a general strike, or a general lock-out, would produce the greatest
inconvenience at large numbers of gasworks. The fuel market has of late been in such a condition of uncertainty that managers of gasworks, and others responsible for the fuel supplies for those establishments, have hesitated to make
their usual renewals of coal contracts, which are given out, as a rule, at the beginning of spring. Instances could be nly a mich, at the close of Jamary, many gasworks had then in the way of getting any more fuel has been, for the hus be seen that as engineers, no less than innworks wil urnace proprietors, are keenly interested in the current phase
of the labour question in the conl trade of the labour question in the coal trade.

LITERATURE.

Transactions of the American Society of Mechanical
Engineers. Vol. X. 1889. Published by the Society [First Notice.]
For several reasons the transactions of the American Society of Mechanical Engineers possess attractions quite unrivalled by any cognate publication in Great American engineers seem to have solved a difficult problem; and the members of this Society not only pro-
vide valuable papers, but discussions which are really vide valuable papers, but discussions which are reall
worth reading. The volume before us is no exception to the general rule. Its contents are on the whole excellent, and it should be in the possession of every
engineer who can manage to obtain a copy. It contains engineer who can manage to obtain a copy. It contains
reports of the meetings held at Scranton in 1888, and Erie in May, 1889. It is a big octavo book, admirably
printed and carefully illustrated, containing a list of
members which fills thirty-four pages, the total number being 985 ; a copy of the rules; a table of contents of the volume; no fewer than 904 pages of the proceedings proper, and a general index to all the ten published volumes, which index occupies 116 pages. Truly a portentous volume, and one which we may, we think, be
excused from noticing in detail. It must suffice if we direct attention to a few of the more prominent subjects dealt with, and speak generally of the way in which they are handled.
One of the papers is on a subject little understood, namely, the "Stresses on a Circular Lid Resisting Presure, by Mr. L. H. Rutherford, presented by Mr. F. R. Hutton. Mr. Hutton had to design a lid in copper secured
to a cast iron ring, for a species of boiling kier; and he asked Mr. Rutherford as a mathematician to calculate the resses and dimensions. The lid was 73 in . in diameter nd ${ }_{3}$ in. thick, and had to stand a pressure of 65 lb . per square inch. The subject thas been most exhaustively
treated. No discussion followed, the paper being too intensely mathematical for that.
, all things, practica They look very carefully indeed at the pounds, shillings and pence side of a question, and with them it signinies
nothing that a steam engine should be economical if it is expensive in other respects. We do not mean first cost Thus, in the discussion which followed a paper on
 Purposes," the questions handled most freely and full were the effiect of taking steam from the receiver fo teaming the mill instead of from the boiler, and the relative cost of steam and water power; and various facts
were adduced to prove that on the whole steam power is in the United States cheaper than water power. Thus, for example, in the city of Binghampton, in the State of New York, the cotton mill of Messrs. J. P. Noyes and
Co. has an abundant supply of water all the year round; but from the moment the cold weather sets in , they use steam power. Thus, for about one half the year they run with coal and the other half with water, and the cost of running the mill is just the same in either case. The whole subject seems to have been fairly threshed out.
It is one that does not possess much interest in this country, because we have so little water power; but the paper contains much useful information concerning Mr. Scheffler commenced a paper on a "Foundry Cupo Experience," which was followed by a useful discussion Then we have next a paper on "Electric Welding," by Mr Woodbury. As the subject is now attracting a great deal o thention in this country, we shall reproduce this paper and tests. It will be seen that nothing was said as to the cost $-a$ subject with which he have fully dealt in recent mp
Professor Thurston supplies a very long paper on the Internal Friction of Steam Engines." Nothing at al "esembling his experiment in elaboration has been tried in this country. Engines were driven, hot, by another
engine through a dynamometer, and a great amount of engine through a dynamometer, and a great amount of
information obtained. Thus, in a condensing engine with a cylinder 2lin. diameter, 20in. stroke, running at about 200 revolutions per minute, the frictional resistance was $\cdot 18$-horse power, Of this the main bearing took $3 \cdot 3$-hors power ; the piston and rod, crosshead and pins, $1 \cdot 48$-horse he air-pumps $0 \cdot 88$-horse power. The general conclusion the air-pumps 088 -horse power. The general conclu
are remarkable and suggestive. We give them here.
These engines wereall tested to determine whether the previously
eported incrense of internal friction with speed were here to be aceepted as correct. It was found that the seeveralenginese differed somewhat in this respect, but that this variation was in al
cases slight, and in some instances insensible or even roversed
spe
con
 been presented in the preceding pages are thorefore to be accepted
ns not only correct and reliable, butalso as not likely to be affected
by contron
 rule, with all the usual forms of ongine, and under all common
conditionsof operation that the internal friction of the machine
is practically invariable with variation of useful work, and thet is practically invariable with variation of useful work, and that
it it is erry nearly independent of the speed of rotation and of piston,
vari varying slightly, as a g general rule, in the dirioction of incroasese
with increase of speod. This later priciple loads to the con-
clusion that the friction coefticient of the clusion that the friction coeofficient of the rubbing surfaces
decreases with the load on the engine and with increase of pressure on them, a rosult confirmed by numberless experiments of the
writer and others independently. With writer and others, independenty. Win toon inerication, the
coefficion of friction rapily decrease with intensifying pressures,
and to such an extent as to make the actual resistance to moveand to such an extent as to make the actual resistance to move-
ment very nearly constant. It is now possible to study the reported data intevligently, and to ededuce usseful and reliable
conclusions relative to the effect theory and upon the principles of designing and constructing as wriction waste, in every instance, is that of lost enorgy at the main bearings. In every case it amounts to one-third or one-half of
all the friction resistance of the engine, the higher figures being given by the condensing, the lower by the non-condensing engines, gives as high a figure as tho condensing engines, a fact due, how
ever, rather to the exceptionally low total than to exceptionall ever, rather to the exceptionally low total than to exceptionaly
hilg friction on the main hant. The socond himhenst item is, in
all casses apparontly, the friction of piston and rod, the rubbing of all cases apparontly, the friction of piston and rod, the rubbing of
rings and the friction of the rod packing. This is a very irregular rings and the friction of the rod pacher Mated, and amounts to
item, as would have been naturally anticipated, quantity. The third itern, in order of importance, is the friction
of valve, in the case of the engines having unbalanced valves of valve, in the case of the engines having unbalanced valves.
This is scen to be hardly a less serious amount than the frictions of shaft and of piston. But it is further seen at once that this is design, as is ovidenced by the fact that in the straight line engine balanioing. Ninety per cent., therefore, of the friction of the
unbalanced valve is avoidable or remediable. The importance o this fact is readily perceived when it is considerod that not only is it a serious direction of lost work and wasted power and fuel,
but that the ease of working of the valve is a matter of suprem, in this clase the effective operation of the governing mechanism in this class of engines. No automatio engine can govern satis-
factorily when the valve is unbalanced, and is certain to throw
much load on the governor. The frictions of orank-pin, of cross
head, and of excentrics, are the minor items of this account ; they are comparatively unimportant.
A cognate paper is one by Mr. Charles E. Emery on er in Non-condensing Engines." This matics to aborate example of the application of mathe being assumed but determined by direct experiment. Mr Emery's paper elicited an animated discussion, several of the speakers dissenting from his views. One of Mr. Emery's propositions is that the value of a condenser for high-speed engines is practically nothing but Professor Denton cited certain experiments made revolutiockeye engine, working with 90 lb . steam moving a lever the engine could be worked condensing or non-condensing without other alterations, and it was said that a vacuum of 16 in . was productive of economy in the ratio of about 100 to 116. That is to say, the power remaining unchanged, the feed water rose from 100 lb in a given time when condensing, to 116 lb . in the same period when the engine was non-condensing
very curious paper is one by Professor Denton "On the Identification of Dry Steam." He assumed that if tube, and the ered to escape graphs would indicate a difterence according as there was more or less water present. An account of the manner of make these experiments is given, and copiouly illustrated by "process "reproductions of the photographs. These photographs support Professor Denton's assump. tions, as little as $1 \frac{1}{2}$ per cent. of water making a perceptible difference. For the details of the method of check we must refer our readers to the paper itself. The principal conclusion of the author is that, if a jet of steam How from a boiler into the atmosphere under even, and the jet be transparent close so nearly dry that no portable calorimeter can determine the percentage of water present. If the jet be strongly white, then there is at least 2 . Ir the jet be strongly how much more can only be told by the calorimeter
One of the most valuable teatures in the Truse
under notice is the report on topical discussions and interchange of data. We have more than once suggested the adoption of similar system in this country-unfortnnately without effect. The thing is done thus. The secretary or a committee, or any member, suggests a question for discussion, and it is discussed without any reading of papers, and the members who know anything about the subject interchange their information. Thus, for example, the behaviour of steel formed a subject for discussion during the Scranton meeting, and the infor tion supplied was so interesting and valuable on the whole that we commence its reproduction this week in another page. We must postpone the consideration of meeting and the visits of a number of the members of the Society to Europe last summer.

BOOKS RECEIVED.

The Colonial Yaur-book for the Fear 1890. By A. J. R. Trendell,
C. M.G. With introduction by J. R. Seeley, M.A. London: Sampson Low, Marston, and Co. 1890.
Report of the Italian Exhilition, 1888 . Translation. London:
Waterlow and Sons, Limited 1889, Waterlow and Sons, Limited. 1889.
 ress. London: Henry Frowde. 1890.
 Bell and Sons. 1890.
Engineering Estimates, Cosfs, and Accounts: a Guide to Commexial
Enjineoring. By General Manager. London: Croshy Lockwood
and Ion. 1890.

THE NEW DIRECT LINE TO PLYMOUTH.

THe engraving on page 196 is the first of several which we hall publish relating to the Plymouth, Devonport, and South-
Vestern Junction Railway, which commences with a junction with the London and South-Western Railway at Lidford From Lidford the South-Western Company has hitherto had to reach Plymouth by a single line with steep gradients
belonging to the Great Western Railway Company, the length of the line being $22 \ddagger$ miles. The dual ownership and working of the line has been for many years a great source of traffic nconvenience, and the new line has been constructed to
avoid all this. It is a heavy piece of railway work through out, and an account of it, which we shall give in a future impression with further engravings, will be found of interest.

LINKS IN THE HISTORY OF THE LOCOMOTIVE. No. XX.
We publish this week an engraving and particulars of the splendid compound engines constructed by Mr. Worsdell for the North-Eastern Railway. These engines beyond question represent the very latest development of locomotive engineering. As a matter of interest we also publish illustrations of two of the very earlies locomotives. We have thus before us links at each end of the chain of the history of the locomotive.
The old engines in question are the Agenoria and the Stourbridge Lion. The Agenoria, which has found an honourable asylum a.t South Kensington, was built by Messrs. Foster and Rastrick, of Stourbridge, in 1829, in which year it commenced work. ing at the Earl of Dudley colliery at Kingswinford to convey coal along the Shutt End Railway-as it was called-to the Staffordshire and Wor estershire Canal. We are unable to state the recise date at which it ceased working, but it was presented to the Museum in 1885 by Mr: W. O. Foster, of Apley, near Bridgnorth. We believe that it has never been previously noticed in any technical periodical or by any writer upon the history of the locomotive
As will be seen by the woodcuts, the two engines are driving the slides are loose on the axle, with a clutch to s nearly as possible identical in design, and they also drive either way, and there is hand gear to the valves to exhibit a close resemblance to the W ylam engine, Puffing canse the axle to turn half round to bring the right clutch Billy-see The Engineer, June 16th, 1876-which was built by William Blackett about 1813. As the Agenoria and Puffing Billy are placed side by side at South Kensington, visitors have every opportunity of making a comparison,
 The cylinders are $7 \frac{1}{2} \mathrm{in}$. diameter, with a stroke of 3 ft . There is a parallel motion to the piston-rod, and the feed pump is worked from one of the half-beams. The fire is within a large tubular boiler, branching into two tubes, with the chimney at the end of the boiler, the barrel of which is 10 ft . long and 4 ft . diameter. The excentrics for w

The Agenoria has upright cylinders working half-beams, in the Rocket in its original state, when tried on the thus reducing the stroke of the pistons to the cranks. Liverpool and Manchester Railway in October, 1829. But the question of the invention of the steam blast has been much discussed-see The Engineer, October 23rd, 1857 -and need not be re-opened here. To return to the Agenoria, the driving wheels are 4 ft . diameter, and there are coupling rods to the front wheels, which are provided with springs. It will be noticed that the driving wheel is furnished with a counter weight, but it is not quite certain that this is original. Locomotive experience in 1829 was very imited, and the necessity for a counterweight could hardly have been sug. gested by à priori considerations, so that we are inclined to think that this is a later addition. At any rate, we find that Thomas Rogers, a wellknown American locomotive builder, took out an American patent for balance weights in July, 1837. This is the earliest date which has been assigned to the invention. In our issue for January 30th, 1880, will be found a long article on the subject of counterweighting, in which some inte: esting letters from the late Mr . George Heaton, of Birmingham, dated 1838, were given.
The line was opened cn June 22nd, 1829, and we are able to reproduce a contemporary account of the affair, which appeared in the Birmingham Gazette shortly afterwards:"The opening of the new rallroad from Kingswinford to the Staffordshire and Worcestershire Canal with a locomotive steam engine took place on Tuesday, June 2nc', 1829, amidst an immense concourse of spectators from the surrounding country. We subjoin an account of the experiments made on the occasion; and it gives us pleasure to be enabled to state, that through the spirited and laudable exertions of James Foster, Esq.-whose

RE-CONSTRUCTION OF THE NEWARK DYKE BRIDGE, GREAT NORTHERN RAILWAY.

fig. 9-General view of roller bearings
character for liberality and talents as a manufacturer and nechanist are already so well-known and highly appre-ciated-the most successful trial yet exhibited of the stupendous power of this machine has taken place in our wn neighbourhood.

The entire length of the railway is three miles and one-eighth; it commences at the colliery of the Earl of Dudley by an inclined plane of 1000 yards in length, having an inclination of $2_{10}^{3} \mathrm{ft}$. in a chain, and the carriages and a-half, bringing up at the same time an equal number of empty carriages. The railroad then proceeds from the foot of the incline plane for 1_{8}^{7} mile, at an inclination of 16 ft . in a mile, and on this part of the railway the locomotive engine travels, and delivers the wagons at the head of another inclined plane of 500 yards in length, having an inclination of $2 \frac{350}{} \mathrm{f} \mathrm{ft}$. in a chain. The wagons are passed down this plane in a similar manner to the irst, in one minute and three-quarters. At the foot of his second inclined plane there is a basin 760 yards long, Canal, parallel with the Staffordshire and Woned on both sides, affording the means of loading sixty boats at the sidese time. and over the middle of this basin is handsome bridge of eleven arches, on which the road from Wordsley to New Inn passes

The experiments on Tuesday commenced by the passing of a train of four carriages, each loaded with $3 \frac{1}{3}$ tons of coal, down the first inclined plane, an operation which highly gratified the spectators, from its extrem was then attached to eight carriages, carrying 360 pas. sengers, the weight being-

> The eight carriages
> Locomotive engine, tender,
360 passengers, estimated at

> and water | Tons, | ewt. | q |
| :---: | :---: | :---: |
| 8 | 8 | 0 |
| 11 | 0 | 0 |
| 22 | 10 | 0 |

$41 \quad 18 \quad 0$
and the whole proceeded, attended by a band of music from the foot of the first inclined plane to the head of the sscond, and returned, being a distance of $3 \frac{3}{4}$ miles, in half an hour, or at the rate of $7 \frac{1}{2}$ miles per hour. The dis tance might have been accomplished in much less time bat being the first experiment, all the power of the engine was not applied. On the return of the engine and pas sengers carriages laden with coal, to the number of twelve, had descended the inclined plane; these were attached to the engine with eight carriages of passengers, t's weight being-

> Twenty carriages
> Engine, tender, and water
> 360 passengers in the eight 540 ditto on the coal carriages, and
20 ditto on the engine, tender ; 20 ditto on the

920 , estimated at engine, tender ; | 57 | 10 | 0 |
| :--- | :--- | :--- |
| 81 | 10 | 0 | $131 \quad 10 \quad 0$

- The engine then started with its load of 131 tons, and proceeded to the head of the second inclined plane ; and the distance, $1 \frac{1}{3}$ mile, was performed in 33 minutes, being at the rate of nearly three and a-half miles per hour. On arriving at the head of the inclined plane, the carriages loaded with coals descended the plane. The engine next returned with the eight carriages loaded with passengers at the rate of six miles per hour, and on reaching the foot of the first inclined plane, all the carriages were disengaged from the engine, except the engine tender, with twenty persons on it. The engine was again started, and proceeded with the tender and
twenty passengers about a mile on the road, performing the trip at the rate of eleven miles per hour, although not more than half of the engine power was laid on This concluded the experiments; and we are happy to add that not the slightest accident occurred, although an immense crowd was collected about the carriages while proceeding; many of whom, by hang. ing to them, very much impeded the progress of the engine in the second trip with the twenty carriages Indeed, it was computed that in addition to the 920 passengers in the carriages, 300 others were dragged along. The engine was made under the superintendence of Mr. J. U. Rastrick, at Stourbridge, who has bestowed no ordinary pains in its construction, so as to obviate the noise and smoke which those of original make, and used in the North of England are subject to. And we must do him the justice to say that he has succeeded beyond what could have been expected ; the noise occasioned by the escape of the steam, when discharged from the cylinder, is wholly done away with, and the smoke is scarcely more than that produced by an ordinary chimney. The safety valve is much improved by a spring, so as to pre vent the escape of steam from vibrations of the engine and another safety valve is added, which is entirely naccessible to the engine-men, thus rendering the engine infallibly secure from explosion. Another very ingenious contrivance is introduced, by which the engine oils it bearings on the carriage at every revolution of the wheels. Attention should be directed to the spring safety valve and the self-acting lubricators. The tender shown in our illustration is a restoration, and is not at South Kensington.
The Stourbridge Lion "was the first substantial and effective locomotive put upon an American railroad," to quote a paper read before the Albany Instit and Progress of the Mohawk and Hudson Railroad." It has a very interesting history, and although a drawing has survived the machine itself has long since disappeared, with the exception of a few fragments which were shown at the Centennial Exhibition at Philadelphia, will answer for the Stour of exceptions. It was built in 1828 by Messrs. Foster and Rastrick, to the order of Horatio Allen, who was sent over to this country by the Delaware and Hudson Canal Company - which was contemplating the construc tion of a railway-in order to obtain information upon the subject of locomotives. The engine arrived in New York in the winter of 1828-9, but it was not placed upon the line until some months afterwards, and not polly tried until August 9th, 1829, when Mr. Allen drave the ane from Hone a section of the line about three miles in length. Driving a locomo the line about three miles in lexpely hazardous enter prise, prise, and when " place in is limbs of thise than subected to danger." So he more than one should be subecten, thongh, as he says, started alone wir Munsell, in he had never rum locorme the his paper quoted above, states that too has fore brought into practical use, as it proved too heary for for re fore the end of the the fancy of the painter, who decorated the end of the boiler with a large head of a iion. The fact that Horatio Allen only died on the 1 st of January of this year bring home forcibly to one's mind the thoughe that our rainway system has grown up in a single lifetime. Ericsson, who
was one of the competitors in the Rainhill trials on the Liverpool and Manchester line in 1829, only died about year ago.

Cordingley's pulley

The accompanying engraving illustrates a split pulley patented and manufactured by Mr. 1. Cordingley, Trowbriage understood from the engraving. It will be seen that cast iro

sockets are secured inside the wrought iron rim. The wrought ron spokes are screwed and fitted with nuts, which can be set out against the sockets, so as to make the box truly central. The whole arrangement is very simple, and the wrought iron rim can always be kept the proper shape.

TENDERS

WIRRAL RURAL SANITARY AUTHORITY
LIST of tenders for the constrnction of public sewers at Heswall Cheshire; Mr. Charles H. Beloe, M. Inst. C.E., Liverpool, engi neer; qual

> Thomas and Co, Liverpool (accepted)
A. Bleakley nad Son, Birkenhead
> A. Bleakley and son, Birk
Holme and King, Liverpool
Fawkes Brother.

> Fawkes Brothers, Southport
Powell and Thackleton, Chester
> J. Fish and Co., Preston

> Thornton and Son, Miverar, Liverpool
> W. Hope, Liverpool

> Monk and Nowell, Bootle ..
> J. Dovenor and Co., Liverpool
Wm. Vaughan, Wrexham

> Storling gad Swamn,
John Taylor, Ganstou

LETTERS TO THE EDITOR.

(We do not hold ourselves responsible for the opinions of our correspondents.)

the reaction of air on planes.
SIR,-The experiment in wind, hero submitted, was first made with some difference in detail, ten years ago, in latitude 27 deg level, in an atmosphere of great humidity, with rainfall of 1000 in . per annum, and sea breezes of great steadiness It was re-tried,
and the experiment made in still air, just concluded, at my present lozation, 8000 ft , above sea level, in an atmosphere o
extreme drynes, with no rainfall, and winds of mixed current. extreme drynesulath much irregularity. The plane used was 5 ft , square, feather pyramid alin. high in the centre, the plane side measuring 25 square feet. It was made of thoroughly dry and clear pine
slats, lin. wide and đinithick, thaid upon a frame of four dianonal
pieces, fitted with strips cut between, parallol to the edges. All pieces, itted with strips cut betwen, parallel to the edges. Al
parts were covered with a coat of shellag varnish before being set to phece, and fish glue used; the common article mixed with edges of the plane, which, being dressed to feather-edges from the
hack, made them sufficiently firm to serve the purpose with careful handling. It was then smoothed, varnished, and finished to a polished surface on both sides
Constructed in this
Constructed in this way, it was practically a plane withou
thickness when used up to an inclination of 5 deg. from level in horizontal wind, or carried against still air, all parts of the slantin back being below the high edge. It was suspended by the apex
the back and balanced, so that the centre of measurement of the flat side coincided when it rested level. ripid stem, tin. long, was then fixed in this centre, to the top o
which the sustaining wire was fastened, thus securing greate stabiny. A ine wire was fixed to the back, resting upoh it and disc of lead, in. thick, slotted to the centre to slip on the stem and grooved next the plane to move on the wire, was used to shif
the centre of gravity to the rear, to correspond with the shifting centre of air pressure as the inclination of the plane was sed the wire sufficiently tight to hold the disc in any position in which it
was placed along it Two fine steel wires were secured near the edge opposite the wire and disc, so that, when suspended by them plumb. The plane, without the disc, weighed 22 lb ., and 27 lb .
the quantity of the two gravity components at soventeen positions

viz: at $5,10,15,20,25,30,35,40,45 \mathrm{deg}$. from vertical, and the
same from horizontal, compriking the are of 90 deg. in whicl gravity admits of resolution. In In operating, the plage platforms advisable. A round timber, 1 ftt . .ong, was placed vertically in
5 ft , hole
路 strong cross bar, to which wa.

the cord, scale, and wire, fast to the stem. The block. bas means onsted so as to make the supporting wires at right angles to each other,
two being parallel and one normal to the face of the plane. The position thus found was marked, and the remaining positions found
in the same way. The amount of both components at each inclina in the same way. The amount of both components at each inclina-
tion was noted. My scales being marked on $\frac{1}{2}$ bb, small quantities

were not detected. The components are herewith given from
45 deg. to 5 deg. of horizcntal, which will show fractional errons when compared with the exact tigures.

There is no wind of my ep perience equal to a munth of May sea-
reeze on the Gulf of Mexico for trying this experiment. If the breezo on the Gulf of Mexico for trying this experiment. If the
wind is as bad as those of my present locality, some particular nclination must be selected and the plane hald back by a fine cord from near each corner, running to pieces across the top of the
frame. I bave had winds onabling me to operato the entire seven. toen positions in a singlo day, and I have otodod an entire dayent
the post without getting a single one. The centre of pressure
beneath the plane varies with the inclination, and some peculiar characteristic of wind, but in all cases it stivts towards she rear.
This must be met by adjusting the dise, as it is imperative that the two wires be parallel to the
pressure balances the normal factor.
As the wind rises and increases in strength, the plane will swing backward, arriving successively at each of the indicated positions, where it is obvious that the pressure equals the normal component, the wind taking the place of the normal wire. The two scales noting the parallel component en anchanged at each of these oositions, continuing to indicate a pull upon them precisely as they
did in calm air. I have tried this experiment in many ways and at a great number of angles through the 90 deg. arc, and never found a position where the pa
upon by the wind in the least degree., a dead and dry pine tree was
To try this experiment in still air, a
selected 2fin. in diameter at the butt, 10in. at the top, and 36 ft . selected, 2 2in. in diameter at the butt, 10 in , at the top, and 36 ft
long. It was planted 8 ft , in the ground, projecting 28ft. vertically long. It was planted sti. in the ground, procecting
above the surface. At the top, a cup with hard brass bottom and Babbitt metal sides was secured, into which stepped an iron pin,
with rounded end, carrying a horizontal beam 16 ft . long. 18 ft . below, an arm was placed 110ft. long, with a ring at the centre encircling and closely fitting the post, which latter was dressed
round, concentric with a vertical axis through the centre of the pin round, concentric with a vertical axis sthrough the centre of the pin
above. The arm was fastened rigidy to the beam by a lattice-work cylinder 3in. diameter, encircling the post, the whole being made of wood and superfluous weight avoided. 36 fift. from the centre both ways a cross-head Sft. long was fastened to the arm, Trom the two ends
of which a wire was carried to the beam above. This device formed of which a wire was carried to the beam above. This device formed
a trussed chord, capable of rotation in a horizontal plane upon the atrused chord, capable of rotation in a horizontal plane upon the
pin resting in the cup at the top of the post. The top of the cup pin resting in the cup at the top of the post. The toter onds of the
was flared on the inside, and filled with oil. The outer end arm travelled a circumferential path of 346 ft . at each rotation. Friction was small; 1 oz. constant pressure on the outer end of the
arm would move from rest, and rotate the truss to a velocity of 5 ft . arm would move from rest, and rotate the truss to a velocity of 5 ft . per minute in acalm air. The atmospheric resistance was astonish
ingly great after a velocity of about 15 ft . per second at the circumference was reached. The device was not made for this experiment alone, and a weight was placed on the opposite end of the arm to balance the plane operated with.
The same plane, scales disc, and wire
The same plane, scales, disc, and wires were used as in the wind experiment, and the method of proceeding was the same, with an
exception. The motion of the plon it exception. The motion of the plane as it was carried around pre-
vented reading the scales as they passed. To remedy this the two parallel wires were passed over pulleys to a ring, from which a single wire was carried along the arm to the balance, near the post,
where the operator could walk around with the arm and read the register. The arm being 10ft, above the ground, the position of
the plave could be determined by walking under the arm near the the plape coold be determined by walking under the arm near the
centre. The centrifugal force was not great enough seriously to rotation. The outcr edge of the plane was hung even with the end of the
arm, the positions were onoted while at rest and marked by rods fast to the arm. As the arm was rotated, and the plane swung
backward to the successive positions, the balance presented the back ward to the successive positions, the balance presented the
same reading of the parallel component as in the other case. In
no instance did it record a when at rest. This method was far superior to the other. Any velocity of meeting of plane and air could be used at will; any
angle could be chosen for testing, and the scales noticed from a vertical position of plane to the chosen inclination. The balange
would indicate the total weight at starting, and show diminished
tension stand at the figure representing the parallel component at the given inclination. There was no tremor of plane, as in the other
cise, but all went on as stealily as cockwork. case, but all went on as steadily as clockwork.
Selecting any angle of inclination at the wind device, say 45 deg .,

the plane was prevented from going higher by fori small steel wires ined near each corner and extending to pegs in the ground,
or to any ready fastening below, so that each wire would be at right angles to the plane. Noting the two balances in wind, it
was found that they stood at 19 lb . after the plane was stopped by was found that they stood at 19 lb, after the plane was stopped by
the wires, no matter how brisk the air current might be. It might get up to a fifty-mile-an-hour gale, and whistle about the post at a
great rate, but the index would stand at 191 lb . through it all, though if the wires were cut the plane would go above the 5 deg . inclination in an instant. The same result occurs in the other
experiment ; two rods must be fastened to the arm and pioject beneath the plane to hold the four wires, and no matter how fast
the rotation may be the index will stand the the 19 lb., not moving he rotation may be, the index will stand at the 19
from the position it took before the rotation began.
The golden rule to keep in mind int trying these experiments is,
That " rectangular forces do not antagonise ach othe." that rectangular forces so not antagonise each other." The case
is obvious. Two forces are dealt with, the parallel and normal components of gravity. The direction and quantity of each is
known, and they are always at right angles to each other. The
The reaction of the parallel component is the resistance of the arms
holding the two wires, and it acts along the wires, being absolutely
diependent of the air or wind independent of the air or wind. The reaction of the normal
factor is pressure under the plane, and this is normal to the plane factor is pressure under the plane, and this is normal to the plane
in all cases, in direct opposition to the direction of the normal
factor. In applving wires, cords, rods, or any contrivance to steady factor. In applying wires, cords, rods, or any contrivance to steady
the plane, see that they do not interfere with either of these forces
or their reaction or their reactions. No matter how much bluster there is in the
wind, the plane can be secured in a position of steadiness without wind, the plane can be secured in a position of steadiness without
in the least interfering with the action of the gravity forces.
There is something to be learned from these two experiments There is something to be learned from these two experiments.
One thing is obvious. It is not the direction in which plane and
air air meet each other, but the position of the plane, that determines
the direction of the reaction ; and a curious thing is
 also obrious that the plane is not "held agsinst the air" at all. The air splits gravity in two parts, throws them
both out of the vertical, and 90 deg. asunder, antagonises one, and exerts no influence on the other, which still acts on the plane as it
would if the latter were in a vacuum. There is plenty of heal resistance in text-books and the writings of physicists, but no such thing is found in nature.
As nearly as I am able to determine, the prevalent notion about
this matter is, that the air would react upon the plane in these experiments in two ways-one horizontal, or drifting, and the
other vertical, or lifting other vertica, or lifting. The first statement of this kind, that I
know of, is contained in the "Penny Encyclopedia,
under
Aêro-dynamics. Then there are Mr. Skeres experimen inclined planes 1 ft . square, wind twenty-three experiments on
We als her hour.
Wen have the Aeronautical Society's experiments, made in 1871, and many others, all tending to the same result, I am not
informed as to the exact method of getting these factors, but suppose it to be done in this way: An incting thed plane is is held by
two supports-one vertical, the other horizontal subjected to a horizortal cerrent of air, and the components
found by measuring the tension on the two supports found by measuring the tension on the two supports. It is then
inferred that the air current reacts upon the plane in those two It is a puzzle ewhount found.
any other two in tho same sertical plane? Whe selected. Why not
direction, like a three-legred stool, or add another
number! The firat two resistances act together as the equivalent of one resistance. so do all the three, or four, or any number.
The direction of all the resultants is on the normal line, and the quantity equals the amount of pressure beneath the plane. It is quantity equals the amount of pressure beneath the plane. It is
very true that any sort of resistanee can be offered to the air
pressures; but the supposition seems to be that a lifting and pressires, but the supposition seems to be that a lifting, and
drifting forco resides in the wind, independently of any resistance offered to the plane. By this method there is no degree of
inclination in the 90 deg. arc but what would require a force

Artificial resistances are used to get certain mesults, wond these ances, nor anything resembling them
But it is when questions of work arise that these two experiments, the subjects of this paper, become significant ; and I wish to
direct attention particularly to this teaching of the forces in Both in wind and calm there is continuous work done. The air it compelled to constant change. It is forced out of place, condensed and disturbed in various ways. To what agency must this work
be referred in each case? Mechanical experts would say, in the case of wind, to whatever set it in motion. In calm, to the fore that rotated the arm. We are then beset by dificiculties. We why wind does not do the work in both cases if it does in one ; and if the arm is the active agent, the cross bar holding the two parallel component from acting on the plane, and this is their whole function. Can a force which prevents another force from acting on the plane do the work that the plane is manifestly doing?
Besides the direction in which both arm and bar act is parallel to the plane, and the work is done at right angles to it. Wind is out the case, for in one experiment the air is calm.
There is going on a play of forces of unique character wherein
certain links of the chain of sequence are hidden ; we mater kind of mechanical quagmire of resultant motions where the factors are not recognised, or there may be forces in whetion the
indicated by the analances indicated by the balances. It think the dilemma may be removed without stepping beyond the limits of the two experiments, but if
they were supposed to be varied in a certain way wo might get they were supposed to be varied in a certain,
analogous results that would clear up the fog.
If we place the plane of the experiments in still air at an angle of 11 deg frace from horizontal, and suppose the parallel component to be cancelled-and equilibrium to be maintained, it would descend
with acceleration in the direction of the normal factor until the air pressure beneath the surface was 261 lb ., when motion would uniform motion was going on, if we applied against the lower edge at right angles to it in a direction parallel to the surfece a constant
pressure, the plane would move on the upward slant in obedience pressure, the plane would move on the upward slant in obedience
to that force, slipping over the condensed air. As it would be at the same time descending, no part of the raised back would be carried against the air, provided motion was great enough to a very small force would generate high velocity against skin
friction on the under side of the plane. Say that 1 竍 rear pressure produced a uniform parallel motion of 140ft. per second, the plane would then move on a constant resultant path that was horzontal. Suppose it to be at an indefinite distance to
the rear of, and approaching at the same level, the location of the experimental plane above given, and wind should gradually arise swinging the latter towards the 10 deg. inclination. As the current became stronger and stronger the motion of the hypothetical
plane over the earth's surface would become slower and slower, until at the moment when the 10 deg. inclination was reached by the experion, and bothe, the other might come to a position by its aii. In one case the paralleel component of gravity would be
hypothetically cancelled ; in the other, cancelled as a matter of fact by the cross-bar and wires. The hypothetical 1 oz of pressure would be acting on one plane, and a matter of fact 1 oz
on the other, but the balances being marked in it $\frac{1}{2}$ lbs. it could not work on the air alike in both. The
If the bypothetical plane passed the locality of the arms rotating in still air, it might move tangentially by the side of the experi-
mental plane, as it was carried around on a 10 deg. inclination, in which event the parallel component of one would be hypothetically and real pressure be acting alike in each case, but the postuated detected because of small motion of the scale index, and the normal factor alike working in each case. It it obvious, in the wind ex-
periment with plane at any inclination, if a constant pressure equal periment with plane at any inclination, if a constant pressure equal to the tension on the parallel wires be aapplied in the same manner
as the 1 oz against friction, the parallel wires might be cut, locality.
Close a
from the twion to the hypothetical case will remove all obscunty gravity in quiet possession of the ground, as the constant working least degree.
Egeria, Colorado, January 25th.
the reaction of jets. SIR,- -1 am pleased to see that your correspondent, "Old
Student,", does not find mee obscura, and I thank him for the com.
pliment that he pays me. The statical reaction of a jet of fluid, pliment that he pays me. The statical reaction of a jet of fluid,
or diametrically amount to the weight of a column of the fluid whose height is such will a acouire falling through it under the action of gravity alone and whose uniform area throughout this height is equal to that of the jet at the same point, provided that the fluid is guided without friction to the orifice in such a manner that no
traction of the cross section of the jet takes place.
In the case where an orifice is made in the thin side of a vessel, the reaction of the jet or force tending to push the vessel in the
opposite direction from that in which the jet is moving at the poins of efflux, is equal to the weight of a column of the fluid whose height is nearly equal to the distance of the centre of the
orifice from the surface of the fuid in the orifice from the surface of the fluid in the ressel, and whose aniform sectional area is that occupied by the jet at the point
where it is moving at its maximum velocity, which area corresponds I hare of the throat of the 1 etracia. Thave said in the preceding paragraph that the height of the
column of fluid is nearly equal $t o$, sc. \&c., beause the velocity at the throat of the renc contricta is never quite equal to the
theoretical due to the actual head, and if the efficiency of dis charge be called K, K being of course less than unity, the rea K in practice is about -97 , and K^{2} therefore more convenient practical method is to take the sectional area of the vessel, and the height thereof such that a body falling through it under the ection of gravity alone would acquire a
velocity equil to K times that which it would aciouire by falling
through a beight represented by the difference in lerel betwien
the surface of the fluid, and the centre of the orifice. The
quantity K, less than unity, is the coefficient of discharve, and for quantrit , less than unity, is the coefticient of discharge, and for
an oritice in a thin plate is about equal to 62 . The statical renction of a jet of tludd issuing from an orifice in the thin side of
a eessel is therefore :- H being the actual height of tho surface of the fluid in the vessel above the centre of the oritice therein, the area of the orifice in square feet, K thee coefficient, o
discharge, and n the weight of a cubic foot of the fluid in pound
weight. weight.

$=v \mathrm{~K}^{2} \mathrm{~A} \mathrm{H}$.

As an example, let the fluid be water, so that $\mathrm{cc}=62 \cdot 4 \mathrm{lb}$. Let H or the distance between the centre of the oritice and the surface of
the water in the vessel, be 30 ft . Also let the orifice be a round one, 4in.
so that

$A=\binom{1}{3}^{2} \frac{\pi}{4}=\cdot 087266$ square feet;

and K, according to practice, $=62$ nearly. Then the reaction of
the jet issuing from this orifice, the area of the vessel being supposed to be so soreat that orifice, the area of the vessel being sup
poce
the wate lowering of the surface of $087266 \times 30=62.7961 \mathrm{~b}$ be equal to a weight of $62.4 \times(62)^{2} \times$ che vessel away from the jet. If a n nozzle could be devised such
that
that the velocity that the velocity at the throat were exactly equal to the theoretical
due to the head, and if it were fixed inside the vessel, so that the cross section of its throat exactly coincided with the orifice in the
side, the reaction of the jet would then be $=W \mathrm{~A}$ or in our example, $163 \cdot 362$. This your correspondent evidently quito understands and believes.
It is easily proved, because before the orifice and internal norzle
existed, the vessel and its contents were in equilibrio, but now the statical pressure upon a portion of the side of the vessel equal in brium is disturbed to the extent of a force equal to W A H lb weight.
to that of the vesel or jet, the nexaction itsolf force tending to push the nozzl backwards is diminished, and is only equal to that which would obtain with a fixed jet working under a head giving a theoretical
velocity of efflux equal to the difference between that due to to
head in the veis) head in the versel and that at which the jet nozzle it tolfe movess
and all corrections due to the form of nozzle would have to be applied to this newly found theoretical head as bofore.
Here we verge upon the theory of reaction wheole
Here we verge upon the theory of reaction wheers, and I must stop, as this is no part of "Old Student's" question.
The term reaction, as distinguished from impulse in
a jet upon different forms of vanes in motion, is another branch of the subject altogether. I do not know whether your correspondent
has Rankine's treatise on the steam engine, but all this is most clearly explained there, as also is the action of reaction wheel
where centrifugal force where centrifugal would like to see how far discussion upon the re-
action theort may mo, he has only to refer to your 1886 volumes
and action theory may go he has only to refer to your 1886 volumes,
where he will find such a delicious mixture of oppinions by pro
fessors and readers ach can scarcely be met with elsewhere, and that fessors and readers as can scarcely be met with elsewhere, and that
too without any real tangible result having been arrived at, in my ${ }^{\text {opinion at all events. }} \mathrm{St}$. Neots, Hunts,

monttors in the american nav

Sir, -The last paragraph of the able article in your last week's
issue is surely the strongest possible argument against Monitors A modern battleship has to carry a large amount of "tophamper" the which I understand erections on the upper deck, not part of the general structure of the hull. Ah Monitor cannot ao so, if she
does, she ceases to be one. Therefore a Monitor cannot be a
modern battleship. If these erections are not necessry, by all means let us clear them away. The fact that our decks are 20 ft . above water, instead of only 4ft., does not make the process more
difficult. If they are necessary, and the Monitor has not got them, difficult. If they are necessary, and the M
it is surely all the worse for the Monitor.
It is certain that we are not worse off in this respect than our
neichbours. I Ihave before me photographs of the Amiral Duperré and Lepanto, and any advantage they have over the Benbow, for instance, is only due to the greater space on their long and lofty
upper decks. The Admiral Nachimoft, the Russian counterpart of the Imperieuse, when I saw her last year, had her upper cec
similarly encumbered, and had in addition the brig rig which wo have discarded. Incomparing the Victoria with the Miantonomob,
we are comparing a ship of to-day with one of twenty-five years we are comparing a ship of to-day with one of twenty-five years
ago. In those days, machine guns, torpedo boats, booms and nettings, electric search lights, and forced draught, wore not in
existence. It is these chiefly which have transformed the Monitor into the Victoria by a cradual process of evolution, every stage of which, oxcept the first, is illuastrated in our Navy.
I submit that it is the torpedo boat, not the loss of the Captain,
which has killed the Monitor. Torpedo boats will always beat Monitors at the game of invisibility, and could the enterprising
commander of a dozen of these craft wish for an easier prey than a commander of a dozen of fhese cray guns, 4 ft . freeboard, and an an
10,000 ton Monitor with four big armour overhang? It is, of course, natural that American naval
men, without the experience which we have bought so dearly,
should should look with favour on their national craft, associated as they are with a glorious past. Moreover, in a coast defending navy
they are nearly as valuable as ever. But salt water is invigorating, they, if they go to ose, I venture to prophesy that they will soon
and grow into Victorias, Trafalgars, and Hoods, and probably end a.
Gicilias and Sardegna
g. February 24th.

boiler efficiency.

Str, -Professor Unwin is quite right in pointing out that the fraction $\frac{T_{o}-T}{T_{o}}$ derived from Mr. Anderson's illustrations has thing to do with the fraction $\frac{T_{o}-T}{T_{o}}$ derived from Carnot's eycle, and my introduction of Carnot's name into the paper was
about as sensible as Mr. Dick's introduction of King Charles' head into the memorial. All I can say is I have repented of the deed.
But the Professor is quite wrong when he says I blunder in writing $\mathrm{T}_{\text {o }}$ as the denominator in my expression for the efficiency
of the boiler. Efficiency implies reference to a standard. The standard 1 reforred to in drawing the analogy between the water
fall on the hillside and the temperature fall in the boiler flue, wa the whole of the heat received from absolute zero, the sea level of
temperature, not the heat of combustion of the coal alone. This standard I expressed by $\mathrm{W} \sigma$ To, and the proportion which
$\mathrm{W} \sigma\left(\mathrm{T}_{0}-\mathrm{T}\right)$ the heat anailable for transfor to the water, bears
on to $W \sigma T_{0}$ is $T_{0}-T$. T_{0}; therefore having ragard to the standard
adopted, I did not biunder in writing the i enominator T_{0}. As the Professor says, $\frac{T_{0}-T}{T_{o}}$ is not the sxpression of the efficiency of a boiler in the ordinary sense. 1 never said it was, but-
admitting my assumption regardir ; ${ }^{\text {a }}$, ecifice heat and furnace
tempenture temperatures-it is the correct expression with reference to tere
whole heat received, just as the same fraction is the correct expression in the case or fee level.
Doubtless, also, as the Professor says, the expression is not a very
useful one. Indeed, to him the parable of the waterfall must appear entirely superfluous, since it had nothing whatever to do
with the subject of the paper. Sir, the parable was padding, introduced ocatch te attontion of my audievce, and
to listen contentedly to the less imaginative matter that was the to
follew. The Profesor, no doubt, is able to dispense with such
small artifices, and, failing to grasp the situation, has attached
more importance to the little piece of introductory padding than more importance to the
i2, King-street. Manchester.

Mich. Longaidae.

time tests.

SIr,-I asked "Z. Y. X." to determine the acceleration graphi-
ally, and instead of doing that, he introduces the well-known cally, and instead of doing that, he introduces the well-known
equation to the parabola, thence deducing the acceleration by double differentiation in the form $f=\frac{2 d}{d}$, where d represents the extension $\mathrm{C}^{1} \mathrm{D}^{1}$, corresponding to the time $t=0 \mathrm{Cl}^{1}$, and
finally adds that any one who knows his Euclid can construct this expression for f by means of a semicircle. Now the diagram expression for ." ch means of a semicircle. Now the diagram
which "Z. Y. Xher
the trouble, if only for the satrains of from drawing is really worth the trouble, if only for the sake of showing the inadequacy of the
proposed solution. Thus, produce $C^{1} D^{1}$, making $D^{1} P$ equal to
 angles to P O , meeting PC^{1} produced in $\mathrm{M} ;$
$\mathrm{OCl}^{1}=\mathrm{C}^{1} \mathrm{M} \times \mathrm{PC}^{1}$
$\begin{aligned} \mathrm{C}^{1} & =\mathrm{C}^{1} \mathrm{M} \times \mathrm{PC}^{1} \\ \epsilon^{2} & =\mathrm{C}^{1} \mathrm{M} \times 2 d,\end{aligned}$
that is,
$\mathrm{C}^{1} \mathrm{M}={ }_{2 d}^{\rho}=\frac{1}{f}$, the reciprocal of the
cceleration.
It still remains for "Z. Y. X." to find the graphical value of f rom its reciprocal in exact measure, which of course may be
casily done by means of similar triangles.

process is needlessly circuitous. Thus, "Z. Y. X." has gone all exists in my diagram; for, since o $\mathrm{B}^{1}=\frac{1}{2} O \mathrm{OCl}^{1}$, and the angles
$\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{D}^{1}$ and POM are right angles-compare Fig. 2 , page 105,
$\mathrm{OA}^{1}=\mathrm{L} \mathrm{M}=\frac{1}{2} \mathrm{C}^{1} \mathrm{M}$.
Now, the focal distance $O \mathrm{~A}^{1}$ as well as the point Br^{1} are given.
Hence, if we are to base the solution on the second diff ertio Hence, if we are to base the solution on the second differential
coefficient, since $f=\frac{1}{2}$, all that is needed is to set off, to
the given scale, $O T$ equal to the unit length in which aceeleration is measured; then join K T, and finally draw T Z at right angles
to T. Let T Z meet O produced in Z ; then, obviously, $\mathrm{OK} . \mathrm{OZ}=0 \mathrm{~T}^{2}=$ unity.

$\mathrm{OZ}=\frac{1}{O K}=\frac{1}{2 a}$

The method given of finding the true curve from its projection is applicable to all sorts and conditions of time tests, parabolic or
other, upon making the changes necessary in each particular case. other, upon making the changes necessary in each particular case,
Robert
Harch 1st. GRAHAM.
engineers in the navy.
Sir, - Allow me to point out an error in your able article on the
bore subject The system of training engineer officers as students above subject. The system of training engineer officers as students
in the Government Dockyards was not adopted in consequence of the suggestions of Sir A. A. C. Kov's Committee, which carried out its
inquiriss in the early part of 1876 , but began in 1863 . The inquirios in the early part of 1876 , but began in 1803. The suizo discontent in the engineering branch of the service-a state of
things prevailing at the present time. The Committee, in which things prevailing at the present time. The Committee, in which
the naval element predominated, presented a report so opposed to the evidence as to be inexplicable to any ane carefully $\begin{aligned} & \text { Eoing } \\ & \text { through it, and only to be accounted for by the words of the }\end{aligned}$ present Parliamentary Secretary to the Navy, "that naval training is not the best for the conduct of civil affairs." Instead of in.
quiring into the means of securing the highest mechanical skill quiring into the means of securing the highest mechanical skill
and scientific knowledge in the management of the various engines in ships-of-war, they occupied themselves with endeavouring to devise means for procuring candidates of a higher socilal states
than formerly. The gist of the Committee's report is contained in paragraph. 7 :-" The regulations establishod in 1863 for
the practical
and
theoretical instruction of the engineer officers of the Royal Navy, with the exception of some points of minor importance, aro well suited to the object
in view." Numerous suggestions were mado involving triting in view." Numerous suggestions were mado involving triting
concessions and paltry advances in pay, which- have been
anded from time to time but the only suggestion of any value, that contained in paragraph 82, "That ensineer officers be classed with the military or executive branch of the service,
seems as far off being realised as ever. The Committee conclude seems as far off being reaises as ever. The Commmite conct
by statigg that their suggestions, if carried out, will effect the desired purpose. A striking commentary on this conclusion was engage fifty engineers for temporary service from the mercantile marine, paying these, with three yearr' service at sea, the same
amount as their own highly trained officers who had served for Tourteen years.
The ssstem advocated by Admiral Mayne was put in forec in the to be abandoned. The executive oficers took no yonterest in engineroom duties, the machinerecy constantly ran down, and great expense
was incurred for repairs, The same plan, or a modification thereof, was incurred for repairs. The same plan, or a modification thereof,
is being tried in the Japanese Navy at the present time. If the result years ago was a failure, it will be much more so now, when
the need of a skilled specialist is indispensable. What would be the need of a skilled specialist is indispensable. Wuties of medical
the effect of the executive undertaking the dution officers ?
To the instances of ignorance and indifference to engineering matters in the Navy given by you may be added some additional recent
ones. One distinguished naval ofticer, who poses as an authority ones. ${ }^{\text {naval matters, stated at a meeting that he was surprised at the }}$ number of engiders in that ho did vaow why they refused to join. Another in
and
grievances, and asking for an improvement in their position,
threatened them with the fate of the masters who were abolished, doubtloss haviny in his mind's eye some such scheme as that proPosed by Adminal Mayne. Eye Even in the shast edition of LLord
Brassery' "Naval Annual." out of 750 pages, the portion devoted brassey sering matters is less than four pagees, and the authorities quoted on the subject of engine-room complements are the captain of the ships.
I am afraic
ments of the Navy is not contined to Admirals. In the evidence given before Sir A. C. Key's committee occurs the case of a black
gen petty officer who objected to mess with engine-room artificers, and the present regulations for the entry of engineer students and vidently intended for two entirely different claseses of society The questions of the supply of engineer officers for the Navy is becoming critical. Last year there were added to the Navy twenty
six vessels of 40,000 tons, and 100,800 horse power and twenty six vessels of 40,000 tons, and 100,800 -horse power and twenty
three tors list on January lst, 1890, was fifteen less than on January 1st, 1889 be diminishing. The Admiralty, after saying that the number of ratings as engine-room artificer and stoker, was more than sufficient, have recently sent a recruiting, party scouring the country with a
view to obtain 500 additional engine-room artificers and 1500 view to obtain 500 additional engine-room artificers and 1500
stokers. According to the service papers they have not met with stokers, According to the service papers they have not met with
any success, nor are they likely to. The Admiralty have ex-engine-roery means of obtaining a proper supply of engineer engederoom artincers, and stokers, except the obvineus one
offering proper ind theme to come forward. If thi
were done the long-standing difficulty would be were done the long-standing difficulty would be at an end, and a member of the committee on the Naval Estimates, 1888, "in Westminster, S.W., March 4th.
$\mathrm{STR},-\mathrm{I}$ have read with great pleasure an excellent article in the current number of your very valuable paper, on the views o Royal Navy, set forth by him in a paper read at the United Service Institute.
In dealing with Admiral Mayno's propositions, you state that the want of appreciation of the engineers appears at, for the admiral branch of the Navy is able
not to be wondered ate to turn out mechanical engineers at will, whose achievements are not, I should say, as well known or remembered as they deserve
to be. Therefore, with your permission, I will give a few instances to be, Therefore, with your permission, I will give a few instances
where the mechanical knowledge of captains and admirals has been where the mechanical knowledge
exercised for the nation's benetit.
A well-known captain-now no more-got the Admiralty of the day to make a boiler to his design. This boiler was put into the
Fearless, with the remarkable result that her speed at once fell from 7 to $5 \frac{1}{2}$ knots. Later, the same officer invented an apparatus for raising a vessel's screw without a screw well. This was put
into two ships. One of them got into such difficulties she had to be brought to England long before her tour of foreign serviee had expired; in the other, through the people on board not using it, the ship managed to put in her time.
Another gallant and lamented captain induced the Admiralty to have an hydraulic engine made to rotate the propeller of his shipat
slow speeds, by the pressure of water outide. The engine was ship of the effluast remembered that the power required to rid tud develope ; it was therefore never put in, but it cost a pretty penny to make.
More
More recently, another captain designed a set of boilers,
which were put into the Danu. Officials from the Admiralty which were put into the Dane. Ofticials from the Admiralty
and from Portmouth dockyard tried all they knew, all one winter, to make them a success, but their efforts were
nunaraiing, and the boilers were condemned and taken out of
the ship before she could leave Enoland Did not Admind the ship before she could leave England. Did not Admiral Sir George Elliot design the Waterwitch, and will Admiral Mayne, or
some well-informed officer tell us what she has done, beyond perhaps nearly drowning all her crew on her only voyage, and subsequently rotting in Portsmouth harbour.
The eivil and mechanical envineering achievements of another admiral in the West Indies and at Gibraltar are, I fear, forgotten. Did they not range from the construction of reservoirs to the
manufacture of patent fuel? But he has not been rewarded for manu
thiss
Many other instances occur to my mind. For the present I will
ask you to be food enough to give these to your readers and the ask you to be sood enough to give these to your readers and the
public; for, after all, the suggestions of Admiral Mayne have this public; for, after all, the suggestions of Admiral Mayne have this
amount of method-that, if carried, there will be additional employment for people of his own line, and we may be quite
certain that engine-room lientenants would never be harassed by their brother executive as engineers have been, and even now are, but a great effort would be made to secure any advantage the
transfer of duties would bring about, and it is just possible that transfer of duties would bring about, and it is just possible that
Admiral Mayne has this in his mind when advocating his widd and half-thought-out proposal.
London, March 5th.

the education of engineers.

SIR,- As an engineer of the old school, dating back fifty years that date large firms received their orders depending on the number of workmen they employed; at this date thing are altered, depending on the number of tools in large factories,
The one thing that crushed many a young man in days gone The one thing that crushed many a young man in days gone past was the want of commercial exucation. Estimates of costs
were generally made out, in many instances, by men in the ing. In some instances, builders of steam machinery and the uses connected therowith, had to apply to some consumer for the prices they should chargo per ton of tonnage, per horse-power, or for
general uses. Even at this date, probably, should given for any detil a correct estimate could only bo arrived at by given for any detail, a correct estimate could only bo arrived at by
carefuly kept books. How many a large undertaking haviny swallowed up the original estimated cost, may be entirely attributed to a want of commercial education; and more especially amongst civil engineers, undertaking vast iron or steel structures.
I consider all engineering pupils who serve five years or so should 1 consider all engineering pupils who serve five years or so should
insist on receiving a commercial education by the various firms they serve under. Some pupils, who show great proficiency i for be it known, no machino can either do the one or the other spoil themselves ; or otherwise their employers, by holding out false hopes, incapacitate many from holding responsible situations. No firm will employ a mere dranghtsman as manager, unless
he has an efficient knowledge of commercial matters, both as regards running out quantities, and estimating the cost, and time required to execute work. This is more required now-a-days;
frmerly the men did the work, but now machines do it. Wo formerly the men did the work, but now machines do it. Wo
should imagine workmen are not so skilled as in the dnys of the old millwrights, but with proper commercial training they should become better men to fill responsible situations.
Portobello, February 24th.

TaE MErsey Bar.-The Mersey Dooks and Harbour Board bave instructed Messrs. Simons and Co., of Renfrew, on the Clyde, to design and construct powerful sand pumping appliances to be hited
to one of the steam hopper barges constructed by them some t me ago for the Board. When completed, the apparatus will be cm.
ployed to cut a deop channel through the outer bar of the Mericy.

GLOVER'S ROPE-MAKING MACHINE.

IMPROVED ROPE-MAKING MACHINE.

Messrs. Walter Glover and Co., of Salford, Manchester, have recently completed an improved compound horizonta rope machine, capable of making rope of cotton, hemp, jute,
coir, flax, or manilla, with or without cores, up to $3 \frac{2}{2}$ in. diameter, or about 1lin. circumference. The annexed illustration will show the construction of this machine, one of the most important features of which is the manner in which the yarns and strands all converge to one common centre, this arrangement insuring the utmost regularity in lay and tension. The above machine is arranged for making three-
strand ropes, each strand being supplied from the yarns strand ropes, each strand being supplied from the yarns the yarn for the entire rope. Every bobbin runs indepenthe yarn for the entire rope. Every bobbin runs independently, and a separate break or friction strap is fitted to each
bobbin. These bobbin brakes can be adjusted to the greatest nicety, insuring an equal tension on every one of the eighteen yarns, thus insuring a rope of the most perfect uniformity hard or soft laid ropes, a full set of change wheels is supplied with each machine, for regulating the hauling-off gear, each regulation or change gear being distinct and separate from the other. The machine tained, and can be easily man aged by one workman every aged oy one workman, every control from the stopping and starting lever. The machine runs with remarkable smootb ness, and owing to the careful distribution and balancing of the bobbins and discs, \&c., it requires very little power to drive machines of the larges size. Maehines for making ropes of all sizes are made on this
principle. The ropes are made in the following manner:-The yarns being wound on the bobbins in suitable numbers, according to the size of the rope to be made, they are from each bobbin threaded through a head-runner of six holes and gathered at a die at which they are closed into the strands, there being a separate die for trands being formed, they are strands being formed, they are then threaded through a main and immediately closed at the main closing die into finished rope. The rope is drawn
through the die by means of strong hauling-off drums, and ultimately wound on to a storage creel, the storage creel being made so that the rope can be taken off it without uncoiling.

BLOWING CHURCH ORGANS.

The increasing tendency, at the present time, for larger and more powerful instruments in churches and other places of worship, together with the fact of their usually being fitted with pneumatic action for the purpose of lessening the labour of playing, has caused the requirements of more wind, and that of a higher pressure, necessitating the substitution of
engine power for manual labour. In places where a constant engine power for manual labour. In places where a constant
and certain pressure of water can be procured, the hydraulic and certain pressure of water can be procured, the hydraulic engine meets the case; but Sunday is usually a repairing day pressure can be insured. This uncertainty leads to the use pressure can be insured. This uncertainty leads to the gas engines in towns and oil engines in country places. has arisen from the intermittent requirements of the service it being practically impossible to stop and start the engine as the organ is required. Generally an apparatus for throwing the belt on and off, or else of allowing the wind to escape through a valve, has been resorted to, but both devices are objectionable. Lately a far better and more ingenious contrivance of revolving bellows, secured by the joint patents of Mr. Herbert Davis and Mr. J. C. R. Okes, of London, has been introduced by the latter.
The machine has the advantage of keeping up a constant pressure of wind-always ready, and yet when the organ is silent and no wind used, none is produced-it moreover has the advantage of never increasing the pressure beyond that ciple has been fitted to blow a large organ of four manu prin ciple has been fitted to blow a large organ of four manuals at
All Saints Church, Rudstone, Yorks, the gift of the lord of the
manor, Mr. A. Bosville, of Thorpe Hall, Bridlington, and is driven by one of Messrs. Priestman's oil engines of 4 -horse power. The machine is capable of supplying any quantity of sure of 12 in . of water, though 1300 cubic feet per minute at a presorgan in the present instance. Both engine and blower are highly satisfactory, the engine running steadily and under perfect control, whilst the pressure of air indicated by the gauge does not vary lin. of water, a qualification which organ builders will appreciate. The accompanying engraving illusrates the machine, which consists of four bellows secured to a hollow horizontal shaft, which is caused to revolve. As the movable board of each bellows comes alternately over and the hollow shaft in the one-half revolution and filling the bellows with air during the other half revolution. The springs shown in our engraving serve to regulate the pressure, and ensure steadiness of action. This blower is a curious example of the application to practical purposes of a very
old idea. In Dick's "Perpetuum Mobile," a somewhat old idea. In Dick's "Perpetuum Mobile," a somewhat

similar machine is figured as a device for producing perpetual motion, the whole being submerged, so that the descended bellows shall always be on the rising side.

DREDGERS AND DREDGING.

Nearly twenty years ago, I told Messrs. Simons and Co. that
their then newly-invented combined hopper dredger could not be economically employed except it had large hopper carrying capacity, and therefore I advised that no hopper dredger should
be of Jess carrying capacity than 1000 tons. It was with this in be of less carrying capacity than 1000 tons. It was with this in
view that I recommended to several harbour boards for whom I acted as engineer the construction of the large hopper dredgers, Otago, of 1250 tons, all twin-screw vessels, instead of hopper dredgers of 500 tons, or of about half the carrying capacity, at that time proposed.
of large hopper dredgers, including thirteen years ago, a number have been built by Messrs. Simons and Co.; and it is now a wellestablished fact that in localities where the materials to be dredged are comparatively bard, and the distances to the places of deposit are short, that the cost of dredging by the hopper system is, as
nearly as possible, three-sevenths cheaper than bytixed dredger with their attendant hoper barges, when working fuder similar conditions. This fact led me, when reporting to the Belfast dredging plant to be used for cutting the new channel from the harbour down to Holywood, to recommend the hopper dredger system; and the engineer to the Commissioners reported last year
that the actual cost has been under 2d. per ton, inclusive of wages, coal, stores, and repairs, but exclusive of interest and depreciatios,
 4d. per ton named in my report.
The quantity of materials raised by the two Belfast hoppe dredgers of 800 tons each, working nigh and day during the yea

Notes by W. R. Kinippte, M. Inst. C.E.

1887, was $1,350,400$ tons, including depositing at an average distance of nine nautical miles. Similar results as to cost have also been obtained at Grangemouth, where I reported on March 10th
1881, to the Caledonian Railway Company on the advantages of the hopper system for the proposed dredging operations there, and recommended a 1000 -ton hopper dredger, which was afterwards reduced to an 800 -ton hopper dredger for the work. Other hopper dredgers, such as the Kuphus of 1000 tons at Bombay, have done good work at a very small cost. Those constructed under my
invention and patent of September 4th, 1882 , viz, the stern-well hopper dredgers at Bristol, of 800 tons ; St. Andrew, H.M. Dockyard, Chatham, of 700 tons; the Otter, of 500 tons, for the Natal Harbour Board; and one of 800 tons, now building for the Manreduced the cost of dredging. I understand from Messrs. Simons and Co., that up to the present time they bave built, including those now building, no less than forty-two hopper dredgers, or with but three exceptions the whole of the hopper dredgers afloat; also twenty-eight of suction, dipper and fixed dredgers, and fifty Co. are the inv, making a totain of the 120 . Messrs, simons and designers and constructors of the first stcam hopper barge. the first stcam hopper barge.
Glancing over these figures, it would appear that the bias so would appear that the bias so
freely expressed a few years ago against the hopper-dredger
system is now gradually lessening, system is now gradually lessening,
and there is a greater tendency than ever towards the sternthan ever towards the stern-
well type of hopper-dredger,
with other improvements I have with other improvements I have introdueed. As before stated, to insure
success it is essential that hopper success it is essential that hopper ing capacity, of not less than 1000 , and perhaps it would be better to have them of from 1500
to 2000 tons having their boilers to 2000 tons, having their boilers, engines, ladders, propellers and
machinery throughout in duplicate ; that is to say, twin dredger vessels having the two ladders working in one well, with their lower tumblers projecting well
aft, for stern cutting, and safely housed, or covered, by an over-
hanging stern - in fact, so hanging stern - in fact, so machinery forms in every respect a perfect dredger, capable of being independently worked while
the other half is at rest or under repair.
In making these remarks on the In making these remarks on the
stern-well hopper system, I by no means wish to convey that under all conditions it is the best to
adopt, for in long and wide rivers, adopt, for in long and wide rivers,
and where the materials to be dredged are soft, and the distances to places of deposit are over fifteen or twenty miles, probably the stationary dredger system
will continue to be used with will continue to be used with
economy. It is chiefly with this economy. It is chiefly with this
latter or stationary class of plant

MAGNETISM

LET us consider a ring of uniform section of any convenient area and diameter. Let us suppose this ring to be wound with copper
wire, the convolutions being insulated. Over the copper wire let wire, the convolutions being insulated. Over the copper wire let
us supose that a seond wire is wound, also insulated, the coils
of each wire being arranged as are the coils of any modern transformer. Let us suppose that the ends of or the inner coil, which we will call the secondary coil, are connected to a bal
listic galvanometer; and that the ends of the outer coil, called the primary, are connected, through a key for reversing the current with a battery. If the current in the primary coil is reversed, the leflection, indicating that for a short time an electro-motive force has seen acting on the secondary coil. If the resistance of the
secondary circuit is varied, the sudden deflection of the galvanosecondary circuit is varied, the sudden deflection of the galvano
meter needle varies inversely as the resistance. ${ }^{\text {With }}$ With constant orendery ifevit if the ring the
 or, indeed, of ninety-nine out of every hundred substances which
could be proposed-we should find that for a given current in the primary cooil the deflection of the galvanometer in the secondar yold, of wood, or glass-it ma. be oolid or it may be hollow- it
makes no difference in the deffection of the find, further, that with the vast majority of substances the deflec ton of the galvanometer in the secondary circuit is proportional to
the current in the primary circuit. If, however, the ring be o the first place, the deflections of the galvanometer are very. In times as great as if the ring were made of glass, or copper, or wood. econdary circuit are, not proportional to the current in the primary circuit; but as the current in the primary circuit is step by step
increased we find that the galvanometer deflections increase somewhat as is illustrated in the accompanying curve-Fig. 1 -in which
the abscisso are proportional to the primary current, and the ordi-

nates are proportional to the galvanometer deflections.
observe that as the primary current is increased the galvan
eflection increases at first at a certain rate; as the primary current attains a certain value the rate at which the deflection urn in the curve. This rate of increase is maintained for a timie, but only for a time. When the primary current attains a certain
value the curve bends downward, indicating that the deflections of the gavanometer are now increasing less rapidly as the primary
current is increased; if the primary current be still continually rapidly
Now
Now what I want to particularly impress upon you is the enornd ordinary substances on the other. On this diagram I have aken the galvanometer deflections to the same scale for iron, and in the case of glass or wood, to the same scale, are so small as to e absolutely inappreciable, whilst the deflection for iron at one
point of the curve is something like 2000 times as non-magnetic substances. This extraordinary property is pos-
sessed by only two other substances besides iron-cobalt and what would bo the deflictions for cobalt and nickel, taken from Professor Rowland's paper. You observe that they show the same eneral characteristics as iron, but in a rather less degree.
Still, it is obvious that these substances may be broadly classed with iron in contradistinction to the great mass of other bodies. oner class. If the deflection with a non-magnetic ring be unity, that with iron, as already stated, may be as much as 2000 ; that with bismuth, the most powerful diamagnetic known, is 0.999825
a quantity differing very littlo from unity. Note, then, the first fact which any theory of magnetism has to explain is: Iron, nickel, and cobait, all enormously magnetic, other substances practically
non-magnetic. A second fact is-with most bodies the action of the primary current on the secondary circuit is strictly pro-
portional to the primary current ; with magnetic bodies it is by no means so.
You will observe that the ordinates in these curves, which are proportional to the kicks or elongations of the galvanometer, are
called induction, and that the abscissee are called magnetising force. Let us see a little more precisely what we mean by the tion of the galvanometer measures an impulsive electro-motive force-an electro-motive force acting for a very short time. Charge
a condenser to a known potential, and discharge it through the through a number needle of the galvanometer will swing aside electricity in the condenser-that is, to the capacity and the potential. From this we may calloulate the eq quatity of electricity
required to give a unit eloy required to eqive a unit elongation. Multiply this by the actual
resistance of the secondary circuit and we have the impulsive electro-motive force in volts and seconds, which will, in the particular secondary circuit, give a unit elongation. We must induction is the impulsive electro-motive force in absolute C.G.S. units divided by the number of secondary coils and by the area of
section of the ring in square centimetres. The line interral of section of the ring in square centimetres. The line integral of
magnetising force is the curreut in the primary in absolute plied by 4π. The magnetising force is the line integral divided by
the length of the line over which that line integral is distributed This is, in truth, not exactly the sume for all points of the section of the ring-an imperfection so far as it goes in the ring method of
experiment. The absolute electro-magnetic C.G.S. units have experiment. The absolute electro-magnetic C.G.S. units have
been so chosen that if the ring be perfectly non-magnetic the
induction is equal to the magnetising porce. We may refer to the permeability, as Sir W . Thomson calls it ; it is is the ratio of the induction to the magnetising force causing it, and is usually
enoted by μ_{0} further difference between the limited elass of
There is a
angnetic bodies and the great class which are non-magnetic. To magnetic bodies and the great class which are non-magnetic.
show this, we may suppose our experiment with the ring show this, we may suppose our experiment with the ring to
be varied in one or other of two or three different ways. To fix our ideas, let us suppose that the secondary coil is collected in one
part of the ring, which, provided that the number of turns in the secondary is maintained the same, will make no difference in the
1 Abstrnct of Inaugural Address to the Institution of Electrical Engi.
result in the galvanometer. Let us suppose, further, that the ring
is divided so that its parts may be pucked is divided so that its parts may be plucked from together, and the
secondary coil entirely withdrawn from the ring. If now the primary current have a certain value, and if the ring be plucked apart and the secondary coil withdrawn, we shall find that, whatmeter deflection is one-half of what it would have been if the primary current had been reversed. I should pei haps say approxi-
mately one-half, as it is not quite strictly the case in some samples of steel, although, broadly speaking, it is one-half. This is natural enough, for the exciting cause is reduced fro-m, let us call it it pasitive value, to nothing when the secondary coil is withdrawn; ;it is changed from a positive value to an equal and opposite negative value when
the primary current is reversed. Now comes the third chara he primary current is reversed. Now comes the third chari
teristic difference between the magnetic bodies and the non-magneti Suppose that, instead of plucking the ring apart when the current gradually diminished to nothing, and that then the ring was
plucked apart and the secondary coil withdrawn. If the ring be non-mag
meter ; very large deflection, amounting, it may be, to 80 or 90 per cent
of deflection caused by the withd urrent had its full value. Whatever be the property that the passing of the primary current has imparted to the iron, it is
lear that the iron retains a large part of this property after the urrent has ceased. We may push the experiment a stage
urther. Suppose that the current in the primary is raised to reat value, and is then slowly diminished to a smaller value With the ring is opened and the secondary coil withdraw precisely the same as if the current had been simply raised to its depends not alone upon the current at the moment of withdrawal Jected. We may then draw another curve- Fig. 2-representing the galvanometer deflections produced when the current has been

raised to a high value, and has been subsequently reduced to raised to a high value, and has been subsequenty
value indicated by the abscisse. This curve may be properly
called a descending curve. In the case of ordinary bodies this called a descending curve. In the case of ordinary bo straigt line concident with the straight line of the
curve is
ascending curve but for iron is a curve such as is represented in ascending curve, but for iron is a curve such as is represented in
the drawing. You observe that this curve descends to nothing like zero when the current is reduced to zero ; and that when the current is not only diminished to zero, but is reversed, the galvanometer deflection only becomes zero when the
reversed current has a substantial value. This property pos sessed by magnetic bodies of retaining that which is impressed upon them by the primary current, has been called
Ewing hysteresis, or, as similar properties have been observed in quite other connections, magnetic hysteresis, The name is a measured by the galvanometer deflection is independent of the time during which the successive currents have acted, and depends onl ments of Professor E. Eing order of succes to show a well-marked time effect. There are curious features in these experiments which
It has been point
Ewing, that the area of out by Warburg, and subsequently by energy expended in chansing the magnetism of the quass of iro from that produced by the current in one direction to that pro
duced by The energy expended with varying amplitude of magnetising force has been determined for iron, and also for large magnetising
forces for a considerable variety of samples of steel. Different sorts of iron and steel differ from each other very greatly in thi revers. For example, the energy lost in a complete cycle 10,000 ergs per cubic centimetre) in orill hardened hard steel it was
near 100,000 and in tungsten steel it was near 200, $000-a$ rang of variation of 20 to 1. It is, of course, of the greates possible importance to keep this quantity low in the case of If the armature of a dynamo machine be made of good iron,
the loss from hysteresis may easily be less than 1 per cent; if however, to take an extreme case, it were made of tungsten steel, it would readily amount to 20 per cent. In the case of
transformers and alternate-current dynamo number of reversals per second is great, the loss of power by hysteresis of the iron, and the consequent heating, become very
important The to than does. The loss of power by hysteresis increases more rapidy work the iron to anything like the same intensity of induction a is desirable in ordinary continuous-current machines. The quan
tity $O A$, when measured in proper units, as alread that is to say, the reversed marnetic force, which just suffices to reduce the induction as measured by the kick on the galvanomete to nothing after the material has been submitted to a very great
magnetising force-is called the "coercive force," giving a definite meanning - to orco-is called the corm which meaning ser indefinite judging the magnetism of short permanent magnets. The residual magnetism $O B$ is then practically of no interest at all; the mag. netic moment depends almost entirely upon the coercive force. the energy dissipated in a complete reversal. For very soft iron suitable material for magnets, it is 51 in the same units the most good guess may be made of the amount of coercive force in sample of iron or steel by the form of the ascending curve, deter-
mined as I described at first. This is readily seen by inspection o Fig. 3, which shows the curves in the cases of wrought iron, and
steel contin steel containing 0.9 per cent. of carbon. With the wrought iron a
rapid ascent of the ascending curve is made, when the mate force is small and the coercive force is small; in the case of the hard steel, the ascent of the curve is made with a larger magnetising current, and the coercive force is large. There is one
curious feature shown in the curve for hard steel which may, so far as I know, be observed in all magnetisable substances: the ascend ing curve twice cuts the descending curve, as at M and N . This
peculiarity was, so far as I know, first observed by Profossor G peculiarity
Wiedemann
Ihave already called emphatic attention to the fact that mag.
netic substances are enormously magnetic, and that non-magnetic substances are hardly at ans masnetic; there is between the two exceedingly ensily destroyed. The magnetic property of iron is exceedingly easily destroyed. If iron be alloyed with 12 per cent.
of manganese, the kick on the galvanometer which the merial
will give, if made into a ring, is only about 25 per cent. greater
than is the case with the most than is the case with the most completely non-magnetic material, instead of being some hundred times as great, as would be the case
with iron. Further, with this manganese steel, the kick on the the primary, and the material shows no sign of hysteresis, In that manganese stiel consisted of a perfectly non-magnetic mate rial, with a small percentage of metallic iron mechanically
admixed therowith. Thus thg admixed therewilh. Thus the property of non-magnetisability
manganese steel is an excellent proof of the fact-which is shown by the non-magnetic properties of most compounds of iron that the property appertains to the molecule, and not to the atom or, to put it in another way, suppose that we were to imagine
manganese steel broken un into small particles, as these particles became smaller there would at lemgth arrive a point at which the

other; ; when this point is reached the particles of iron are non-
magnetic. By the magnetic molecule of the substance we mean the smallest part which has all the magnetic properties of the
mass. The magnetic molecule must be big enough to contain its proportion for the manganese to enter into each of them, to constitute an
olement of the magnet. Manganese is, so far as I known magnetic element. Smaller proportions of manganese reduce the
magnetic property in a somewhat less degree, the reduction being greater as the quantity of manganese is is greater. It appeared
very possibe te then Yery possible that the non-magnetic property of manganese steel
was due to the coercive force being very great that, in fact, in
all experiments we were still on that part of the man all experiments we were still on that part of the magnetisation
curve below the rapid rise, and that if the steel were submitted to sreater forces it would presently prove to be magnetic, like other nese steel to very great forces indeed, and finds that its magnetism When ore considers that the magnetic property in three substances-that it is easily destroyed by the admixture of some foreign body, as manganese-one would naturally expect
that its existence would depend also on the temperature of the body. This is found to be the case. It has long been known b iron remains magnetic temperature non-magnetic. It has long been known that the same thing happens with cobalt, the temperature of change,
however, being higher ; and with nickel, the temperature being suppose that the coils are insslated with a rerfractory material,
such as asbestos paper, and that the ring is made of the best soft iron. We are now in a position to heat the ring to a high
temperature, and to experiment upon it at high temperatures ane temperature can be coils. Suppose, first, that the current in the primary copperit which we use for magnetising the ring is small; that from time
to time as the ring is heated and the temperature rises, an experiment is made by reversing the current in the primary
circuit At the ordinary ting the deffection of the galvanometer needle. paratively small; as the temperature increases the deflection ever, reaches something like 600 deg. C., the galvanometer deflec
ton ion begins very rapidly to increase, until, with a temperature of
70 deg. C ., it attains a value of no less than 11,000 times as great opper, and the same exciting current had been made of glass or direct comparison of 11,000 to 1 cannot be made. To make it We must introduce resistance into the secondary circuit when the
ron is used; and we must, in fact, make use of larger currents when copper is used. However, the ratio of the induction in the case of iron to that in the case of copper at 770 deg. C. for small
orces is no less than 11,000 to 1 . Now, mark what happens. The emperature rises another 15 deg . C.; the deflection of the needle suddenly drops to a value which we must regard as infinitesimal in in fact, at the higher temperature of 785 deg. C. the deflection o
in ron is to that with copper in a ratio no able fact:-At a temperature of 770 deg . C. the magnetisation of iron 11,000 times as great as that of a non-magnetic substance; at Suppose now that the current in the priactically non-magnetic. o magnetiso the iron had been great instead of very small. In temperature rises, the deflectiont order of phenomena. As the ery slowly till a high temperature is atained; then sudden change occurred for small forces is reached, the rate of diminution becomes very rapid indeed, until, finally, the nagnetism of the iron disappears at the same time as for smal
forces. Instead of foll forces for varying temperatures, we may trace the curve o
magnetisation for varying forces with any temperature we please.

Bath and West and Southern Counties Societt.-This oldRochester, on June $5,6,7,9$,and hold its annual Exhibition at nearly $£ 3000$ are offered for horses, cattle, sheep, pigs, poultry, cheose, butter, cream, hops, wool, preserved friut, \&c,
in addition to several gold and silver medals and plate. The dis. play of implements, machinery, and articles of general utility is
always a very large one, and among other attractive features will be exhibitions of manufactures, paintings, fruit packing appliancos, ceature butter-making contests, whic together with other interesting demonstrations of dairy practice.
Regulations, \&e., can be obtained of the secretary, Mr. Thos. \mathbf{F}.

THE HUDSON TUNNEL BLOW OUT.
The following article, by S. D. V. Burr, in the Railroad Gazette sidering the numerous accidents in, and the long time this tunnel has been in hand
Judging from the accounts in the technical and daily press of
the "blow out" at the Hudson River Tunnel, which occurred just
before midnight, on the 4th inst it is appent before midnight, on the th inst., it is apparent that the true
character of the work now being done is not well understood. In charactor ounts given there are several important features: First, Ine
the accour
accident took place instantaneously, and it was by mere chance that the men in the heading escaped; next, and this in a technical journal, there was "a failure of the air pressure to properly sup-
port the esit in the side of the tunnel, and several tons of the
material fell into the tunnel material fell into the tunnel."
To those who
tunnel and the nature of the material through which it is passing, it is very evident that an instanteneous blow-out, or escappossing, the
confined air, is absolutely impossible. In every instance of a blowout at the heading the men have been warned in time to reach the
air locks. The air pressure maintained in the heading or working
chamber balances, as nearly as practicable the hydrostatic pressure chamber balances as nearly as practicable, the hydrostatic pressure
of the water of the river. The silt of the face and sides of the
headin of the water of the river. The silt of the face and sides of the
heading serves solely as a wall separating this air upon one side
from the water upon the other. As the silt which constitutes the
dividing dividing medium is formed of minute particles having but little
tendency to pack or cling closely together, it has no power in itself tendency to pack or cling closely together, it has no power in itself
to act as succa a dividing medium, except when the two pressures
nearly balance each other. to act as such a dividing medium, except when the two pressures
nearly balance each other. An exact condition of equilibrium is
not possible, simply because the water pressure is not equal at all not possible, simply because the water pressure is not equal at all
points of the excavation, that at the invert being over 9 Ib. greater
than that at the crown, due to the greater depth of the invert than that at the crown, due to the greater depth of the invert
below the surface. By maintaining an air pressure equal to the
water pressure at the axis of below the surface. By maintaining an air pressure equal to the
water pressure at the axis of the tunnel, the only work to be per-
forme by the silt partition is to prevent the entance of water at
the bottom, where the water pressure it greatest, and to prevent formed by the silt partition is to prevent the entrance of water at
the bottom, where the water pressure is greatest, and to prevent
the escape of air at the top, where the air pressure is in excess, the the escape of air at the top, where the air pressure is in excess, the
air pressure, of course, being the same in all parts. It is doubtful
if a more perfect substance than silt is provided by nature for this purpose.
In the In the ordinary operation of digging out the heading the dry
state of the silt-indicated by the falling of small lumps-shows
that the air that the air pressure is excessive, and that it is forcing the
water back into the silt, at the same time the too moist con-
dition of the silt-indicated by little streams of water running down the face-shows that the air pressure is not sufficient
to prevent the water entering through the silt. This, since
the beginning of work upon the tunnel has given invariably an the beginning of work upon the tunne, has given invariably an
accurate indication of the condition of the heading, and whether
the the eressure of air shonld be increased or diminished. The recent
acciant was due solely to the blowing out of the air through the
silt at the heading. It was in no sense due, initially, to the insilt at the heading. It was in no sense due, initially, to the in-
coming of the water. This is evident from the fact that, in a case
like this, where the air and water pressures are nearly the same, like this, where the air and water pressures are nearly the same,
before any entrance of water in large volume can take place, a portion at least of the air must escarepe, after which the waterce, an
tow in. It is further evident that this action of both the air and
water. water must be intermittent, since both pass through the same
channel. If an opening was formed at the bottom for the entrance of water at the same time the air was rushing out at the top, the
action would be continuous; but this would require such a refinement of detail as almost to place it beyond theq range of possibility-
At the aceident of two woeks ago the first indication of no-equil. brium between the air and water was given by the falling of small
pieces of silt. This attracted the attention of the men, all of whom were working at the bottom. Upon examination it was
found that the lower part of the face of the heading was coming
in slowly but inevitably, while the air was forming a passage in slowly but inevitably, while the air wos forming a passage
through the top. The men then started for the air lock, and had
all reached the completed portion of the tunnel when the "whirlall reached the completed portion of the tunnel when the "whirl
wind," as some reporters styled it, occurred. This was caused by a comparatively large volume of air escaping through the
disintegrated silt at the top, allowing the expansion of the air
remaining. The pressure was reduced to such an extent as to remaining. The pressure was reduced to such an extent as to
open the door of the air look into which the men entered. It it
essential to mention that in the tunnel are two air locks built in masonry bulkheads, placed about 400 ft a apart. The air pressure
in the tunnel between the locks is from 10 ll . to 15 lb ., that in the
in heading averaging about 33 lb . To permit the free opening of the
door of the inner lock the pressure in the heading must have been reduced to or below that between the locks, or 10 lb . to 15 lb .
It is now that we come to the most interesting feature of the accident. After the air pressure had been reduced to a point
certainly below that existing between the locks-and this required
some time, as the men all reached the lock-the silt was forced some time, as the men all reached the lock-the silt was forced
into the heading by the pressure of the water upon its outer side.
It entered as a plunger, and forced its way up the tunnel until arrested by the cushion of air still confined, and the pressure of
which was increased to correspond with what which was increased to correspond with what it was before any
escaped. The air and water pressures were again in equilibrium,
although although perhaps not to such a nice degree as formerly. Only one
man of the twenty odd at work was injured. 0 One leg and one
hand were caught and crushed by the air lock door when it was hand were caught and crushed by the air lock door when it was
violently closed by the almost instant increase of pressure created
by the passage up the tunnel of the silt plunger. Had the door by the passage up the tunnel of the silt plunger. Had the door
been either closed or wide open no harm could have resulted.
But, as the door was ajar, it sustained the full force of the blow of the air. This accident proves, as have all others of a similar
character that have happened in the tunnel. that, provided there
is a watch kept on the exposed face of the silt, ample time can be given in case of a blow-out for all the men to escape. Before work can be resumed the disturbed silt will be allowed. three or
four weeks during which to settle and so compact itself as to again be capable of preventing the passago of air through it. The
heading will then be reopened. The hole formed in the bed of the river by the silt filling the heading has been filled by material
dumped from the surface of the river.

A MONITOR AS IT IS.

MANY of our Nary officers will recall the sensation created abroad,
and especially in England, by the visit of the double-turretted and especially in England, by the visit of the double-turretted
monitor Miantonomot to Europe just after the war. She carried
with her the Assistant-secretary of the No with her the Assistant-secretary of the Navy, Gustavus V. Fox,
who made a report to the Navy Department of the performance of
the vessel the vessel and his conclusions conecrning her. Mr. Fox said :-
"We can scarcely hope to see the day when the flagship of the
Mer Mediterranean fleet will only rise 36 in . out of the water. We wait
for war to convert old sailors to such a novelty as this. But how many ships and how many noble crews, that no money can replace,
may be sent to the bottom before admirals can be brought to reason? It is the public, not the service, that will lead the way,
"The English pilot who accompanied the Monitor from the Thames was somowhat suspicious of the strange craft and had his doubts of her ability to stand a heary sea. He afterwards said
that the first gale hee encountered, when he saw a green sea 18 ft .
deep deep of solid water roll over her bow, he gave himself up for lost,
believing that the Monitor was going down head foremost. But, the tops of the turrets keeping clear of the terrific waves, he
gathered courage to look around, and, seeing an American sailor quietly sewing a patch upon his trousers apparently unconscious
of the coming on board of the water, which all his experience had of the coming on barard of the water, which all his experience had
taught him was fatal to a ship, he regained his equanimity. In vessel and he left her with regret."

Considering more in detail the future of Monitors this man, whose
theories had been determined by his experience theories had been determined by his experience as a naval officer
and a naval secretary as well as by his close study of principles,
snid - "There remains but one fact to discuss concerning the said:-"There remans but one fact to discuss concerning the be constructed so as to make them efficient fighting sea-going cruisers? If not, then we must adopt the European models, abstain from any further attempts at progress, and content ourself with a naval force for defensive purposes only, or invite new schemes.
The facts with regard to the behaviour of this vessel in a moderate gale of wind and heavy see are as follows: Head to the sea,
she takes over about 4ft. of solid water as it sweeps the sea along the deck, and after reaching the turret Broadside to the sea, either moving along or stopped, her lee guns can always be worked without difficulty, the water which passes
across the deck from windward being divided by the turrets, and across the deck from windward being divided by the turrets, and
her extreme roll so moderate as not to press her lee guns near the her extreme roll so moderate as not to press her lee guns near the
water. Ling in the same position, the 15in. guns can be fired sea, the water which comes on board is broken up in the same
manner was when mantser as when going ahead to it. In the trough of the sea her
portiable to be flooded. if require to use her guns to
wind ward. This, therefore, would be the position selected antagonist who designed to fight a Monitor in a sea-way. trouzh of the sea, broadside to, is attacked by a wave which climbs up the side, heels her to leeward, and, passing underneath, assists
in throwing her back to windward, when another wave is met and the heavy lee lurch is repeated. A wave advancing upon a Monitor in
a similar position finds no side above the water to act against; it degrees to wind board without difficulty, heels the vessel a few The water which hasd, gat on basseard, quickly to le leward no underneath and an inclined deck to ascend, becomes broken water, a small
portion going across the deck and off to leeward, but the largest part tumbling back to windward, overboard, without sending
against the turret anything like the quantity which first got on deck. The turret guns thus occupy a central position, where, not
withstanding the lowness of the vessel's hull they are more easily wnd safely handled in a seaway than guns of the same weight above
ane water in a the water in a broadside vessel.
"The axis of the bore of the 15 in . gun of this vessel is 6 lift.
above the water-the Miantonomoh was 259 ft . by 53 ft ., she drew 143 fft, and her deck was 31 inin above the water at the side. The
extreme lurch when lying broadside to a heavy sea and moderate gale was 7 deg. to windward and 4 deg. to leeward, mean $5 \frac{1}{1}$ deg.
while the average roll at the same time of the Augusta-a remark while the average roir at the same time of the Augusta-a remark.
ably steady ship was 18 deg.; and the Ashuelot 25 deg.; both
vessels being steadied by sail.' A vessel which attacks a Monitor in a seaway must approach very close to have any chance of hitting
such a low hull, and even then the Monitor is half the time covered by 3 ft . or 4 ftt . of
opponet "From these facts, not unknown to Monitor men, and the
experience we have derived from the use of sail vessels during the war, we may safely conclude that the Monitor type of ironclad
superior to the broadside, not only for frighting purposes at sea,
but also for cruising. A properly constructed Monitor but also for cruising. A properiy constrat to have but one turret
all armed witt not less than 20in. guns, two independent propellers,
the usual proportion of sail, and should be constructed of iron The comforts of this Monitor to the officers and men are superior
to those of any other class of vessels in the Navy, arising chiefly from her steadiness, ample accommodations, artificial ventilation, and the great quantity of light afforded by
We present this statement, in connection with those published Monitor type of vessens contained in a misrepresenentations on from the Washington correspondent of the Nei York Herald, appearing in
the issue of that paper of Febuary 14th."-U.S. Army and Nary

DEATH of Mr. STANDFIELD.-We are sorry to have to announce
the death of Mr. Standfield. the well-known floating dock engineer
The facts are as follows:-It will be remembered that a petroleum steamer, the Ville de Calais, blew up some time since. Mr. Standfield
bought the hill and machinery forClarkeand Standield, and had the
stern stern portion fitted with a buikhead and patched up and brought to
this country. She eleft Calais intow of the tugChallenger on Saturday
 master, Mr. William Denton, and the crew of twelve hands. All
went well until the ship reached the Margate Roads, when the hawser parted. The tug made several attempts to get a fresh hawser on board, but without avail, and she then kept as close as
possible to the vessel. It was then deemed advisable to launch a boat and put the crew on board the tug; and at the same time
signals were made for assistance from the shore. While the boat
was being was being lowered from the davits one of the ropes either broke or was let go, and the whole of the occupants were precipitated into
the water. Two of them, J. C. Roberts and Stephen England,
succeeded, with great difficulty, in getting back to the vessel, six succeeded, with great difficulty, in getting back to the vessel, six
were picked up by the tug, and the remaining for, including Mr.
Standfield, sen., were dro wned. In the meantime, the Margate surf boat, Friend to All Nations, had put off, but before she could
reach her the steamer foundered, off the Nayland Rock. Mr.
Fer Frank Standfield seized a life-buoy, jumped into the water, and,
together with another of the men, who was found clinging to the cogether with another of the men, who was found clinging to the
ladder, was pieked up by the lifeboat. The remaining four men
took to the rigging, from which they were, with much difficulty,

King's College Engineering Socirty.-At a general meeting of this Society, held on February 18th, Professor Robinson
in the chair, Mr. Stantord read a very interesting paper on the
Rathmines Waterworks. The construction of these works was Rathmines Waterworks. The construction, of these works was
greatly complicated by an Act of Parliament, which secured to the
nillowners of the Upper Dodder the use of 1500 cubic feet minute of the Dodder, and as compensation for the springs im
min pounded, a second reservoir was to be constructed capable o
supplying 392,000 cubic feet per diem. The catchment area con sists of two parts. The upper part, from which the Dodder rises,
is covered with peat, which discolours the water. This discoloured water is carried along an artificial watercourse to a weir and slo
gauge, so arranged as to allow 1500 cubic feet per minute to floo
through thed by lower reservoir to the original bed of the Dodder, while the exces
flows over the weir into the lower reservoir. The lower part o the catchment area produces a arge supply of spring water, which
is carried into an upper reservoir, which has a capacity of 357 million nallons for the supply of tho township. At both banks on
the eastern side of the valley there occurred deposits of sand and onhich tings had to be driven and filled with con of both preservent reare afe of earth, whith a puddde wall in the centre,
and it has been found necessary to build a storm wall on both embankments to prevent the waves washing over and damaging
the banks. At the toe of each embankment outlet tower placed to control the delivery of the water. In the upper tower water may be drawn off at different levels. The water is then
carried to a service reservoir two miles from the township. There are alto pipes for emptying the reservoir. From the lower tower
emptying pipes are laid, and also a pipe for supplying the com pensation water for the millers. This water is gauged over a waste the service reservoir, and the water for the town passes through
strainers of fine copper wire to remove suspended impurities.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

The position of the coal crisis is the matter that is receiving most attention in the iron and coal trades of the Midlands this week. Alike on 'Change in Wolverhampton on Wednesday, and in Birmingham on Thursday, his was a leading tornestly discussed The opinion was freely expressed that the masters had acted throughout the proceedings in as fair a manner as possible by complaint throw open their books for examination. Any cause of reason of previous average selling prices having been ascertained from firms selected by the employers, must surely, it is thought,
be removed by the suggestion that eight of the proposed sixteen birms whose books are to be examined shall be chosen by the men themselves.
Although the South Staffordshire coalfield is not at present aftected by the coal trade wages dispute, some disappointment is
yet experienced that the Conference did not lead to any definite not a definite rupture, and, although no official intimation to such effect has been made, there yet seems reason to suppose
that the masters' proposals will meet with the further consideration of the men. In this last connection it is
noteworthy on behalf of the operatives that a suggestion was made that if another Conference were to be held in a week's time a settlement might perhaps be arrived at. The effect of a strike would just now be prejudicial, not alone to the coal trade, but
likewise to the iron and steel trades. The immediate effect of the new stage which has been arrived at has been to create some apprehension at certain of the ironworks and furnaces, and thus
consumers of manufacturing fuel who think it likely that there will consumers of manufacturing fuel who think in Birely that, disposed
yet be a struggle, were to-day-Thursday-in irmingham yet be a struggle, were to-day-Mhursday-in Birmingham, Taisposed
to offer enkanced prices for immediate deliverie. Thin the
trade generally, however, the hope is indulged that the matter will trat be amicably settled.
In this state of uncertainty it is not possible this week to report sowl . prow for some weeks in the iron trade. Indeed, it may be said that this movement is rather flagging; at the same
time, there are numbers of manufacturers who still cling tenaciousty to the belief that good times are ahead, and who are
expecting better things, if only the demand keeps good enoug to
relieve the existing heary stocks at Glasgow. The convalesence of relieve the existing heary stocks at Glasgow. The eo weels longer;
the market may be tardy, and may y fact last several
but, with the advance of the shiping season, it is felt that there but, with the advance of the shipping season, it is felt that there
is no reason why the bright prospects with which the old year is no reason why the bright prospects
closed should not, after all, be realised.
In this hope quotations are being adhered to as strictly as posoutcry which has, during the post few days, been reised at the announcement that one or two of the bar makers were declaring a
10s. drop. This movement has elicited an official disclaimer from the list houses, and they contin for marked qualities.
There are those
be given out, and that the current quietude is due to a natural reticence to place contracts in the present unsettled state of the
market, as when things assume a more steady tone, it is thought that new work will come to hand much more freely than at present. How to tide over the interval is, however, a matter
which, it must be confessed, is taxing the resources of some galvanised sheets. Since our last report, the South Staffordshire Sheet Ironmakers' Association, comprising Staffordshire, Shrop-
shire, and Worcestershire, have decided to appoint a committee to consider the systematic reduction of the oupur.
that the mills shall be stopped one week in four. Black sheet makers naturally hesitate to go on making for stock, best course to pursue, until the new business becomes more plentilack sheet mereign ers wound for feel a a coraneosesponding berenetit, but at at
present this demand is extremely slack, and in fact some of the present this demand is extremely slack, and in fact some of the
works are standing. The quotation for marked bars, as intimated above, is upheld by sorts, whilst common bars can be obtained at from $£ 85 \mathrm{~s}$. to $£ 810$ s, 24 gauge in bundles f.o.b. Liverpool; ; but the best Australian brands The Association prices fo
$£ 1015 \mathrm{~s}$. for doubles, and $£ 105 \mathrm{~s}$. for singles. Boiler. phar lattens, rom $£ 1010$ s. to $£ 11$, and hoops are in fair demand for shipment The pig market remains somewhat unsteady from the causes enumerated at the opening of this report. Quotations are, howThe coal trade is somemhat upset by reason of the prevailing
uncertainty in the matter of wages, but the notices which have been given by the colliers in the Netherton and Old Hill districts
for higher wages have been withdrawn and the men have just for higher wages have been withdrawn, and the men have jus
resolved to abide loyally by the Wages Board, and to wait for its

them an advance under the sliding scal

Extensive additions to pumping plant have, during the week,
been decided upon in connection with the Birmingham waterworks, The County Conncil has given authority for the purchase of a freehold site at Longbridge for the purpose of an additional deep well and for the provision of pumping pant, mains, \&.e., at an estimated
cost oo $£ 25,185$. It is estimated that in another two years the nuessary supply to be pumped will a
The firm of Messrs. Hatton Sons and Co., tin-plate and best sheet iron makers, has been formed into a limited liability company,
with a capital of $£ 80,000$, a large proportion of which is divided mong the existing partners
The question of the best way to unwater the waterlogged mines
Wf Wednesbury is still receiving consideration at the hands of the South Staffordshire Mines Drainage Commissioners. At a
meeting of that body ion was carried requesting the engineer to prepare a report tating the conclusions that have been arrived at by the joint com
mittees of Commissioners and mine-owners who have recently had the matter under their notice. There were about $11 \frac{1}{2}$ million tons
of coal to be obtained. The estimated cost of drivin a level from the Wednesbury mines to the existing Bradley engine would be hich was the estimated output for ten years. But rates from hat quantity would mean 211,250 . Supposing they took the
£11,250as a sinking fund to pay for the level in ten years, that so that the one outlay of $£ 12,000$ would speedily pay itself back.
Mr. Enoch Edwards, of Burslem, has been selected by Mr.
Midland Counties Miners' 28,000 men, to be a candidate at the next General Election for
some Staffordshire constituency at present unspecifed some Staffordshire constituency at present unspecified. Mr.
Edwards, whi a agent to the North Staffordshire Miners' . Federa-
tion tion, also occupies the positions of president of the Midland
Counties Federation and treasurer of the National Federation of Miners. He is a member of the Burslem Town Council,

NOTES FROM LANCASHIRE

(From our oun Correspondent.)

Manchester. - The continued depression in the iron trade of this thistrict and the further complications which are threatened by
the colliers, strike, which now seems imminent, are cuasing an
increasing feeling of anxiety with regard to the future. The present outlook is certainly ynt at all enceouraging, in mane. The the
principal iron-using branches of industry inquiries with regard to plenty of orders in hand to prevent, any actual slackness being experienced for some time to come, it is evident-unless the pre-
sent lull is only temporary, a belief to which many still adhere
that both iron and engineering works before long will be compelled that both iron and engineering works before long will be compelled
to seek for business under conditions which may necessitate a to seek for business under conditions, which may necessitate a
decided retrocession in prices. The agitation now going on, not
only amongst the miners,, but in many branches of the iron and engineering trades for further advances in wages, is therefore very
ill-timed, and if persisted in may lead to disastrous results both to
its the workmen and the employers.
The Manchester Iron Exchange on Tuesday brought together
about the usual attendance; but there was again an extremely dull about the usual attendance, but there was again an extremely dull
market, with a downward tendency in prices. So far as makers
firon is concerned, so little new business is coming into their hands, either for pig or or finisheded iron, that their prices are scarcely tested. Generally they are still acting on the policy of working on with
their contracts as long as possible before coming upon the market to seek new business, which could at present only be obtained at
exceessively low prices. On the other hand, consumers are with
equal persistency holding back from buying and requirements as long as possible with the iron they have yet to
come in on account of contracts already placed. Where they are compelled to place out orders, they are e enerally able to cover
their wants with cheap parcels, obtainable through second hands, at
 delivery equal to Manchester as the basis price; but so far as the
Manchester market is ococerned, any such figure is altogether out
of the question, and what business they are doing is gonfined to
the of the question, and what business they are doing is confined to
small sales where they have exceptionally favourable rates of
delivery District brands show a further easing down since last
week, Lincolnshire being readily obtainable at about 6 . 6 . for forg
 Derbyshire is concerned are practically simply nominal. In outside
brands makers are holding with considerable firmness to late rates, good foundry brands of Middlesbrough being still quoted by this is, figure altogether unobtainable in the face of ordinary
t.m.b.'s offering at quite 6s. to t7. per ton loss. Eginton delivered at the ports remains at about 60 s., and Glengarnock at about
68 . 6 . perton. In hematites there is still only a very limited business doing, and
it is diffecult to quote anything like fixed prices but 85.5 , less 2,
emains about the average current figure for good foundry qualities remains about
delivered here.
Finished iron
Finished iron makers are booking very few new orders, but as
hey have mostly still sufficient work on their books to keep them they have mostly still sufficient work on their books to keep them
fully employed for the present, they are holding pretty firmyly to
the prices quoted last week, Lancasire bars remaning $£ 8$ tos. and North Staffordshire
the Malities at about $£ 8$,
Master district. There are, howerer, sellers who would ake 2s. 6 d . to 5 s . per ton under these figures.
In steel plates, both for boilermaking and shipbuilding purposes,
here is only a restricted business doing, a general absence of inquiries of any weight being reported, and prices are decidedly
weak. For steel boiler plates it is sarcely possibe to quote any
ther really definite prices, but certainly \&all per ton for delivery in the
Manchester district would sem to be the top figure that buyers at
preset present are disposed to pay, whilst for steel ship.plates, delivered
ex steamer, Liverpool, $£ 10.5 \mathrm{~s}$. to $£ 10$. s . 6 d ., less $2 \frac{1}{2}$, are about
the average prices. In the metal market there is a continued absence of new business
Ind coming forward for any description of manufactured goods, and
although the leading makers bave still orders in hand to keep, them
going for some time ; there is an easier tendency in prices, congoing for some time; there is an easier tendency in prices, con-
cossions of dd. per lb. upon list rates being made here and there
to secure orders. In the endineering branches of industry the outlook for the
Iuture is scarcely so satisfactory, reports being now very general future is scarcely so satisfactory, reports being now very general
that so far as new work is concerned there is a falling oft in the
weight of inquiries coming forward. For the present, however, all departments are being kept well employed, and the leading engi.
neering firms throughout this district have generally sufficient work in hand to keep them fully going for some months to come.
The Allen patent portable pneumatic rivetting machines intro-
duced by De Bergue and Co duced by De Bergue and Co, of Manchester, are meeting with a
steadily increasing demand which has necessitated the building of
a large additional erecting shop by the above firm for their special a large additional erecting shop by the above firm for the thir special
class of work which has recently been crowding out their other
other departments to an uncomfortable extent. boing filled with the special tools required for the works, and Messrs. Vaughan and Co, are supplying one of their new patent
10-ton travelling cranes. Amongst reeent orders for these new
fivetting machines secured by Messc. De Berge rivetting machines secured by M Messss. De Bergue are rivetting
plants for the Butterley Iron Company, Messrs. Swan and Hunter,
Thomas Beeley, Thomas Woodall, and Messrs. Ives and Barker the hommas beeley, Thomas Woodall, and Messrs. I Ves and Barker, the
erectors of the Liverpool overhead tramway. For this last-named
work special rivetting machines have been designed by Messrs. De work special rivetting machines have been designed by Messrs. De
Berguef or riveting the Hoson patent flooring. Instead of being
slung in the ustual way, thess machines travel upon trolleys. One machine is furnished with a swivel motion in every direction, and
balanced on weighted levers. In the other machine, the trolley has longitudinal motion, and the rivetter is placed in a pivotted a circular direction, following the curveso of the ploormer plates. Another
special tool which the firm have in hand is a patented multiple punching machine for bridge and boiler plates, which they are
making for America. This machine is constructed to take in plates 2ft. long by 4ft. wide, and it will punch eight or more holes across ane girder plate at each stroke either in line or zig-zag, and by self-
ating motions will traverse and punch the plate from end to end,
with holes any desired pitch without stoppling, whilst during this operation, and without stopping the machine, any of the punches, if required, can be thrown in or out of gear. Any irregular punching,
however broken, can be punched in any part of the plate with the reatest accuracy, the traversing motions throughout being con
trolled by a standard guide screw. The special feature in connec tion with this machine is that the plates require no setting out or
marking, and no templates are necessary. All that is required is 0 centre-line the plates longitudinally and indent them with a centre punch at each end to receive the gripping points of two light
carrigaes running along planed levels. The punches having been
previously placed the proper previously placed the proper distance apart, the plate is traversed
by a screw driven by change wheels, so that plates can be punched any pitch from end to end at a speed of about fifteen strokes per
minute. For punching broken pitches the automatic motion is stopped, without, however, stopping the machine, and the traverse
regulated by a hand connection with a dial plate; this being done, the automatic traverse is again thrown into gear and the regular pitch resume. .and it machine is worked by one man and
two assistants, that for large plates or for
ordinary straight work the machine is equal to at least ten
ording ordinary machines employing thirty to forty men, indepen
dent of the saving in templates or marking M Mesrs. De Bergue have just completed for India a specially dosigned multiple
drilling machine for boiler work. TTis machine is arranged for
drilling horizontally a series of drills, the number of which can be
regulated according torequirements, and is carried upon a horizontal
table, which rises and falls in pedestals to accommodate the table, which rises and falls in pedestals to accommodate the
machine to different sizes of boilers. The boiler whilst being
operated operated upon is supported on rollers, so that it can be turned
round as holes have to be punched in different seams. The pedestals and rollers stand upon one bed plate, along which the
pedestals slide forward towards the work, so as to bring the drills into position aceording to the size of the boiler. This machine is
constructed for drilling a boiler up to 11 ft. long in one operation along any particular seam.
The coal trade during the unsettled condition, owing to the threatened strike of colliers for a further advance in wages, and the unsatisfactory result of the
conference between the Coalowners' Federation and the Miners' National Federation held in London on Tuesday leaves the relations between the employers and their men in so critical a position that
a more or less general stoppage of work would seem to be imminent. a more or less general stoppage of work would sem to be imminent
Buyers are showing considerable anxiety to get in extra supplies in anticipation of a strike, and colliery proprietors, who are largely
filling up out of stock, are finding it difficutet to meet the require-
ments of their customers. This demand of course is no indication of increased requirements, but only a temporary, pressure owing to
causes above mentioned; but for the time being it is bringing about a very disturbing condition of trade. So far, except upon
engine classes of fuel, prices remain without quotable change, but engine classes of fuel, prices remain without quotable change, bu
full list rates have been hell to more firmly both for house fire and
steam and forge coals, whilst upon burgy and slack advances of fult 1s. per ton have been demanded from outside customers seeking special supplies. At the pit's mouth best coals are firm at 12 s .6 d .
to $13 \mathrm{~s} . ;$ seconds, 11 s . to 11 s .6 d .; common coals, 9 s .6 d . to 10 s . good qualities of burgy, 8s. 6d. to 9 s ; and best qualities of slack
7s. 6 d , to 8 s . per ton. For shipment there is a decidedly more active demand, with beter prices obtainabe ; good qualities of steam coal delivered at
the High Level, Liverpool, or the Garston Docks, fetching 11 s .6 d .
per ton perrour-The hematite pig iron trade shows no new life this
week. The demand is not of large dimensions, and the chief sales reported are of hematite warrants, which are gradually being reduced in bulk. It was naturally thought when stocks began to
decrease there would be some hope of better prices but although
they have gone down over 5000 tons prices are still depressed, and they are, in fact, so far as hematite warrants are concerned, fully
20s. less per ton than they were in the beginning of the year. There does not seem much hope of any cheaper supply of raw
material at present, indeed it sis thought probabe that coal will
soon be dearer, and in all probability coke will follow the sale
 cannot be produced at under 75 s. per ton.
It it probable some results will follow the proposal to restrict the
make of ferring together and endeevouraing tod devise a scheme ere for putting
out of blast a number of furnaces now engaged in iron manufac ture, and as the necessity of this step is the chief force at work in
urging a policy of restriction, there seems every reason to believe urging a policy of restriction, there seems every reason to believe
that makers, in their own interests, if from no other cause, will
formulate and carry out some scheme which will reduce stocks of iron, and enable the masters to have a controlling influence in the
trade.
Steel makers are very busily employed, but the new orders to hand are comparatively few. There is no spirit in the demand,
but makers are looking forvard to better state of things before they have cleared out the heavy contracts which are still on their books, Rails are very quiet, but some large orders are pending.
Steel shipbuilding material is not in very large request for new
work, but makers are already well sold forward. There is next to nothing doing in tin-plate bars, as many of the mills are stopped,
but local makers are fairly sold forward for some time to come. There is nothing now to note in the shipbuilding trade. No new
orders have been booked, but there is great and increasing activity in both the building and the engineering departments.
A strike of joiners, affecting about 200 men, has taken place at
the works of the Naval Construction and Armament Company, Barrow. The men asked for an advance
week, and want time and a-half for overtime
Stocks of hematite warrants have again been reduced this week o the extent of 893 tons. They now stand at 380,437 tons, or 1210 tons less than at tre begining of the year.
Shipping still shows increased activity. The tonnage of iron and 22,152 teons, compared with 18,667 tons in the corresponding week of last year, or an increase of 3485 tons. The total for two months,
however, is in favour of 1889 . During this year so far there has heen shipped 165,414 tons, as against thin, yearear in the corrrespending
period of last year, or a derease in 1890 of 11,955 tons. It is In this adverse tonnage will soon be reduced.
lron ore is very steady in tone, and makers can readily dispose
all they raise. Prices for ordinary qualities realise from 14s. to 7s. per thon, net at mines.
The mines of the Hodbarrow Mining Company at Millom, South Cumberland, have just been re-assessec. They now stand at a
ateable value of $£ 67,254$, or $£ 10,000$ more than last year. rateable value of $£ 67,254$, or $£ 10,000$ more than last year.
The following are the ruling quotations this week:- Mixed No

THE SHEFFIELD DISTRICT

From our oun Correspondent.)
THE conference between the coalowners' and colliers' represen-
'tives at the Westminster Palace Hotel, most protracted. Though both parties adhered stiffly to their positions-the one to demand, and the other to refuse a 10 per
cent. advance-the deadlock which ensued is not without hope. a quite convinced there will be no strike. If the employers had een their way to offer 5 per cent., the miners' agents would no doubt
have accepted it. As it is the position of the coalownas in one, and the probability is that there will be no general turnailway material and several other heavy specialities. The value of fuel is falling, and summer is approaching. To persist in a fighter would be against all precedent, and simply court defeat against the present movement, thongh it is no secret that those who make the collieries subsidiary to their iron and steel works would prefer to pay even the 10 per cent. than have to set down
their establishments. But even in these instances the employers are acting loyally with the colliery proprietors pure and simple.
The saloon carriage in which the Prince of Wales ravelled from London to open the Forth Bridge, on Tuesday, was Suilt by Messrs. Craven Brothers and Co., at the Darnail Carriage Company, and delivered about a month ago. This carriage is
believed to be the finest running in this country. It is fitted with ppecial suites of compartments-one for the Prince, one for the
 Messrs. Craven built for the same company. Sir John Fowler, the eminent engineer, who bas received a baronetey is recognition of
his ability in this
suburbeat work, is a native of Wadsley, an uotlying
Sheffield and was at one time elected as a Conservative suburb of Sheffield, and was at one time elected as a Conservative
candidate for the Hallamshire division, which includes his native district and a portion of Sheffield
In the Sheffield rolling mills
little, and the managers express themselves as rather pleased than
otherwise. They have been troubled to overtake the work poured in upon them, and the quieter time which has now come will enable
them to get out some of the arrears. With regard to the complaints made of the increased charges imposed in the rolling mills, the managers admit that when the prices of fuel went up they For coal, but to compensate in some measure for the lean year
during which the shareholders had return for their money. They express themselves as anxious to
give their shareholders some interest for the capital they have avested in these undertakings
An extra demand
vein extra demand is reported in the file trade, the workmen being fully employed, with eevery prospect of this gratifying con-
dition offairs being maintained. The colonial markets are not
jieldin the yielding the orders which were anticipated at the beginning of the year; but the home and foreign call is good, and some exceptionally
heavy lines have been booked within the last three weeks. No dificulty whatever has been experienced by the workpeople in the Manufacturers' Association and the representatives of the men. The file cutters are thoroughly organised at present, there being
over 2000 members in the
The London horn sales have an important bearing on the
Sheffield cutlery trade, that article entering largely into hafting of many descriptions of yoods. Best buffalo horns, owing to extreme
competition, advanced $£ 5$ to $£ 15$ on previous sales. This upward movement has rather taken the trade by surprise. It is said to be owing to buffalo horn tips coming into use as handles of bicycles.
Woods used in the Sheffield trades have materially advanced in value, some kinds as much as 100 per cent., the average being
about 25 per cent. There is less being received from Jamaica, Cuba, and other similar districts. consisting of 22 tons East Indian and East African, 15 tons of
Ambriz (West Coast of Africa), and a good parcel of Malta and Alexandrian weighing some 10 tos. In the same period, 42 tons have passed out of the dock; the present stock is 881 tons.
The shareholders in Brown Bayley's Steel Works, Sheffie a pleasant meeting at London. Mr. Robert Armitage, son of tha at the rate of $17 \frac{1}{2}$ per cent., making, with the tinterim amount of $7 \frac{1}{\text { per cent. already paid, } 25 \text { per cent. for the year, was confirmed. }}$
Mr. Davy, one of the directors, stated that in all his experience he
never remembered seeing a stronger balance sheet than that The debts owing to the company amounted to nearly $£ 80,000$, and there was in cash and bills in
hand nearly $£ 19,000$, making altogetber about $£ 100,000$, whereas
the accounts owing by the company to sundry creditors were under the accou.
Choo.
he proposed new by a town's meeting expressed its approval of extension from that town to Heath. This line will bring Chester-
field into connection with the trunk system of the Manchester, Sheffield, and Lincolnshire, give the town direct access to the the extension now in progress, from Beighton to Chesterield and thnesley to Nottingham, make "the City of the Crooked Spire" the centre of a coalfield calculated at
stated at the meeting that the contract for constructing the line miles to the north of Nottingham was let to the firm of Messrs. Baldry and Yerburgh, and six and three-quarter miles on the
Chesterfield side, extending to Staveley Junction, was let to
Mest Messrs. Logan and Hemmingway, the contractors
executing the works from Beighton to Chesterfield.

THE NORTH OF ENGLAND

The Cleveland iron trade is still in a somewhat inanimate condition, and new orders are few and far between, and new inquiries
are equally small. After last week's market, prices inquined steady for a day or two, but fell somewhat towards the end of the
week. At the market held at Middlestrent position did not perceptibly improve. Consumers showed no desire to purchase, though prices were again reduced. For prompt
 seemed eager to close. $\begin{aligned} & \text { Makers still adhere to their stereotyped }\end{aligned}$ quotations in the hope that the opening of the shipping season will
enable them to sustain them. They have orders on their books which will last for some weeks longer. Forge iron being solely in Warrants which were 42 s .4 h . per ton at the beginning of last
from 54 s . week, have now fallen to 51s. \%.d. per ton.
The decrease in Connal and Co.s Middlesbrough stock was last week 2920 tons, the quantity held on Tuesday being 176,866 tons
 the smallest total ever recorded for February. The decrease is mainly in the consignments to Scotland. The principal export
items are as follows:-To Soctand, 13,51 tons ; France, 6400
tons; Holland, 575 tons; Belgium, 462 tons ; and Germany,
3290 ; tons. Finished ins iron and steel exports were better in proportion,
15,046 tons.
Finished iron and steel makers complain that their prospects are not encouraging, and they are booking but few fresh orders.
Iron ship plates are now offered at $£ 75$. per ton on trucks at
 company over which he presides was contemplating the establish-
ment of a new industry with its workmen less dependent on the more or less prosperous con dition of the shipbuilding trades. Since then the Jarrow Company
has considerably extended its plant by putting down one of the largest mills in the country for roling steel angles, bulbs, girders long. But important as this addition to the works must be, it doe
not appear to be the not appear to e the promised new industry, as was supposed
by many persons. It is now stated that the directors have decided to estabish a new department for the manufacture of
ordnance of all kinds, so that war ships may be armed as
well as built and engined at the Jarrow establishment It is intended to create additional capitol for this purpose, the share being offered to existing shareholders in the first instance, and
afterwards to the general public. Colonel English, R.E., of the royal gun carriage about to undertake the organisation and management of the
2ing trades which for some years hed with the iron and engineer which has been more lucrative to those engaged in it, than the it is made. This new venture is therefore likely to be highly suc certain to surround it at Jarrow
The threatened strike of miners engaged in the Durham cocoal and iron trades for some time detrimentally influencings the The result of the voting was made known on Monday last, and wa as follows, viz,:-For accepting the 5 per cent. advance offered by
the coalowners, 17,251 ; for a general strike 14,378 ; for open
arhitration, 1307. These figures seem to admit of some such
interpretation as the following. Very few of the miners believed
that a full and fair investigation of their employers' books would have resulted in an award of more than 5 per cent. adzance have resulted in an award of more than 5 per cent. advance. A
large number- nearly one-half of those who voted-believe that
more could have been obtained by astrike, or threat of a strike more could have been obtained by a strike, or threat of a strike,
than the 5 per cent. offered, or what mere arbitration might posibly have pror cenght. offered, or what mere arbitration might, happily, somewhat more than
one-half believe that a bird in the hand is and that a certain 5 per cent. without stoppage was the best of their three ehoices. Many disinterested persons are of opinion
that, but for the sharp downward reaction which has taken ploce that, but for the sharp downward reaction which has taken place
in the iron and allied trades since the New Year commenced, those in favour of striking if the full 15 per cent.
conceded, would have been in a large majority
It is reported that a Tyneside shipbuilding firm has just booked an order for three steamers, and that another one has made a contract for one of unusually heary tonnage. On account of the
slackness which has overtaken the trade, such events are now
watched with the keenest interest probably have passed unnoticed
Lloyd's Committee haved
nstituted Middlesbrough, Stockton, and Whitby into a separate district, with offices in the Exchange, Middlesbrough. The
principal surveyor for the new district is Mr. C. Davidson, who has fro long resided at Stockton. Hitherto the head-quarters have
been at West Hartlepool.
been at West Hartlepooi.
on the 4th inst. As compared with January, three more furnaces appear to be now in blast, and these are at present on hematite pig
iron. As regards stocks there was an increase of 7137 tons. This increase represents the difference between an extra accumulation
of 15,314 tons in makers' stocks and a decrease of 8177 tons in makers and Connal's stores. It is quite clear that the Cleveland trade is still suffering from the high price of pig iron as compared
with that produced in Scotland. This leads to loss of trade only can it not be expected that Cleveland pig iron should go in quantity to Scotland, unless there is a difference in price equivalent
to the carriage, but also under present circumstances Scotec iron to the carriage, but also under present circumstances Scotch iron
is successfully competing in a great many neutral markets, to the is successfully competing
disadvantage of Cleveland

NOTES FROM SCOTLAND.

(From our oun Correspondent.)

Thrers has been great lack of strength in the Glasgow warrant market this week. When sales of pigs had to be made, prices at once gave way, as the outside public are not now giving any sup-
port tot the market. Large withdrawals of iron are taking place
from the public stores, the reduction for the last two weeks having exceeded 9000 tons a week, and the shipments are also improving; but the speculative market is nevertheless very dull.
The past week's shipments were 9154 tons, against 6361 in the corresponding week of last year, and of the total Canada took 20
tons; South America, 225; India, 150; France, 210 ; Italy, 1410 ;
Germany, $140 ;$ Holland, $515 ;$ Belgium, $250 ;$ and China and Japan, Germany, 140 ; Holland, 515 ; Belgium, 250 ;
200 , the coastwise shipments being 5826 tons.
The prices of makern
The prices of makers' iron, which have again been reduced this
week in amounts varying from 6 d . to 2 s . 6 d . per ton, are as
follows :-Gartsherrie

 During the past week there was shipped from Glasgow loco-
notives to the value of $£ 1050$ for Calcutta sewing machines, $£ 6020$; steel goods, $£ 9700$; and general iron
manufactures, $£ 30,000$ The malleable iron trade is very quiet at present. Makers have understod to be getting disposed of more quiukly than of late.
In fact it is much easier to get early delivery of materials, because there is now no pressure of new orders. The trade is in in a trassi-
tion state, and it is difficult both for merchants and manufacturers to know what course to pursue. The unsettled state of the pig iron
market is the cause of the uncertainty that prevails. For a number of weeks there was a strong opinion that the market would have a
substantial advance, and the result of this would port of former prices of manufactured iron. But the position of feelng at length appears to be growing that concessions will
require to be made to customers if work is to be the place of the contracts thant are now being rapidly worked off.
The position of the steel trade shows scarcely any are still large quantities of steel to be supplied to the shipbuilders
and others, but the additions that are tracts are, for the most part, of small importance.
There has been a good business in the coal trade
The requirements of manuf the demand for household coals has been very brisk within the last The shipmentsarealso improving in quantity, and the total clearances
at Scotch ports in the course of the week were 108,493 tons against 91,823 in the correspoonding week of last year. Of the total
36,858 tons were cleared at Glasgow, 13,818 at
Grangemouth,
 ton, main,
to 11s. 6 d,
The coll
The colliers have been working fairly well, generally five days
per week. In the West of Scotland the men profess to be waiting
till they till they see what course is adopted by the English miners, as
regards the wages question. Mr. Weir, the agent of the Fiff Clackmannan miners, has been advising the men in his district that the circumstances of the trade do not admit of a further advance
of wages at present, and it is hoped that the men will be guided
by hisedvice by his advice.

Notice of the stoppage of a Rhondda colliery and of one of the operation this state of things must he expected
Imports are increasing at Cardiff, and Edwards and Robertson Grust started a line of steamers for New York trade prices are going up. Sales were freely effected this week of best
steam at 16s. to 16 s . 6d.; and seconds. 15s. to 15 s , 6d. small steam, it has touched 11s, a most unusual figure. House coal is quite as buoyant, best selling at 16 s , and even No. 2 small
fetches 10 s. 6 d .here is no class of coal but what is firm. Patent
fuel, too, is stiff in price, and a good trade is being done. Large fuel, too, is stiff in price, and a good trade is being done. Large
carpoes are going this week to Vlig.
The only industry showing a slight falling-off is that of coke. Price have drooped from 1. . .o 2 s. Thisis is probably due to
lessened demands outside the district. Within, the demand is well
kept up. The ron and steel trades show no change on any account, though it is but natural that some falling-off will take place in bookings, as regards tin bar. In railway iron and steel it has been a a ood week
all round, and some large cargoes have been dispatched, notably
3100 tons to to Colombo, besides cargoes to
ewport has also been active in shipments of rails and tin-plotates to Lo Liverpool.
The demand on local works for local needs has been large, and has been freely supplemented with pig from Glasgow and White-
haven, and tin bars from Barrow, and an unusual one of tin bar from Antwerp.
It is rumoun
Bilbao, but it is here that increased make of steel is likely a present the requirements are more than can well be met.
The Exchange, Swansea, has been well attended this
The Exchange, Swansea, has been well attended this week, and business was not affected to any large extent. Pig was quated at
50 s . 9d. Mid are at $£ 7$ 10s. to $£ 715 \mathrm{~s}$. Steel nails are slightly easier, quotations, heavy $£ 7$ to $£ 75 \mathrm{~s}$, , light $£ 715 \mathrm{~s}$. to $£ 8$. Tin bars $£ 715 \mathrm{~s}$. Siemens
$£ 82 \mathrm{~s} .6 \mathrm{~d}$. Swansea port had a Partial stoppages here and there of tin-plate works are reported, but there is not the unanimity that is required by those who
suggest the limitation of make. suggest the rimiatation of make.
ridicules the plan, and regards it as suicidal, and an encourage. ment to America, now the largest customer, to make another
supreme effort to do without us. Seventeen mills are likely to be stopped in the Swansea district next week, and there is a hitch a Melingrifitith, near Cardiff, which may lead to a stoppage, though
it is hoped that as it is a wages question it will be only of porary character. Tin-plates are firm at last quotations. The fact is that makers cannot reduce without a loss, and the generality are firm in resisting any change. The exports are now beginning to
show over-make, and stocks to decline in prortion hopeful sign. Last week Swansea exporter nearly 62,000 boxe and received from works 51,422 boxes. Stocks are now 259, fore
A steamer in Barry Roads week, her bunker coal, 200 tons, was damag A change in the colliery management at Plymouth Works, the
coalfeld of which is being energetically worked, is announced consequent on the retirement of Mr. E. Bailey.
The Willows Wire Works, Merthr,
mat 1 Wer,
The attention of buyers of scrap iron, old plant, \&c., having tions at Abernant, Aberdare, 1 am informed that the sale will be
tital duly announced by advertisement, and that it will be by public
auction. These works were most important in the time of the
Fothe Fothergill family, and a good class of iron was turned out.

NOTES FROM GERMANY.

(From our oven Correspondent.)
DURING the week the firm condition of the iron markets has been maintained. Some reserve is perceptible on the part of the
brokers; their stocks being well filled, they seem inclined to wait On the Silesian market, pig iron is in fair request, and finds ready sale at firm quotations. As bas been reported in a former
letter, the Wrought Iron Convention has been prolonged for three years, and is now negotiating with the blast furnaces in order th
secure the pig iron required for that period. As minimum quota tion for pig iron, M. 90 is to the fixed, while the basis price for
malleable iron will be M. 210. Sheets have retained the price of M. ${ }^{265 .}$ For castings the basis price has been raised on
M. 150 p.t. Old rails have of late met with an extremely brisk demand; they have been much advanced, and are scarcely to be
had at M. 115 p.t. The Austro-Hungarian iron tade lively at firm quotations. Buyers appear in sufficient number to
 as for finished iron demand is very good. The iron and steel tradees
are extremely busy. In the building line especially large inquiries are coming forward.
Great guietness
Great quietness reigns on the Belgian iron market, buyers, as
well as sellers, being rather reluctant. This is the cause why the wrought iron syndicate has ordered no change in prices. An advance was quite out of the question, orders coming in scantily;
on the other hand, a reduction in prices seemed not likely to take place in the near future. Numerous orders for sheets are coming in from Holland, but bars and girders meet with little or no request.
TheLiegeCompany "Conduite d'eau," is reported to have bought. The Lame Company "Condute deaus is reported to have bought
of Hamburg speculators 5000 t . French pig iron, from Longwy, at 75f. p.t. The Maatschappy tot Exploitatie van Staatsppoorwegen,
at Utrecht have given 400 sets of wheels and axles to the Belgian company, , yle er asalan, at Louvain. Hitherto, the Rhenish-
Westphalian works took al leading part in the supply of the Dutch indicate that prices are beginning to return to a quaiet llevel.
The French iron trade is keeping its firm position in respect. Orders have increased of late, and in almost all branches
a full activity is bein a full activity is being maintained. This may chiefly be said of
the wire mills, their articles finding most brilliant sale. The rolining mils of the Nord have raised wrought iron, ou an average,
5f. p.t., basis price for common sorts being 200f., for better quali-
ties ties 210 to 215f. p.t. at works. The French coal market continues
lively. tenglish coal has gained ground of late owing to the
miners' strikes in Belgium and Pas de Calais, The output of miners' strikes in Belgium and Pas de CCalais. The owtput of cone
in the Departement du Nord and Pas de Calais was in 1889, in the Departement du Nord and Pas de Calais was in 1889 ,
$13,433,84$ tons, against $12,376,444$ tons in i 1888.
Regarding the Rhenish-Westphalian iron market there is but little of a novel character to communicate, a quiet but firm tone prevailing. Prices for Luxemburg minette are firm and paying, there being a strong inland demand. Prices are about the same some sorts a slight reducution in price has set in. The returns now published show a considerable decrease in the production of pig
iron. The total production in Germany-including Luxemburgwas, for the month of January, 1890, 374,066 tons, of which
 1889, production was 391,523 tons; and in January, 1889, 367, ,11 On the whole, business moves on in a steady way, and no conces-
sion whatever are made on the prices given. They are, for

noted 85f. The rolling mills are in good operation, and will continue to be so for some time to come. In hars a tolerably good
business has been doing. The plate and sheet trade is in a satis business has been doing. The plate and sheet trade is in a satis-
factory condition; no change in price bas taken place. For wire without questioning. Foundries, as well as machine and rails M. 165 was the lowest offer, others raaging betwe
M. 168 to 172 p t. Latest gird
gind
boile
255,
 $230 ;$ tank ditto, M. 210 to 230 . Iron wire rolls, common quality,
M. 195 ; drawn wire in iron and steel, M. 190 to 200 ; wire nais
M. 200 to $220 ;$ rivets, M. $290 ;$ steel rails, M. 165 to $175 ;$ stee sleepers, M. 160 to 165 ; complete sets of wheels and axles, M. 230
to 385 ; axles, M. 255 to 260 ; steel tires, M. 270 to 285 ; light The working of electricity for lighting purposes appears to have proved highly satisfactory in Barmen, modern life is being contem-
utilisation of this powerful factor in mon plated by the Town Council. Also the question is raised if electric
lighting may not be produced at lower cost-as low, at least,
as gas. programme on the Labour Question submitted by the German Government to tr ose Governments which are invited to
the Berlin Conference is, in its principal features, similar to that of the Swiss Labour Conference, It contains the following heads 1. Regulation of labour in mines, with sub-questions: If working
under ground is to be prohibited for children under a certain under ground is to be prohibited for children under a certain age
and for women. If restriction of working hours is to be provided for such mines, where working is particularly dangerous to health
If it is possible to in abour in coal pits, in the eregular output of coal
2. Regulation of Sunday labour, with sub-question: If Sunday labour, excepting cases of need, is to be prohibited. What excepp
tions are to be permitted. If exceptions are to be stipulated by 3. Regulation of children's' labour, with sub-questions: children up to a certain age are to be excluded from industrial branches of industry, or for some of them only, and for which of them are restrictions in duration and lind of working to be pro 4. Regulation of young men's labour, with sub-questions: restricted, and up to what age. What kind of restrictions are to be prescribed. Are differences to be provided for particular branches of industry
5. Regulat
megulation of women's labour, with sub-questions: If the labour the labour of all women is to be restricted. What kind of restric
to tions are to be recommended. If differences are to be provided for certain branches of industry, and for which of them ?
6. Execution of the regulations concerning the carrying out of
rules to be adopted, and their superintendence, are to be fixed If repeated conferences of the representatives of the Governments
interested are to be held, and what mission would have to be assigned to them ?

AMERICAN NOTES.

(From our oich Correspondent.) \quad New York, February 21st, 1890.
THE only visible sign of weakness ink the Aebruary 21st, 1890 .
market aricen crute out of the fact that during December nearly all
buyers of iren market arises out of the fact that during December nearly all
buyers of iron made contracts for supplies to lost them up to April 1st. Since the opening of the year but little business in iron hapaceen of funranaces had beeen about sold up for three months.
The only parties who have iron to sell are the makers of inferior The only parties who have iron to sell are the makers of inferior
brands, and these makers have been taking advantage of the absence of competitors to sell their inferior product at the bes
prices obtainable, knowing that when better iron should be offere prices the market their poorer makes would have no show. The
oreport has therefore gone out that crude iron has weakened ; but when quality is considered, there has been no weakness whatever.
Makers of standard brands of forge, who understand the situation thoroughly, are to-day declining to take anything less than 18 dols
Bessemer pig is still quiet at 21.50 dols. Billets are offered at
7 dols. A dro differene in Western markets.
Steel rails hare been
dited
d Steel rails have been quated in large blocks at 35 dols,, but ne
large orders have been placed as yet. There have been unprece dented snow storms in the West. There is some little apprehension hour question. Kansas and Nebraska railroad managers expect to reduce corn freights in a few days. The exports from this port
for the past seven months foot up $21,500,000$ dols. more than the corresponding period of the previous year.
There is a yenera year has fallen off about 400, pared to last year. The bituminous trade is on the increase amounting to about 230,000 tons over same time last year, among markets. No doubt a very active demand for all kinds of crude and finished material will set in very early this year. Municipa requirements will be very heary for pipes, engines, and machinery,
elecetrical apppliances,
of able and electric roads, and for all manner reat deal of interest is felt in the prosecution of work intended to improve the interior water ways.

LAUNCHES AND TRIAL TRIPS.

On Wednesday afternoon Mexss. Raylton, Dixon and Co.,
aunched the Monrovia, a steel scrow stal Elder, Dempster and Co., of Liverpool. This vessel is built on the
Ler caised quarter-deck principle, having a continuous bridge deck
orming a partial awning deck. Dimensions: breadth, 40 ft ; depth moulded, 21 ft . 4 in. ; with and dead-weight capacity of about 3600 tons. Her engines, which will be fitted by
Messr. Thos. RRichardson and Son, of Hartlepool, are of 190
nominal horse. nomina
stroke.
On Saturday, the screw steamer Coomassie, which has been built tounched order of Elder, Dempster and Co., of Liverpool, was
ard of the Naval Construction and Armament Company, at Barrow. The Coomassie is built of steel, and is
classed 100 A at Lloyd's, she is 312 ft . long, 39ft. beam, and 7ift. 6 in . deep, with triple expansion engines, having cylinders are two single-ended ones, 14 ft . 6 in. diameter, and 10 ft . 6 in . long, at a working gressure of 160 lb . to the square inch. This is the rom this yard, two for Elder, Dempster and Co., and two for the British and African Steam Navigation Company,

The Sanitary Institute.-The council have accepted an invitation from the Town Council of Brighton to hold the Autum
Congress and Health Exhibition in that town in September next.

NEW COMPANIES.
The following companies have just been regis-

Cortex Calorifuge Company, Limited.

 This company was registered on the 25 th ult.,with a capital of $£ 10,000$, in $£ 1$ shares, to acquire, with a capital of $£ 10,000$, in $£ 1$ shares, to acquire upon terms of an unregistered agreement, certain
inventions, particulars of which are not inventions, particulars of which are not given,
and to buy, sell, manufacture, and deal in engine and other packing and stores and ships' stores. The subscribers are:-
*Walter Glynn, 20, Water-street, Liverpool, ship-
 ${ }^{\text {shipowner }}$ R. Dalyell well ${ }^{\text {shipen }}$... .. ${ }^{\text {m }}$ merchant Richmond, $11, \ddot{\text {, seel-street, Liverpool, dis }}$

The number of directors is not to be less than three, nor more than five ; the first are the sub scribers denoted by an asterisk; qualification,
$£ 250$ in shares or stock. The company in general meeting will determine remuneration.

Henry Lister and Son, Limited.
This company was remistered on the 25 th ult.,
with a capital of $£ 80,000$, in $£ 10$ shares, to take with a capital of
over the business of Henry Lister and Son, silk woollen, and worsted spinners and manufacturers
carried on at Ash Brow Mills, Huddersfield Ford Mills, Horbury; and at, 49, Bow-lane
-Henry Lister, Huddersfield
A. R. Lister, Huddersfield
*. . Law, cleckheatornfold
*.
 G. Harrison, Huddersfield, cashier
S. Briton, Huddersfol,
H. S.leman . Peace, Huddersfeld,

The number of directors is not to be less than three, nor more than five, the first being the sub
scribers denoted by an asterisk, the first tw scribers denoted by an asterisk, the first two
being managing directors; qualification, 200 being managing directors, qualinication, 200
shares, Messr. Henry Lister and H. R. Lister
will be respectively entitled to $£ 1000$ and 6600 per annum, and each other director to $£ 100$ per annum. Solici
Huddersfield.

Kings Norton Metal Company, Limited.
This company was registered on the 21 st ult. acquire certain freehold land at Lifford, King acquire certain Freehoid Worester, under an ag agreement to be
entered into with Thomas Richard Bayliss and
and entered into with Thomas Rechard Bayliss and manufacturing, casting, and rolling metal of all wire nails, screws, arms, ammunition, and projec tiles. The subscribers are :-
*Arthur Greenwood, Albion Works, Leeds, engi-

 c. Hagrineer

The number of directors is not to be less than n shares; remuneration, $£ 1050$ per divisible. The first three subscribers are the firs directors. Solicitors, Messrs. Rollit and Sons,
12, Mark-lane. 12, Mark-lane.

Thomas and J. S. Turner, Limited.
This company was registered on the 26 th ult.,
ith a capital of $£ 20,000$, in $£ 100$ shares, to take over the businesses of gun makers, nail, rivet wire, and wire article makers, carried on a street, Middlesex, by Thomas Turner and Jame Sandon Turner, trading as Thomas Turner and
Turner and Co. The subscribers are :*Thomas Turner, sen., Sutton Coldifild, Warwick
Thomas Turner, jun,, 6 , Fisher-street,
 Mrs. . . S. Turner, Sution Coldaield
-A. W. Lorton, Aston, gun maker
G. H. Black well, Aston, nail and rivet maker $\because \because$

The number of directors is not to be less than two, nor more than five; the first are the sub-
scribers denoted by an asterisk. Mr. Thomas scribers denoted by an asterisk. Mr. Thomas
Turner is appointed chairman and secretary, and Mr. J. S. Surner managing director, each, at a
salary of $£ 2$ per week. Mr. Lorton will not be entitied to remuneration as a director. Solicitors Messrs. J. B. Clarke and Co., Birmingham.

Richmond Ironvorks, Limited.

This company was registered on the 21 st ult.,
ith a capital of $£ 25,000$ in $£ 10$ shares, to carry on the business of iron and steel manufacturer and founders in all branches. The company will enter into an agreement with Wm. Cowper, par
ticulars of which are not specified in the regis-
tered documents. Shares

The number of directors is not to be less than in shares; the subscribers are to appoint the in shares; the subscribers are to appoint the
first. The company in general meeting will
determine remuneration. Solicitor, Mr. C. T
Whinney, 10 , Old Jewry-chambers,
Reliance Portland Cement Works, Limited.
This company was registered on the 20th ult, 10 per cent. cumulative preference shares, and 3000 deferred shares of $\mathcal{1}$ eech, to enter into an
agreement with the London A agreement with the London Agency, Limited,
particulars of which are not given in the regis ered documents, to acquire lands for mining uarrying, winning, and getting chalk, brick
-R. E. Workman, 23, Lime-street, ship broker
T. W. Wellsted, 399, Kennington-ond

The number of directors is not to be less than Wo, nor more than five; the first are Mr. A. E ion, ten shares; remuneration, $£ 100$ per annum ach.

Williams, Fry, and Company, Limited This company was registered on the 21 st ult. with a captar 220,0 , in 25 shares, to tak ement manufacturers carried on by Arthur John Williams and Stephen Henry Fry, at Greenhithe
Kent, under style of Williams, Fry, and Co. Th Kent, under style of Williams, Fry, and Co. The subscribers are:
fact Wiliams, Stone, Greenhithe, cement manu-

 The first two subscribers are appointed directors may respectively hold 1000 of the shares to be allotted in pursuance of an unregistered agree ment. The company in general meeting will
determine determine remuneration. Solic.
Bowerman, 3 , Gray's-inn-square.

THE PATENT JOURNAL

Application for Letters Patent

(Man patents have been "communicated" the name and adaress.

4th February, 1890.
290e. Glass Decoration with Metaluic Lininas E. V. Caspar, London.
Manchisster.
or
ENDLEss Ropss, \&c., N. Williams,
 s, w. Rose 9910. Whaniso Machives, S. Gregson, London.
911. Letrino-ovy Motion for Looms, I. Kirkbride 2912. Gas Brackets and Crandeliers, H. H. Badams Birmingham.
2913. Fobstive
Sheffield. 914. Meal Sposoe Rusks or Casks, T. Sturtewagen,
2915. GAs Lamps, S. Gratrix, Manchester. U. Dertective fioroork. 2917. Solve and Fishriate Irox Trovor, w. Lewis,

 ap. Abatement of Smoke from Furnacbs, J. Ryson, ${ }^{\text {Bury. }}$ Bers, se., for Convenience in Transit, H. H. Badams, Birmingham.
O2T. Surpurivo AIr to Rochdale.
2923s. ADverisisa, J. F. Bennett and E. P. Hides, She Creot. Ha0. Ensina the Shuttles in Loons, R. Eceles, 2931. Cuxeckivo Receitr of Money in Vehicles, J. M. 2932. Plack, Lopremank Mina Machinery, M. Duxbury and
 294. Prodeciso Stay Busks, W. G. Chaser and H. C

 London
Io4. Pobtable Domestic Fire-extinguisher, t. R

 2946. Sinooritiso STockiskes, 2948. Chimsers of GAs, \&c., Bunsers, F. P. Leca, 290.. Skentiva of Chair Botrons, G. c. Thompson,
London. 2950. Coubined Fuel Ecoxomiser, Syoke Consourb,
and MAxvacturer of OLL, R. Laird, Boston, U.S.
 London.
2953. CANISTRRs, H. Coventry.-(H. C. Ferron, Hol
land

2956. Velocipgoss, A. White and F. Stephenson,
London.
 France.).
Loneminerina Fortune Goods, \&c., B. Knapp,
London.

25th February, 1890.

990. Nitro-Coypoond Powders, W. D. Borland, the C." Powder Co., London.
Producina a
a Liquid Spar, F. E. Beeton, don. Skorino Bortles, S. T. Oldridge and F. J. Woriniwo Electric Railways, B. c. Sayer tol.
Hoisss,
F. Clifford, Sheffield.解 Drains, H. Brook Sheffield.
 Rano. Finders, H. C. Feming and C.F. Hider
Fhuddactuated brakes, J. e. Loughridge Dupiex Taraet, w. Wright and T. H. Lidstone, Macazine Cabtridoe bacs, t. w. Deane, old Aurp Fekpres, J. Bridge, Staffordshire.
Iu and Sprirt Lamps, A. Whicker and
 bourne.
oft Asfinss for Fireplacess, J. E. Aykroyd, Brad-
ford
ford.
991. Necktie Holder, W. F. Lumley, jun., Chelms-
ford. Tord.
Mortary
Manchester. Morors, A. E. and E. O. Tompkins, 2997. RIvETs, T. P. Lomas, London.
992. ARTIFCLLL or BLock FukL, c. H. Mowll
London 299. BAck STRaps for VEsts, D. Holgate, Leeds.
993. Devon Whistues, H. A. Ward and P. MeDonald, ginningham. . F. Coomes and A. W. Hyde, London.
994. Socks for Boors and SHoks, R. G. E. Lempriere, Bristol.
995. Com
Birmingham Sash Fasteners and Lifts, J. Collins,

 Holding, Liverpool.
 Londonp: son, London.
Fin Cossuriva Strips for Llohtyino Devices, J. H.
Farrel London

 London.
000 . Machine for Dryino Grise, \&c., C. r. Bonme, London.
Sydro- carbon
Gaslugert apparatus, L L
 300

 So9. Blenchino, \&c., Fibrous Matrerils, S. D. Keene,
London
Solo. Chair for Suspendino Rails, \&c., F. A. Barth, Lo. Chirir for Suspendino Rals,
London. 3011. SEEESAWs, P. W. Atkinson, London,
996. Combine PiANETEE and HARP, W.
 3014. Whezt Tries, E. F. Eldredge, London.
997. AUTOMAIC LAUNDRY WATER DYER, E. G. Goad, London.
Li6. WRAPRES
for Holdinu Tobacco, J. Wadsworth, London.
998. Compressons, H. C. Sergeant, London.
999. Michinks for CUTTIN Woov, J. Howard and J. H. Geddes, London.
1000. Cliose Boxchivo Marines, H. H. Lake.-(J. K.
 Carew, London.
1001. Rallwav Vericles, H. H. Lake.-(W. H. H.
 Gardner, London.

 London.
3o2s. Drimo-electric Machines, A. A. C. Reignier
Dis London.
1002. STEM Boller
Furnaces, M. M. E. Herbert,

 London.
1003. TEA and Corree Pots, W. H. Bulpitt, Bir minghan and Coffer Pots, W. H. Bupit,
1004. Opening Tin Cass, T. F. and P. Bennison, stockton-on-Tees.
1005. VALVE GEAR
for Sten Glasgow.
1006. Gomess for Illudiration, R. Scott, Newcastle
on-Tyne. on- Tyne.
1007. Sizix

304s. Syoke-consuming Fire
Boillers, T. Dale, Kirkcaldy.

 Birmigham.

 Son7. SToprenise. Bottles and Jars, C. Melin,
London
 3059. Spade Handurs, J. Lee, Birmingham

 3006. SALE of Swerrs. J. Hont, London.
3066. MANUTActure of Gloves and C London. Embleton, Leeds.
.

 London.
Boinctric Meter, w. J. S. Barber-Starkey,
Londo

 $\xrightarrow{\text { London. }}$ Pmerccors for Boors and Shooss, J. M. Henry 8. Mirooproses, D. J. Waden, London.
 ford, London.

 Os9. Drying Granular Muteriles, S. Seckendorf.-
(M. Rew (M. Reuland, Germany.)
3osoo ReDincina the VirRation in Cycles, G. Jepson,

 3094. Portabie Electrac Lasps, The Mining and
General Electric Lamp Company, D. G. Fitzgerald, and A. H. Hough, London, H. H. Leigh.-(R. G.
3o95. Colourriva MATrER,
 Co, Germany.)
3oga. DIRECING Guss and Torpedoes, M. H. Hurrell,
London.
 Sol. Brebch-LoAdino Ordanalar, C. E. S. Parker,
London.
 310. Fire Liohtrrs, G. Myers, Sheffield.
3105.
HEATINO R RIIWAY CARs, T. S . Glover, London.

 3110. Sprisas for MAAAZINE SMALL-ARMS, B.
Cocker, Sheffitld
112. Adonstable Pnevantic Sole, J. J. Mason,
 3114. GRINDIN and Polishinc Stowes, w. Crosland, Milles Platting.
311. SEwiva Michine Trendles, J. Alcock, Stafford3116. Boller Tubrs, W. Keyworth, Hull

 312iffe, Waterloo. M Noverure of Glass Bottiks, D. Rylands, 3122. FRYMivo Fiss, A. A. Tucker, London.
3123. CRICKET BATs, C. Rose, jun., Southat 3123. Cricker Bats, C. Rose, jun., Southampton.
3124. STopriva and STARTINO TRAMICARS, J. W. Peirce,
LTondon. 2ondon. Mavracture of Spring Hooks, M. Turnor,

 Nood, Hull
sis7. GLass Bortus, W. Ambler, London.
3138. GLAss Botrus, W. Ambler, London. 3138, GLAss Bortus, , Ambler, London.
3139 BRAKs. for VEhicles, A. J. Boult.-(A. Krets.
schmar, Saxony.)

 T. Parkinson, London.
34.2. Litrivo IvvaLips on Bens, \&c., T. Duncanson,

3145. Portable Oul Gas Furnace, The Lucigen Light
Company and T. M. Jarmain, London. 3146. Guides for Fivgers of Rearsterina Dials,
A. Wood and T. Davies, London.
S14. Safety Stirrups, R. Fiek, London. S147. SAFETY Stirrups, R. Fiek, London.
3148. Construction of Siv Top, T. S. James, London
3149. Checkive Shutrles of Looms, G. Thomson and 3149. Checkiva Shutries of
J. Hampshire, Hudersiel.
3150. Cuans, R. H. Gudgeon, Lond
3151. Preven 315. Prares, r. H. Gudgeon, London.
and L. Lewis, Londonstation in Boilers, W. Grove 315. L. Lewis, Lond
A. Thoms, London.
3153. Manufacturing Electrical Conductors, w Thoms, London.
3154. MANUFACture
3154. Manofacture of Allovs, W. A. Thoms, London.
3155. Photoraphic Camera Slides, F. A. Gregory
and H. F. Ainley and H. F. Ainley, London.
3156. LUBRICATors, \&c., G. Butler and T. Kendrick,
London. London.
3157. Pipes for Footpaths, R. P. Fisher, Fargate.
3155. Preparina Sticks for Uibrelias, \&c., J. Metz,
 3160. Apparatos for Making Water-ans, B. von
Steenbergh, London.
3161. Clocks, E. Edwards.-(J. Pallareber, Germany.) 316. Clocks, E. Edwards. - (J. Pallreber, Germany.)
316. PAvING MATERIAL, J. C. Merryweather, London.
3163. Electric Switches, P. P. Alexander, London.
 London.
s166. Food for Horses and Cattle, T. G. Whitehouse London.
Si67. Manoracture of Carpets, G. T. Todd and W.
Tannahill, Glasgow. Tannahill, Glasgow.
S168. Lastinc Boots, C. Wassell, J. Hunter, and P.
Grant, Glasgow. S169. Electro-HEatino Apparatus, C. E. Carpenter,
London. London.
sizo. Multiple Drillino Machine, R. Grifith,
London. 28th Felruary, 1890. 3172. Velocipedes, J. J. Wardle, Newcastle-on-Tyne. 3173. Tolocipedes, J. J. Wardle, Newcastle-on-Tyne.
3174. RINE Frame Spindiphy, \&c., T. Wrigley, Man-
chester. chester.
s175. FAsTENER for Window SAsHEs, E. Pearson, South
Woodford. S176. MATcHEs, C. F. Martin, Cheltenham,
3777. K Norg, HANDLEs, \&., for Doors, W.
Birmingham. Birmingham.
Siz. Grindina Cards of Carding Enoines, G. Casey,
London. London.
3179. Reculating Temperature, G. W. Crowe and W.
K. Massam, Barnsley. K. Massam, Barnsley.
3180. Navircal AprLiANeEs, T. Y. Rowe and M. D.
Hammill, Liverpool. M181. Frincerd Shawls, \&c., G. Reiss and J. Bauer,
Manchester. Manchester.
8182. Corrox. Goods, R. Middleton and H. T. Jones,
Manchester. Manchester.
3183, Bracelets, Scarf Slides, \&c., H. Allsopp, Bir-
mingham. mingham,
sis. Pavive blook, A. Rovedino, London.
3185. Travelinvo Trunks, G. Martin, Bradfo
 3188. KNITTINo Hositery, G. Hadden, Manchester.
S199. HERTR Ruos and Mits, W. and T. W. Millward,
Manchester. Manchester.
S190. Lıce, E. Doughty, Nottingham.
S19. Too-HoLDING Michines, \&c., A. Muir, Man-
chester. chester.
3192. CEntrifudal Machines, R. S. Baxter and G. D.
Macdougald, Dundee. M193. TRANSFORMERs, J. Swinburne, Wimbledon.
819. DrivNv, غc., Looms, R. L. Hattersley and
J. Hill, Keighley. J. Hrill, Keinghley. Looms, R. L. Hattersley and
8195. Compisation of Spooss, \&c., with the Covers of
Tabizs, \&c., J. W. Tolhurst, London.
 8197. Crrecland SAWs, J. E. Bott, London.
3198. PNEUMATIC DrAWbAck for RAMs, W. Norris, Smethwick.
S199. Screw Propellers, J. Harper, Liverpool.
820. REGITERNG ORDERS in Hotels, \&c., G. B.
Bulmer, Leeds. 3201. Cloth-stretching Machines, C. L. Jackson,
London.
3202. Detichable Clip for Neckties, W. G. C. Hughes London.
3203. TINTING Opal GLass, C. Leigh, London.
320. BLocks for GULLEYs and other TrAPs, P. Mooney,
Manchester. Manchester.
3205. Lictriva Conductors, F. Cook, London.
3200. CANop-WIINED Stove Front, E. V. Goad and
A. Tuck, London. A. Tuck, London.
32)7. Ivsurance abainst Accidents, J. Tourtel,
London. London.
3200. Milk Delivery Cans, F. J. Ingram and J. R.
Hill, London. 3209. Separatina SAND from Water, G. F. W. Hope,
London. 320. Cotron Gins, W. Fenwick, Manchester.
3211. Screw Bours, R. B. U. H. J. Duncan, London.
3212. SToppers for OiL CAs, W. Redman, London. 321. Stoppers for Oil Cans, W. Redman, London.
3213. Rotary Enorine, C. E. Chalis, London.
3214. MANUFACTURE of Buttons, \&c., K. Wagner,
London. London.
3215. FAstining Door Knobs to Spindles, R. A.
Meredith, London. 3216. Toastive Appiratus, G. F. Grifin, London.
3217. Apparatus for Cuttino Veners, C. W. Spurt, London.
3218. Tighener for Butter Casks, dc., J. White, Glasgow,
3219. Morive Power, R. Gold, Glasgow.
3220. Production of Metalic Sodium, J.
London.
32.21. Flusing Apparatus for Water-closets, W. H.
Hawkins, London. Hawkins, London.
3222. Joint for FISHino Rods, \&c., J. R. Bolton,
London. 3223. Receptacle for Railway Tickets, F. Cowley,
Londo. S224. Heating Resistino Linina, L. d'Emile Muller,
London. London. Brim Protector, M. Slater, London.
3225. HATM Brelery, W. Bart, jun., and D. McKay,
3226. Glasgow.
3227. Fining Flexible Blidders, H. Duerden, London.
3228. ChURs, T. Bradford, London.
3229. SUPPoRTIN GLost WARE, E. Leak and H. Aynsley, London.
3220. PADDNo for Garaments, J. Tillett, London.
3231. KERPINO ELETROMOTIVE Force Constant, J. Shipp, London.
J23. MAkino Links for Metallic Chains, W. Fiddian,
London. London.
3233. RoLs for Iron Tubes, C. Faulkner and W. H.
Lloyd, London. Lloyd, London.
S234. Direct Acting Stena Puxps, M. Kohn,
London. London.
s235. Clip Bracket Holder, H. Schooling, jun.,
London.
 Thomson, London.
3228. SLEvE LINKs, J. A. Fincher, London,
3239. Eleviting BANDS for OrDNANCE, TT
${ }_{3240}$ London. 3240. Artificial Tartaric Acids, A. A. Brehier and
B. G. Talbot, London. B. G. Talbot, London.
3241. FIELD GUN CARRIAGEs, T. English, London.
3242. UTTIIIINV LIVQID Hypocarooss for Lightina
and Heatina, H. H. Doty, London,
3243. Collapsible, de., Metal Tubes, H. C. Sanders London.
Botile-washing Appabatcs, W. Beetham,
London. 3245. Separating Gold from Ores, W. D. Bohm London.
3246. SEparating Gold from Ores, W. D. Bohm
Lendon. 3247. Spoon for Administering Food, A. K. Cordes, London.
324s. GAME, J. Io Messurier, London.
3249. Sockets for Gaxie Courts, J. Lo Sockets for 3249 , J. le Messurier 3250. Toy Cycles, D. Blaikley, Glasgow. 1st March, 1890.
3251. Remoyina. Water from Pipes, A. Masson and R. Scott, London.
3252. SEFF-SUPPLYIN PEN, A. Hill and G. Appleton,
Birkenhead. Bíkenhead. Stands, \&c., A. W. Kemp and J. G.
3253. Portable Stan Rollason, Birmingham. 3255. OIL CANS, \&ce, A. Donald, Dundee.
3256. Cleaniva Laip Glasses and Bottes, and S. W. Williams, Wolverhampton. Cooper and J.
3257. GEAR for DETACHINO Boats, W. Coper 3258. Combination Tool Cabinets, E. H. Marples and F. Lamburn, Sheffield. 3260. New Constructive Toy, T. Sturgeon, London.
3261. Filtering Water, H. H. Lake.-(o. H. Jeiell, United States.) Catches for Lowering Boats, W.
3262. BoLts or
Cooper and J. Holdsworth, Hull Cooper and J. Holdsworth, Hull.
3263. ExTENSIBLE STANDARDS for LAMPs, H. D. Hinks,
Birminghm Bitmingham.
3264. WATERProof PAPER and Textile Fabrics, A. A. 265. Ventilating the Temperatcre in Factories, B. Ormerod, J. F. Davies, and W. Haythornthwaite,
Manchester. 3266. Horizon
J. Dixon, Barrow-in-Furness. 3267. Cuttino Machines, H. M. Marsden, Sheffield.
3268. Securing Windows, J. Coppard, London.
3269. Thre Way Valies, G. W. Crowe and W. K
Massam, Barnsley, Massam, Barnsley.
S270. WatErPRoof Garments, L. Mistovski, Manchester.
3271. Dvamo-electric Machines, C. N. Russell and
R. A. Scott, London. R. A. Scott, London.
3272 . Controlling Elecric Currents, G. E. Fletcher, Edgeley. Edgeley.
3274. Metal Tanks, \&c., W. Oit and P. S. Brown, Glasgow.
3275. Recrion of Metallic Ores, G. Simonin,
Manchester. 3276. Telephonic Apparatus, A. Whalley, Helsby. 77. GAs Govervors, E. Patterson, Glasgow.
H. Doo MATs, de., R. Grunwell and G. R. Scarr 3279. Heatina Water, W. H. Skinner, Exeter.

32s0. Lozenge, P. Kent, London.
Wakeling, Lordon.
3282. PEvcil Pocket for Coat, \&c., J. R. Alexander, Edinburgh. mouth. 3284. Dental Impleafent called Cutter and Die, H. A. Laurence, Ealing.
3285. Machinery for MAking Bricks, sc., w. Sayer,
London. London.
3286. GLAss, J. G. Sowerby, London.
3287. MARINE, \&., STEAM Boukre,
Monkwearmouth. W. H Wherson 3288. Detachiva Hooks, W. H. Wise, Brockweir.
3229. Roller Mills, A. M. Robinson, Liverpool. 3299. Roller Mills, A. M. Robinson, Liverpool.
3290. Frie Revivers for Domestic Use, E. P. Scruby, London.
fied Grates for Gulley Traps, H. Bagshaw, Sheffiel.
a. Tubular Apparatuses for Heatina Feed-water, Schueider, London.
Tor, G. Caretto, London.
Floral Ornamients for Wearing apparel,
Kempner, London. 3295. Proviecive TANNAGE, 'P. Houston and C. Beak
bane, London. bane, London. Prenent Slippina for Horseshoes, J. Whatmough, London.
297. Tap, F. B. Hanbury, London.
298. Curtin Pole RiNo and Eye
G. H. Dreghorn 3299. ADVEETIISING, \&ce., CARDS, G. Delgado, London,
3300. FRADEs for Optical GLasses, R. Wells, London.
3301. 3300. Fraises for Optical Glasses, R. Wells, London.
3301. Machinery for Printine Fabrics, E. and A.
Samuel, London 3302. STEAM GENERATors, I. S. and J. T. McDougall
and T. Sugden, London. and T. Sugden, London.
3303. FAst DyE STUFRs, B. Willeox.-(The Farben-
fabriken vornals F. Bayer and Co., Gemany. jabriken vormals F. Bayer and Co., Germany.) Garben-
3304 ApARAVS for SUPPLY of GAs, \&c., M. C. Green-
hill, London. hill, Londond.
30. Stirting and Stopping Tramcars, \&c., J. Stark,
London. London.
3306. Furnace for Continuous Carbonisino, H.
Ekelund, London.
S307. SAUCERS, , C.J. C. W. Hyne, London.
330s. Fountain Pens, F. O. Chorley, Lond
330. Fountain Pens, F. O. Chorley, London.
3309. Tobaco Pipes, F. O. Chorley, London.
3310. New PuzzLe, R. Smith, London.
3311. ADUSTABLE FILE, J. Pugsley, Bristol.
3311. Adnustable File, J. Pugsley, Bristol.
312. Purfiation of Sewace, W. E. Adeney and W
K. Parry, London.
K. Parry, London.
3313. Boat Detiching Apraratus, E. J. Hill, London.
3314. Combination Kettie and SPirit Stove, E. Werninck, Birmingham.
3315. PELLERINES, M. Wedlake, London.
3316. PELEERINES, W. Wedlake, London, London.
3317.

London.
Lsino Device for Gloves, \&c., A. Thiemt, 3318. Bonler Pumps, A. Muller, London.

SELECTED AMERICAN PATENTS.

18.198 -

18,198. Method of Makina Collars on Axles by
Electricity, H. Lenp and E. Thomson, Lymn,
Mass.- Filed August 19th, 1889. CMaiss, - - (1) The herein-described method of securing rings, washers, collars, or other perforated objects to
metai bars, rods, or other pieces of metal, consisting in
passing a current of electricity through the metal

piece in volume sufficient to soften the same, and then subjecting the piece to endwise pressure, so as to
swell or expand it at both sides of the perforation. (2)
The herein-described method of fastening perforated The herein-described method of fastening a perforated
piece of metal to another metallic piece passing piece of metal to another metallic piece passing
through the perforation, consisting in including said
metallic piece in an electric circuit, passing an electric metailic piece in an electric circuit, possing an electric
current through the safne in amount sufficient to current through the sarne in amount sufficient to
soften it, and then subjecting such piece to compres-
sion, so as to cause it to expand laterally at either side
of the perforated piece. (3) The herein-described
method of securing a perforated piece of metal to
another piece threaded through the perforation, conanother piece threaded through the perforation, con
sisting in causing a heating current of electricity t sisting in causing a heating current of electricity to
pass through the threaded ppece until the same is
heated to a welding temperature, and causing it to swell orexpand laterally at either side of the perforate piece, as and for the purpose described. (4) The to a piece of metal thraded throngh the perforation,
consisting in providing the perforated object consisting in providing the perforated object with
recesses, openings, or depressions to one side of the recesses, openings, or depressions to one side of the
perforation, subjecting the threaded piece to a heating perforation, subjecting the threaded piece to a heating
and softening current of electricity, and then applying
force in a direction to cause it to swell or expand force in a direction to cauns it to swell or expand
laterally at the sides of the perforated piece, and to laterally at the sides of the perforated piece, and to
enter the said recesses or depressions. (5) The herein
described method of keying a perforated piece oo described method of keyng a perfornted piece of
metal to a bar or rod, consisting in softening the ba metal to a bar or rod, consisting in softening the bar
or rod by an electric current passed through it and
then or rod by an electric current passed through it and
then subjecting the bar to pressure, so as to cause the
softened metal softened metal to expand and enter key openings or
recesses in the perforated piece recesses in the perforated piece. (6) The herein
described method of limiting the longitudinal extent of the expmansion to either side of the perforated piece
derten consisting in applying collars to the piece subjected to
electric heating and pressure at points thereon removed a determined distance from the perforated piece. (i) The herein-described method of fastening a perforated piece of metal to another piece threaded through it
consisting in providing one or more notches at the edge of the perforation, passing a softening current of
electricity through the threaded piece, and then subjecting said piece to a force which will cause the same
to expand laterally into the notch and to either side of the perforated piece.
418, 182, Locomotive Smoke Stack, E. W. M. Hughes,
Chicago, Ill.-Filed May 23 rd, 1889 . Claim:- (1) In a smoke stack, the combination, with
the two cylinders the two cylinders A and A^{\prime}, of a pressed steel base
secured thereto, the upper portion of which is provided
with a cylindricel with a cylindrical flange, which is secured between
said two cylinders, substantially as described. (2) In
(2) said two cylinders, substantially as described. (2) In
a smoke stack, the combination, with the cylindrical
portion, of a base secured thereto, composed of two

flanged pressed steel pieces B and C, one of which is
bell-shaped and cut away at the front and rear, sub stantially as described. (3) In a smoke stack, the top composed of two pressed steel pieces D and E , one oop composed of two pressed steel pieces D and , one
of which is provided with a flange K , which is secured
betwen said two cylinders, substantially as described. 418,287. Running Board For Locomotrves, E. W. M. Claigh.es, Clicago, Ill.- Fited July 3 rd, 18899
(1) The pressed steel running board for locomotives, consisting of one or more pieces, one end of
which A has a plain flat surface, and the other end B is provided with corrugations G, pressed therein in
the process of manufacture, substantially as described.

 one portion of which is provided with corrugations G
upon its surface, and the combined ridges F, all pressed therein in the
stantially as described.
418,365. Thrashivg Machine, L. Bronsom, Budjulo, N.Y.- Fited Jure 13th, 1887.
Claim.-In a thrashing machine, the combination, with the cylinder or concave having openings or per-
forations, of a series of knives provided with screw-
threaded shanks arranged in said openings, screw nuts

applied to the shanks of alternate knives, washers
applied to the shanks of the intermediate or intervening knives between the nuts of the adjacent knives, and screw nuts whereby said wa
place, substantially as set forth.
418,393. Belt Lacrac Needle, H. ${ }^{\text {burgh, }}$ N. Y.-Fild June 2th,
Claim.-(1) A lacing needle having an
Claim. - (1) A lacing needlo having an eye in its butt
end and a reduced shank extending beyond the end and a reduced shank extending beyond the eye in
the direction of the length of the needie and provided
with an enlargement at its extremity with anection of the length of the needie and provided
and enlargement at its extremity, the said shank and enlargement being of lexss width at their points of
greatest width than the diameter of the butt of the needle, substantially as set forth. (2) A lacing needle
having its butt redia having its butt reduced and provided with an eye, and
a shank or extension projecting from the said red a shank or extension projecting from the said reduced
portion in the direction of the length of the needle of
less diameter then portion in the direction of the length of the needle of
less diameter than said reduced portion, and having an
enlargement at its extremity, substantially as set forth
(3) A lacing needle having its butt end reducod, as at I1, and formed with a shank 12 of less diameter than
the said reduced portion, extending in the direction
of the length of the needle and terminating in a circular
$418,393$.
$\square \pi_{15}$
head 15, diagunally opposite shoulders 13 , 14 , being
formed at the junction of the said parts 11,12 , and
an eye in the reduced portion 11, substantially as set 418,404. Valve Gear, G. A. Franke, Mül Claim.-(1) In a valve gear, the combination, with a
main valve provided with inlet ports adapted to reguate with the cylinder ports, of cut--ff plates having yalve, a governor for controlling the said cut-off phate to cut the steam off sooner or later to the main valve,
and an expansion valve provided with a steam inlef passane adapted to register with the ports in the simid (2) In a valve, gear, the combination, with main valve
provided with inlet ports provided with inlet ports and an exhnust port opera-
ting over the cylinder ports, of cut-off plates provided with ports adapted to register with the inlet ports of the said main valve, the said cut-off plates being con-
trolled by the governor, and an expansion valve protrolled by the governor, and an expansion valve pro-
vided with a steam inlet passage adapted to register
with the ports in the said cut-off plates, substantially with the ports in the said cut-off plates, substantially
as shown and described. (3) In a valve gear, the com.
bination with main valve provided with inlet ports bination, winh main vaive provided wort operating over the cylinder ports,
and
of cut-off plates provided with ports adapted to register

with the inlet ports of the said main valve, the said cut-off plates being controlled by the governor, an
expansion valve provided with a steam inlet passage
adapted to register with the ports in the said cut-off adapted to register with the ports in the said cut-off
plates, and two excentrics driven from the crankplates, and two excentrics driven from the crank-
shaft and controlling the said main valve and the
expansion valve, substantially as shown and described. expansion valve, substantially as shown and described.
(4) In a valve gear, the combination, with a main valve
pron provided worts, of cut--off plates having ports operating
on the inlet ports of the said main valve, a governor for controlling the said cut-off plates to cut the steam
off sooner or later to the main valve, and two exen-
trics controlling the said main valve and the said trics controlling the said main valve and the said
expansion valve, and ellintical whels diriven from the
crank shaft and operating the said excentrics, substan-
tially as shown and described. 418,518. Piston-rod Packivg, c. c. Jerome, Chicago,
Ill.- Filed August 22th, 18s9.
Claim.-(1) The combination, with a stuffing-box Claim.- (1) The combination, with a stuffing-box
and a piston-rod, of a series of sectional soft-metal
packin packing-rings arranged to break jocints, an expansible
steam-setting band embracing the serics of packing rings, a screw attached to one end of said band and
loosely passing through the other end for limiting the expansion of said band, and cups forming tight joints
with the packing-rings, substantially as set forth. (2) with the packing-rings, substantially as set forth. (2) of a pair of soft-metal sectional packing-rings arranged
side by side to break joints, an expansible steam.
setting band slightly narrower than the combined setting band slightly narrower than the combined
thickness of the packing-rings, and the cups forming

tight joints with the rings and overlapping the side
edges of the band, the central portion of said band being exposed to the steam, substantially as set forth.
(3) The combination, with a stutfing-box, a gland
having a condensing recess having a condensing recess therein, a drip pipe, and
packing, of a apiro sectionns soft-metal packing-rings,
an expansible band covering sthe an expansible band covering the greater portion of the
exposed surface of the packing-rings, cups having exposed surface of the packing-rings, cups having
tight joints with the rings and overlapping the edges
of the band, a bushing, and a spring located between of the band, a bushing, and a spring located betwoen
and bearing against the bushing and adjacent cup,
substantially as set forth. 418,562. Die for Making Rolled Forgings, C. . .
Gould, Leominater, Mass.- Fited August 14th, 1889 . Claim.-The combination of a die concave longitu-
dinally and a die convex longitudinally, the faces of

said dies having grooves and outwardly-bevelled cut-
ting-bosses at the sides of the grooves, the bevelled
sides of said bosses bein sides of said bosses being provided with indentations
the bases of said indentations being flush with the
surface of the bosses, substantiolly
aivins

