ENGLISH AND AMERICAN RAILWAYS

No. Iv

IT is reasonable to suggest that some improvements in

 English railway working might result from greater publicity of the official details of the actual results of working. The high position which English railways hold in regard to freedom from accidents is due in great measure to the influence of public opinion based upon the published official reports of investigations as to the causes of accidents. In the same way public opinion might have considerable influence in inducing the adoption of reforms or improvements. In comparing the annual reports of leading English and American railway companies, one cannot but be struck by the vagueness and paucity of information contained in the former. American reports are usually in pamphlet form, and contain detailed statistics as to traffic, rates, earnings, expenses, mileage, coal consumption, \&c., and the relation of these items to one another. The statistics are also worked out on certain basis, and not given merely as totals, while comparisons are made with the figures of preceding years, thus showing how the traffic and working conditions have varied. The following table-No. II.-is compiled from the working statistics given in No. II.-is compiled from the working statistics given in
the annual report of the Lake Shore and Michigan the annual report of the Lake Shore and Michigan
Southern Railway, a road which earns 8.13 per cent. Southern Railway, a road whi
dividends, and pays 7 per cent.
Table No. II. - Working Statistics of the L.S. and M.S.R., U.S.A.

Miles

Gross earnings
Working expe Working expen
Net earnings
Fixed charges
Average haul or lead
Receipts per ton per mile.
Cost per ton per mile
Profit per ton per mil
Average haul or lead
Receipts per passenger per mile Cost per passenger per mile Profit per passenger per mile
Gross earnings per mile of road
Expenses (including taxes) per mile
Average goods train load
Goods earnings per train mile
Goods expenses per train mile
Passenger earnings per train mile
Passenger expenses per train mile
Passenger train miles
Passenger train miles
Freight train miles
E4,170,736

£1, 1755,133
f560,48
$£ 560,488$
$15,551,976$
$15,551,97$
$178 \cdot 2$,
0.251 d.
0.165 d .
${ }_{\substack{0.086 d \\ 4,292,573}}^{0.02 d .}$
${ }^{48}$ miles.
0.740 d.
0.307 d.
cone

The average weight of the goods trains seems rather low, but it must be remembered that this is the average for the entire service, including local and branch trains as well as the heavy main line through trains, which represent the maximum loads. In the above table are given the average earnings, expenses, and profits for both passenger and goods traffic, and these figures may be compared with those of the Pennsylvania Railroad and the New York Central Railroad, as follows :-

Table Ne, III.-Working Statistics of American Railirays.
Earnings per passenger per mile
Expenses per passenger per mile
Expenses per passenger per mile
Profit per passenger per mil
Earnings per ton per mile
Earnings per ton per mile
Profit per ton per mile
Earnings per passenger
Pennsylvania New York
R.R.
Central R.R.
parcels)
Expenses per passenger train mile (including mails and
parcels)
profit per
parcels) passenger train mile (including mails and
Passenger earnings per mile of road
Passenger expens
Passenger expens
Passenger profit
Passenger profit $\ldots \ldots$....
Goods profit per train mile
Goods earnings per mile of road
Goods expenses per mile of road
Goods profit per mile of road
Average number of wagons per goods train
In the latter part of Table No. III, are given some o the same items for the New York Central Railroad, but calculated out on a train-service basis, with results in amounts per train mile and per mile of road for both passenger and goods traffic. On the New York, New Haven, and Hartford Railroad, the similar results figure as follows:-

$$
\begin{aligned}
& \text { Passenger earnings per train mile ... } \\
& \text { Passenger earnings per mile of road } \\
& \text { Goods earnings per train mile....... } \\
& \text { Goods earnings per mile of road } \\
& \text { Operating income per mile of road } \\
& \text { Operating expenses per mile of road }
\end{aligned}
$$

Two other points of great importance are the percentage of earnings absorbed by working expenses, and the distribution of the working expenses among the prinn average, the working expenses represent a slightly higher proportion of the earnings than on English railways, but there is not such a wide difference as is very requently assumed. In Table No. 4 are shown the proportions of working expenses, and the distribution of In the four working expenses, however, the percentages for the English lines are not exact, since the published accounts are not kept in the same form as those of the American ines. The accounts have been carefully analysed, howystem arranged in accordance with the American system, and the percentages given are probably very
close approximations to the reality. Even allowing for a certain variation, the figures as given show a very interesting comparison. The percentages given in the first column are those taken from the official reports of the several railways whose working expenses are here tabulated:-

Table No. IV.-Working Expenses of American and English
Railicays.

Another matter of importance is the analysis of th earnings and their distribution among the several sources of revenue. Such an analysis enables it to be seen at a glance whence the bulk of the revenue comes, and where
improvements may be made. Table No. V. shows the improvements may be made. Table No. V. shows
analyses of the earnings of five American railways.

Table No. V.-Analyses of Earnings of American Rallayls.

Earnings.	New York Central.	Lake Shore and Michigan Southern.	Erie.	Chicago, Rock Island, and Pacific.	Northern Pacifle.
	Per cent.	Per cent.	Percent.	Per cent.	Percent.
Passenger	$29^{\circ} 0$	20.63	18.0	24.45	$20^{\circ} 5$
Goods	$59 \cdot 0$	$67 \cdot 57$	$74 \cdot 0$	69.64	$73 \cdot 6$
Mail	$3 \cdot 5$	$7 \cdot 20$	1.5	$2 \cdot 88$	$5 \cdot 9$
Express(parcels)	$3 \cdot 0$	$2 \cdot 57$	1.8	1.98 \}	59
Other	$5 \cdot 5$	$2 \cdot 03$	$4 \cdot 7$	1.05	
Total...	100.0	$100 \cdot 00$	100.0	$100 \cdot 00$	$100 \cdot 0$

On the Lake Shore and Michigan Southern Railway the operating or working expenses are also worked out in percentages of the earnings, with the following result for 1898 given in Table No. V.:-

> Maintenance of way and structures... Percen
Maintenance of engines and rolling equipment Maintenance of engines and General operating expense Taxes Operating expenses and taxes
> earnins

of carnin
$11 \cdot 11$
$12 \cdot 51$
38.60
1.54
63.76
3.35
$67 \cdot 11$
32.89
The figures so far given relate to the general results of railway working, but the expenditures in the traffic departments are also worked out in detail, and state ments of these details are given by many railway in their annual reports. There is, however, no uniformity in these statistics, different railways keeping their specia accounts of this kind in their own way. In the genera statistical and financial reports a considerable degree of uniformity has been arrived at, owing to the require ments of the Interstate Commerce Commission in having reports made to it annually in accordance with certain set forms, which forms the railways have now largely adopted for their own use as a matter of convenience as examples of the character of the statistics annually recorded and compared

Table No. VI. gives an analysis of the working expense of the outdoor service of the Chicago, Milwaukee, and St. Paul Railway, calculated upon the basis of revenue train miles, and distributed among the various items of
expenditure in this service. expenditure in this service.
Table No. VI.-Expenses per Revenue Train Mile; Chicaco,
Milirauliee, and St. Peul Railiray.

Repairs of locomotives

Repairs of locomotives ... $\quad .$.
Repairs of wagons and carriages
Repairs of
Station service
Train service
Train service
Locomotive service
Train and station supplies
Fuel
Oil and waste.
Total working expenses per rev. train mile $\overline{48.61}$
Following on in this line, a series of figures represent ing locomotive service are given below, selected from the annual reports of the railways mentioned:-

Working Statistics of American Railvays. Erie Railroad.

Miles run per passenger engine per year

 Miles run per goods engine per yCoal per mile, passenger engines Coal per mile, goods engines
Locomotive miles per quart of cylinder oil Pounds of waste per 100 locomotive miles oil

Cost per locomotive per mile :-

Miles run per engine per year
-6 s.
$22 \cdot 84$
$15 \cdot 40$ Cost of coal per ton Locomotive miles per ton of coal
ocomotive miles per pound of
15.40
182.93

Cost per locomotive per mile :-
Renewals, repairs, and supplies
Enginemen, firemen, hostlers, \&c.
Engin
Fuel
and waste
Total

Inquiry has been made as to the much talked-of rate of 0.11 pence per ton per mile on the Chesapeake and It may be said that the rate was a special one on coal, and was not established as a permanent rate, although and was not established as a permanent rate, although on many road his low figure The items covered by the ortably near his low fige. The in cost of transportation, as referred to in the first part of include maintenance, repairs and renewals of engines, rolling stock and permanent way, as well as wages and general train expenses. It also includes its proportion of expense of renewals of equipment and a large amount expended for new side tracks and also for heavier rails. This is accounted for by the fact that the company carries no onstruction account, except for certain specified new work, such as double tracking and the eniargement of terminals, It does not include unloading the wagons into the vessels, which cost is independent of transportation expenses.
On this railway the rates have dropped 32 per cent. since 1893, in spite of which the profits have been steadily ncreased by skill and care in the magement, and by had to be increased very considerably in order to add so largely to the revenue, with the ton mile rate falling so rapidly and steadily. The statistics of traffic and revenue are given in Table No. VII.

Table No. VII.-Traffic and Revenue: Chesapeake and Olio
Railecay.

	$\begin{gathered} \text { Gross } \\ \text { earnings. } \end{gathered}$	$\begin{aligned} & \text { Net } \\ & \text { earni'gs. } \end{aligned}$	$\begin{aligned} & \text { Surplus } \\ & \text { over } \\ & \text { charges. } \end{aligned}$	Tonnage.	Ton miles.	Ton mile rate on coal.	Ton mile rate goods
1893	$\underset{2,069,953}{£}$	$\underset{3}{\substack{£ 40,587}}$	$\begin{aligned} & 84,752 \end{aligned}$	5,498,900	1,479,487,000	$\begin{array}{\|l} \text { P'nce } \\ 0 \cdot 163 \end{array}$	$\begin{aligned} & \text { nee } \\ & 181 \end{aligned}$
1895	1,919,206	626,301	3,740	5,671,200	,720,788,000	$0 \cdot 146$	0.208
1897	2,141,636	684,283	60,508	6,491,297	$2,000,095,000$	1	212
1899	2,401,968	786,491	141,226	8,130,661	2,506,000,000	$0 \cdot 110$	255

In the former part of this paper it has been shown that for several years past there has been a steady reduction in goods rates. This is one of the remarkable features of American railway operation, and one of the most serious problems to be dealt with by managers. It is also one of the great forces leading to the introduction of various means for so reducing the cost of performing the transportation service that a profit may still be earned. Table No. VII. has shown these conditions on the Chesapeake and Ohio Railway, where the net earnings have increased but little, while the traffic has increased enormously. In Table No. VIII, are given somewhat Table No VIII.-Traffic and Revenue, Lake Shore and Michigan

Years.	Tons carried.	Goods earnings.	Rate per ton per mile.	Average lead per ton.
1870	2,978,725	$\underset{1,726,894}{£}$	$\begin{aligned} & \text { Pence. } \\ & 0.7552 \end{aligned}$	Miles. $192 \cdot 7$
1875	5,022,490	1,906,008	$0 \cdot 505$	$187 \cdot 8$
1880	8,350,336	2,778,112	$0 \cdot 375$	$221 \cdot 7$
1885	8,023,093	1,771,804	0.276	$199 \cdot 7$
1890	11,531,266	2,700,962	$0 \cdot 313$	$187 \cdot 0$
1895	14,382,641	2,780,265	0.280	$172 \cdot 1$
1898	15,551,976	2,784,954	$0 \cdot 251$	$178 \cdot 2$
Years.	Passengers carried.	Passenger earnings.	Rate per passeng'r per mile	Average lead per passenger.
		,	Pence.	Miles.
1870	2,065,440	838,592	1.306	77
1875	3,170,234	784,560	$1 \cdot 189$	52
1880	3,313,485	752,201	1.067	53
1885	3,479,274	727,875	1.029	51
1890	5,019,595	1,012,005	1.123	45
1895	4,627,175	902,474	1.069	46
1898	4,292,573	856,284	1.047	48

similar figures for the Lake Shore and Michigan Southern Railway during the past thirty years. From this it will be seen that while the tonnage increased from 3 million to $15 \frac{1}{2}$ million tons, the goods earnings increased only from $£ 1,726,894$ to $£ 2,784,954$, the rate per ton per mile having fallen from three-fourths of a penny to one-fourth of a penny. In passenger working the results are similar
but not so extreme, the number of passengers having
inereased from 2 millions to $4 \frac{1}{3}$ millions, while the passenger earnings increased only from $£ 838,592$ to In 284 .
In conclusion, it may be said that while English railways are not likely to have such a serious problem to meet as States, yet undoubtedly economies and improvements in present methods of working can and should be intro-
duced. The somewhat extensive introduction of corridor ears, dining and luncheon cars, \&c., within very recent years, to meet the perfectly reasonable demands of the public, has necessarily increased the proportion of dead of transportation. Economies in passenger train service, dation and traffic, are now, therefore, to be sought for by progressive railway managers. It may be well to say forcing upon English railways certain features of American railway practice. The question is in regard to the investigating and following out the reasons and principles which have governed the remarkable development of American railway practice, more especially in regard to
economy in cost of service or cost of working. In considering this question, it should be considered purely from a broad-minded business standpoint, without prejudice, and without clouding the main points at issue by giving
undue weight to minor parts, or by petty objections and too conservative a point of view.

ARMOURED CONCRETE.

Ir is a little singular that a compound system of con-struction-no longer a novelty-which has been applied America, to nearly every description of engineering and architectural work, should have been both theoretically and practically almost completely ignored by English
engineers. But with the exception of some altogether insignificant examples, little or no notice has been taken of a principle which has been utilised abroad for bridges and numerous other structures, though upon a minor
scale of magnitude. It must be admitted that the system alluded to has entirely emerged from its experimental or trial stage, or it could not possibly have been and in many of the important subsidiary and colloteral works pertaining to the Paris Exhibition. It is a well-known fact, though it is not necessarily to
be aceepted as an excuse, that a large number of our engineers, like the text of their number country men, are averse from change. They cling to their pre-
conceived opinions, their time-honoured habits and constoms, and their old, and possibly a little antiquated grooves, with true insular pertinacity. From this stand regarded with feelings closely allied to suspicion and distrust, the employment of two distinct materials built up and incorporated together, which possess not only very
different, but possibly absolutely conflicting properties and characteristics. For instance, in the early days of
railways, combinations of cast and wrought iron in the same girder were denounced, and in the main, rightly too -by theory. Nevertheless the Newark Dyke bridge, principle of equilateral triangulations and turned pin
attachments, and of which one-half was cast iron, did its duty well, until the ever-increasing weight of the rolling stock of our great railways subjected it to stresses which
it was never designed to carry, and necessitated its removal.
Some few years ago a series of experiments was under taken by the Austrian Government upon concrete, spans, ranging up to a maximum of nearly 30 ft . The result, with which we are alone concerned at present,
was not in favour of any of the three types submitted to trial, and gave no preference to the compound system over its neighbours. Very recently some novel experi-
ments have been carefully conducted, which throw a new ments have been carefully conducted, which throw a new
light and afford additional information upon the whole subject. We propose to place before our readers a brief résumé of the results obtained at these trials, and to
point out in what manner the conclusions arrived at point out in what manner the conclusions arrived a
affect the whole question. Among the objections raised to combined structures of this character, the principal
theoretical one is that it is impossible to be certain that the two distinct materials will act together conjointly as they ought to do, and that the exact proportions of the
total stresses which each material should bear is indeter minable. In other words, there is no method of calcula tion sufficiently exact to warrant it being relied upon. I
has been also stated, as an argument against the use o armoured concrete by its opponents, that it was launched upon the public totally unsupported by any theory, and
that consequently in the eyes of professional and scientific men it had no claim to possessing any raison d'être This assertion was no doubt true at the time it was
made, but it is contended by the advocates of the principle that it is no longer so now. While admitting, as is common to all analytical investigations concerning every tain assumptions and hypotheses must be made, they claim that the formulæ deduced from them are quite as
accurate and trustworthy for the armoured concrete system as those obtained for any other type of construction. There certainly appears no valid reason why theoretical data should be demanded in the one case, far surpassing cient during many years for numerous other examples, such as the gigantic long-span bridges in the United State and our own hitherto unrivalled Forth Bridge.
Without asserting that all mathematical and analytical
investigations are absolutely based upon, and in every sense dependent upon assumptions, it may yet be taken
for granted that not one is altogether exempt from them. for granted that not one is altogether exempt from them.
The theory of metallic bridges, as evidenced recently in The theory of metallie bridges, as evidenced recently in
our columns, bristles with them, our columns, bristles with them, and the variety of stresses induced by the bending and torsional moments
of their component parts and from other causes which of their component parts and from other causes which cannot be taken into actual calculation, must impart a good deal of uncertainty to the final results. We do not
maintain that the formulæ put forward-some of which are of a very complicated character-for the determination of the stresses in constructive examples of armoured concrete are not susceptible of improvement. On the contrary, they will, in the course of further experience, be probably both modified and simplified, but the fact
that they, in common with many others, are invested with a strong element of uncertainty does not, in our opinion, justify the rejection of the entire system. There is no doubt considerable force in the objection that the qualities ultimate strength of the specimens cannot be predeter mined. It is well known that in laboratories, discrepancies, amounting to as much as 20 per cent. and 25 per cent., have been registered in test pieces, identical in every respect. It follows from this want of uniformity
that it may be truthfully alleged that the success of any one large work - a bridge, for example-is no guarantee that another similar structure based upon the same lines, be equally fortunate. Thaterials and workmanship, should armoured concrete give proofs of non-homogeneity during the operation of testing is of little importance, as the it may be safely holumed that the same precautions which it may be safely assumed that the same precautions which other materials, are adopted in the case of the combined other materials, are adopted in the case of the combined
system. For the rest, it is a simple matter of the selection of a cement of good quality, proper preparation of it, With careful and skilful supervisor or whole work structure could be efficiently or securely built.
So far as absolutely dead weight is regarded, the armoured concrete type of construction, as might be expected, is at a discount, since for a given strength the that of a sectional area of steel, endowed with the same that of a sectional area of steel, endowed with the same
powers of resistance. This wide difference is, however, somewhat diminished by the plain and massive character of the design, which enables it to dispense with most he additional auxiliary ties and struts, which very appre
ciably augment the dead weight of a pure metallic erection Against this disadvantage, and a pure metallic erection Agai be particularised, must be placed the superior rigidity of the system, and its power, due to its dead weight, of common to all railway bridges. When compared with ordinary stone masonry and brickwork, the balance with
regard to dead weight is greatly in favour of the new
system, and it is no doubt partly due to this cause that system, and it is no doubt partly due to this cause that
it has been extensively employed in piers, retaining, and dock and reservoir walls, in the building of sewers and drains, and a vast number of other works placed beneath
the soil. It is a very possible contingency that repeated vibrations and shocks, produced by violent dynamical
vibry a possible contingency that repeated action, might, after a time, give rise to a separation of
the two materials, by destroving the adherence between them, but it is stated that no indication has as yet been fforded of any such action. It is a well-established fact that in railway bridges the effects of a serious impactive
force have but a small local range, and are not felt in force have but a small local range, and are no
other parts of the structure, although situated a noderate dis me the maximum disturbance occurs. The vibrations in their transit
throughout the length and breadth of the bridge become rapidly absorbed and negatived by its insistent weight and vis inertice.
It is evident that unless the combination of the con crete and the metal be of so intimate a nature as
totally to exclude all atmospheric influences, the advocates totally to exclude all atmospheric influences, the advocates
of armoured concrete must be nonsuited. The least of armoured concrete must be nonsuited. The least
oxidation of the metallic constituent would ultimately oxidation of the metallic constituent would ultimately
lead to its utter deterioration, and be fatal to the principle. In spite of the protection against oxidation afforded by the cement, it might be possible, owing to the porous nature of cement, and the facility with which it absorbs
water, that air might find its way to the steel framewater, that air might find its way to the steel frame-
work, and so ruin the combination. Again, it is also possible that air might penetrate through some of
the small cracks and fissures which are generally the small cracks and fissures which are generally
present in those parts of the arch or girder which are exposed to stresses of tension. Experience has demonstrated that, in the great majority of instances, all sur-
mises of this kind may be put aside. On different occasions buildings of armoured concrete have been pulled down, and the metal extracted from its matrix of concrete perfectly clean and bright. It is further asserted
that a bar of rusty iron buried in a bed of cement conthat a bar of rusty iron buried in a bed of cement con-
crete will, after remaining for a certain period in that situation, recover its original blue tint.* This fact was put beyond a doubt after the erection of the aqueduct of Acheres. It is not at all improbable that the close union of the two materials may excite a chemical action between the metal and the cement, which may result in depositing a protective insoluble layer upon the former component of the mixture. Thermal stresses exist in examples of the application of this system, but may be disregarded, as they frequently might, in similar structute virtue which is justly attributed to the new type of construction, and it is this valuable property which has condepôts so largely to warehouses, and great manufacturing and industrial premises. In respect to this quality, and also to its behaviour when exposed to the action of
water, which often does more injury than the fire itself
brick is its only rival. Rapidity of execution, simply and easily procurable materials in almost any locality, and
the absence of all ponderous and expensive tackle and mechanical appliances, are characteristics of this style of building. It is now quite unnecessary to advert to the progress that armoured concrete has made, or to the further advance it will probably make in its application to what may be termed the minor examples of construetion. But whether it will, either in this or any other country, attain to first-class rank as a constructive type for the execution of important engineering works, upon a scale of fitting magnitude, is a problem for the solution practical experence are altogether inadequate. It is not suitable for any description of bridge design, except that of the arch, and in this respect it is a long way behind what has been achieved even by cast iron.

FRENCH AND BRITISH GUNS AND SHIPS,

Last week we made a comparison between British and French guns, taking our figures from the Naval Annual account of the writing this we have received a in the French Chamber of Deputies-a speech which seems to have carried considerable weight. This was to be ex pected in one way, seeing that the speaker is "Forge Master of the Loire, and has, as a maker of guns and war stores, the knowledge of a specialleriel largely contributed. M. Claudinon stated that he quoted his figures from the Naval Annual; but this must be understood with reserve. He makes a comparison be tween certain British and American guns, taken from the Annual for 1899, with some Russian and French guns of newer design. He shows thus that of the 12 in guns the French stand first, with 12,200 metre-tons $(39,370$ foot-tons) ; next comes the Russian, with 10,700 metretons (34,580 foot-tons) ; the British, with 10,600 metreons (or 34,207 foot-tons) ; and, lastly, the American this is not the whole case, for the velocity has had to be reduced in the British gun. Indeed, our guns must be in a bad way, for M. Claudinon states that out of sixteen wire guns, three burst, and ten others were unable to owing to the lightness of the French projectile, the supe riority the lightness of the soon be lost; but this, he riority at the muzzle would soon be lost; but this, he
adds, is disproved by two things; first, that the speed of a shell from a 305 mm . gun, at a distance of 6000 metres, was 563 metres, while that of a corresponding English the 1893-1896 model, discharged at an angle of 20 deg , would, at 17,350 metres, still have a speed of 310 metres, which would enable it to pierce the deck of any English cruiser. Before passing on to M. Claudinon's application of his conclusions to the case of ships, we should ike to deal with those above, which are too serious to let pass.
Whe
When a speaker is in possession of information which has hitherto escaped us, it no doubt is difficult to deal
satisfactorily with his statements. M. Claudinon' statements as to the French guns we accept, and we may especially as a note in the Annual warns us that probably especially as a note in the Annual warns us that probably
better Russian guns exist than there appear. It happens, better Russian guns exist than there appear. It happens,
however, also that the United States have now in hand a new 12in. gun, giving, it is claimed, 2800 foot-seconds muzzle velocity, with a projectile of the same weight as 46,246 foot-tons. Before this, the French 39,370 foot tons pales even at the muzzle, and every 100 yards range tells against the lighter French projectile. This speaks for itself so far as America is concerned. Both guns are new, and their figures may be equally authentic ; at al events, there is nothing more to add except that such statements will have to be mood by results. We are, however, rather concerned with England's position the highest one given in the Annual is more then desirablest one given in than is the gun under present conditions, though a higher velocity might be attained without testing the strength Probably 2600 fort-seconds might be assigned to our gin as safely and fairly as the velocities which are generally given in tables which, in fact, apply to new pieces; but we must point out that the energy quoted by M. Clau dinon, given in the Annual, is not that due to 2600 , but to the figure of the earlier Mark VIII. gun, namely, 2367 and this is simply the wrong velocity. With 2600 foot seconds, our Mark IX, gun has 39,850 foot-ton energy that is to say, more than this new French gun, even a the muzzle, and our superiority increases with every 100 yards of range, owing to the lighter weight of the French projectile. M. Claudinon does not give the
weight of the French projectile, but as he speaks of a weight of the French projectile, but as he speaks of a
type of shot of a few years back, i.e., 1893 to 1896, we are right, we suppose, in taking it as $643 \cdot 8 \mathrm{lb}$., as given
in the Annual and the Pola annual. This means that in the Annual and the Pola annual. This means that
he takes the muzzle velocity at 2959 foot-seconds, which, with this light shot, is conceivable, thus giving his 39,071 foot-tons muzzle energy. We, however, make the velocity to come down to 2452 foot-seconds at 2000
yards, with a striking energy of 26,850 foot-tons, while the British shot at this range has 2252 foot-second velocity and 29,890 foot-tons; in other words, the difference which was small at the muzzle has grown to over 11 per cent. of the French blow at 2000 yards. We think the Annual's figures might be arranged more clearly, but it is strange that M. Claudinon, who has calculated the velocities for different ranges, did not take the precaution of testing whether the energy shown in the Annual was that of the velocity in bold type figures opposite to it, rather than
the smaller figures entered below with a note of interro-
gation after them. At all events, we think that the answer is complete, namely, that the British gun, even at the muzzle, s more powerful than this new French piece.
But to pass on to the startling facts which M. Claudinon reports. We have accepted his figures in the case of France and Russia, but we must be excused for demurring to his statements as to British guns. Three wire guns could not burst without their possessors being aware of the fact, and we can assure him that it is not possible to detect any sign of bursting in any of our wire guns nor have we been unable to continue firing. The beginhing and ending of our causes of complaint with our guns is, as we mentioned last week, that the bores wear out much too fast. The new American gun is almost dentical with our own, and its proportions are probaeavier, but meat measure taken from bably do all that the American can with the same powder and this is, as we have seen, much more than the French gun. The fact is that these high velocities which are to be attained with new guns seem to be deceptive, and tables are not required merely for purposes of "bluff" oven of fair comparison of the possibilities of new pieces, but for service purposes, and very commonly the heavy guns on board foreign men-of-war remain year after year without firing full charges and shot, while ours have their annual sea practice. We, however, have already in our last number admitted the possibility that cordite may be putting our heavy guns at a disadvantage, and that it is desirable, in our opinion, to make comparative trials with other explosives. Sir Andrew Noble's paper noticed elsewhere does not deal with comparisons between our own and foreign modern powders. Till that is done it is difficult to pronounce as to powder. As is done it is difficult to pronounce as to pore puite satisfied.
to the guns themselver we
M. Claudinon follows our guns on board ship, and tells us that in our gunnery trials with the Mars, Resolution Hannibal, and Jupiter we attempted to get a muzzle elocity of 731 metres (2400 foot-seconds), but had o abandon it for the very sufficient reason, if true, above eferred to, namely, that three guns burst and ten had to discontinue firing, so that apparently these lamentable accidents did not occur in the dark places of Woolwich or he thinks, carefully eoncel he thinks, carefully concealed, but on Her Majesty's ships Claudinen to persuade himself and his listeners that Claudinen to persuade himself and his listeners that three 12in. wire guns could thus burst on board our fell secret to the Chamber? He adds also that only lll secret to the Chamber? He adds also that only some of the results were made public. Does he mean hat stinces the ries of tre bien whicher these cir speaker seem almost heartless. We made fuss enough speaker seem almost heartless. We made fuss enough what now takes place without our even hearing of it. what now takes place without our even hearing of
We will pass on to ships. "The English," We will pass on to ships.

The English," old, did protect battleships gainst the be nferred that and yere not satisned with the results of heir trials, and did not think that the shells would be dangerous except to those who handled them." How shan we begin meet this extraordiny statement and he conclun trawn at drawings of British and French battleships will see that for he sake of maing a ships have had to leave many portions of their hulls unpro of bow and stern, are enabled to be covered pretty completely upwards from belt to above the battery. We made rials of shell-fire at the Resistance, and adopted case mates and defences specially to meet it. We have long naintained that the French ships courted destruction by common shell, and this opposite statement is to us nexplicable. Then ean we be supposed to be afraid handle and use shells with high explosives? Does M. Claudinon never read the papers? Has he not seen hat we are using yddite shens in the South African war, and does he not know that lyddite is almost iden tical with melinite? Shall we follow M. Claudinon urther? Our difficulty is that we have not enough ideas in common with him to criticise satisfactorily makes an extraordinary supposition of the Powerful ruiser engaging the Charlemagne, and shows that the battleship ought to destroy this cruiser, which, considering that she is not even an armoured, but only a protected vessel, is not wonderful. The Powerful is constructed for entirely different work We have not even checked the figures of this most improbable engagement. We think our readers will probably so far agree with us that it is hardly necessary o follow the subject further, and that we need not take M. Claudinon so seriously as to be unhappy about our hips and guns.

HIGH ANGLE FIRE ORDNANCE IN THE FIELD.

High angle fire in the field by the means of field howitzers is one of the latest and most interesting developments of artillery science. To Russia belongs the honour of the introduction of the field howitzer or mortar, and the piece scheduled in the table below was first issued about eight years ago. The example thus set was shortly afterwards followed by Germany, Turkey France, and Great Britain in the order named; and at the present moment these are the only nations which have adopted this distinctive type of field ordnance. The campaign now in progress, however, is the first cccision upon which it has been tried on active service, since, greatly to the disappointment of all artillerists, the Turkish howitzer batteries did not come into action during the war of 1897. It is easy to conceive, therefore, with what absorbing interest the performances of affords an interesting comparison between the construc-

32 in. TRIPLE-GEARED LATHE
the fifield tool company, lowell, U.s.a., engineers

tion, weights, principal dimensions, \&c., of the various howitzers; also information concerning their ammu-
nition, projectiles, and high explosives for use with nition, projectiles, and high explosives for use with
common or high capacity shell, as it is more generally termed.
Our 6in. howitzer is, strictly speaking, a siege train piece. When mounted on the travelling carriage, 35 deg.
is its maximum elevation possible, when fired on the apper carriage only-as would be the case from trenches or

AMERICAN MACHINE TOOLS. By our ambrican Correspondent.

In Fig. 17 above is given a view of the gearing of a 32 in . triple-geared lathe, which is equipped with a tailstock instead of a turret. The head is strongly back geared, and is triple-geared into an internal gear on the
back of the face plate, the teeth of this gear being cut

	England.		France. 120 mm . field howitzer	Germany.		$\begin{gathered} \text { Russia. } \\ \text { fin. } \\ \text { field } \\ \text { mortar. } \end{gathered}$	Turkey. Krupp 12 cm . field howitzer.
	Gin howitzer of position.	5 in . field howitzer.		$\begin{aligned} & 15 \mathrm{cru} \text { heavy } \\ & \text { howitzer. } \end{aligned}$	$\begin{aligned} & 10.5 \mathrm{~cm} . c / 98 \\ & \text { field howitzer. } \end{aligned}$		
Construction	steel	steel	nickel steel	nickel steel	nickel steel	steel	steel
Calibre ...	6 in .		$4 \cdot 7 \mathrm{in}$.	5.9in.	${ }^{4} \cdot 1 \mathrm{lin}$.	6 in .	4.7in.
Length of barrel	94 in .	49 in .	$66 \cdot 8 \mathrm{in}$.	$66 \cdot 8 \mathrm{in}$.	49 in .	53.9 in .	55 in .
Weight of barrel and breech ...	30 cwt .	91.	13.5 ewt .	21 cwt .		9 cwt .	8.8 cwt .
Greatest possible elevation	$35^{\circ}\left(70^{\circ}\right)$						45°
Weight of gun and carriage unlimbered ...	54.7 ewt .	$31 \cdot 6 \mathrm{cwt}$.	29 cwt .	43 cwt .	\%	24.8 cwt .	$21 \cdot 9 \mathrm{cwt}$.
Weight of gun and carriage limbered up	$68 \cdot 2 \mathrm{cwt}$.	45 cwt .	$46 \cdot 5 \mathrm{cwt}$.	50.5 ewt .	8	$41 \cdot 3 \mathrm{cwt}$.	$41 \cdot 3 \mathrm{cwt}$.
Ammunition -					4		
Material Weight of projectile	Forged steel $118 \frac{1}{1 / b}$.	Forged steel 50 lb.	steel 45 lb .	steel 93 lb .	steel	steel 57 lb .	iron 44 lb
Explosive in common shell	Lyddite	Lyddite	Melinite	picric acid	picric acid	Melinite	black powder
Bullets in shrapnel *	518	372	630	no shrapnel	- 즐	683	
Muzzle velocity, feet per second*	779	782	-951	${ }^{905}$	2)	621	
Maximum range, yardst	10,000	4,900	7,217	6,561	$\%$	3,718	6,342

Muzzle velocity with maximum charge.

+ Maximum range
other more or less permanently-fortified positions-the gun can be elevated to an angle of 70 deg . The piece corre sponds to the German gun of 15 centimetres, which, now hat no less than sixty-nike six-5. Model 1898 , is against strongly entrenched and fortified positions Great secrecy is being observed concerning this new weapon, which is not even mentioned in Commandant Vallièr's recent work, setting forth the military and naval artillery armament of every Power from the highest to artillery armament of every Power from the highest to
the lowest. It is said that the Artillery School at Jüterbog is delighted with the $10 \cdot 5$ centimetre howitzer. which "fulfils all modern requirements, and is as which "fulas as it is exact." The South African Republic possesses one or two of the Turkish Government.

The mineral production of Canada continues to grow at a very satisfactory rate, the value for 1899 being officially re-
turned at $47,250,000$ dols., as against $38,000,000$ dols. in 1898. Gold stands first with a total value of over $21,000,000$ dols., of
which about $16,000,000$ dols. came from the Yukon placers. The Ontario goldfields, however, are becoming an appreciahle factor in the gold production of the Dominion. In 1896 Canada's output of gold was under $£ 550,000$, about one-eighth of the present yield. Iron and nickel alone of the metallic minerals show increased production in the year just closed. Copper, silver, and lead remaned stationary, largely owing to the prolonged labour tronbles in
British Columbia, now happily at an end. Of the other chicf minerals, coal and coke, petroleum, pyrites, salt, and asbestos, have all advanced to a considerable extent.
from the solid metal. A slip gear engages this internal gear, and a greater ratio is obtained in this way than by external teeth on a face-plate and head of the same size. The ratio of the back gearing is 12 to 1 , and that of the triple gearing is 36 to 1 . All the gearing is on the front side of the head for the sake of convenience, and as being better construction, the pull being on the same side as the work. The spindle is solid, made of forged cast steel, and runs in bronze boxes, with large and long bearings. The cone is of large diameter, and has broad faces. The feed is made positive by a cone of gears, and can be changed instantly. The triple-gear wheel which engages with the internal gear on the face plate is fitted to the shaft K , seen just above the by a housing in which the sip-gear wheel slides in and out of the internal gear. The following is an explanation of the gearing spindle gear,, , cone of feed gears on stud, D, change gear or screw gear; gear, G, feed gear or screw, H, slip gear for feeds; I gear driving to triple-gear shaft; K , triple-gear shaft ; L, internal gear or face plate
This lathe, with a swing of 32 in . over the ways, has a bed 12 ft . long takes in work 5 ft . long between the centres, and swings 19 in . over the carriage. The diameter of the front bearing is 5 in ., and of the back bearing 83 in . The solid head spindle-of forged cast steel-is 4 in . diameter, and the tail spindle is $3_{8}^{7} \mathrm{in}$. diameter. The cone pulley has five steps, the largest 20 in . in diameter, and the cone belt is $4 \frac{1}{\mathrm{in}}$. wide. The distance between the headstock V's is 16 in . The weight is about

8000 lb ., with an extra weight of 250 lb . for every additional foot of length of the bed. The carriage has a bearing of 38 in . on the ways, and is strongly gibbed to both back and front flanges of the bed. It is fitted with friction feed, inside power cross feed, and a compound rest to move in any horizontal direction. The rack-andpinion gear for the carriage is cut from solid steel, and the important sliding parts are surfaced by scraping and
iron pieces they are usually furnished with pan bed, oil pump, tank, piping, and fittings for automatic oiling apparatus as in Fig. 20. When they are to be used for finishing cast iron or brass, they are generally furnished with a plain bed and no pan, as in Figs. 18 and 19. Plain or revolving tool posts are furnished according to the requirements of the work to be done, and these are requirements of
interchangeable.
cone is wedged between the bevel driving discs, and takes the upward thrust of the drill. By revolving the turre one-twelfth of a revolution in either direction, all the spindles are stopped and out of gear. Each driving shaft is fitted with means for horizontal adjustment of the dises, and each drill spindle has means for vertical adjustment of the friction cone. The locking pin for lock ing the turret in position is of tool steel, hardened and

Figs. 18 and 19-HARTFORD LATHES
not ground with emery. The carriage is connected with the screw by an open-and-shut nut, and can thus be connected to it at any point. The feed can be changed from right to left, or vice versi, at the feed plate instantaneously. This tool is one built by the Fifield Tool Company, of Lowell, U.S.A
Lathes made by the Pratt and Whitney Company, of Hartford, U.S.A., are shown in Figs. 18, 19, and 20.

The lathe is not the only machine tool built to operate on the turret system, but turret drilling machines, turret milling machines, and turret tapping machines are all in the. The turret drills will do much of the same wor the cutting on turret lathes, but with the advantage tha allowing large and irregularly-shaped piece to be operated upon. The drills are made with four to twelve
ground to a close fit. The bearings are all lined with phosphor bronze bushings. This machine is intended for light drilling, with holes up to $\frac{3}{8}$ in. diameter, and also for light tapping up to 1 in., and to the centre of a 20 in . circle For tapping, a straight and crossed belt are used, with a clutch operated by a rocking treadle -at the side of the base. The speed of the tool is from 250 to 2000 revolutions per minute, and may be changed to any intermediate speed at will by the operator.
The driving gear of the larger size of turret drill is of somewhat different design, as shown in Fig. 22, there being a direct drive from the cone to the turret mechansm, without the intervention of the bevel gearing shown in Fig. 21. The driving shaft A passes into the turret, and has at its end a bevel gear wheel B, which meshes with a bevel gear C. This gear C is loosely splined upon the driving spindle D , the lower end of which has a clutch E , engaging, when in operation, with the corre sponding clutch F on the inner end of the drill spindle Pivoted on the front of the gear case, in the interior o the turret head, is a bell-crank lever G, one end of which is forked and loosely connected to the driving spindle The other arm is connected to the locking bolt H , which holds the turret in position. This bolt is operated by the rod I, the bell crank K, and the treadle rod L. The latter passes to the treadle at the base of the frame When the treadle is pressed down, the locking bolt is thrown back, releasing the turret. In doing so, the bolt raises the driving spindle by means of the bell crank G , and thus releases the drill spindle. It is thus im

Fig. 23-TAPHOLDER
possible to move the turret while the driving spindle is clutched to the drill spindle. When the turret is revolved to the tool wanted, the bolt will automatically slip into the socket, and the driving spindle then moves downward and engages with the drill spindle. The turret has long projecting bearings for the drill spindles. The feed is by hand or by a foot lever.

That shown in Fig. 18 is a turret lathe with special tools for finishing cast iron and brass pieces; Fig. 19 shows a lathe having a special turret on the carriage; Fig. 20 is a general diagram of a 16 in . turret head chasing lathe of the latest pattern, having a pan bed. This latter machine is designed for chasing and threading valves, cocks, injectors, and similar articles, in which it is necessary to turn up to a shoulder, and inconvenient to use a die. Threads can also be cut in work where it would be impossible to use a die. The spindle is hollow to receive stock bars i necessary, and the patent back-geared friction head gives nine spindle speeds. The machine has a special tool slide on the carriage, an automatic arrangement for stopping the feed, and a regular automatic feed with adjustable knock-off on the turret slide. It is also furnished with a pulley spline shaft feed in addition to the regular screw feed, and has also the automatic cross feed for the cut-off slide. The general dimensions are as follows :-Swing over bed, 16 in .; front bearing of spindle, $43 i \mathrm{in}$. by $2 \frac{3}{1} \mathrm{in}$.; diameter of hole through spindle, $1 \frac{3}{4} \mathrm{in}$.; diameter of turret, $8 \frac{3}{3} \mathrm{in}$.; distance from top of slide to tool holes in turret, 2 lin. ; three-step cone pulley, 11in. largest diameter; width of belt, $3 \frac{1}{2} \mathrm{in} . ;$ length of bed, 6 ft . ; floor space occupied, $7 \frac{1}{2} \mathrm{ft}$. by $2 \frac{1}{2} \mathrm{ft} . ;$ counter-shaft pulleys, 14 in . diameter and $4 \frac{1}{4} \mathrm{in}$. face; speed of counter shaft, 390 revolutions per minute; weight, including countershaft, 2160 lb .

Lathes of the same general type are made for various classes of work, having special fittings to suit the work. When they are to be used for finishing steel or wrought
spindles, and are adapted for all kinds of jig drilling. spindles, and are adapted for all kinds of jig drilling. They will also drill, ream, counterbore, and tap a piece
of work without any loss of time for changing the tools of work without any loss of time for changing the tools or moving the work. The turret milling machines are made with four spindles, and are intended for light manufacturing work, die sinking, engraving, dc., mishing each piece at one setting. Tigs. 21 and 22 show he turret mechanism of two turret drills manufactured These drilling of Hartford, U.S.A.
These drilling machines have a heavy rectangular base, on which is cast the bracket carrying the countershaft and lower cone. A vertical post or column carries the shaft of the upper cone and the turret mechanism, and on this post slides the knee which carries the table for the work, having a travel of several inches and being moved by a rack and pinion. It can also be turned to the right and left. Fig. 21 shows part of a six-spindle Quint turret drame with friction gear. In the bearing on top of the rame post are mounted the shafts of the two bevel driving gears, one being tubular and enclosing the other. On the outer ends of the shafts are the bevel discs A and B, revolving in opposite directions. These dises are within the turret. The six drill spindles are carried in suitable bearings in the circumference of the turret, and on the inner end of each spindle is secured a raw-hide or leather friction cone C. The turret is pivoted excentrically to the driving shaft, and by this arrangement only the drill in use or vertically over the bed is driven by the gearing. The other spindles are motionless or "dead. When a spindle is in position over the bed, its driving

AMERICAN TURRET DRILLS

The dimensions, \&c., of these two turret drills are as follows:-

	Friction gear drill.	Bevel gear drill.
Distance from table to end of spindle, maximum	181 in .	20 in.
Distance from table to end of spindle, minimum	lin.	
Distance from centre of drill to face of column		
Size of table ...	13in. diam.	12 in . by 18 in .
Vertical movement of table	412 in .	
Speed of countershafts, revolutions per minute	350	250
Speed of drills, with patent cone countershaft	250 to 2000)	
Speed of drills, with common countershaft	$350 \text { to } 1400)$	75 to 750
Height from floor to centre of turret ...		
Size of base Weight, complete	1412in. by 19 in 430 lb .	$14 \frac{1}{2} \mathrm{in}$. by 19 in 650 lb .

For tapping, a patented reversing tap-holder is used, shown is Fig. 23. It is made of steel, and all parts sub ject to wear are of hardened tool steel. It will tap to any depth, and from the smallest size up to $\frac{1}{2} \mathrm{in}$. diameter. It automatically stops and backs out, no reversing belt or experienced workman being required to operate it. One of its great advantages when used with the turret drill is that the work can be drilled and tapped at one setting, hus ensuring accuracy.

This reversing tap-holder is shown in Fig. 23. Here P is the socket by which the holder is attached to the driving spindle, and O is the socket for the shank of the tap. Outside the main body G of the holder is a sleeve H carryang at its lower edge two driving pins L and on its side a $\mathrm{B}, \mathrm{C}, \mathrm{D}$, driven by it, is fitted. In this train D is driven by F and C meshes with B . The operation of the holder is as follows: - The two pins I engage with the pins M as nd ired speed until the desired depth has been reached The feed is then stopped, but the top still revolving drews he pins M away from I, and the tap then stops too. At his mine my the X , and this thom atill the rinues to D, C, B are diven in a con, increased speed. ncreased speed.
In the turret milling machine the turret is rigidly held by a double locking device while the machine is running. By pressing on a foot lever the double locks and the ariving shaft are released from the cutter spindle, so that the turret can be revolved by hand to the tool wanted without stopping the machine. The work table is attached to a balanced vertical slide, which has a travel of 4 in . on the supporting knee by means of a rack and pinion operated by a hand lever. The knee is moved up and down on the post or column by means of screw and bevel gears, the crank handle operating, which is provided with an index pin fitting a circular perforated index plate. This gives any measurement desired with great accuracy.

THE WORKMEN'S COMPENSATION ACT (1897) EXTENSION BILL.

The recent discussion in Parliament upon the second reading of this Bill seems to show that the provisions of the to the agricultural labourer. Seamen, according to the Home Seeretary, cannot be dealt with by any modification of the Compensation Act, but "he hopes that the time will come when the principle of the Bill will be applied to seamen also." In our issue of February 23rd, 1900, we published a precis of the proposed measure. It must not in any way be confused with the Bill which has been laid on the table by Mr. Woods, Mr. John Burns, Mr. Pickard, and Mr. Steadman. Mr. Goulding's Bill merely asks for the extension of the present Act to agricultural labourers, while that brought in by the labour members asks for drastic reform. As pointed out by the Home Secretary, the greatest difficulty will arise "hen it is sought to find a satisfactory defnition of the term aguicural abo 1897 will be are the hope that the exlition of these artificial distinctions between the different ton of the working-class population which according to Mr. Asquith, have taxed all the resources of her Majesty's judges to interpret. If, while enlarging the boundaries of the Act, our legislators would at the same time turn their attention to amending certain of its hazy clauses, much trouble might be saved. The proper definition of the word "factory" is still uncertain. It is at present doubtful whether proceedings must be brought within six months of the accident, and whether a workman must have been employed for at least a fortnight before compensation can be assessed. These questions might easily be settled once for all by a clause in the new Bill.

LITERATURE.

Kinematics of Machinery. A Brief Treatise on Constrained Motions of Machine Elements. By John H. Barr
We are not in a position to say how the subject of Mr. Barr's book may have been regarded when used in the lecture theatre or class-room, but as a book it is unques tionably a failure. It is either too elementary or too
advanced, just as one chooses to look at it. If it is advanced, just as one chooses to look at it. If it is
intended for lads just beginning an engineering training, intended for lads just beginning an engineering training,
it fails in that it is too abstract. Actual concrete examples are wanted to give the young and inexperienced mind a notion of motions. If, on the other hand, it is designed for older students, though its principles may be
right, they are applied to such elementary cases as to be right, they are applied to such elementary cases as to be almost valueless. What, we may ask for example, is to
be gained from an observation of this sort, "Relation bebe gained from an observation of this sort, "Relation be-
tween Plane, Helical and Spherical Motions.-If the translation component (pitch) in a helical motion be increased till it equals infinity, the motion reduces to plane translation. On the other hand, if the translation component be reduced to zero, the motion reduces to plane rotation?" The least ingenious scientific Rack-
straw could produce numberless such Little Buttercupian dark sayings. For example :- "If the zigs of a vertical zig-zag are infinitely great, the zig-zag becomes a vertical straight line. On the other hand, if the zags of a vertical zig-zag are infinitely great the zig-zag is a horizontal straight line." We may leave the consideration of the effect of increasing both the zigs and the zags to infinity
to Mr. Barr's students as a problem likely to develope to Mr. Barr's students as a problem likely to develope
interest in harmonic motion! To mention such facts incidentally in a lecture for the elucidation of some other problem is one thing, to write them down in print is quite another matter.
Mr. Barr's definitions, too, are more suitable to the tongue than the pen. They are, to say the least, inexact.
We find what is virtually a contradiction in the first few pages. Motion is defined as "a change of position, and it is measured by the space traversed. Time is not in volved in this conception;", and a little further on we read, "two portions of a rigid body can have no motion relative to each other." If, then, we mark two points on a revolving dise, one nearer the centre than the other, in one revolution one has passed through a longer path than the other, which, as it implies a change of relative position, flies in the face of the second definition. The only thing that has been the same is the time, the very
element which Mr. Barr has withheld. What the author's meaning is, is quite evident, and we only make this reductio ad absurdum to show whither slack definition may lead. Motion is not a change of position, but the act of changing position; its amount is measured by the length of the path passed through, not by the space traversed, unless we know in what way that space has been trameasure of it than space. Other definitions could also be found in the book which might be subjected to criticism. On the whole, then, it is not a book on kine-
matics which we should feel disposed to recommend although there are here and there in it useful sections.

Traite de Nomographie. Par Maurice D'Ocagne. Paris Gauthier-Villars. 1899.
To reduce to a simple reading of graphical tables, made once for all, the calculations which occur in the practice
of the various technical arts is the subject considered in of the various technical arts is the subject considered in
the present treatise, under the name of Nomography the present treatise, under the name of Nomography,
meaning etymologically in Greek the graphical repre meaning etymologically in Greek the graphical repre
sentation of a law. This method of replacing numerical computation by graphical tables, which enable the re-
quired result to be read off, is much appreciated by quired result to be read off, is much appreciated by
engineers when a large number of calculations of the engineers when a large number of calculations of the
nature, say, of earthwork quantities, has to be carried out. The author has made his treatise appeal to a large
class of readers by introducing such varied applications of class of readers by introducing such varied applications of nomography as meteorology, barometric formulas,
optical calculations, navigation, plane and spherical optical calculations, navigation, plane and spherical
trigonometry, Kepler's equation, solutions of equations of the second, third, and higher degrees, loss of light from lighthouses, probability of fire, thrust of earthwork, locomotive traction, flow of water, \&c. The simplest nomo-
praphic instrument in common use is the Slide Rule, now graphic instrument in common use is the Slide Rule, now becoming of more frequent use in elementary instruction from the advocacy of Professor Perry.
Lalanne's principle of anamorphosis is explained on page 31, by means of which curved lines of a nomograph can be replaced by straight lines. A familiar instance is found in Human's logarithmic chart, utilised by Boys and Vincent for recording results of wave velocities in
solid and liguid media. Captain Weir's azimuth diagram solid and liquid media. Captain Weir's azimuth diagram, sold by Potter of Cheapside, might well find mention; invented for the graphical solution of a problems in navigation, the system of confocal ellipses and hyperbolas comes in useful for plotting electro-magnetic curves, besides cipal features of confocal conic sections. Employers of labour will find it useful to construct an abacus of the wages and output of their workmen, as a sort of indicator diagram referred to co-ordinates not yet employed in thermodynamics.
The work has obviously been a labour of love to the study of the construction and use of the abacus in all it variety. His book is a very complete treatise, and should be the study of our scientific engineers.

BOOKS RECEIVED.

Fire Test rith Floors: A Floor by the "Gypsine " Brick Com-
pany. London: The British Fire Prevention Committee. 1900. Tracerse Tables for Use in Mine Surveying. By Wm. Lintern.
London : Crosly Lockwood and Son. Price es, net. 1900. London : Crosly Lockwood and Son. Price 3s. net. 1900. Les Bandages Pneumatiques et la Resistance au Roulement: Etude
Theoriqure et Pratique. Bon de Mauni. Paris: Vve. Ch. Dunod.
1899.

Institution of mechanical engineers.
Os Thursday evening, the 22nd inst., the discussion on two papers read at the previous meeting of the Institution Wickshanical Engineers was resumed. Mr. Hartley Weing well enough to attend. A letter from him, dated Malvern, in which he expressed his regret at not being Malvern, in which he expressed his regret at not being
able to be present at the council meeting, was read by able to be present at the council meeting, was read by
the secretary. In it the President said that he put himself entirely in the hands of the council, and if they were of opinion that, in view of the quantity of business to be transacted occasioned by the reception of the American engineers and the summer meeting, it would be better for another President to be elected in his place, he would willingly retire. His whole wish was to do whatever was best for
the Institution. Mr. Wicksteed intimated that the the Institution. Mr. Wicksteed intimated that the
council had unanimously agreed that Sir William White council had unanimously agreed that Sir William White
should be retained as President till the expiration of his should be retained as President till the expiration of his erm, an ann
the meeting.
Before the discussion of the papers began Mr. Amos drew attention to a diagram of the "Little Giant" drill which had been completed since the last meeting. This diagram, with the description, is reproduced with the rest of the paper on another page.
arrange the reservoirs that any moisture in the air might be deposited in them instead of in the tools. At Doncaster they used the Bradford rotary drill for tapping and driving stays. For the former purpose a reversing cock is fixed to the tool. They use also pneumatic hammers for chipping and caulking. The great thing with these for chipping and caulking. The great thing with these
is to select those in which there is the least vibration. is to select those in which there is the least vibration.
They have also some machines of their own design. They have also some machines of their own design.
For repair work they used a small engine with cylinders 4 in . by 4 in . for re-boring cylinders. The little engine 4in. by 4in. for re-boring cylinders. The little engine
illustrated below, Fig. 1, has piston valves, the air being taken between the pistons and exhaust taking place from both ends of the valve chest, which are quite open. This engine is bolted at a convenient place to the frame, and the boring tool is driven by a strap from it-see Fig. 2, page 327. If the strap gets loose the engine is simply moved back a little further. For refacing valves the engine is placed vertically instead of horizontally, and belted to the tool. They have also a whitewashing plant rigged up on a truck, which they use for whitewashing buildings, and so on. They had also tried a pneumatic apparatus for cleaning the cushions of railway carriages. It consisted of a sort of currycomb, which was run over the cushion; the air entered through one pipe and left by another, the end of which was in a bucket of water. A current of air was induced by the

Fig. 1-Air engine for boring tool

The discussion was opened by Mr. C. L. Simpson, who, referring to the manner in which Mr. Samuelson estimated the power of hammers, said he thought the shortness of stroke in the pneumatic hammer should be taken into account. If the steam hammer was used under
proper conditions it was not so uneconomical as the com proper conditions it was not so uneconomical as the com-
parison made it appear. To get the best result, small parison made it appear. To get the best result, small
pipes should be used, and the steam should be superpipes should be used, and the steam should be super-
heated. Mr. Simpson then described the class of work heated. Mr. Simpson then described the class of work
for which they used pneumatic tools at Pimlico. As a for which they used pneumatic tools at Pimlico. As a
rule, they found no difficulty in getting the men to adopt the Boyer hammers, but in the ironfoundry the trimmers complained of the vibration, and only the younger men could be prevailed upon to work them. For nearly all purposes they find Boyer drills more convenient than
flexible shafting or ratchet braces. They were now flexible shafting or ratchet braces. They were now
taking air down a well 200 ft . deep, and were drilling taking air down a well 200 ft . deep, and were drilling
holes in girders in the well with a piston drill. As far as holes in girders in the well with a piston drill. As far as
they had gone they had found pneumatic tools a success they had gone they had found pneumatic tools a success; but whether they would pay when renewals and repairs
were taken into account it would need time to decide. were taken into account it would need time to decide.
They believed they would, and they expected before very They believed they would, and they expected before very long to increase the number of tools they had in use. for several Tabor moulding machines, and for whitewashing.
Mr. Ivatt, called upon by the President, said that pneumatic tools were now largely in use at Doncaster. Air at a pressure of 80 lb . per square inch was supplied to the mains and two other compressors essh aiver divering 40 cubic feet air per minute. It was important that the air should be delivered to the compressors as cold as possible, and it was worth while erecting trunks on the north side of the shops or taking them through cellars in order to keep the temperature down. It was also advisable to so
rush of air in the apparatus, which sucked up the particles of dust through the comb and delivered them into the water. The action was very pretty, but it was not fast enough. They used their compressed air at Doncaster also for blowing through cylinders after repairs, and for taking engines out of the shops they filled up the boiler with compressed air and ran them out with that instead of raising steam.
Mr. Fielding said he had used pneumatic riveters and drills. As regards the former, although he does not con sider that they do work equal to hydraulic pressure, he believes there is a field for them for the replacement of hand riveting. As regarded caulking tools, some twenty-four years ago he had made tools which did not differ much from those in use at the present day, but at that time the trend of opinion was that superior riveting by hydraulic pressure would do away altogether with caulking, and not very much had been done with the tool. A diagram of it was shown. It did not differ very greatly from the caulking hammers used to-day. A feature of it was a spring which kept the tool pressed away from the tup, so that though the latter might be reciprocating, it did not strike till the workman compressed the spring by pressing the edge of the tool against the work. He believed that the use of the spring in this way reduced vibration. He asked the author if there was any serious objection to the air pressure being increas ϵ from 80 lb . to 100 lb . By so doing both the weight and bulk of the compressors would be reduced. Mr. Amos replied at once that the London and North-Western Railway Company was, he believed, using pressure from 100 lb . to 120 lb .
The next speaker was Mr. Martell, who praised the paper, the subject, and the author, with an impressiveness which is only to be acquired by constant practice at the greatest importance, he could not tell the meeting
with what interest shipbuilders all over the world regarded it, and he thought the utmost credit was due to Mr. Amos for bringing it before the Institution of Mechanical Engineers. From the nature of his business but he had to see that things were well done, and he could say of pneumatic tools that they turned out excellent work. He had seen ? in. rivets driven up by long
various heights in the cylinder, and a suitable valve being provided which opens any one of these holes at will, but only permitting one hole to be opened at one time. By heights ins, escape for the air is provided at differen above or below the piston immediately the top or bottom of the piston passes the hole which is open. Thus by having a low hole open, only a small cushion is formed

RE-BORING CYLINDERS WITH AIR ENGINE AT DONCASTER

Boyer hammers, and had slotted the plates through, and found the holes very well filled. In rapidity, and economy was effected thereby, they were greatly superior to hand labour. Contractors saw in pneumatic tools the means of obviating some labour troubles, and they found to their hand a means of executing contracts within specified times. With regard to the cost of riveting by air pressure, he read parts of an interesting letter referring to work done in Cramp's shipbuilding yard at Philadelphie. From a record of 95,000 rivets they had found the cost to be about $1 \cdot 25$ cents, as against $3 \cdot 19$ cents for hand work, and a saving of about 47 per cent. had been effected by their use. The two things necessary to the use of pneu-
matic tools was common sense and plenty of compressed matic air.
Mr. Mariner gave some account of the use of pneumatic tools at Yarrow and Co.'s yard. They employ air hammers for a good many purposes, and prefer the Boyer to other makes, as it gives less vibration. They have no complaints from workmen on that account. Arrangements are made so that the power of the blow can be regulated by a screw, and thus the operator need give no attention to how far the trigger is pressed down. For supplying the air they find a good quality light indiarubber hose better than armoured hose, which is too heavy and inconvenient. The pressure they use is 100 lb . An advantage of pneumatic chipping is that, on account of the nature of the blow, the chisel can be ground much keener, and, consequently, cuts faster and better. The force of the blow delivered by an ordinary hand hammer makes it necessary to have a comparatively thick edge to the chisel. Pneumatic drills are employed for a large variety of work on their boats. They had tried them for expanding boiler tubes, but with little success at first, because the spindle ran too fast, because they would not reerse, and because just at the end great pressure is required. They had then modified a Boyer drill, fixing a reducing gear f a reversing cock. They used pneumatic hoists also, but had found that until the operator had got used to the valve their action was too rapid. Comparing electric and air transmission, there were, said Mr. Mariner, distinct fields for each. Where it was necessary to give blows, for example, pneumatic pressure had to be used ; but, on the ther hand, when the power required exceeded about 30,000 oot-pounds per minute electricity had to be adopted. An advantage of pneumatic tools was that they were selfcontained, the power being exerted on the spindle, and o flexible shaft being required as with electric tools. Then the electric drill is heavier, but the cable can be led through places where the pneumatic hose could not be taken, and the weight can be taken advantage of, when drilling vertical holes, as in decks, \&c. Thus the decision of which class of tool was best could only be decided by a consideration of all the circumstances.
The Player power hammer, which we illustrate, was then described by a member of the firm. The hammer is driven by means of a crank, which works with a gunmetal block in a cast steel banjo. To which the cylinder is bolted, and the cylinder itself is thus driven and down by the crank, being guided by slides which are cast on it, which bove in on the frame. The bottom of the cylinder is provided with a suitable stuffing-box, and through this the pistonrod projects. The stuffing-box provides an air-tight joint, so that the piston has an air cushion above and below it. The tup, or hammer head, is fastened to the bottom of the piston-rod, and all power is transmitted to this tup by means of eitherce the blow is varied by varying yhe a and this is done by a series of holes being drilled at
underneath the piston, consequently a heavy blow is obtained, while if a higher hole is open, a heavy cushion underneath and a small cushion above the piston is obtained, and the piston is consequently held off its work. There being a number of holes thus permits considerable
variation of the weight of the blow. Snifting valves variation of the weight of the blow. Snifting valves are provided a top and bottom of the cylinder which allow the piston to suck in air to replace any leakage or to
neath it, with the exception that the radii are at different angles, so that when one slot of the plate correspond with the slot underneath it all the rest are closed, while the small angular movement of the plate closes the open slot and opens one of the closed ones. This angular movement is obtained by providing this plate with a pin which projects into a slot in a sliding bracket. As the eylinder goes up and down this pin runs up and down the slot: but as the bracket containing the slot can be moved horizontally by means of a treadle or hand gear, the pin is pushed to one side or the other, and thus causes the plate to revolve through on angle large enough to open plate to revolve through ande each slot in turn. It is estimated that the power require to drive this 320 cwt. ham
The Prevident of
 said that, when he started making pneumatic tools some five years ago, the oupure and they expecteal shortly to double that quantity, so that and lhey expech shortly to doule that there were good reasons for thing that the pneumatic tool was coming into fave new tools, particular a boiler. They had a good tool, too, for biting the heads off rivets instead of chipping them off; altogether they
 confident that in a few years time pneumatic tools would be very largely used in Europe.
左. Churchward, assistant locomotive superin tendent, Great Western Railway, in showing the parts of pneumatic tools which wear out most at Swindon, re marked that although these tools were worth having in spite of repairs, because of the rapidity with which they worked, endeavours should be made to construct the parts so that they would last longer. Improvements are possible in the following directions: In reducing the vibration of hammers; in providing means for preventing the tool from dropping out; and in fixing a shield over the exhaust to prevent the operator's hand from getting numbed. A first-class light hose with a perfect unleaky joint is needed; a stronger type of hammer is required and also some tool for shearing the heads off rivets and stays, which will take only five seconds instead of fifteen seconds as now required for copper stays. A good tool for cutting out tubes and dropping them to the bottom of the boiler was also required.
With regard to the noise that caulking and chipping tools make in a boiler-shop, they found that this could be greatly reduced by pulling a broad old driving belt tight round the barrel of the boiler. They had made a great mended any one who thought of starting the use of com-

PLAYER'S 5 cwt . PNEUMATIC HAMMER

renew the cushion when the hole that is open is altered The valve gear used consists of a casting which fits on the back of the cylinder, and which has scored in it passages leading from the holes drilled in the cylinder to slots connection from the cylinder being, therefore, througl each hole to corresponding slots on the face. Over this face is fitted a plate which is free to move bout its centre, and this plate is provided with slot forming parts of radii of a circle similar to the face under-
pressed air to begin on a large scale; they had found themselves seriously hampered at Swindon by the difficulty of expanding their system. Big mains and sufficient compressors should be laid down. As the actual compressing is expensive, it would be an advantage if some means of using waste power could be used up for the purpose. With this end in view they were arranging a special plant at Swindon. About three locomotives a day were tested under steam, and it was the intention day were tested under steam, and it was the intention
to test these on a special apparatus, so that the power
is proposition is astounding, and if based on a sound study of the question, and not only such stuff as day dreams are made of, then we do sincerely hope that Sir William will see his way at, no distant date, to explain his plans more fully than he has so far done. It is easy to talk of driving a bore-hole down into the earth till it reaches a seam of coal, then setting fire to the coal and feeding it with air and water in the correct proportions to produce a combustible gas which is to be led to the surface and burnt in gas engines, but it is quite another thing to carry such a scheme into practice, and until we have further particulars of how it is to be done ve shall remain sceptical as to its achievement But Sir William Ramsay's proposition does not end even there. We are not only to obtain gas by the subterranean combustion of coal, but we are also so to speak, to manufacture our own petroleum You must remember," Sir William is reported to have said to a representative of the Morning Post that the mines would be red-hot underground and the bore pipes would be conveying to the surface as at a very high temperature. In these circumtances the oil would distil up the pipes, and would be separated from the gas by the ordinary methods n this way we ought to be self-supporting as regards our oil." We thus are to obtain all the fuel we wan for the generation of power on land and sea. The gas is to be consumed in engines which will generate electricity, and the electricity will be transmitted all over the country for heating, lighting, and powe purposes, whilst the oil will supply our ships with means of propulsion.
Such, in brief outline, is Sir William Ramsay's new of the future methods of working mines. He has been informed that from the engineering standpoint the idea is workable, but for ourselves we must confess that we see enormous difficulties in the way and we look forward with interest to hearing how they are to be overcome. Let us consider one or two of the more obvious. We will suppose that means of igniting a mass of coal at the bottom of a long bore-hole are really available, and we will further suppose that air and water can be administered in the proper proportions to make gas. What steps are to be taken to prevent the gas from escaping through the cracks and fissures in the ground, or to ensure that it shall have something approaching a fixed composition? Unless there is a sound method available for the satisfaction of the first question, much of the gas will be lost, whilst, unless the second can be satisfied, it will be extremely difficult to run engines with anything approaching regularity. But there is a still greater problem. The burning away of coal beneath the ground must lead to subsidences and collapses of a very serious order, to which the enormous heat generated by the combustion would contribute. Many mines extend beneath the sea, and such falls and collapses as would follow the Ramsay system of working would open cracks and fissures which would quickly lead to the hopeless flooding of the workings. Under even normal conditions the inflow of water would be difficult to deal with unless all the usual methods, involving the construction of proper shafts and a staff of underground workers, were followed. How much more would it be when the whole earth had been indiscriminately riddled by the burning away of seams? In indicating these great difficulties, we have assumed for the moment that the coal can be consumed in the manner Sir William Ramsay proposes, but until it has been definitely proved we hesitate to accept the assumption. To supply air and water just where they are wanted ; and to prevent the accumulation of ashes, cinders, coke,
and fallen rock from continually choking or changing the progress of the fire will be found no easy task; whilst the control of the supply of gas so that it may not greatly exceed the demand is a problem before which the heart of the stoutest engineer might well fail. On such purely practical problems as the nature of the lining for bore-holes which are to be subjected to the intense heat of a burning mine we do not touch, nor do we propose to discuss the economical question connected with the scheme, as to do so would be waste of time and labour till the practicability of the proposals has been demonstrated.

It is, we think, to be regretted that attention should be directed to such airy schemes when there are still so many practical problems in the economy of coal mining yet to be solved. Sir William Ramsay has discoursed on the subterranean making of gas, but he would have been better employed in discussing the great stores of gas already there which now are turned to waste in every pit. Whoever can show some method of saving that gas, of bringing it to the surface, and of burning it in engines, will do the world an enormous service. Some day the question may be grappled with, and already preliminary steps are not wanting. An investigation is afoot to dis-
cover how much gas can be absorbed by coal unde great pressure. That is the converse of the conditions in the pit, where the gas is liberated by the break ing of coal, but it is one direction in which further knowledge of pit gases may be sought. No one can yet say whence it may lead, but it is at least a practical effort to find out more about a material on which the very existence of England, and, indeed, of Europe depends.

The Coal Strike.

The end of the strike is now in sight, and it is possible to forecast, with some degree of confidence what the general outcome of the sorry business wil be. At any rate, the old facts which have been new situation, have now to be faced even by the most unwilling, and all parties must now act in the light of these facts. Empty theories and dangerous delusions have now to be cast aside. Briefly, the stern realities of the situation are these :-A million mine workers went on strike because half a million voted for a strike; half a million vote for a strike because they had been misled the nuen having come out upon an impossible demand and under a delusion-the demand for a time-wage system on top of a piece-work system, and the delusion that they could win easily-have los their case ; in the conference room the leaders have been badly beaten by the unanswerable facts, figures, evidence, and arguments of the coalowners they have been routed in conference, but have not dared to go into the country among the men and admit their beating. Thus, while the hundreds of thousands of men who never desired to strike have been itching to get back to work, the others who were misled into the strike have still been misled during the strike, and a general resump tion of work has been delayed. The false hopes originally raised have been kept sufficiently alive to prolong the agony. No efforts have been made to explain the cold and sober facts to the men. No terms have been submitted to them. There has, till now, been no ballot on the question of a voluntary settlement with the owners upon the best concessions offered, and not even the protection of the law has been extended to the men willing to work

Thus we are brought back to the root principle from which we ought never to have departed-the principle that industry depends primarily and ultimately upon employers and workmen, and not upon false agitators. Sober, solid, and disciplined trade unionism, ably officered and lawfully regulated, can be a potent force in the humanisation and progressive development of industrialism. But trade unionism has been captured by political windbags and industrial wreckers. Both men and employers have permitted themselves to drift into an impossible position, from which the State has endeavoured to rescue them. But in its haste, it has misjudged the position ; the result is that instead of a secret ballot of all the men on the question of returning to work as an organised body, as they came out, we have the legislation of an empty principle, and a form of compulsory arbitration set up to enforce it. This principle strikes at the very root of the individual piecework system so essential to the welfare of the industry and the freedom of the men. The real leaders bave lost most of their powers and prestige ; trade unionism is weakened; we come back to the conduct of industry by employers and workmen according to local conditions, but with the added handicap of State interference with wages. The real trade unionism and the real leaders are discredited by this new measure and the methods it establishes, while the bare enactment of the Bill will be greedily seized by the false unionists and false leaders as a new instrument of discord and destruction. The State has embarked and is carrying industry upon a perilous voyage. State inter ference and compulsory arbitration may be all very well for disorganised trades and badly paid
workers; but the coal mining industry and workers workers; but the coal mining industry and workers
are neither badly organised nor badly paid. In the future things may be different. This new law will make them different. The strike marks the turning point. It has sown disorganisation among the men. The law will cultivate it. Men are already breaking away from the ranks. The moment the Bill becomes an Act and the State guarantees protection men will return to the pits by the thousand before even the ballot, as it inevitably will, gives them the sanction.

When the new joint boards get to work the owners will state their case just as they have in recent conferences ; the men, already in
their organisation could enforce or their industry afford, save in very rare cases, will gain nothing but probably lose by the new form of arbitration. Besides, employment will be restricted. Some old pits will be closed. Some of the least profitable seams will be abandoned. The owners will concentrate upon the best seams and introduce more mechanical coal cutters. Again, millions of householders have learned to economise coal. Engineers will effect further economies in its industrial consumption. The nation's per capita demand will certainly decrease. Coal prices will be kept down relatively, and so will miners' wages, while the very introduction of the minimum wage by legal enactment will tend to pull the usual high earnings down to the minimum. In the long run, neither the colliery owners nor the coal consumers will suffer. The miners will pay the price of the misleadership that has characterised the last few years of their movement-their employment is bound to be restricted, their labour conditions rendered more harsh, and their average earnings pulled down. One bright aspect of the matter is that the doctrine of the general strike, or Syndicalism, has received a check. If there had been no Minimun Wage Bill, but a secret ballot, as we suggested, this dangerous doctrine would have been well-nigh stamped out, and trade unionism would have returned to a saner and soberer policy, stronger as a result of the change. Now, we fear, while Syndicalism is only checked, bona fide trade unionism receives a staggering blow-funds depleted, leaders discredited, men bitterly disappointed. The next step is for the whole country to see that under no circumstances can it ever again be put to the peril and disorganisation of the last few weeks. Labour has been treated with all tolerance, but the time has come when it must learn that it has a duty to the State no less than to itself. It must not be allowed to play fast and loose with the welfare of the nation. Strong and fearless legislation is wanted. The soberer section of the working population will welcome it as bringing them peace, whilst the general body of citizens will support the Government in any sensible course, or, if it is lethargic, find means of quickening it into activity.

Electric Vehicles.

At a recent meeting of the Institution of Electrical Engineers Messrs. J. C. Macfarlane and H. Burge presented a paper entitled " The Supply and Transmission of Power in Self-contained Road Vehicles and Locomotives," and from the abstract we gave last week it will be seen that the authors have devised an entirely new type of electric omnibus. The cost of running this vehicle is estimated to be appreciably less than that of a petrol omnibus, the saving, in fact, being fixed at no less than 1d. per omnibus mile. All the well-known points in favour of electric traction, such as absence of vibration, uniform acceleration, no noise or smell, and the various other claims usually brought forward are, naturally, emphasised. But, in view of the past history of accumulator traction in this country, it will be a little surprising if all the authors' hopes are realised, notwithstanding the ingenuity that has been exercised in the evolution of the scheme illustrated and described in the paper. One of the most attractive features of the contribution is undoubtedly the table of comparative costs, wherein the cost of power is estimated at .5 d . per omnibus mile. This figure, it is to be noted, is based on the assumption that power will be obtainable at $\frac{1}{2} d$. per Board of Trade unit ; but it would be interesting to know how many supply undertakings are prepared to sell current at that price. As a matter of fact, central station engineers in this country have not hitherto shown any great desire to cater for this class of load, and we should be surprised to learn that there are many of them who are now prepared to provide current for charging purposes on such advantageous terms.

Possibly the cause of central station engineers being somewhat indifferent to propositions of this description is to be found in the fact that in many cases the voltage at the station bus-bars differs widely from the pressure needed to charge traction batteries, and the installation of additional plant therefore becomes necessary. In any case, the charging of cells calls for a variable supply pressure, and with an ordinary type of vehicle a booster or motor generator must be used. Otherwise expressed, the central station engineer cannot connect the battery directly across the mains like an ordinary motor or lighting load. This, we believe, gave rise to the high price which was often demanded for charging the electric launches on the Thames. In that case, however, the launches were not all designed for the same volt-
the pressure from 160 lb . or so to 250 lb . is so small that it is not worth having, while the additional pressure brings with it troubles which we shail not stop to recapitulate about by the rise in pressure, an old adage tells us that we camnot have our cake and eat it. The rise in pressure can only effect an economy because it permits us to can only effect an economy because it permits us to
increase the ratio of expansion. But, be the boiler pressure what it may, the final pressure must be always about the same, and that, other things being equal, must be fixed by the capacity of the low-pressure cylinder. All which means simply that, although the power being a constant, means simply smat, aler and smaller engine as the pressure
we can use a
is higher and higher, yet no such statement holds if the is higher and higher, yet no such statement holds if the
augmentation of pressure is intended to secure a greater augmentation of pressure is intended to secure a greater
range of expansion; and, so far as we can judge, no range of expansion; and, so far as we can judge, no
attempt has been made to effect any very great reduction in the size of cylinders as a consequence of the increase the size of cylinders as a consequence of the increase
in boiler pressure. Turning next to the actual results obtained from the new type of machinery as compared with the old, we cannot do better than give Sir John
Durston's own figures. He tells us that the average of Durston's own figures. He tells us that the average of
battleships with triple-expansion engines and Scotch battleships with trip
boilers is as follows:-

I.H.P.	$\begin{gathered} \text { Piston } \\ \text { speed. } \\ \text { frt } \end{gathered}$	Pressure in engines.	Revolutions	$\begin{aligned} & \text { Coul per per } \\ & \text { H.p. } \end{aligned}$
	. 875	... 145	... 103.0	$2 \cdot 40$
10,404	... 827	... 141	... 97.3	$2 \cdot 25$
6,170	712	138	$83 \cdot 8$	$1 \cdot 77$

Here it will be seen that the lower the power the more that the argument that a rise in pressure was required to secure economy in fuel at low powers is not quite subthe by the facts.
In the same table, for the purposes of comparison, Si Canopus class with Belleville boilers. The piston speeds Canopus class with Bellevile boilers. The piston speeds consumption of fuel per horse per hour. Turning to the ever to the particulars of the Diadem, which may be regarded as fitted with the very latest and best of the new type of machinery and boilers, we find, curiously enough, at 12,813 indicated horse-power she used 1.61 lb .; and at 17,262 indicated horse-power she used $1 \cdot 76 \mathrm{lb}$. of coal per horse-power per hour. From which we gather again thit at low powers next to nothing is gained by the
nugmented pressure. Nor, indeed, is this remarkable, because we find that there is no great reduction in
the dimensions of the engines secured beyond that got by an increase in piston speed. Comparing the got by an increase in piston speed. Comparing the
weights of the old and new type engines, we have the
Edgar class with Scotch boilers. The engines weigh Edgar class with scotch boilers. The engines weigh
91 lb . per indicated horse-power when the ships are of the Diadem weigh 100 lb . when indicating full power17,262 horses, Nor has the increase in pressure secured engines as a whole, for at full power, as given above, the weights per horse-power are, for the Edgar class. 202 lb .,
and for the Diadem 197 lb, , representing a total saving of 5 lb . per horse-power-something worth having, no doubt. figures do or do not include the boiler-room accessories, which, with water-tube generators, are very heavy It may be taken for granted that Sir John Durston's
paper sets forth with precision the available information paper sets forth with precision the available information
concerning the machinery of our Navy-within limits. That is to say, while it is accurate, and even complete permitted to go far. The Admiralty, like the young lady in Longfellow's poem, " knows how much 'tis best to show." Very very strict rules indeed are promulgated as to the
publication of information. When an experiment is to publication of information. When an experiment is to that they will supply no information to the Press. On
this point we shall have more to say presently; for the moment, however, we must confine our attention to published information. The question we are discussing is,
What has been the result of a radical and extensive change in the method of generating power in our war-
ships? It is quite true that the House of Commons is not the right place in which to carry on a technical discussion; yet debates on the Naval Estimates in Parliament are not without their value. We are told that considerable advantages have been gained by the adoption
of high pressures at sea and the Belleville boiler. The accuracy of this statement is traversed by very eminent
authorities. Which side is right? The subject is so authorities. Which side is right ? The subject is so
large, and so much may be said on both sides, that it is quite impossible within reasonable limits to thrash the matter out. But the time has undoubtedly come when,
as we have said, stock should be taken and the facts asceras we have said, stock should be taken and the facts ascer-
tained as to the true results of that change in the mechanism tained as to the true results of that change in the mechanism of our ships about which we are writing. It is clear from
what Sir John Durston has said that the advantages claimed by the Admiralty for the new system are a reduction in weight per unit of power at full power; a reduction in the consumption of fuel at all powers; and a special saving at small powers. The figures we have quoted end to show that the sat be witted the there more than nominal, but it must be adme true meaning of the good deal of uncertainty about the true meaning of the
igures. In order that there may be no suspicion of infairness in our statement, we give on the preceding page a table, which has been condensed from official state-
ments already published. It is contained in Sir John murston's paper, from which we have already quoted.
Here we have the means of making a general comparison of the results of the old and new systems. We
may take figures haphazard, anywhere, and analyse them. For example, the Scotch boilers of the Edgar class have $30 \cdot 6$ square feet of heating surface to one of grate sur-
face; Belleville boilers with economisers have 27.34 square
feet. The Scotch boilers come much nearer equality with the Belleville boiler in horse-power per ton than is com monly supposed. Take, for example, the figures given in column 19 in the preceding table. It will be seen that
The difference is small- $16 \cdot 2$ horse-power as against The difterence is smadl-16.2 horse-power as against
16.50 for the Andromeda. The Powerful's boilers actually weigh more per horse-power than those of the Edgar class, the figures being $15 \cdot 85$ and $19 \cdot 51$ horse-power per
ton in the Powerful against $16 \cdot 2$ and $20 \cdot 1$. per in the per ton in the Edgar. A difficulty based on an uncer-
tainty confronts us, however, in dealing with these figures. tainty confronts us, however, in dealing with these figures.
Everything depends on how much the boilers are forced, and it is quite possible to say that, whereas the figures given represent the best that the Edgar can do, they do not set forth the best efforts of the Powerful. We venture to say, notwithstanding, that the figures fairly enough represent the relative proportionate weights of the
two types of boilers. It may be admitted, nevertheless two types of boilers. It may be admitted, nevertheless,
that there is some reduction of weight secured by using that there is some reduction of weight secured by using
the Belleville instead of the Scotch boiler. Indeed, if we had to consider the boilers alone without their appurten ances, the Belleville boiler would perhaps compare favour-
ably with the Scoteh boiler. It may also be conceded ably with the Scotch boiler. It may also be conceded
that the Diadem type of engines requires less steam per that the Diadem type of engines requires less steam per
horse-power per hour than the older engines of the Edgar But it is quite well known that until an economiser wa added to the Belleville boiler the new system required more coal than the old, in spite of the excellent perform-
ance of the engines. The economiser, perched on top of ance of the engines. The economiser, perched on top of
the boiler, high up in the ship, is a dangerous innovation in a man-of-war, and it has been stated that, when going into action, such a ship as the Diadem would have to shut off her economisers and empty them.
Balancing, then, all that can be
Balancing, then, all that can be said in favour of the old and new types, it appears that by the use of high-
pressure steam a small economy in fuel is effected, and pressure steam a smal economy in fuel is effected, and
by the adoption of the Belleville boiler a saving in weight worth having, but not very considerable, has been secured It is, we think, quite fair to add that high-pressure
steam and the Belleville boiler could not have taken the steam and the Bellevile boiler could not have taken the place they hold in the British Navy if nothing else
enforced their adoption than these savings. There is little enforced their adoption than these savings. There is little
reason to doubt that high pressure was adopted because the Belleville boiler primes heavily at low pressure; only throttled steam may be drawn from it, otherwise the steam is too wet for use. The new system
has been introduced into the Navy, not because of its has been introduced into the Navy, not because of its
intriusic merits, but because the Scotch boiler had failed intriasic merits, but because the Scotch boiler had failed
disastrously. Why it failed is a long story, which contains a strong indictment of the Admiralty ; but we shall not ell it here. The Scotch boiler is not competent to mee quite right to discard it for something else. But the ystem of working, the method of construction, and the lesign of the Scoth boiler as used in our warships, did not give it a fair chance, and even now some of the most
serious objections formerly urged against it have been vercome.
We have, we think, stated as fairly as possible the position from an Admiralty point of view. The new
system is better than the old, in that it is lighter and more economical; how much lighter, and how much more economical, our readers can determine for themselves from the table we have printed. We shall not
stop to argue whether the saving is worth having or not, eth whether the methods by which the saving has been reproduce the old hackneyed abuse of the Belleville reproduce the old hackneyed abuse of the bellevile
boiler. It must be judged by results, not by theories about its action, or prejudices against a French invention. Here we come into direct opposition to Admiralty poilicy
on a most important point. Whitehall takes care that nothing that can possibly be kept secret about the nothing that can porssialy be kept secret about the
working, the durability, and the safety of the boilers and engines in our Navy shall be made known. What the result of this policy has been, and the effects of the absence of nitiative, are not recognised as they should be. When inormation is sought for in the House of Commons or else to tell, or that it would not be for the gaod of the service o tell, or that it would not be for the good of the service Navy would be more efficient than it is now. Why, it shall be our business to explain in another article.

TRIALS OF THE ASAHI.

The trials of the Japanese battleship Asahi, or Asaki, were concluded last week. This vessel was built and engined by
John Brown and Co., Limited. She is 400 ft . long between john Brown and Co., Limited. She is 400 ft . long between
perpendiculars, her beam is 75 ft ., her mean draught 27 ft . 3 in, nd her displacement 15,200 tons. The armament was de signed and constructed by Sir W. Armstrong, Whitworth, and fring guns, twenty 12 lb ., and sixteen smaller pieces and four submerged tubes. The arrangement of the guns is not very dissimilar to the plan adopted in the Formidable, but the British vessel has only twelve in place of fourteen 6in. guns. The armour made by the builders is of nickel steel, and consists of a main belt 9in. thick, 250 ft . long, 8 ft . 3in. wide, 3ft. being of the same length but 6in. thick, extending to the main deck. There are armoured bulkheads at each end of the vessel. The redoubts for the bigguns have 14in. armour, and me smaller guns are protected oy casemate wails wive a steel. There is a total bunker capacity of 2000 tons, and herefore, according to the 80 per cent. of her full power con-
sumption trial of Wednesday last, the ship has a radius of action, at $17 \frac{1}{2}$ knots, of about 4000 miles, with a proportionately higher radius at more economical speeds. The Asahi is lighted throughout withelectricity, and carries six search-lights
and about 800 incandescent lamps. She has accommodation for an admiral and staff and a complement of 800 officers and The trials began on Tuesday last on the measured mile in
Stokes, Bay with the following results:-613 indicated horseStokes, Bay with the following results:- 613 indicated horse-
power, $6 \cdot 69 \mathrm{kDots} ; 1610$ indicated horse-power, $9 \cdot 28$ knots, and

4355 indicated horse-power, 13.06 knots. On Wednesday she comple trial, the result show andy 1.59 lb . per horse-power per hour. There was a high
onlo wind and a heavy sea, but the records taken gave an approximate speed of 17.5 knots. The ship then par full power trial between Start Point and Barry Head, a distance of $12 \cdot 26$ nautical miles. Four runs were made, the first and third being in the teeth of a north-easterly gale; but with this he fautage the mean speed was 18.3 knots. The speeds on, 18.08 knots ; third rum, 18.65 knots; fourth run, 18.3 knots. The mean indicated horse-power for the entire series of runs was slightly over 16,000 . After the full-speed trial circles engine with the vessel still at full speed, and at a speed of 15 knots the hand-steering gear was successfully tried. On the return to Spithead, at 17 knots,
and reversing trials were carried out.

DOCKYARD NOTES.

The Spartiate-the last of the Diadem class-leaves Pembroke for Portsmouth on the 7th of April. She is probably the last big protected cruiser that we shall ever build-the armoured variety now holding the field. The curious thing be said long before the Spartiate was commenced at Pembroke dockyard.

The Hood, from the Mediterranean, has arrived at Sheerness, en route for Chatham and paying off. The Hood is she was built at the same time and has much the same armament. Actually, however, she is rather an improved Trafalgar, and of the same type as the Russian Tri Soiatitelia. an ex-chief engineer of the Hood's, who worked out her weights, always asserted that she was the heaviest ship in the with more than a thousand tons less. Still, one must bear in mind that chiefs are human, or rather-should we say ?swear to some superiority of his ship over all others. Whatver she displaces, however, the Hood is a fine ship, and though perhaps of the second rank, she is superior to all the big guns. The Hood's big guns could not be silenced by Maxim.

The Grand Duke Alexander of Russia has been appointed captain of the new battleship Rostislav-a reduced Poltava it has tons. She belongs to the Black Sea Feel, of theh splendid ships. We do not know whether this reproach is true, but if so, this appointment of the Grand Duke Alex-
ander is likely to take it away pretty effectually. Imperial sailors are usually looked at askance, as being probably a deal after quite another pattern, and as he will be virtually in command of the Black Sea Fleet we may look to see be brought. Possibly the appointment has more political

The Rostislav is, by the way, the most famous ship name in the Russian navy. The old three-decker Rostislav was at the Scotchman Greig at Gogland. The ironclad is of the second rank, as she only carries 10 in . for her principal armament,
but she is well protected and fast. On trial she made 18 knots with liquid fuel-at least a knot more than was expected of her. Fiverything in her is "made in Russia,"

The Royal yacht has lost all her raised forecastle except at the extreme bow, where it has been left to avoid disturbing her particularly gorgeous figurehead

The old Boadicea is now being dismantled in Portsmouth dockyard. She is going to be a hospital ship. The Ruby is

Admbal Duperre-who gave his name to perhaps still the best-known French battleship-has just died.
The destroyer Osprey has made 28.2 knots off Plymouth in a heavy sea, all weights on board. This is a very fine that our destroyers cannot exceed 25 knots or less in a

The old guns, which for so long a time have been lying in the road outside Southsea Castle, were moved on Tuesday by hand power. At present rates they will be right across the manual power is merely evolutionary and drill. The moving of such guns-either $12 \frac{1}{2}$ or 18 -tonners, it is doubfful which they are-by hand is an interesting sight, and attracted a friends did not turn up to protest.

A patent has just been taken out in Russia for a fuel that claims to increase the calorific of coal some 25 per really the " breath of Empire" that the Navy League tells us it is, the Russian navy would appear to be within measurable distance of the necessary breath. Their smoke hitherto has been pretty black, as they burn all kinds of things alter-
nated with best Welsh. A Mr. Strong, an Englishman, we nated with best Welsh. A Mr. Strong, an Englishman, we
are told, is the patentee. At the same time we are reminded are told, is the patentee. At the same time we are reminded
that Westport coal from Australia is nearly smokeless, and was used by the Calliope at the time of the Samoan affai

The Sanspareil is leaving Sheerness this week for Portland to carry out her annual prize firing. The Trafalgar
from Portsmouth is also going, so altogether the Reserve Fleet should be pretty well up to strength.

Yeswierday the Japanese cruiser Iwate was launched from 41 ft . deep. Her di she is 400 ft . Iong, 68 ft . 6 in . in beam, and sin. and foutten spacement is 9750 tons. She carries eight 2 t -pounders, and four submerged torpedo tubes. She elg thus a very typouncal Elswick ship.
is

THE TUGELA BRIDGE．
As a supplement to to－day＇s issue we give reproductions from
two most interesting photoraphs which have been courteusly handed to us by Mr．M．W．Carr，consulting engineer to the Natal Government．These photographs show the bridge over the
Tugela River at Colenso，which our readers will remember was Tugela River at Colenso，which our readers will remember was
blown up by the Boers．An examination of these photographs will show the wanton damage eaused to this bridge．All military
show
objects would have heen achieved had only one span been destroyed， objects would have been achieved had only one span been destroyed，
but not content to simply do this，the Boers have wrecked every but not content to simply do this，the Boers have wrecked every sive used was probably placed on the top and bottom of each girder
at some distance away from the piers，and the result was that the at some distance away from the piers，and the result was that the
girders collapsed and siliof the masonry piers．In the case of the
wrecked pier，however，it would seem that undermining had been resorted to．
The destroyed bridge，an engraving of which as it appeared before being destroyed is shown above，formed part of the Maritzburg－ under the superintendence of Mr．Carr，when chief resident engineer
to the Natal Government．The bridge was completed in the year 18 the Natal Government．The bridge was completed in the year
1885．The contractors for this piece of railway were James Perry and Co．，and the iron structure of the bridge was supplied by
Head，Wrightson，and Co．It consisted of five spans，aech of 10oft．
the girders being 105ft． piers were built of a fine hard freestone on onarried in a p piers．These
neighbouring ocality．Great care was exercised in their erection－and indeed
in the construction of the whole bridge－－which was considered quite the show bridge of the colony．The excavation for the piers was
the taken down to the solid rock，which at this place comes near the
surface，and the foundation stones were set on the rock in one to
one cement and sand．In design the piers are very strong，and neces
sarily so，as frequently they have to withstand furious floods which come down in a remarkably short space of time．Colenso is so near
the foothills of the Drackensberg that the stream，which one evening the foothills of the Drackensberg that the stream，which one evening
may have but little water in it，may in the morning following have risen 20 ft ．，and be a raging torrent．In the views we reproduce，it
would sem as though to large a bridge had been provided at this point，but this is by no means the case，as the water stretches from applies to all the bridges in Natat．Streams ．That in same remark weather
ope could almost jump across are often traversed by railway bridges one coult almost juimp across are often traversed by railway bridges
of 10oft．span．This great length is quite necessary．In floods the water level may rise so greatly that it comes but a few feet below
the underside of the girder，and the stream may be much more than the underside．
10oft．wide．
In our issues of January 19th and February 6th we gave photo－
graphsand drawings of the new spans，which were made by the Patent graphsand drawings the newspans，which were made the Patent
Shaft and Axletree Company to take the place of the spans
destroyed at Colenso and at Frere．These were ordered by the Natal Government，when these bridges．were blown orperead by now some of
the spans，if not all of them，have arrived at their destinations he spans，if not all of them，have arrived at their destinations，and
in the case of the Colenso Bridge，at all events，they will have arrived before they can be used．As a matter of fact，the Natal
authorities，as soon as ever hostilities begun，set to work to male provision for the temporary repair of such bridges as might be
blown up．It was recognised that such an eventuality was more
the than a probability．The locality does not produce timber of the
requisite character for making temporary bridges，and all of this
had to be imported．So quickly was the work organised，however that weeks before our forces finally occupied organised，howeve
sary timbers for the nece sary timbers for the temporary repair of the bridges were obtained，
worked to size and shape，and loaded ready on trucks．In the
riginal of one of the photographs which we reproduce there is for the necessary repairs．The temporary bridge is alongside the recked briage，but at a lower level，of course，the rail being diverted
on to the new structure．The timbers are made up into trestles which are placed on the bed of the stream and as securely trastened as circumstances require，being further secured by weights piled up
on the cross beamm sat the bottom．The temporary bridge at Frere has long since been completed，and that at Colenso was reported
complete recently，enabling through traffic between Durban，Lady mith，and Elandslaagte to be resumed．All necessary repairs and
reconstruction of the way and works have been carried out in the most expeditious manner by the engineering department of the rail way，under the supervision of Mr．J．W．Shores，M．Inst．C．E．，engi－
neer－in－chief．

HYDRAULIC MACHINERY FOR HANDLING ORE．
The Pittsburgh，Bessemer－ hauls a large quantity of iron ore from Conneaut harbour．Ohio，to he smelters in the vicinity of Pittsburgh，Pa．To facilitate the ransfer of ore from vessels to the cars，an unloader has been designed
which accomplishes more in the same time than any other machine of its character now in use in the United States．We illustrate his machine on page 331．It is known as the Hulet auto
matic unloader，and has removed cargo at the rate of 300 tons hour．Its operations are somewhat similar to the American scoo redge，except that it works in the hold of a vessel instead of ch
he bottom of a harbour． The machine is operated as follows：－Mounted on a railrcad
track，it is moved along the dock to a point opposite the hatchway
of the steamer or barge．Mounted on the frame of the machine is or hey steamer or barge．Mounted on the frame of the machine is
trolley this carries a cylinder that moves the trolley to and rom the boat．Pivoted to this trolley is a walking beam，which
is operated by a cylinder secured to the same for raising and lower ing the outer end over the boat．Pivoted to the outer end of the
walking beam is a depending mast or leg；this leg being monter walking beam is a depending mast or leg；this leg being mounted
on rollers，swings a complete circle，actuated by a cylinder on rollers，swings a complete circle，actuated by a cylinder．At the
lower end of this leg is a shoe ；secured to this shoo is a clam
sell shell＂＂bucket holding ten tons of ore．This bucket is worked by
hydraulic cylinders．By turning this mast the bucket has a reacl hydraulic cylinders．By turning this mast the bucket has a reach
of 2 Oft．，and can be filled under the deck of a boat． Three men are required to control the operations－the engineer，
the bucket operator，who regulates the movements of the cylinder the bucket operator，who regulates the movements of the cylinder
as the bucket works in the hold，and a man to guide the mechanism as the bucket works in the hold，and a man to guide the mechanism
on the top platform．About 25 horse－power is utilised in moving
the unloader on the top platform．About 25 horse－power is utilised in moving
the unloade up and down the track，and the same boiler is used in
working a steam accumulator giving hydraulic pressure which is working a steam accumulator giving hydraulic pressure which is
also communicated to the cylinders of the superstructure． removing the cargoes of vessels carrying 4000 and 5000 tons，it
is intended to employ an unloader at each hatch，transferring the is intended to employ an unloader at each hatch，transferring the
ore，coal，or other freight from the hold to the shore at the rate of ore，coal，or other freight
1000 to 1200 tons an hour
The machine has been
The machine has been examined by a number of engineers，and it ports on the Great Lakes，also at New York and elsewhere．

$$
\ldots
$$

The Wat

The Waterworks Committee of the Kidderminster Tow Counct have recommended that application be made to the Local Gorern－
ment Board for sanetion to borrow 66000 for outlay connected with the
additional water supply of the tow

THE HULET HYDRAULIC UNLOADER

RAILWAY MATTERS.

The ceremony of cutting the first sod for New York's first underground railway occurred on Saturday last.
The Baldwin Locomotive Works is said to have orders ou han
done.
Tue Caledonian Railway Company's coal bill went up $£ 25,023$ during the past half-year, and of this only £2942 was
accounted for by increased mileage; the balance of $£ 22,081$ being attributable to the higher price paid.
A writer in a Russian journal estimates that to reach the level of other European countries, Russia would have to con-
struet 53,000 additional miles of railways, not including Siberia, and this only in proportion to population.
Amongst the new railways projected in Russia is a
reat line for developing the mineral industries, from Cheliabinsk great line for developing the mineral industries, from Cheliabinsk
to Tsaritzin. This line would provide the Donetz basio with
minerals from the Ural, and the Urals with coal and naphtha fuel.
In response to an invitation to engineering firms to tender for the supply of one, two, or three additional engines for
the LLeeds Tramway Electrical Cenerating Station, twenty offers have been received. The Tramways Committee aro anxious that as little delay
of the extra plant.
In view of the increased cost of traffic through the advanced prices in coal and iron, the railway companies have
decided to raise their excursion fares during the ensuing holiday eeason. Fares up to 5s. will be advanced by 3d., over that
sum and up to 10.. by 6d., and on fares above that amount by 1s.
The new spale will apply to both day and half-day trips, and also The new scale will apply to both day and half-day
to tickets for longer periods issued at holiday rates,
The results of draw-bar tests taken on the South por ton of train is 40 lb . at the moment of starting, and that per ton of train is 40 lb . at the moment of miles. Between six and thirteen
it drop quickly to 10 lb.
miles per hour the resistance remains constant, and then continues to rise almost proportionately to the speed untili twenty s.six miles
per hour is reached, when the resistance is about 21 lb. per ton.
An effort is being made by the Midland Railway Company to complete the work of constructing the new deep-water
harbour at Heysham, so as to be ready for the summer traftic of
hapo, and with this object they propose to have built three high1901, and with this object they propose to have built three high-
peed twin-screw passenger and cargo steamers for the Belfast and peed twin-screw passenger and cargo steamers for the Beifast and
Iale of Man traffic. These steamers, it is proposed shall steam
P4 knots, and it is probable they will be fitted with water-tube ${ }^{24}$ knot
A convention has been signed at Athens by M.
Theotokis, the Prime Minister, M. Simopoulos, the Minister of Theotokis, the Prime Minister, M. Simopoulos, the Mirister of Finance, and Baron George de Reuter representing the Fastern Rail-
way Construction Syndicate, for the completion of the railway from
Pireus to Demerli, in Southern Thessaly, and its eventual extension to the Turkish frontier. Branches will be constructed to Chaleis and Lamia. The necessary capital will be provided by
4 per cent. loan of $43,750,000$ f., issued by the Government and
The Tramways Committee of the Halifax Town Council met last week to consider what attitude they should adopt
with regard to the tramway clauses in the Corporation's Parliamenwithy Bili, seeing that a Parliamentary Committee has refused to
tallow Hudersfield to boundaries. This to the Halifax Bill seeks power to do to a large
bextent, lines being proposed to Hebden Bridge, Brighouse, Elland, exno ther districts. TTe Committee, notwithstanding the decision
an the case of Huddersfield, decided to proceed with the Bill in its
WITH the completion of the extensions of the Dresden
tramways now in hand there will be about 70 miles of line worked tramways now in hand there will be about 70 miles of line worked
by electricity. A new generatign station is beeng erected at at cost
of of fets0,000. In the new station there will be installed five steam
sets of 1000 horse-power each, while a further addition of two
such sets will be made to the original plant, together with the such sets will be made to the original plant, together with the
additional boiler power rendered neeessary, The tram ways at
Dresden, says the Electrical Enginer, are in the hands of two distinct companies, which purchase the necessary current for working
their lines from the Corporation, the method of charging being an
intereating one
In the works of the Dublin, Wicklow, and Wexford Railway Company there is in course of construction a new train,
intended for tourist and general traffic between Dublin and Wex-
ford ford. According to the
appointed first, second, and third-class carriages, fitted with all the most recent impecoements. Most Minterest will attache to the third-
class carriage, which is of a large bogie pattern, and is fitted with class carriage, which is of a large bogie pattern, and is fitted with
patent spring coshhons, lavatory accommodation, luggage racks, sc. This is a decided step in a advance of other Irish railways in
the matter of the comfort of that numerous section of the public
who travel long journeys in third class carriages journeys in third-class carriage
A Disastrous collision occurred on Wednesday be-
tween Glasgow and Helensburgh in which five tween Glasgow and Helensburgh, in which five people lost their
lives and over twenty were injured. The trains to which the acci-
dent happed left lives and over twenty were injured. The trains to which the acci-
dent happend left the terminus at Bridgeton at 5.55 a.m. and
6 ooclock respectively. Queen-street was reached by the earlier of the two trains at about 6 o'clock. The first train had got half-way
through the tunnel about half a mile from Queen-street, when it was pulled up in consequence of an accident to the brake. Mean-
time the second train had, contrary to regulations, been signalled time the second train had, contrary to regulations, been signalled
to proceed, and dashed with tremendous force into the obstructing
carringes. The last three vehicles were practically wreeked, and in every compartment passengers were thrown from their seats and
suffered more or less severely.
Ir is reported from Constantinople that the pending
egotiations between Russia and Turkey in the matter of railway negotiations between Russia and Turkey in the matter of railway
construction in Asia Minor are drawing to a close. The stipulaconstruction in Assia Minor are drawing to a cose. The stipula.
tions made by Rusia
made by a Power which knows such os might be the the uperer hand. to the
Russian stipulations are that railways projected in the Turkish Russian stipulations are that rriilways projected in the Turkish
provinece adjacent to the Rusian frontier shall be buit exclusively
by Turkish capital, and be subsequently entirely under Turkih by Turkish capital, and be subsequently entirely under Turkish
control. Moreover, Turkey is to give the preference to Rusin control. Moreover,
syndicates before all others in in every case in which the Porsian
contemplates the conte contemplates the construction of railways in Asia Minor. It is
thought that these stipulations are intended to act as a check to German railway enterprise in Northern Asia Minor.
Wrrt the object, says the Globe, of encouraging
emigration to the fertile regions recently opened up by the Transemigration the the fertio regions recently opened up by the rransthe issuue of tivekets at a very cherep rate. TThese special tickets
will be issued for Tobolsk, Irkutsk, and, beyond there, for Vladivostock and Port Arthur. One ticket, apparently, will cover a whole family, and will be available at something like 114 stations on the
line of route. The zone tariff has been adopted. From any point line of route. The eone tariff has been adopted. From any point
in Russian Europe to Tobolsk the price per head has been fixed at
two roubles. Beyond Tobolsk to two roubles. Beyond Tobolsk to any spot in the vast Siberian
region the charge for these emigrant tickets will be 4t roubles a
head -that is to sany, that for about 14 s . 6 d . one will travel a distance of over 6000 kiloms., or something like 4000
miles,

NOTES AND MEMORANDA.

The price of copper this month has reached $£ 79$ per The price of copper this mon last April.
The production of Bessemer steel ingots in the United States last year amounted to $7,586,354$ tons, against $6,609,017$ tons
in 1898, $5,475,315$ tons in 1897, and $3,999,906$ tons in 1896 . Pennsylvania produced slightly over one-half of the total last Penn-
year.
In Prussia last year there were 2799 steam engines in nse, with a capacity of 258,511 horse-power, exclusively for the
eneration of electric energy. A further 1000 engines of 74,831 horse-power were in use, partly for this and partly for other purpos
A patent has been taken out in America for an aluminium electrode for arc lamps. The inventor claims that more
light is produced by using aluminium for the negative, and carbon for the positive electrode, because aluminium lasts longer and the
Tre imports of raw cotton into this country from America and Egypt, cia the Manchester Ship Canal, this season
show a remarkable increase. It is said that there is now forty times as much American cotton and twice as much Egyptian cotton
last yea
The production of ingots in France, whether by the takes place in the Meurthe-et-Moselle Department, increased hy
108,000 tons in 1898 . Altogether, steel works have increased their production considerably in all branches, and their condition was
A fair idea of the ery
A Fair idea of the extent to which cold storage is now
dopted in the British Isles can be gathered from the fact the adopted in the British Isles can be gathered from the fact that
there are now nineteen frozen meat stores in the metropolis, with there are now nineteen frozen meat stores in the metropolis, with
a combined capacity of $6,000,000$ cubic feet, and forty-seven frozen meat stores in twenty-six provincial towns, with a cubicarea of about
$8,000,000$ cubic feet. If these stores were all filled with frozen $8,000,000$ cubic feet. If these stores were all
sheep they would hold nearly $4,000,000$ carcases.
When catalogues are forwarded to Consulates writes H.M. Consul for Thessaly, it might be well if some speci-
fication of trade terms were to be transmitted at the same time fication of trans to whom the cataloguues are handed could form an
so that pers on
immediate opinion as to whether profitable business would be immediate opinion as to whether proitate ousiness would such details, thus incurring trouble and losing much time.
The accounts from the new gold mining districts a Cape Nome on the Alaskan coast are still very contradictory, and
must be accepted with cantion. It it certain, howerer, hat a
cont region this season: though the exact amount cannot be stated with any approach to accuracy. According to the Enginerring and
Mining Jorraal the workings are in placer or alluvial deposits entirely, and are in the immediate neighbourhood of the sea coast
Is the new United States mint at Philadelphia electricity is to be used throughout for driving the presses and milling machines. Tine electrical equipment includes
neeted engines and dynamos, in addition to the following motor each, 11 of 5 horse-power each, 6 of 25 horse-power each, 30 o 5 horse-power each for the presses, and 15 of 5 horse-power each
for the milling machines. There is also to be an electro-refining department, and electric power will be used in the engraving
The validity of the MacArthur-Forrest cyanide patents has been a source of much litigation and negotiation in various
parts of the world. According to the Rnineering and Minimg rights in the Colony for the sum of $£ 20$, 000 , allowing the owning company to retain all royalties up to date. This amicable arrange
ment puts an end to litigation, which had been expensive to all parties, and makes it unneeessary to proceed with the appeal from the Colonial High C
Council of England.
In order to secure a permanent water supply for the various gold mines in Nevada County, California, several com panies bave constructer in the mountans a series of artinces 800 miles of canals. In 1892 the Electric
and Power Company was incorporated for the purpose of supplying light to the towns, and light and porer to the mines. Water is
carried a distance of $3 \frac{1}{2}$ miles, with a fall of 195 ft , and this drives water wheels furnishing 2200 horse-power. The present power
available through the consolidation of several flumes is not far available through the consol
short of 20,000 horse-power.
The relative actinic intensities of the three parts of the
 Herr E. W. L. Richter in Experiments employed for comparing the apparent relative intensities, using in
some cases carbons with a known percentage of a salt, such as sodic chloride. In one case mentioned, using solid carbons 13 milli metres diameter, with an arc length of 6 millimetres, 15 ampères,
and 56 volts, the ratios are- $b: a ; c=1: 2.28: 3.32$
A remarkable air compressor is employed at the North Star Mine, in the Grass Valley District, Nevada County, California,
where a 3oft. Pelton wheel is driven by a water pressure of 335 lb to the square inch, controlled by a nozzle regulated by an automatice governor. The makes sixty-five revolutions per minute. A duplex air
cup compressor is attached directly to the axle of this wheel, with the low-pressure cylinders 30 in . in diameter and high-pressure cylinder 18 in . The air, under 90 l . pressure, is conveyed soott. to
pneumatic hoisting engine of 100 horse-power, and to a 75 horse power compound pump. The air is also conveyed to the drills in
the mine. The output of the compressor is 300 horse-power.
Some tests to show the efficiency of electric incan descent lamps made by various firms in the United states have
been carried out in America recently. After burning about fifty hours, it is found that the light varies from $8 \cdot 2$ to 23.0 candle-
power, while the watts per lamp vary from $45 \cdot 7$ to $72 \cdot 1$, the watt per candle varying from 2.32 to $4 \cdot 10$, the general averages being $17 \cdot 5$ candle-power at 55 watts per lamp, and $3 \cdot 27$ watts per candle.
After about 100 hours, the general averages are 17.5 candle power
at 53 watts per at 53 watts per lamp, and $3 \cdot 30$ watts per candle. After 400 hour the averages give 10.0 candie-power at
3.54 watts per candlo. After 600 hours the watts per lampe give an
candle-power at $55 \cdot 6$ watts per lamp, and 3.82 watts per candle.
Exprriments were some time ago carried out by MM Berthelot and le Chatelier to ascertain the velocity of detonation
of acetylene. The gas was exploded in horizontal glass tube about 1 m . .ong and of of 2 mm. to 6 mm . in diameter, and was
aperated with at various pressures between 5 and 30 kilos, per
ope sq. cm . The velocity was registered by a falling photographic
apparatus, eleased at the moment of detonation. The image of
the horizontally-moving flome in the tube ombh from which a any point the velocoity could be found. The results indicate that
the velocity deporghe the velocity depends upon the initial pressure of the gas, from
about 1000 m . per second at 5 kilos. per sq. cm . to 1600 m . at

MISCELLANEA

A new pier is to be erected at Great Yarmouth. The old Britannia
the same site.
Ir is stated that a company is being formed for taking ver the shipyard and arsenal of the Compagnie Generale Tran: atlantique at St. Nazaire,
A FIRE took place last week in the lamp room of the Castle Pit, one of the Cyfarthfa Collieries, 450 lamp
but by energetic action working was not delayed
The new Norddeutscher Lloyd steamer Strassburg 5000 tons gross, built for that company's line of cargo-boats to the Far East, was launched at Bremen on the 17 th inst,
A contract has been concluded between the Rossija Steam Navigation Company and the Libau-Romny Railway Con: pany for carrying on a dir
Libau to ports of Finland
The Committee of Selection last Friday had a confer ence with the promoters of the several electric power Bis
Parliament, when it was resolved to take the Durham, the Tyneside and the Lancashire Bills in the order given, at sittings commencing
The Chesterfield and Midland Counties Institution of Engineers are to hold an excursion meeting in the neighbourhoo
of Nuneaton, on April 7 th. Arrangements have been made for visit to the Haunchwood Colliery, Stockingford, and the Tunnel fine-new colliery-Ansley Hall
The Selkirk Town Council have engaged an engineer to prepare a supplementary water supply for the town. Under thi
scheme water will be taken from the Ettrick River, passed through polarite filters, and then pumped by turbines and gas engines to the reservoir. The estimated cost is about $£ 11,000$
According to the Novosti, the Russian engineer M. river Dnieper, on the Black Sea, is at work on a project for con structing a harbour of great depth on the said estuary. The pro-
ject will be submitted in due time to the Ministry of Ways of

The Russian ice-breaker Yermak will undergo alteratons at Armstrong's yared during the coming summer, The vessel
vill be fitted with a new stem of increased strength, in order that it may be able to offer greater resistance to the ice during its pro-
jected Polar voyage. At the same time the hull of the Yermak vill be lengtnened.
There are quite a large number of vessels trading in the East in the neighbourhood of the Borneo oilfields that are using hquid fuel regularly, and their experience, says Fairplay, appear is 50 per cent. by the use of liquid fuel under forced dranght as A lakge maritime undertaking is being organised by Rostock, Wismar, and other Mecklenburg capitalists, to run a
service of 1500 to 2000 -ton steamers on the North Sea, and pos sibly also, in winter, to the Mediterranean, \&c. The first two
three boats are to be acquired by purchase. According to Fairplay, it has not yet been decide
at Rostock or at Wismar.
The industrial centres of Germany have just given practical proof of the fact that they recognise both the value and
necessity of a knowledge of the languages of countries in which hey foresee immense openings for their productions. The Noro the Russian Ministry of Finance to aid the.n in procuring teachers
then ussian language.
The results of the past year's working of the Holland American Line, of Rotterdam, are satisfactory, the net pront
amounting to $463,540 \cdot 13$ florins, out of which a dividend of 7 per emunerative than in the year 1898, but the pard freights were ces brisker. A new service to Newport News, in connection with the
New York line, was started last year.
JUsT as we go to press we learn with regret the death of Professor Pepper, formerly honorary director for upwards of
twenty years of the Polytechnic, Regent-street. He was the inventor of the celebrated "Pepper's Ghost" and other illusions and a great populariser of every branch of science. Mr. Pepper
was elected an Associate of the Institution of Civil Engineers in Iron mining is relatively a new industry in Mexico; nevertheless Chihuahua has a well-equipped plant supplied from
the mines of Sierra del Hierro, Durango, Mercado, and other districts which now manufacture steel rails, mining machinery of all kinds, as well as agricultural implements. Another large
rolling mill is to be erected at Monterey, Nuevo Leon, most of the roll
capital for the same- $£ 2,000,000$-having already been subscribed

The surplus at the disposal of the directors of the German Steam Natiation Company Hansa, from the past year
operations is $1,793,547$ marks 84 pfennigs, out of which a d ivideni of 14 per cent. is to be paid and about M. 66,500 carried to the new reduced in number, but good results were secured by the boat running to Argentina. The Rangoon line is developing slowl
In order to improve the condition of the Amur River begin dredging operations in the estuary of the river during the coming spring. Six lighters, a dredging machine, and the Khaba rovsk, the largest steamer at present plying on the Amur, will be
employed in dredging a channel 20 fathoms in width and 8 ft . in depth. Owing to the bar at the mouth of the river, goods have t Amur is ice-bound for half the year, and is subject to great inundaions during the summer months
The London County Council has decided upon taking Palace of Henry VIII, and Cleet-street, known incorrectly as the general approval. It has been decided to move back the groun storeys in their present position, supporting them on cantilever and is to be let for meetings of antiquarian societies and the like and is to be let for meetings of antiquarian societies and the like.
It has been found that the front of the building is at present

The preamble of the Bill for the construction of a transporter bridge, on the same principle as those at Bilbao and Runcorn and Widnes, was passed by a Committee of the House o Commons last Monday. According to the evidence given for the promoters, the girder of the proposed bridge is 82 ft . above the
ordinary high-water mark. The central span is a clear 1000 ft . from the Ship Canal. The transporting car will be 55 ft . long and 24 ft , wide. It will have a clearance of 12 ft . 6 in . above ordinary spring electric motors, and be under the control of two men. The time occupied in transporting the car from one landing place to the
other will be two and a-half minutes.

FOREIGN AGENTS FOR SALE OF THE ENGINEER.
aUstria.-Grrold and Co., Vienna.
F. A. Brockhaus, 7 , Kump/gasse, Vienna I

CRINA.-Krlly and Walsh, Linited, Shanghai and Hong Kong. france.-Boyveav and chrvilirt, Rue de la Banque, Paris. and
 taly.-Lorscher and Co., soz, Corso, Rome: Bocca Freres, Tum apan.-Krlly and Walsh, Limited, Yokohama

RUSSIA. - C. Ricker, 1h, Neesky Prospect, St. Petersher

.C. Juta \& Co., Capetoon, Port Elizabeth, and Johannesburg.
USTRALIA.-Gordon and Gotch, Melbourne, Sydney, and Brisbane.
R. A. Thompsox and Co., 180, Pitt-street, Sydney: Mel TORNER AND HENDERSOX Hubun
Ew zealand.-Upron and Co., Auckland ; Craoc, J. W., Napier. Montreal News Co., 386 and 38s, St. James-strect, Montreal UNITED STATES OF AMERICA.-I
nter national News Co., 83 and $8 \sigma^{5}$
Duane-street, Neo York.
Straits settlements.-Krlly and Walsh, Limited, Singapore.
CEtLON.-Wijayartna and Co., Colombo.

SUBSCRIPTIONS.

$$
\begin{aligned}
& \text { Halfyearly (including double number) } \\
& \text { Yearly (incling tow doublo numbers) }
\end{aligned}
$$

CLoth Rendina Cases, to hold six issues, 2s. 6d. each, post free 2s. 10d.
If credit occur, an extra charge of two shillings and sixpence per annum
will be made.
oreign Subscriptions will, until further notice, be received at the rates
siven below. Foreiga subscribers paying in advance at these rates

ADVERTISEMENTS.

The Tharge for advertisements of four lines and under is three hillings, for every two hilies atterwards one shiling and sixpence o odd
lines are charged one shilling. The line averages eeven words. When

dvertisements cannot be inserted unless dellivered before

ix o'clock on Thursday evening ; and, in consequence of the necessity for going to press early with a portion of the
edition, ALTERATIONS to standing advertisements should arrive not late

Telegraphic Address, "enaineer newspaper, LONDON.

PUBLISHER'S NOTICES
*With this week's number is issued as a Supplement a Tro-page
Engraving of the Colenso Bridge after its Destruction. Every Eopy sissued by he Publisher includesa copy of this Supplement
cond
and suberibers are repuested to notify the fact should they not

* Latest Types of the British Flekt.-Our tro-page coloured supplement, representing H.M. ships Formidable, Drake, and
Albatross, may be had, printed on superior paper, upon a roller, price 1s., by post 1 s. 1 d .
* If any subscriber abroad should receive The Enaneere in an imperfect or muttiated condition, he rill oblige by giving prompt
information of the fact to the Publisher, woith the name of the
if Agent through whom the paper is obtained. Such inconvenience,
if sufferd, can be remedied by obtaining the parer direct from
ifis ofice.

CONTENTS.

The Enaingre, 30th March, 1900.

Selected American patent

TO CORRESPONDENTS

 envelope legibly directed by the vriter to himself, and stamped, in orger
that anscers vecived by us may be forvaruled to their destination. No
notice can be taken of communications vhich do not comply veith these $*$ All letters intended for insertion in The Engrnerr, or containing
questions, zhould be accomptainied by the name and address of the vriter,
not necessarily for publication, but as a proaf of good failh. No notice not necessarily for publication, but as a proaf of good failh. No notice
vhatever can be taken of anonymous commenications. * We cannot undertake to return draxings or manuscripts: we must,
therejore, request correspondents to keep copies.

REPLIES.

. J. (Dublin).-We know nothing whatever about the material you W . (Richmond Hill, Birmingham).- We fail to understand the object of
your letter. It does not contain any information about watection your letter. It does not contain any information about water-tube
boilers that is not already fully known to every engineer or steam user who has given the sulbject the least attention.
H. S. (South Lambeth-road).-You will find full information about the
construction of locomotive boilers in "The Construction of the Modern construction of locomotive boilcrs in "The Construction of the Modery
Loconotive," by George Hughes, reprinted from The ExGINEER. If
yonwil Loconotive," by George Hughes, reprinted from The Eveinerr. If
you will call at this oftice our publisher will show you all the recent
drawings of locomotives which we have published, and which are nuw in print.
C. L. (Stafford).- You are probably short of steam, because your fire-
man does not understand the coal. If it is that type which burns with man does not understand the coal. Ine in the locomotive-type boiler.
little flame, he must carry a heavy fire in
A thin fire suitable for bituminous coal will not answer. A couple of hooks hung on the blast pipe will augment the draught, in a rough-
and-ready way known to most portable engine drivers. . B. (Birmingham).-You will find the solution to your question in any
treatise on the indicator. The loop in the low-pressure card is due to
the treatise on the indicator. The loop in the low-pressure card is due to
the fact that the pressure has actually fallen below the condenser pres sure. The engine is obviously much underloaded and the ratio of
expansion is too high, and you will save fuel by reducing the initial
cylinder pressure and the ratio of expansion by resetting your valves. TELLLA. - Tail rods are used in marine engines to prevent the pistons
from beeng forced against the sides of the cylinders as the ship rolls.
There is much diversity of opinion as to their value With stift piston rings they do not appear to be of much use. They are in favour abroad
for locomotive engines, and they have been tried in this country, but they do not appear to be worth the trouble and expense, no appreciable
reduction in the wear of cylinders or piston rings resulting from their W. (Durham).- When heavy loads are to be carried by stone columns,
it is usual to put lead plates, about one-eighth of an inch thick, between the sections of each column, to distribute the bearing equally,
and prevent the sharp angles of the stone from fying off o " spalting. and prevent the sharp angles of the stone from flying off or "spalling.
Some of the finer kinds of granite are very liable to this accident. You
will see that there is nothing exceptional in the use of lead in the case will see that there is nothing exceptional in the use of lead in the case
to which you call our attention. It is certainly not used "to make up
I. T. D.- The time of oscillation of a pendulum, through a small are,
depenids on the distance between the centre of suspension and the
centre of centre of oscillation, but the time of revolution of a a conical pendulum
cent
does not depend on the length of the arms does not depend on the length of the arms dircetly, as you seom to
suppose, but on the height of the cone described by the arms, which is,
of course, quite a different thing of conuse, quite a different thing. The time of revolution of a conical
pendulum varies directly as the square root of the height of the cone. pendulum varies directly as the square root of the height of the cone.
Thus you may have a governor with very long arms revolving at a very
high speed, the arms being nearly horizontal, or one with short arms high speed, the ar
nearly vertical, m
periments again.

INQUIRIES

EMERY CLOTH MACHINERY
Sir,-Can any of your readers tell me who are the best makers
E. C.
ardner's valve
Sir, - Can any reader kindly tell me who is the maker of Garduer's
patent valve? patent valve?
March 24th.
. H. C.

meetinas next week

 The Röntakn Societv.-Thursday, April 5th, at 8 p.m. at 20 , Hanover-
square. Paper, "The Influence of the X-Rays upon the Growth and
Development of Micro-organisms," by Dr. Norris Wolfenden and Dr. Torbes Ross
Geoloaists' Assocustion, London.- Friday, April 6th, at 8 p.m., at
University College, Gower-street, W.C. University Colle
Kentish Chalk P
E. Dibley, F.G.S.
The Institumion of Electrical Enolnerrs.-Wednesday, April 4th,
at 7.30 p.m., in the Library of the Institution, 28 , Victoriastreet. Students' meeting. Pa
H. Johnson, Student.
 A5 p.m., in the Friends' Adnlt School, Mill-lane, Stockton. Paper,
Automatic Coal Weighing and Recording Machine "(lantern illustra-
tions), by Mr. Charles Ingrey, A.M.I.C.E., Westminster. Socievt or Encineers,-Monday, April 2nd, at 7.30 p.m., at the
Royal United Service Institution, Whitehall. Paper, "Disinfection of of
the Maidstone Water Service Mains," by Dr. G. Sims Woodhead, M.A.,
 Structures of Moderate Dimensions, and of Methods of Determining their
Working Loads, " by Mr. E. W. Porter, Assoc. M. Inst. C.E., Member. Socirtr or Arts.-Monday, April 2nd, at 4.30 p.m. Forcign and
Colonial Seetion. Paper, "The Century in our Colonies," by the Right Colonial Section. Paper, "The Century in our Colonies," by the Right
Hon. Sir Charles Wentworth Dilke, Bart., M.P. Tuesday, April Srd, at
8 p.m. Applied Art Section. Paper, " Process Engraving," by Mr. Carl 8 p.m. Applied Art Section. Paper, "Proc
Hentschel. Wendesday, April th, at \& p....
"Cotton Suplies," by Mr. John A. Banister.

 The Isstitution of Crint Exaineers.-Tuesday, April 3rd, at 8 p.m.
Ordinary mecting. Papers to be read and discussed, "Economical Rail.
way Construction in New South Wales," by Mr. Henry Deane, M. A., M.
 C.E.-Friday, April thth, at 8 p.m. Students meeting. Paper, "Experi-
ments on struts with and without Latern Loading," by Mr. H. E.
Wimperis, Wh.Sc., Stud. Inst. C.E.
Reval Instrution or Great Britais.- Friday, April 6 6th, at 9 p.m.
Discourse on "Solid Hydrogen," by Prof. Dewar, M.A., LL.D., F.R.S.
 Kenya," by Mr. Halford John Mackinder, M.A.; Saturday, Apriont th,
"Polarised L.jht." hy the Right Hon. Lord Rayleigh, M.A., D.C.L.
LL.D. Sc.D., F.R.S., M.R.I.-Monday, April 2nd, at 5 P.m., Generai
Monthly Meeting.

THE ENGINEER.

MARCH 30, 1900.

elegtric lighting loans.

The conference held at the Islington Vestry Hall, on Thursday week, of the representatives of London Vestrie and district boards interested in electric lighting under takings is a forcible illustration of the express desire of these local authorities to overcome, if possible, some of the red tape with which the London Country Council has twined itself in relation to the sanctioning of loans for thatric lighting purposes. The vestries iepe Humer

 rgand to consider he Couny Corntions procedure in ferrid to loans for the purpose in questo. Berore re ferring to the proceedins at the conferce, it woul be authorising the oring of lons finc authorising the raising or loans for elecric lighting macplying and plan, applying local authority should supply details of the pro posed expenditure, but also that information old be furnished to con the amounts to be borrowed for particular items are reasonable. These two points do not appear to have been pressed in the early days of electrical illumination in the metropolis, when it was, perhaps, impossible to ascertain with any degree of accuracy the cost of carrying out works until tenders had been invited in open competition. However, as time passed away the demand on the part of the Council for details and information became so acute that the St. Pancras Vestry found that, if it had to wait such a long period before receiving sanction, a appeared to be the pleasure of the Council, the work of extending the electric lighting system would be consider ably delayed; and after remonstrating with the Counci Vestry came to the conclusion that thenable attitude, the Vestry came to the conclusion that the only course open if the undertaking was not to be brought to a standstill was first to borrow the money required, and afterward obtain approval of the expenditure. The decision was a Vestry's bankers effiect, and loans were raised from thi Vestry's bankers as occasion arose, the overdrafts on the electric lighting account sometimes exceeding the formid able sum of $£ 40,000$. Though this policy is not sound from a financial standpoint, it has met the circumstances of the case, and the County Council has subsequently sanc-
tioned and advanced the amount of the loans, and thur enabled the overdrafts to be paid off. The remed adopted would appear to have also indirectly benefited the undertaking generally, since at the present time St Pancras experiences less trouble in obtaining permission from the Council to borrow money for electric lighting
It is, however, noteworthy that whilst St. Pancras has apparently solved the problem by first incurring expendi ture and then applying for approval, the Islington Vestry has assumed an attitude of defiance, and refused to accept
sanctions of $£ 10,000$ and $£ 38,000$ offered by the Council sanctions of $£ 10,000$ and $£ 38,000$ offered by the Council
on account respectively of loans of $£ 13,200$ and $£ 56,261$. on account respectively of loans of $£ 13,200$ and $£ 56,261$.
for which application was made as long ago as August of for which application was made as long ago as August of
last year. The contention of Islington is that it has already supplied all the details and information necessary for the purpose of these loans, and from the reports mad by the Vestry's electrical engineer it is obvious that the particular department of the County Council entruste with the consideration of these matters fails to under stand either the position of affairs or the technical detail of electric lighting systems. As an illustration referenc may be made to the proposed loan of $£ 13,200$. Th figures submitted to the Council show both the estimate of the Vestry's engineer and the actual quotations of the makers. This will be understood from the following figures, the first item in each case being the estimate and the second the makers' price:-Steam and other piping $£ 4950$ and $£ 4950$; combined heating, softening, and filtering plant, $£ 1150$ and $£ 1154$; electric coal-tipping winch, $£ 400$ and $£ 400$; six superheaters on new boilers $£ 1200$ and $£ 1200$; four superheaters on old boilers, $£ 700$ and $£ 560$; three pumps, $£ 800$ and $£ 780$; and condensing plant, £4000 and $£ 4290$. By adding these figures together it will be found that the total of the estimate is $£ 13,200$ and that of the makers' quotations $£ 13,334$. The differ ence between the estimate and price of the four supe heaters is explained by the fact that $£ 140$ has been added or the alterations necessary in affixing them to existing boilers. It will thus be seen that, even when confronted with actual prices, the County Council refuses to sanction the amount required, but offiers to approve $£ 10,000$ What is the use of $£ 10,000$ without the balance Is one half of the steam mains required to be pur chased, one-half of the condenser to be ordered, or how is the $£ 10,000$ to be expended when exactly $£ 13,200$ is needed? It is objected by the Council that the price of the condeusing plant is too high; but is the Council to sit in judgment and determine whether a cheap and, in the long run, an expensive plant is to be bought, or whether a plant that is slightly dearer in price and more be the pal in the should be acquire lighting undertaking had better be transferred to it straight away. It is scarcely necessary to enter into the question of the loan of $£ 56,261$, although here again the Council questions the accuracy of the items in a somewhat similar manner. one point should, however, be mentioned, namely,
which refers to the cables. It appears that the Council, rule in hand, measures up the frontages from the plans, and allows a certain percentage for waste, and because the total does not agree with that represented by the unreasonable. But the Council omits the lengths of
cable required to connect the generating station with the district proposed to be served; it leaves out of consideration the questions of slack, and of cables for connections,
and for certain duplications which have ensured the and for certain duplications which have ensured the
successful continuity of the supply in the Islington electric lighting system since its inauguration. The whole dispute may be summarised by saying that the Council requires the Vestry to accept a four-wheeled cart
and declines to allow it to buy a horse to haul it. As the and declines to allow it to buy a horse to haul it. As the
Council still insists on further information being forthCouncil still insists on further information being forthcoming, and as the Vestry expresses its inability to supply
it, there is a deadlock between the two parties. The Shoreditch Vestry is also in a dilemma in regard to electric lighting loans, and a few weeks ago the
overdraft on this account amounted to $£ 25,000$.
The conference held last week was convened by the Islington Vestry for the purpose of considering the electric lighting loans, and after considerable discussion two resolutions were adopted for presentation to the
County Council. The first expressed the opinion that the procedure of the Council is not warranted by statute or by the practice of other sanctioning authorities, and necessary expense and waste of official time on the part of local authorities engaged in electric lighting work.
The second resolution decided to request the Council, in the forms asking for detailed particulars, to follow the Board of Trade forms, so as to harmonise with the bookkeeping system in which electricity accounts are bound
to be kept. A third resolution, which was, however, not to be kept. A third resolution, which was, however, not adhe Council of public inquiries in a manner similar to
that followed by the Local Government Boadd throughout the country. Whatever may be the result of these the country. Whatever may be the result of these in the present policy, or failing any change, for the question to be raised in the House of Commens. The the
new borough Councils will, it is true, next year have the new borough Councils will, it is true, next year have the
right of appeal to the Local Government Board in regard right of appeal to the Local Government Board in regard
to refusals to sanction loans, but this will only be
possible after a delay of six months, and as the Board possible after a delay of six months, and as the Board
already has plenty to do with provincial authorities, little relief may be expected from that department.

railway servants in south wales.

THe strike threatened by the South Wales railway workmen is. happily, no longer to be feared; but more
than local interest attaches to some of the details of the than local interest attaches to some of the detains of the agitation, and the part the Amalgamated Society of hai-
way Servants played during the five or six months of protracted of the earlier incidents, because the policy of the Amalgamated Society, as expressed by Mr. Richard Bell, Amalgamated Society, as expressed by wretary, bears a suspicious likeness to the methods pursued in that perturbed coalfield by the Miners
Federation at the beginning of last year; and because, also, the tactics have been the same as those followed in the campaign against the North-Eastern Railway, and the Southern Scotch railways, although the latter contests may have been conducted under other counsels than those
of Mr. Bell. There is always, almost necessarily, some amount of friction among the operatives of such a vast organisation as our railway system. It is equally true
that the lamb does not lie down with the lion in the less effectually organised coal industry of the kingdom. The
strategy of the Amalgamated Society and of the Miners Federation has been to seek the line of least resistance, and make one or another district the "dumping ground "for
grievances, with a view to a general attack further afield It is the peculiar misfortune of South Wales that it should have been more frequently than other parts of the king.
dom the cockpit for the settlement of issues of really national concern and consequence. There the staple
commodities are at higher prices and more in demand commodities are at higher prices and been for twenty yoars, according to the chairmen of colliery companies, and the prospec
tuses of new undertakings offered to the public investor Therefore, argued the Amalgamated Society, the railways traversing the prosperous district must be hauling in a full
harvest ; " they ought to be made to share their increased harvest; "they ought to be made to share insist on the emoluments with their men; we will insist on the
redemption of our long-delayed claims, in confidence that,
under the pressure of traffic, they will deem it unwise to under the p
The fact that the profits of the railway companies by no means kept pace with the gains of the coalowners
was indicated with sufficient clearness in the reports for the June half of 1899 . That the enhanced prices of coal, and materials for roadways and rolling stock, woul
actually diminish shareholders' dividends, as was demon strated by the reports of the December half-year, was
either not considered or was deliberately ignored. The workmen on the Taff Vale, Rhymney, Barry, and the
Cardiff railways were urged from headquarters to insist Cardiff railways were urged from headquarters to insist
upon higher rates of pay, improved conditions of labour, and-this was the leading fighting point-an eight hours
day for all work performed between six at night and six day for all work performed between six at night and six
in the morning. It may be conceded that reason had arisen for a revision of the terms agreed to ten years ago between the railways named and their workmen.
The proof of it is that when the respective managers received a definite statement of the men's complaints they separately, but as with one accord, admitted that
revision was called for, and made considerable amendments in the ten-year-old agreement. But the underrunning current throughout the agitation, and from about
October last, when the Amalgamated Society actively intervened, was one with which labour disputes all over the country have made the public only too familiar.
The workmen were members of the society, and could only be dealt with through the agency of the officers of the society, and in this instance there is no mention of a
President or Executive Committee; the medium had President or Executive Committee; the medium had
to be Mr. Bell. Sir William Lewis, of the Cardiff Rail-
way, and his colleagues of the other three lines, had expressed their readiness to meet their own men in a
friendly discussion of the matters in question. They friendly discussion of the matters in question. They
merely declined to constitute themselves a collective Board for the purpose of receiving a delegation of the
Amalgamated Society of Railway Servants. To this Amalgamated Society of Railway Servants. Mo this
effort of rapprochement Mr. Bell objected that the union leaders, who knew the conditions of railway service throughout the United Kingdom, were the most capable
spokesmen for the Welsh workmen, and that it would be spokesmen for the Welsh workmen, and that it would be
a sacrifice of principle for the various grades of railway operatives to interview the managers by themselves, and without the guidance of an official of the head organisation. The alluring words had the effect of inducing the men to take a ballot of the whole of their number to
decide whether they should give notice to terminate condecide whether they should give notice to terminate con-
tracts-a step which would have produced a state of paralysis in the entire industrial organism of the steamcoal basin.
Meanwhile, there had been meetings between the railway authorities and deputations of their servants.
Liberal allowances were made on points of difference, always excepting that relating to charging night overtime on the scale of an eight hours day. These were acknowledged to be substantial concessions, as the men have
subsequently testified by their action. But by the insuence of the Amalgamated Society, a second ballot was ordered to be taken, and in recommending that course words. As to the second ballot, said he " they would have to prove of what metal they were made, and for his part he was now in an absolutely fighting mood." Again, demands without the intervention of their society, the had degraded both their Committee and their society, and proved themselves woefully mistaken; and as far as he longer." It would be difficult for the moment to say whether a better parallel for this style of speech would be continent, or in the black Emperor of Hayti's menaces to his rebellious subjects. Nor need an exact parallel be cluded his harangue with the remarks that "if the railway workers in South Wales meant to drop this agitation, let them be men enough to say so now, once for all. If they delegates should in every case be accompanied by the society's officials in any negotiations." Most of us know that an "if" is not permissible in strict logic, and is a was announced in the Cardiff journals on the day we last went to press that the railway companies' proffered concessions had been accepted ; that the second ballot had not resulted in the required majority in favour of a strike; nurther could be done until the whole that nothing examined by the Executive Committee of the Amalgamated Society at its meeting in Cardiff during April. It will not be held on the ill-omened first of April, or the coincidence would be too forcible. But compare the anti-climax, and only one conclusion can be drawn in regard to the influence of the Amalgamated Society of Railway Servants with the bulk of the workmen on he mineral lines of Glamorganshire.

the carnegie settlement

Mr. Carnegie and Mr. Frick have settled their differnces, and the world is to be treated to no more revelations concerning the profits and the internal management lawsuit instituted by the second-named gentleman has been abandoned, so we learn by cable from New York. He himself will continue to be a member of the firm, and the company will be re-organised-this time under the ccommod laws New Jersey-with capital of group of undertakings included under the style of the Carnegie Steel Company is just one-eighth of this sum naturally present owners propose to take the whole of the stocks and bonds, to wonder why it has been found advantageous to go through the formality of raising the
nominal capitalisation from $25,000,000$ dols. to nominal capitalisation from $25,000,000$
$200,000,000$ dols. It is true that the H. C. Frick coke Company is to be bought up. Some of the
stockholders of that company, following the action of Mr. Frick, who has interests in both firms, had insti tuted proceedings against the management to annul
a contract whereby the Carnegie Company has been obtaining coke at a ruinously low price, and we
assume that the absorption of the Coke Company by the larger one will mean the abandonment of this action as individual stockholders stand to lose by the arrangement. But the acquisition of the Frick Coke Company can mean capital sums mentioned, for that company's capitalisation is only $10,000,000$ dols., and the better part of the increas will represent what the Stock Exchange calls "water.
It may possibly be the intention of the directors it may possibly be the intention of the directors to
acquire other interests and to pay for them in share of the enlarged company. This, in fact, seems to be indicated by the statement that "a number of
subsidiary branches will be established;" and certainly if the company is going to make a profit of eight millions sterling during the current year out of its present undertakings, it will be enabled to distribute respectable divi
dends even on $200,000,000$ dols. of capital without takin dends even on $200,000,000$ dols. of capital without taking be acquired. In a prive any in as America which has infinite resources still to be developed, there is magnitude of the Carnegie Company. It must be clear
too, to the management that the existing tariff conditions, which alone make fancy profits possible, will not be perpetuated during all time; and probably, while not insensible to the beauties of handsome dividends in the meantime, they are keeping one eye on the future whe the margin will become narrowed by home and foreig competition, and when it will be necessary for them to extend operations in order to keep up the total of profit, If, how er, his present exte years to come to keep at the present level of profit. We scarcely imagine, however, that a com pany whose enterprise in the past has been phenomena will adopt this course, especially as we are shortly to with which in all likelihood it will not work in harmony, We recapitulated recently the main points of the actio instituted by Mr. Frick. It seems desirable, notwith standing the settlement of the dispute out of Court, that an outline should be given also of the company's answe to the allegations of fraud and unjust and malicious treat ment, which answer was not available when we wrote last on the subject. The Carnegie Company-meaning, Mr. Carnegie himself, in effect-asserts that Mr. Frick interests were acquired in the same manner as the interests of other young partners. "He was no required," we are told, "to pay for same, provision being
made, as in all cases of newly-admitted members, fo payment out of the future profits." Between 188 and 1895 he acquired an interest of 11 per cent. in the company, and in February of the last-named year he price. Then, trade being poor and the burden heavy, he re-sold 5 per cent. to the chief proprietor. "After thi transfer," the answer goes on, "Mr. Frick held only 6 per cent. of them Mr. Frick for the purchase price was finall adjusted and paid to Mr. Carnegie, the payment consist Company at par and 192 dols. in cash. This is all Mr Frick has paid for his interests in the Carnegie Stee With the credits from his stock earning, worth $5,000,000$ dols. He accepted without question the book value for 5 per cent. of his holdings at a time when now refuses to accept book valuation for the bolance of his holdings." After this there is much recrimination Mr. Frick's ability is not questioned, but he demanded meetings and kept himself informed as to the businesse of the company, his time was largely employed in connection with "other enterprises and various speculativ hands of promoters to be floated in marketable securities on the public." Seeing that Mr. Carnegie was a party to these schemes, and gave an option on his $58 \frac{1}{2}$ per cent charge this as an offence against his partner. It is no denied that the profits for last year amounted to the sum stated by the plaintiff in the action, but that sum the erred only to the difference between the sales and $40,000,000$ dols. spoken of for the current year, this wh only a guess made over luncheon at results which were then and are still involved in great uncertainty. This is the gist of the Carnegie Company's reply, and as the dispute been settled, there is no necessity to judge as between the two conflicting statements.
The terms of the settlement, however, indicate that th Carnegie argument is not so strong as it looks on pape and less just than he is usually credited with being. It is to be observed, too, that the ex-secretary of the com pany, who was cited as a defendant, along with the boar management, sustains Mr. Frick as to the "ironcla agreement, and the other points at issue, asto nearly
all, of his own knowledge, and as to the remainder, to the best of his knowledge and belief." We have said that the best of his knowledge and belief. We have said that the
Frick Coke Company has been absorbed. The lawsuit instituted against the management of that company by some of the stockholders concerned the Carnegie indirectly It appears that at the beginning of last year a contrac coke made for the supply of the latter for five years with coke at 1.35 dol. per ton, when the market price was
something like twice that figure; and the allegations against the board of directors is that they were working certainly against the interests of such stockholders as had oncern with this last-named firm. The Coke Con pach, and of the 59,104 to 200,00 shares of 50 dol Company, and 51,213 shares by Mr. Carnegie personally In other words, the Carnegie's controlled the Coke Com pany, and put their own nominees on the board. From clear incts the reader will no doubt be able to draw clear inference for himself without aid from us. On the may be another side to it, to tone down its asperities, and, anyway, the Carnegie Company has taken over the pro perty, no doubt on a fair valuation basis.
As it stands, the Carnegie Company is a consolidation of manufacturing enterprises larger than any other in
existence, except the giant steel "combine," of which we are shortly to hear more. Its ultimate, justification can only be secured by further expansion. By a con tinuance of capable management, it may be expected to hold its own, but in the future, probably under the
next Democratic administration, it will have its artificial rop op-the tariff, to wit-knocked from under it, and wih That ecmpelled before it, we make question; but the dangerous point for the company is that when the import duties are lowered it will have to face a during the time the last moderate tariff was in force that

Mr. Frick was anxious to rid himself of a portion of his interest in the Carnegie Company. In connection with
the tariff, Mr. Kirchhoff, of the Iron Age, and one of the eading authorities on iron and steel manufacture and markets, said in a recent address in New York that the tariff is no longer needed to stimulate the industry. Up
to the present time, he says, the effect has been to promote to the present time, he says, the effect has been to promote the greater number of the different branches of the iron industry the tariff has become merely a safeguard against raids on the part of foreign producers." The American
citizen is becoming convinced that a business which can make the profits of the Carnegie Company ought to be able to guard itself against foreign duties, which, in the he should fairly be called upon to pay for his goods.

railways in asia minor,

The policy of Russia with regard to its so-called "railway activity" in Persia seems destined to be repeated in the case
of northern Asia Minor. The success of the German Syndicate in obtaining from Turkey the concession for construct and Russia has at last responded by making a demand from the Porte for what amounts really to a rail way monopoly in the whole of northern Asia Minor. These demands have
now been published officially. Turkey pledges itself to allow no railways to be built by foreign capital in the "basin of
the Black Sea." If Turkey has no capital available for rail way construction in the region referred to, then Russia, if she approves of the projected railways, will find the neeessary
funds for Turkey. It is quite in accordance with Russia's usual methods of statecraft to learn that she carefully evades,
any exact definition of the term "bsin of the Bla any exact definition of the term "basin of the Black Sea;
however, the recent negotiations regarding the privilege the eventual construction of railways by Russia herself refer the provinces of Kastamuni and Trebizond on the littoral the Black Sea, to the northern district of the province of
Sivas, and to the provinces of Erzeroum and Van, which border on the Russian frontier. Turkey is left free to exercise Erekli and Ada Pazar, while Germany is confined to the region between Van, 145 miles S.E. of Erzeroum, and
Diarbekir, on the right bank of the Tigris, and 390 miles
N.W. of Bagdad. With regard to railway, the Persian frontier, Russia has reserved to herself the right to come to an understanding with Turkey on this point at a
later date. However, a private telegram received in Berlin a few days ago from Constantinople says that a temporary
settlement has been arrived at. A syndicate will take the settlement has been arrived at. A syndicate will take the
place of the Russian Government, and will enable Turkey to
carry out railway extension in Northern Anatolia. The frontier of the district included in this concession extends in a south-easterly direction from the mouth of the Sakaria on
the Black Sea; it then crosses the river Kizil-Irmak to the north of Angora, and continues in almost a straight line to influence will be firmly established in North-Eastern Anatolia, and the Russian Government may be said to have cession for the Bagdad Railway. Nevertheless, it is scarcely likely that Russia will undertake railway construction to any
large extent just large extent just at present in Northern Asia Minor. The
Russian Exchequer is already overburdened by ceaseless calls upon its resources. The railway concession extorted from Persia
in 1890 has been renewed twice, and still Russia has not set to work to "develop" that country beyond sending thither a sur veying party of engineers a few weeks ago. Russia knew per-
fectly well in 1880, and the remark may be said to apply at this moment, that she could not undertake for some long time
the construction of railways in Persia, and the concession in question was wrung from Persia solely with the idea of keep-
ing out any other Power in the shape of Great Britain, while ing out any other Power in the shape of Great Britain, whine
time would be gained thereby for undermining the country
of the Shat by Russian intrigue Pussia's very of the Shah by Russian intrigue. Russia's very evident
chagrin at having been forestalled by German enterprise in Asia Minor will doubtless be increased by the recent announcement made by an official of the Turkish Court to the effect
that Germany, in her desire for colonial expansion, is on the point of securing a coaling station on the way to her posses-
sions in the Far East. The island of El Kuweit, opposite the united mouths of the Euphrates and Tigris at the northern end of the Persian Gulf, will be taken over for this purpose by
Germany. The island is sheltered from the southern storms and has an absolutely safe anchorage. As the southern probably be in the vicinity of El Kuweit, the presence of a German coaling station on that island would not only assist
materially the development of German shipping in the Persian Gulf, but it would mean the advent in those waters of a strong Power with important growing commercial
interests, and this fact would still further shatter Russia's dream of ultimately expelling British commerce and influence from the Persian Gulf, in the vain hope of being able to make
that coast line of Persia a naval station for the Russian fleet. that coast line of Persia a naval station for the Russian feetin Gulf, and that must be the Power which upholds the doctrine time, that wherever her frontiers meet those of Russia there is a ceaseless " war of tariffs."

the continental coal famine.

Concerning the shortage of coal supplies on the Continent we have already spoken in these columns, and the desperate
remedies adopted by Russia in the hope of meeting the remedies adopted by Russia in the hope of meeting the
emergency were the subject of a reference in our last issue The explanation of the situation is found in the paucity of
the English fuel available and the high prices asked. A few consignments have been received from America, but they have done nothing to relieve the situation. The trade and the lack of eagerness on the part of American producers to ship to Europe indicates pretty clearly, we should say, cost of laying down is kept in mind. Even for the new coa year, which commences shortly, the foreign orders booked in in Germany is gelying worse. In advance sheets of the annual report of the American Consul-General at Berlin we has increased the general deficit of fuel, and the situation has become critical and ominous for the manufacturers and
export trade of the country. Numerous important glass,
porcelain, and machine factories in Silesia and Saxony have electric lighting and power plants which have less than a fort night's coal provision on hand, and no source from which to obtain further supplies. In the circumstances it is not surprising to learn that frequent letters are received at the Consulate from importers of Enghish anthracite and gas coals, com
plaining of the meagre supply and high price, and asking those grades. Mr. Mason writes that if there remains any
considerable surplus of American coal for export, and the conditions of freigkt are not prohibitory, " the present season market the and fertile opportunity to estabish thate and coals." We doubt if American coal could hold its own in any market of the Continent save during abnormal periods such as the present, because that would imply the maintenance of English coal at existing quotations, and that i
scarcely to be looked for. There is no room, therefore for trade which shall grow into "vast and permanent import ance." But the stringency in Germany just at present is
sufficiently bad-for the Germans. The principal wholesale agency for silesian soft coal-of the qualities used for steam
and general manufacturing purposes-is now selling its scanty stock at 21 marks per ton, delivered at Berlin, and dealers, who are unable to provide coal for their customers at any price, and can see no encouraging prospect of obtain-
ing their next season's supply. Ia Russia the situation is equally desperate. The enormous development of railways has manufactures in that country during the past three years that naphtha futel whi the limited domestic coal supply, so advanced in price from 4 to 19 copecks, and the Russian
Government has sought to ease the pressure by suspending for an indefinite period the usual prohibitory import duty on coal. As to rance, in spite of two or three consignments
from the United States, the Consul at Marseilles sums up the position by saying that the question of the moment is where to get coal, and not its price. This gentleman, more per-
spicacious than his colleague at Berlin, recognises that under spicacious than his colleague at Berlin, recognises that under
ordinary conditions there is no chance for American coal in
that market in competition with Cardiff.

cordite in a hurry.

Under this heading is an article in the Times of March
28th, on a very serious event which has occurred and which has been kept remarkably close, namely, the spontaneous
combustion of cordite in the magazine of a ship of war. The writer evidently knows a good deal about cordite, and also is bringing it into the service. He specially depreciates the rash man if he wishes to remain unknown, for any one who had a mind to it could trace the authorship home to one of a very small group of men indeed. His plea is that cordite is to it. Sofe explosive, but that it has not had justice done by being made in a hurry. He says that our stores were dis-
gracefully low when the present war broke on us, and that so hurried and scrambling was the supply then established that
as much as 30 per cent.from one source was rejected for failin to pass the ballistic test, and probably a quantity of cordite purified. Further, he urges that the erosion from which we suffer in our large guns is due to cordite not having been modified to suit various calibres. All this may have a certain imperfectly made, but the correspondent is a bold man seize this opportunity to prefer the claims of the
ominent chemists to whom he refers, for the accident is not a circumstance that brings the virtues of cordite
into strong relief, but rather the carn that special care is needed to prevent this most terrible danger, although, with the writer, we believe that cordite
thoroughly well made, stood climatic tests well. The write then deals with the constituents, and tells us that nitro glycerine can be easily washed, but gun-cotton is more
difficult to purify, and we can bear him out in the statement that washing out the free acid is a tedious process. Vaseline impurities exist in any one of the three ingredients it is impossible to answer for the behaviour of the resulting cordite." Slow chemical changes may set up, and may go on for weeks or "Save me from my or friends,", cordite might well say. Here
is an advocate for cordite and its introducers who practicaly is an advocate for cordite and its introducers who practically
tells us that it must be very sharply watched if we are to escape spontaneous combustion. In his advocacy he brings
up its erosion, but he blames the artillery and enginee up its erosion, but he blames the artillery and engineer
ofticers for this, for they ought to have modified its manufacure so as to prevent it. For its dangerous elements he blames the Government for needing the supply so fast, and the
privatemanufacturers for scamping their work. We happen to have discussed cordite lately with regard to erosion; we would here only remark that if cordite cannot be made fas our magazines, it is all the more reason that we should thoroughly test it, as we have advocated, in comparison with other smokeless powders. It may be worth all it entails, but
let us have a thorough trial, and be sure of it. Sir Andrew Noble has compared it with brown prismatic powder, but h does not tell us that he has tested it in comparison to the
powders now used in Germany, France, Russia, and America.
sir andrew noble on modern explosives
On March 23rd Sir Andrew Noble gave a lecture at the
Royal Institution on "Some Modern Explosives." After Royal Institution on "Some Nodern Explosives." After
describing cordite and ballistite, Sir Andrew compared the velocities and energies obtained by cordite with those warned his audience against accepting velocity alone as test of results obtained. This is important, seeing that some foreign guns have light projectiles, with which high velocities for three reasons. (1) More work was got out of the powder (2) The resistance of the air was less against a shot with a given energy in proportion as its velocity was lower. (3) The were the resistance equal. Sir Andrew stated that the cordite adopted in this country is superior to the powder recently
brought in abroad. With it any practical velocity or energy was at our disposal but other considerations had to be taken into account, and our military authorities had sound reasons
for not giving a high velocity to our field gun at the present
time. As an old artilleryman, he ventured to say that our field gun was inferior to none, and certainly in the present war it had been handled in a way worthy of the reputation of
the corps. With regard to erosion, he could assure them the corps. With regard to erosion, he could assure them as cordite if made to develop the same energy. It was, in fact, the great energy now obtained that involved the great erosion. Lately, in conjunction with Sir F. Abel and Pro-
fessor Dewar, he had been experimenting with cordite with Iessor Dewar, he had been experimenting with cordite with
varying proportions of gun-cotton and nitro-glycerine, and varying proportions of gun-cotton and nitro-glycerine, and
made in various sizes to endeavour to reduce this most objectionable erosion. Heat was, he found, the principal factor in determining the quantity of erosion. This trial showed that cordite in any of its forms was not liable to following objects :-(1) To test the time of combustion of various thicknesses of cordite; (2) the rate at which heat was given out ; (3) the temperature of explosion and the ditions of ignition in the bore of a gun. Finally, he expressed hope that the above-mentioned experiments would add to our knowledge of the kinetic theory of gases.

the french naval budget.

The French Chamber has just fixed the Naval Budget for the current year at $310,000,000 f$. ($£ 12,400,000$). This sum is 6,000,000f. more than the Budget of 1899 . Ten years ago theless, the report made by the Budget Commission lamented the inadequacy of the French naval defences in view of present circumstances, and quoted a list of requirements which
could not be carried out under the present Budget. Moreover, the Budget contains certain very important items, such as new vessels, the formation of naval bases, and the harbour defences, all of which have not been considered sufficiently, and which will take years to bring into being, while, meanDébats upbraids the authorities with he. navy, and blames the Parliament for having regarded the navy as a luxury until within recent years, while none of the Ministers had the courage to throw the patchwork system
overboard and to adopt a uniform system. Matters have now assumed a better aspect; the French Chamber was unanimous for once in granting the Naval Estimates, and it
was also of one mind in deciding to leave the principal questions on one side until the plans for naval construction and general measures of defence come under discussion. Meanwhile the Chamber has accepted the proposals laid down by
the Commission, and any future modifications will be solely in view of increasing the proposed defences. The discussions have shown that the Chamber is quite agreed with the Government as regards the great battleships, while public
opinion asks for information concerning the relative utility of the various types of vessels. The Journal des Debats the number of ships of the squadron by six, the supporters and opponents of this type of ship will cease their unreasonable polemics, since the one thing most needful is confidence in the superiority of the French navy, especially in its artillery, over those of foreign Powers.
minay companies and excursion steamships,
The House of Lords' Committee has passed the Barry Railway Steamships Bill, and, so far as its decision goes,
introduces a new ruling in regard to legislation dealing with the power of railway co-operation to run tourists in excursion steuthers to popular resorts. The Barry Company as authority to subsidise or construct a fleet of vessels to ply
between its docks and the holiday haunts on the other side of the Bristol Channel; or, indeed, to any other place
of whither chance or circumstances might invite a service. The Great Western Railway, among others, opposed, on the ground that Parliament had never hitherto permitted railway companies to be owners of steamships, except on specified
routes, and for the purposes of facilitating the transport of railway passengers. Here, it was insisted, was a claim for liberty to run to and from all the bays or havens of the
Severn estuary, and the Bill, according to Mr. Horatio Lloyd, Severn estuary, and the Biil, according to Mr. Horatio Lnoyd,
for the Great Western Railway, would sanction " that snatching of advantage by one railway over another which Parliament had expressly set its face against." On the merits of the Bill we have no opinion to express, but Lord Elgin's approving the preamble. It went further, in fact. On the condition that the Barry Railway authorities gave equal facilities at their docks to all similar steamship companies,
the Bill was allowed to proceed in scarcely restricted measure-i.e., to the right to run summer excursion vessels anywhere in the Bristol channel westward to a line drawn from Tenby to Hartland Point. The decision has, of course, to be ratired by the Commons, and is mainly of local interest, but means an innovation and
that is why it is noticed now.

ELECTRIC TRAMWAYS IN LONDON

Whes referring in these columns two or three weeks ago to
he two tramway Bills promoted by the London County the two tramway Bills promoted by the London County electric traction on the lines at present owned, and upon those likely to be acquired on the expiration of the twentyone years' concession under the Tramways Act, 1870, it was suggested that the opposition of a few out of the forty local authorities to the adoption of the overhead trolley system
should not be allowed to wreck No. 2 Tramways Bill, and thus retard for another year the prospects of the institution of improved methods of tramway working throughout the metropolis. At the same time it was also suggested that
although it might be inadvisable to permit the overhead trolley system in parts of inner London, yet there could be no reasonable objections to it in suburban districts provided with wide main roads. The extent to which thece Highways Committee, in the meantime, has agreed on behalf of the Council to modify No. 2 Bill, in order to meet the
wishes of a number of the local authorities, to the extent of pledging the Council not to introduce the trolley sytem in any district without the consent of the Vestry or the Board of Works, as the case may be. The undertaking given to this effect is, however, somewhat tempered by the decision to and the south-west of London. Whatever may, therefore, be
the value of the concession to the Vestries in relation to aërial conductors, it is evident by inference that it has only been made after prolonged negotiations with the metropolitan
local authorities, with the result that only three were represented by counsel on the Bill coming before the Select Committee of the House of Commons, presided over by Sir Samuel Hoare.
The Bill, therefore, came before the Select Committee proposing the employment generally of the conduit system,
the surface contact method, and the overhead trolley the surface contact method, and the overhead trolley
principle specially in certain suburban districts, and in this form the Committee found on Thursday week that the pre-
amble of the Bill had been proved. In making this amble of the Bill had been proved. In making this
announcement, Sir Samuel Hoare stated that the Committee were satisfied that, if London is to have the full advantage of clectric tramways, it will not be desirable to introduce special clauses in the Bill for the protection of the three petitioned against the measure out of the forty local authohis respect was influenced by the fact that Hackney has si members on the County Council, Wandsworth two representatives, and Battersea two members, so that if any grievance arises in those districts they have equal opportunity with grievance before the Council. The objections of the South Metropolitan Gas Company and the Lambeth Water Company, which related chiefly to the disturbance of
their mains and the possible effects of electrolytic action, their mains and the possible effects of electrolytic action,
were overruled by the Committee, who expressed themwere overruled by the Committee, who expressed them-
selves satisfied that the provisions of the Bill and the enactments of the Tramways Act, together with the fact that
the County Council is subject to the Board of Trade, both as to the approval of the system of traction and as to the reguto the approval of the system of traction and as to the regu-
lations which may from time to time be laid down, make every reasonable provision to meet the contention of the two giving evidence before the Committee, expressed the opinion that the Board of Trade regulations that are intended to deal with small systems would protect gas and water pipes sufficiently in a small town, but that in a large system the pipes
would be attacked to some extent. The extent of the damage, he said, was a matter of degree, and electrolytic
action was silent, secret, and continuous. These observations action was silent, secret, and continuous. These observations
may, of course, apply to the surface contact and the trolley may, of course, apply to the surface contact and the trolley
methods, but not to the conduit system where an insulated eturn is used; and as far as can be gathered from the cvidence given on behalf of the Council, it is the latter
system which is intended to be most generally adopted on the system which is intended to be most generally adopted on the
tramways, and therefore the danger of electrolysis should be tramways,
obviated.
The cost of converting the existing tramways to the con€14,450 per mile efimated by Prof. A. B. W. Kennedy at provision of rolling stock, and power station, or, say, an average of $£ 15,000$ per mile. It is satisfactory to note that the preamble of the Bill, which proposes a total capital ex-
penditure of $£ 3,000,000$, has been proved. The clauses of the Bill are now under the consideration of the Select Com-
mittee, and there is every reason to believe that the Bill will be passed, and the initial steps taken for the purpose of nodernising the tramway system of the most backward city on street tramways. Since writing the above we find from a report of the Parliamentary Committee of the County

JOHN HENRY JOHNSON.

We much regret to announce the death of Mr. John Henry Johnson, the well-known solicitor and patent agent, who
died at his residence, Mountains, Tonbridge, on the 12th March, in his 73rd year. The son of a solicitor practising in Kendal, Mr. Johnson was born and spent all his early life in that town. His father died young, and he and his two elder
brothers had to fight their own way in the world. Mr. Johnson was first articled to Mr. John Harrison, solicitor of conveyancing clerk to Messrs. Cookson and Wainwright, of went to Glasgow, where he joined his eldest brother, William Johnson, long since deceased-who was an engineer, and
editor of the Practical Meclanics. Journal-and who had commenced business there as a patent agent. The business prospered, and later Mr. J. H. Johnson returned to London,
and started in practice as a solicitor and patent agent at 47 , and started in practice as a solicitor and patent agent at 47 ,
Lincoln's-inn-fields, with the intention of founding a Lincoln's-inn-fields, with the intention of founding a
London branch of the Glasgow business. But the branch soon outgrew the parent stem, and the London business In ely became the large business which it still is
have made his mark in whatever walk of life he had found himself. He had wonderful organising powers, and was a man of very quick, and, at the same time, remarkably sound
judgment. These qualities enabled him to build up a large patent agency practice, carried on first by himself and subsequently in partnership with his sons, Mr. James Yate Johnson and Mr. George William Johnson, and Mr. Benjamin
Willcox-who still carry on the business-at 47, Lincoln's-inn-Willcox-who still carry on the business-at 47, Lincoln's-inn-
Fields. He had also a large practice as a solicitor, more Fields. He had also a large practice as a solicitor, more self, and subsequently in partnership with his son, who still
carries on the business. His name will be remembered in carries on the business. His name will be remembered in connection with many important cases, notably the paraffinoil case in 1864-which occupied Vice-Chancellor Stuart for twenty-nine days-the sewing machine litigation in the
sixties, and later on the great aniline dye and colour cases. No one who was associated with Mr. Johnson in this class of business could fail to be struck by the quickness and accuracy constantly arose, and the manner in which he had mastered the details of subjects often, of necessity, unfamiliar to him. He was for some years the proprietor of the Practical
Mechanics, Journal-after the death of his brother WilliamMechanics' Journal-after the death of his brother William-
and in 1862 he brought out the Practical Mechanics' Journal "Record" of the International Exhibition of that year, a book written by various writers under the editorship of the late
Robert Mallet, which was and is a trustworthy and accurate representation of the manufacturing arts at that Civil Engineers, the first president of the Patent Agents' Institute, and was consulted by the authorities on many points which arose in the preparation of the rules under the years suffered from a painful and lingering complaint, which yeard suffered from a painful and lingering complaint, which
compelled his entire absence from his business. He was an
omnivorous and rapid reader-travels were his special delight, and he read literally every book of travels which what he read. His favourite reading after the travels was the Waverley Novels, which, since his confinement at home he made a point of reading through once in every year. Ho was a kind and just man, and a firm and most trust-
worthy friend, and his death is deeply lamented by all who knew him.

FREDERICK WILLIAM STEVENS.
The death is announced from India of Mr. Frederick William Stevens, the well-known designer of public works and civil engineer of Bombay, at the comparatively early age of fifty-two. He was the eldest son of Mr. Matthew Stevens, Sixth's Grammar Sh, and was educated at King Edward the Having served his articles to the city surveyor, he entered the Public Works Department of India by competition in 1867 as an assistant engineer. From this he was promoted in
1872 to be executive engineer, Bombay, and the following ear was appointed to the Presidency division and secretary the Esplanade Fee Fund. In 1877 Mr. Stevens' services were lent by the Government to the Great Indian Peninsula
Railway Company, to design and supervise the erection of Raiway Company, to design and supervise the erection of
the Victoria Terminal Buildings, Bombay, his services being continued under similar conditions until 1884, when he retired from the Indian Civil Service, but remained in the service of the railway company until 1888. He had been appointed a Government member of the Bombay Municipal Corporation in 1884, and in 1887 was appointed by the Government of Bombay a member of the Select Committee for the future extension of Bombay, receiving the thanks of for Boerument for his services, Mr. Stevens was a magistrate Member of the Institute of Civil Engineers, and a Fellow of the Royal Institute of British Architects. In 1889 he was decorated with the C.I.E. for his
the public buildings of Bombay.

NEW GERMAN CRUISER, PRINZ HEINRICH.
The new German cruiser Prinz Heinrich, which was anched ou March 22nd from the Imperial Yard at Kiel, is of 1898, and also the last piece of work produced by the lat Chief Constructor of the German Navy, Privy Councillor
Dietrich. With a displacement of 8800 tons, this vessel stands Dietrich. With a displacement of 8800 tons, this vessel stands midway in size between the Fürst Bismarck with 10,650
tons displacement and the Kaiserin Augusta, with 6290 tons displacement and the Kaiserin Augusta, with 6290
tons. Her length is 120 metres, her beam $19 \cdot 6$ metres, and her draught 7.3 metres. Like all German vessels of recent construction, the Prinz Heinrich has triple screws; the comgiving a speed of $20 \frac{ \pm}{2}$ knots an hour. The engines are tripleexpansion with four cylinders. The fourteen water-tube which, of the Dürr system are in four heating chambers, compartments. In addition to many other mechanical appliances there are four dynamos for lighting the interior of the vessel, for working the search-light, and driving the motors. The coal bunkers are unusually large, and take 1500 tons of
coal ; on this ascount the radius of action of the vessel will be greater than is generally the case. The experience gained in the Japanese and Spanish naval combats has been turned to account, with the result that a new type of armour has
been introduced. Not only is the cruiser provided with an been introduced. Not only is the cruiser provided with an
armoured belt of 100 mm . thickness at its centre, and 80 mm . at its ends, but above this belt there rises a "citadel", similarly armoured, and protecting from an enemy's fire the similarly armoured, and protecting from an enemy's fire the
middle part and about two-thirds of the entire length of the vessel. Above the "citadel" are three revolving turrets protected by armour plates of 150 mm ., and worked by electricity.
The ship has an armoured deek of 40 mm . to 60 mm . thick. The armour plating is hardened nickel steel, that for th turrets being made by Krupp, and the rest by the Dillinger
Works: in fact, the industries of the Rhine and of Weet Works; in fact, the industries of the Rhine and of West-
phalia have supplied nearly all the material used in building this vessel. The armament consists of two 24 cm . guns in two revolving turrets worked by hydraulic pressure, ten
15 cm ., ten 8.8 cm ., ten big machine guns of 3.7 cm ., and four smaller machine guns. The torpedo equipment consists of with which this vessel has been built is certainly a strilting
whed evidence of what German shipbuilding is now capable of doing. The cruiser was laid down on December 1st, 1898, twenty-eight months will be occupied in her construction, the usual fifty

RECEDING PROFITS OF HOME RAILWAYS. NO INCREASE IN THE COAL RATE.

Derive the past few weeks the stockholders of our railway have been encouraged to take a hopeful view of their prospects
dividends by the expected advance in the rates for the carriage dividends by the expected advance in the rates for the carriage o
coal. At the half-yearly meetings the chairmen of some of th
most important railways declared they would not be adverse to such a movement; conferences were arranged for giving practical
effect to the idea; and it was stated that an agreement for increa ing the rate for the carriage of coal by 3d. per ton had been
reached. The effect of this latter statement has been to induce reached. The effect of this latter statement has been to induce
considerable purchases of the stocks of the coal roads which were especially expected to benefit. Calculations have, indeed, bee $33,000,000$ tons ; the Midland, with $22,000,000$ tons ; the North Western, with $18,000,000$ tons ; the Great Western, with about
$16,000,000$ tons; the Great Central, with $12,000,000$ tons ; the Great Northern, with over $8,000,000$ tons ; and the Lancashire and Yorshire, also with over $, 000,000$ tons, would all benefit from the
increased charge on coal to an extent which would much more than neutralise the effect upon their profits of the higher price of coal and material. From the figures given, our readers will appreciate
that had the lines in question agreed to an advance of 3d. per to in the rate for coal, and had the Board of Trado sanctioned such an advance, the benefit to the companies would have been very
great, even if due allowance be made for some of the coal having great, even if due allowance be made for some of the coal having
to pass over the lines of several railways and the additional rate 1898 the production of coal in England was $148,000,000$ tons in Wales, $24,000,000$ tons; in Scotland, $30,000,000$ tons ; and the the railways. An all-round advance of only 3 d . per ton in the coal rate would thus mean an increase of some $£ 2,500,000$ to the gross
earnings of the railways-a sum which would bave met the probable
increase in expenditure and capital ch
given an additional $£ 1,000,000$ of profit.
But the conferences of railway officials have been practically without result, and the suggested increase in the coal rate has fallen through in consequence of the difficulties raised by our
premier road. Moreover, had the railway companies decided to premier road. Moreover, had the railway companies decided to appear to have acted wisely in not proceeding with the suggestion, The present high prices of both coal and railway material are due to abnormal and temporary causes, and the railways will doubtless
suffer in the present year ; but the very height of the prices will foster production and curtail consumption, and before long bring abourays had now raised their rates in consequence of the temporary high prices, when prices fell, traders would have agitated on the plea that the railways were buying their coal and railway material at excessively low prices.
Although the railway compan
Although the railway companies have not found feasible the suggestion to increase the rate for coal, we understand that they
have decided to make some minor additions to their charges, by have decided to make some minor additions to their charges, by
which they hope in some degree to recoup themselves for the increased cost of fuel and materials. The charges they propose to
modify are governed by competition, and not by statute, and by modify are governed by competition, and not by statute, and by agreement amongst themselves these charges can be raised, and no
one-neither the Board of Trade nor the public-can object. The charges to be increased affect wagon hire, siding rents, the hire of lugs, rebates, cartage, excess coal weight, passengers excer
luggage, \&c. In the aggregate the increased charges for these minor services would bring in a substantial sum could they be effected in every case. But customers usually obtain concessions charges in respect of competitive traffic will thus be difficult to obtain. The difficulty in maintaining higher rates for these services is especially great at the present time, and the older roads are
London is bound to push for business, and doing their best to prevent the diversion of traffic. This reason-
ing does not, of course, affect non-competitive traffic. Here the companies will doubtless have no difficulty in securing somewhat view of all the conditions attached to these mices mentioned. In the additional revenue likely to be obtained may not be nearly sufficient to cover the increased cost of working and the additional capital charges. We consequently anticipate that unless gross earnings show a much greater rate of expansion than they have yet
done in the current half-year, a general decline in dividends may done in the current

LETTERS TO THE EDITOR

We do not

BRITISH AND FRENCH GUNS

Sir,--In a most interesting article entitled " British and French a reply by him in debate, you finally conclude that "Sir Charles Dilke was wrong in saying that any attainable figures go to 'show superiority at every period. Even at the muzze, our shots have everse of the truth, unless he takes the less weight of the French guns into account." I gave no figures of my own. It would have been absurd for Whe to so, as I have no technical knowledge of the subject.
What elaborate and apparently-on the face of them-conclusive figure debate in the French Assembly, and to suggest that they needed reply -which they certainly did not receive. Those figures did admission which has since been made on our side that these figure on both sides are the figures for full charges, but that, while full charges are used in France, we are unable to use a full charge in
our wire gun. This is the point to which you yourself allude in your at a rate which causes the velocity to fall shockingly fast."
Since the debate in Parliament we have had the meeting of the Since the debate in Parliament we have had the meeting of the
Vickers Company, and the statement made there on behalf of the company that the Government have purchased from them a new
gun, Mark IX. It is, however, unforturately the cave that cordite is likely to destroy this gun as rapidly as it does the inferior gun, Mark VIII., on which the debate turned.

Sloane-street, S.W. March 28th.

[Sir Charles Dilke will find, on page 322 , that reply to M Claudinon which Mr. Goschen was apparently not in a position to
supply. Sir Charles Dilke will, we think, find the summary of a paper by Sir Andrew Noble, on page 335, of considerable interest.
-ED. E.]
bourdon gauges.
Sik,-A glance at "W. B. M.'s" diagram in your last impression
is enough to show that he is wrong. He has forgotten the pressure

on the ends A C, D B, which tends to force these ends together, and prevent the tubes from opening out. The action on these ends is one of the great difficulties of the question.
London, March 27th.

RECEIVER DROP.

SIr,-Professor Weighton is by no means the first in the field
with a formula for cylinder ratios. Mr. Rockwood, a United With a formula for cylinder ratios. Mr. Rockwood, a United
States engineer, has worked in the same direction. He much left out the triple-expansion engine with the intermediate cylinde paper by Mr. Knapp will be found in your issue of October 4th,
1895. In that the formula

$\mathrm{R}=\sqrt{\frac{175}{3 \cdot 5}}=\tau \cdot 06$

will be found, the numerator and denominator are the absolute
pressures in the cylinders. Mr. Rockwood agrees with your view that drop is not a serious matte
Birmingham, March 26th.

AN OPTICAL PROBLEM

$\mathrm{Sir},-\mathrm{I}$ am sorry that the word "not" has inadvertently crept
nto the first line of the last paragraph of my letter in your last issue, thereby reversing my meaning. It should read, "I do mean what your corresponde
Rugby, March 26th.

PORTABLE PNEUMATIC TOOLS.*
By Mr. Ewart C. Aaros, Member, of London. (Concluded from paye 316)
Having now described four representative types of hammers
which may fairly be said to cover the types at present in use, it which may fairly be said to cover the types at present in use, it
may be interesting to refer to Table L., showing sizes and air consumption; but in regard to these the author wishes to point out (1) that they are as given by the different makers ; (2)
that the claims as to air consumption can only be sustained wise the air consumed may greatly exceed the quantities given 3) that the air consumption is not alone indicative of the efficiency of the tool.
Table: L-Table shoring Si:es, Wrights, and Appracimate Air

Type.	Description number.	$\begin{aligned} & \text { Longth } \\ & \text { stroke. } \end{aligned}$	$\begin{gathered} \text { Diam. } \\ \text { of } \\ \text { piston. } \end{gathered}$	Weight piston.	$\begin{aligned} & \text { Esti. } \\ & \text { mated. } \\ & \text { speed. } \end{aligned}$	Air con- sump- tion in free air.	$\begin{aligned} & \text { Weight } \\ & \text { of } \\ & \text { hammer } \end{aligned}$
$\begin{gathered} \text { "Rosss, } \\ \text { Fis. } 1 . \\ \text { Piate } . \end{gathered}$		$\begin{aligned} & \text { in. } \\ & 18 \\ & i n \\ & i n \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 19 \\ & 14 \\ & 11 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{oz} \\ & 22 \\ & 24 \\ & 2 \\ & 11 \\ & 11 \\ & 11 \end{aligned}$	Revs, per \min, 11,000 ". ., .	Cub. ft permin 30 25 15 15 15 13	$\begin{gathered} 1 \mathrm{~b} . \\ 11 \\ 10 \\ 104 \\ 64 \\ 64 \\ 64 \end{gathered}$
		!	$\begin{aligned} & 14 \\ & 1! \\ & 1! \\ & 14 \\ & 14 \end{aligned}$		$\begin{gathered} 10,000 \\ t \\ t, 0,000 \end{gathered}$	$\begin{aligned} & 12 \\ & 12 \\ & 10 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 51 \\ & 3! \\ & \\ & 109 \\ & 90 \end{aligned}$
	0 1 2	$\begin{aligned} & 5 \\ & 4 \\ & 3 \\ & 21 \end{aligned}$	14 14 11	$\begin{aligned} & 20 \\ & 16 \\ & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 1,200 \\ & 1,500 \\ & 2,000 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	16 12 9 81 81
- Boyer Figs. 10 Plato 3 .	$\begin{gathered} 000 \\ 0 \\ 1 \\ 1 \\ 3 \\ 3 \\ \text { B } \\ \text { BB } \\ \mathbf{F} \\ \mathbf{U} \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \\ & 4 \\ & 3 \\ & 13 \\ & 9 \\ & 13 \\ & 13 \\ & 1 \\ & 3 \end{aligned}$		$\begin{aligned} & 34 \\ & 23 / 2 \\ & 17 \\ & 13 \\ & 13 \\ & 12 \\ & 8 \\ & 1 \\ & 1 \\ & 3 \end{aligned}$	$\begin{array}{r} 1,000 \\ 1,500 \\ 2,200 \\ 3,600 \\ 3,000 \\ \mid 3,500 \\ \mid \quad \text { to } \\ \hline 5,500 \end{array}$	20 20 15 15 12 10 10 10 10	$\begin{gathered} 26 \\ 13 \\ 97 \\ 97 \\ 81 \\ 81 \\ 8 \\ 64 \\ 64 \\ 4 \\ 4 \end{gathered}$

The author, however, whilst putting against each maker the
mount claimed by him as being the amount of air consumed, is inclined to think that these amounts may be a little exceeded, and in any case provision must be made for leakages, \&c.; it is therefore not advisable to cut down the air supply to these amounts, and in actual practice some margin must be provided over and above
what the experimental trials would seem to indicate the tools require.
Some reference must now be made to vibration, and its effect upon the operator. Some hammers vibrate more than others, but even in the best the shook is noticeable. Its effect, however, is greatly reduced as soon as the operator learns how to use the
hammer to its best advantage, and it is probable that no injury will be done to the operator as soon as he has adapted himself to its proper handling. The purposes to which these hammers may be applied are many, and include chipping, caulking, beading, fettling, scaling, riveting, stone-dressing and carving, driving plag holes in stone, planishing brass and copper, driving nails and spikes, \&c.
To whatever purpose, however, the hammer may be put, it is To whatever purpose, however, the hammer may be put, it is
necessary to remember that proper efficiency can only be obtained by selecting hammers of suitable weight and stroke for each class

Hand riveters.-The hand riveter is simply a heavy pneumatic Hand riceters.- The hand riveter is simply a heavy pneumatic
hammer fitted with suitable snaps, and therefore it becomes unnecessary to describe its mechanical action. It should be mentioned, however, that when used for riveting air pressure up to 100 lb . to 125 lb . is advantageous. In the hands of a skilful operator, this ool will be found exceedingly useful, as it can be extensively used places inaccessible to a yoke or bear riveter. At the sume time in the hands of an incompetant or lazy wotkman, it lends itself to doing anything but satisfactory work, as care is required to avs d

Fig. 18. "Little Giant" Light Yoke Riveter.

position with its head against the fixed holder-up and through th work to be riveted together, whilst the hammer and clamping device are in their normal position before live air is admitted. against the a similar view, but with the clamping device shown operation of riveting the head. Its action will be readily under stood by of seting the head. for action will be readily under hown on the drawing in which a is the main yoke; a^{1} the small沓e or frame carrying the percussion hammer and clamping device $g ; b$ a projection of $a^{1} ; c$ an air chamber formed by tho extension of the back of the hammer and the projection $b ; d$ the said extension of the hammer casing, and which also forms a guide to carry the hammer ; E the hammer cylinder ; f an extension of the coupling sleeve of hammer, and which slides in the other end device; h a spring for returning g to normal position when air

pressure is cut off ; h^{1} the hammer piston ; i the tool shaped to form the head of the rivet ; j, j^{2}, and j^{2} ports for air supply ; distributing valve; l and m exhaust and supply as in an ordinary
hammer: n the rivet. The action is as follows:-The work to bo riveted being in position, as shown in Fig. 19, air is admitted through k and into the passage j. This forces the whole apparatus against the fixed holder-up. At the same time live air is admitted through j^{1}, forcing the clamping device g forward, as shown in Fig. 20, which closes the plates, and permanently holds them in position whilst the rivet head is being formed. As the rivet gets shorter the constant pressure in the space c keeps the hammer to its work. The action of the hammer has already been described, the air supply to the striking piston being regulated by the
valve o. Fig. 21 is a section on the line AA, and shows the air

Fig. 24.
Section on 2-2.
"Little Giant"

of work. No tool can be adapted to all classes of work. It is not uncommon to find operators attaching blame to a tool on account of its failing to successfully do its work when the real cause of failure is due to the application of the wrong tool. For results of work
done by hammers in caulking, chipping, \&c., reference must be made to the table on page 338 .
Riveters.-Compressed air has long since been recognised to possess great advantages for the purposes of riveting. Portable pneumatic riveters may be divided into two types, viz, those that effect their purpose by squeezing, and those that have a percussive action. The former type are well known, and it is therefore pro-
posed to consider only the latter. These again may be sub-divided into (a) hand-riveters used in conjunction with a pneumatic holder up, and (b) yoke riveters.
*The Institution of Mechanical Engincers. Figs, 9 and 30 are not ropd ' 71 by the Institution were again put on the screen. They showed and by tools Institution were Beyer, and Wyllie.

Foke riveler.-Figs. 16 and 17 illustrate an ordinary yoke riveter ashole for shipwork and constructional ironwork generally, tanks, One arme thgon under-frames, and a vared with what of purposes hatnmer, whilst on the other is a solid holder-up. Suitable adjustment of the hammer portion permits of the snaps being the correct distance apart. In a riveter of this type great as its value for ercein chasses of work, no provision is made for closing the plates, to obviate this diffienty and to supply the want of rercussiveaction plate-closing riveter, the "Little Giant " yoke riveter, which is shown in Figs. 19, 20, and 21, has recently been made. This riveter consists of an ordinary yoke a, having at one end a fixed bolder-up and at the other a small frame or yoke carrying a for clamping ther, and provided with a special clamping device This clamping device also takes the place of the ordinary pneumati bolder-up. Fig. 19 shows the device in section and the rivet in
passage from the valve f to the regulating valve o and also to the It will be obvious from this description and the drawings shown clamping device without increasing the areat great pressure on the pressing cylinder
col to an abnormal amount, yet this arrangement possesses very considerable advantages over the ordinary percussion yoke riveter, as it ensures that the riveting hammer shall be automatically kept up the rivet is being driven, both of which held together whin points. Another and very valuable form of riveter is that shown in Fig. 18. This shows the "Little Giant" light yoke riveter, and represents the very latest development, which should prove an exceedingly useful addition to the pneumatic appliances at present in use. Its simplicity and value will be at once appreciated by
reference to the diagram, in which A represents an ordinary standard type "Little Giant" hatmmer as used for chipping or
riveting, clamped to a light yoke B carrying at its other end a
pueumatic holder-up C. There is also clamped to the yoke B a small casing D, containing an air chamber E, valve F, trigger G, and suitable pipe connections for providing compressed air com-
riveting work where a yoke is permissible. To deal with such work it has hitherto been necessary either to use a hand riveter and
separate holder-up, thus requiring two operators, or else a yoke separate holder-up, thus requiring two operators, or else a yoke
riveter, which is generally too cumbersome for oneoperator. Nore-

Table IV.-Results of Work done rith Vurious Types of Pnenmatic Tools.

Type of twol.	Nature of work done and time taken.	Remarks.	Authority.
Hammer	Goneral	On general work each tool will do the work of two men.	Joseph Adamson and Co., Hydc.
Hammer ..	Caulking	In caulking each tool will do the work of three men.	Peumm and $\mathrm{Co}_{\text {a }}$, Glasgow.
Hummers ...	Caulking	In caulking each tool will do the work of three skilled hand caulkers.	Mechan and Sons, Glasgow.
Hammers ..	Caulking	Two and a-half to thee times as much work in given time can be done by these machines as by hand. (Machine caulking is far preferable, as it makes more sound and satisfactory work.)	Edwin Danks and Co., Limited, Oldbury.
Hamuer	Caulking and chipping	Useful for both caulking and chipping, doing work for about half the cost of hand labour, and in most cases making a tighter and better job. Several machines constantly at work.	Clayton, Sons, and Co., Limited, Hunslet, Leeds.
. Hammer	Caulking	In a general way a caulking tool will do as much work as five or six men with ordinary tools, and besides the work is better done.	Alex. Stephen and Sons, Glangow.
Hammer ..	Caulking	60 pzr cont. cheaper than hand caulking, and quite as efficient. The plates are punished loss, and on this account preumatic calking is particularly useful for light plate work, such as tonders and tanks.	James Holden, Esq., Eastern Railway Workat Eastern Stratford Stratford.
Hammer	For cutting off thin steel plates, they have proved very satisfactory, and the work is done in one-quarter of the time taken for punching and shcaring.	$\square-$	James Holden, Esiq, Groat Eastern Railway WorkN, Stratford.
Hammer ..	A chipping 7in. long and 3 in . thick was cut from a		The author.
Hammer ..	It is stated that when using a pneumatic caulker, one man can completely caulk in one day a marine boiler 14 ft , 6 in . diameter, having plates $1 / \mathrm{in}$, and 13 in . thick, and tested to 360 lb , per square inch.	Another instance is given in which one man caulked in one day inside and ont a the 30ft. long by 2 ft . Pin. diameter. This pruviously took 10 dyys by hand caulking.	The makers.
Hand riveter	70 zin . diameter rivets can be driven per hour per riveter.	- -	The makers.
Say rivetor	It is stated that thoy have put in 60 stays, that is, 120 heads, in one hour per riveter.	-	Mr. Earl, London and NorthWestern Railway Company.
Drills ..	-	Have found them both effective and economical after trial.	Samuel Johnson, Esq., Midland Railway Works, Derby.
Drill ..	Drilling boilers	Very ingenious and useful tool. Can be used anywhere, even through a boiler manhole Does its work quite as quickly as any radia' or other drilling machine, being much quicker than if done by hand.	Clayton, Sons, and Co., Limited, Hunslet, Leeds.
Drills	Wheit tapping holes in fore boxes, it takes 36 seconds to pass the tap right through the inside and outside plate, as compared with 1 minute 48 seconds with a flexible shaft.	Until recontly, we have exclusively used a flexible shaft for this purpose.. This class of work is now seldom done by hand, but would take five to six minutes to effect the same purpose.	James Holden, Esiq, Great Eastern Railway Works, stratford.
Drill	As used fordrilling work in place, a 3 in . diameter hole can be drilled through fin. plate in 22 seconds.	This compares by four minutes with a flexible shaft, and 10 minutes with a ratchet brace.	James Holden, Fisq., Great Eastern Railway Works, stratford.
Drill	Will drill a 2 in . holo through 3 in . steel in 11 minutes.	- -	The makers.
Drill	A hole $1_{\text {s }} \mathrm{i} \mathrm{in}$. in diameter was drilled through Bessemer steel 2 in. thick in $3 \frac{1}{2}$ minutes.	- -	The author.
Drill	A hole 3in. diameter was bored in pitch pine 5 in . thick in 35 seconds.	$\square-$	The author,
Drill ..	54 holes, 7 in. diameter, were drilled in 1 hour 10 minutes, through in. thick end plate furnace tlange of a marine boiler, furnace being in position.	The drill was mounted on a special device which permitted of rapid adjustment of the drill, and also acted as a holder-up. The same work would take si 1 hours if drilled by hand.	The makers.
Drill ..	A small drill drilled a bin, hole through lin. Bessemer steel in 1 minute 10 scconds, whilst a larger drill will drill 1 fin. hole through the lin. thickness of steel in 1 minute 15 seconds.	-	The makers.
Various		Giving very satisfactory results.	Locomotive Dept, London and North-Western Railway.
Varions	-	Great saving over hand labour,	Lumby, Son, and Woot, Halifax.

munication with the hammer A and holder-up C. The action is as over, it ensures that the holder-up first brings the rivet home follows:- The main air supply enters the chamber E at H , being
admitted past the valve F by pressing the trigger G , and thence percussion action begins, and also makes it possible to
use an ordinary hammer. This would prove a very useful feature

passes to the holder-up and hammer handle. The holder-up at should anything go wrong with the percussion mechanism, when hammer in action in the ordinary way by depressing its trigger I. Such a riveter would close sin. cold rivets or sin. hot rivets with The object of this riveter is to replace a separate holder-up in light a gap up to about 12in., and can easily be handled by one man.

With regard to the respective advantages of pereussion riveter and squeezing riveters, especially of the hydraulic type, there is considerable difference of opinion. In this country we have so long been used to hydraulic squeezing riveters that the percussion riveter at first met with but scant recognition until its advantagen were proved, and the author ventures to think that a solution of
the difficulty will be found when the true value of each type for the difficulty will be found when the true value of each type for
its respective work has been fully recognised. To those who have tried both systems, the pneumatic percussion riveter has shown itself to possess certain advantages in the form of lightness, portability, convenience in manipulation, and other points over its rival. On the other hand, the advocates of the percnssion system do not at present claim advantages where the riveted work has to stand high pressure as in boiler work, although the Little Giant using it for this purpose. Table II. gives a comp hand riveting in the Chicago shipyards.
Portable drills. - The many advantages to be derived from the application of compressed air for the purpose of driving portable
drills are probably more apparent than in the case of either ham drills are probably more apparent than in the case of either ham-
mers or riveters. In the author's opinion, the portable pneumatic mers or riveters. In the author's opinion, the portable pneumatic
drill, with its many applications, will soon be recognised-if it is not already-as one of the most important additions that have been made in recent times to our stock of labour-saving machines. A great deal of work, which for economic reasons had before to be drilled in the shop previous to erection, can now be drilled in sita, and the result, besides being more satisfactory in itself, has considerably reduced the cost. Besides drilling, portable ing, cleaning castings, boring wood, screwing nuts on to bolts, boring cylinders and Corliss valve seats, grinding steam-pipe joints, turning up crank and car-wheel pins in position, and a variety of other purposes which will readily suggest themselves. The method by which compressed air is utilised for
driving the drills is generally by means of single or double-acting

cylinder motors, the cylinders of which are sometimes fixed and sometimes oscillating, and these again actuate suitable mechanism
for driving the bit, and are encased in the body of the drill piston air drill, as it may conveniently be termed, has become a very important factor in boiler work, shipbuilding, and constrictional work generally. As a reamer or tube expander the savirg Table II. - Comparison of Cost betereen Machine and Iusd riverng at Chicago shipyards.

Distribution.	Number of rivets.	Diameter of rivets.	Machine rate each.	Hand ratc each.
Keel	6,217	lin.	$2 \frac{1}{2}$ cents	4) cents.
Shell ... ${ }^{\text {Shell }}$ (mailge single	21,688	jin.	18.	
line)	1,122	3 in .		
Longitudinals opon	24,632	\%in.	14 ",	
C. V. K. brackets	3,197	in.	1 .	8. ${ }^{\text {8 }}$
". \#."	".	14.	
Longitudinals under tank	664	哖.	11 ",	$2 .$.
Longitudinal bars	2,989	in.	14 "	
Tank-top stiffeners	1,129	in.	$2 .$.	
Tank-top margin	4,033	in.	1. ${ }^{\text {a }}$	
Tank-top lugs ..	1,520	in.	17.	! .,
Tank-top rider ..	3,209	in.	$1{ }^{1}$	
Tank top en eross vertical	4,467	Sin.	14.	
kelson ...	12,723	in.		
Hold stringer ..	1,184	in.		
Floors ... ${ }^{\text {a }}$ -	123	in.	1. ",	3 ",
Floors (odd) C. V. K. (odd)	${ }_{5}^{5}$	in.	$\stackrel{2}{2}$	
Bulkheads ..	1,318	in.	$\stackrel{2}{14}$."	${ }_{5}^{6}$.
Bror	3,051	in.	11. ${ }^{\text {a }}$	3) ".
" ${ }^{\text {-. }}$	231	gin.	12,	
Total .-	93,479			

Total cost by machine, 1403.31 dols. Average, q- 50 cents each, Total cost by hand would have been 2957.87 dols. Average, 3 .

 each.saving, 1583.56 dols. Average, 1.69 cents eack.
Average cost of machine riveting was 47 per cent. of hand cost.
over hand labour is very great, and at the same time the work is turned out much faster-a great point in shipbuilding. Pneumatic drills are made in a large number of sizes, from light drills suitable for small holes up to powerful ones developing two to three horsepower. The latter are capable of driving bars for boring work in is very large. They can economically be worked with 60 lb , to 80 lb . of air pressure.

Fig. 22 shows an outside view of a "Little Giant" portable air drill. Fig. 23 is a longitudinal sectional elevation taken on lines line $2-2$ of Fig. 23, Fig. 25 is a similar siew taken taken on of Fig. 23. In this type of drill the motor consists of four singleaeting eylinders arranged in pairs, and having each pair of pistons connected to opposite ends of a double crank shaft. The pistons of each pair travel in opposite directions at all parts of the stroke to effect smooth running. The cylinders are controlled by
balanced piston valves set to cut-off at five-eighths of the stroke,

and should therefore prove economical. Referring to Figs. 22 to
$25, \mathrm{~A}$ is the main casing, which contains the mechanism; B and B^{1} $25, \mathrm{~A}$ is the main casing, which contains the mechanism; B^{2} and B^{1}
are one pair of cylinders, and C and C^{1} the other, and arranged at right angles to each other and connected to a common crank shaft D. By this arrangement a dead centre is avoided. The air admis-
sion and exhaust is controlled by two piston valves E and E^{1}, shown most clearly in Fig. 24. These are worked by small excentrics off the crank shaft, and serve to control the four cylinders; f is the main pressure chamber, having communication with the supply pipe H .
Fig. 24 shows one of the piston valves in section, from which it will
with a simple reversing arrangement-not shown on drawing-
which enables it to do all classes of work for which a drill is suitable. Fig. 26 shows the interior of a "Whitelaw" drill with half the
casing removed, whilst Fig. 27 shows the passare of the ir casing removed, whilst Fig. 27 shows the passage of the air leading
to the cylinder and the method of reversal. This type of drill is actuated by two double-acting oscillating cylinders A and B,

Table III.-Pnermatic Drills.

Type.	De- scrip- tive num- ber.	W'iht		$\begin{aligned} & \text { B. } \\ & \text { H.P } \end{aligned}$		Maximum duty.
		lb.			cub. ft. per min	
"Little ${ }^{\text {Giant, }}$	${ }_{1}^{0}$	45 35	125 190	2)	85	3in, holes in metal 2 in .
Figs, 2^{2}	${ }_{2}^{2}$	19	250	1	25	1才ii. ", ",
to 25	3	8	750		15	lin. ,"
"White-	4		1000	\ddagger	15	fin., ,"
law." ${ }^{\text {a }}$	6	14	${ }^{720}$	1	20	3in. holes in soft wood
Figs. 26	7	20	250	1	${ }_{30}^{25}$	For tube expanding
"Boyer" ${ }^{\text {and }} 27$	${ }_{2}^{8}$	39 46	120 180	1	80	sin. holes in metal \sin.
Figs. 28	3	41	240	1	25	lin.
	6	17	500	4	20	(sin. holes in soft woor

*Thus, 1400 speeds too high for tools when cutting taken unloaded, as the load varies so much.
driving a crank shaft C , to which is attached a pinion D driving the
gear wheel E , attached to the drill spindle, It action is tre gear wheel E , attached to the drill spindle, Its action is therefore at
once seen, and reference to the cross section-Fig. 27 -will show that by rotating the milled handle F which gears into a short rack \mathbf{G} at the end of the lever \mathbf{H}, the hollow portion I changes its position, with the result that reversal takes place in the usual way adopted in oscillating cylinders. The exhaust is made into the casing and escapes through suitable apertures. The reversal is
instantaneous, and the machine is well adapted for all kinds of drilling, tapping, tube expanding, wood boring, \&c., the reversing arrangement especially lending itself for such purposes. The machine is supplied with ample lubrication, and is fitted with ball bearings throughout.
Fig. 28 illustrates a transverse vertical section of a "Boyer" piston drill, and Fig. 29 is a horizontal section taken
through the centre of the cylinders. The machine consists of three main parts: (1) The upper housing into which
the throttle valve and steadythe throttle valve and steady
ing handle are screwed, and which forms a live-air chamber carrying the motor; (2) the diaphragm which forme the lid or cover of the upper

5-inch Air-Hoist.

Fig. 34. Lever.

71-inch Air-Hoist.
Safety Kegulating Valve.

This Valve is in the form of a plug cock, the plug being tted with a check valve, so arranged that in the event of failure to the hose pipe it is impossible for the air to be
suddenly released, which might cause serious injury. The sulease is effected by a bye-pass in the side which allows the weight at all times to be lowered gently.
Both Hoists and Jacks are fitted with this Valve.
"Little Giant" High Speed Rotary Drill.

Section on 2-2.
Section on 3-3.

Section on 4-4.

be seen that it is reduced in diameter in the centre, and is hollow. The arrows show the direction taken by the air. Cylinders B and and C^{1} through amund ${ }^{3}$ ations through J^{2} and J^{3}, and cylinders ${ }^{2}$ interior of the two valves. Fig. 24 shows the action to be as follows : f is full of live air which is blowing through c^{4} and f^{3}, to supply cylinders C^{1} and B^{1}, whilst cylinders B and B^{1} are exhaustatmosphere. Referring to Fig. 23, k and k^{k} are gear wheels by which the rotary motion of the crank shaft is conveyed to the part K , which is fitted with a suitable drill holder or chuck. L is a threaded sleeve, which, in conjunction with L^{1} and other parts,
provide for the feeding down of the drill. This tool is also fitted
housing or live-air chamber, and through which the hollow exhaust spindle projects ; (3) the lower housing secured to the upper housing by means of screws, and containing the gear whee
rack, bearings for drill spindle, \&c. The motor is in the form of three-cylinder single-acting oscillating engine, the cylinders being carried in a rotary frame. This frame consists of an upper and lower plate, and is triangular in shape, as shown in Fig. 29, and is
free to revolve round its centre on two bearings, the lower one being a hollow shaft, and connected by gearing to an internally toothed wheel in the lower half of the casing. The admission of air to the cylinders is regulated by the valves formed in the pivots upon which the cylinders vibrate. The cylinders are single-acting
rod ends attached to a crank pin common to them all; the pistons having been set in motion by the introduction of compressed air into the upper casing, and into the cylinder as already describer, triangular framing to rotate round the fixed together with their transmit rotary motion to the spindle the fixed crank pin, and thus referred to. This class of machine is fitted with gearing before referred to. heans ich class of machne desired. Other pneumatic appliances-air hossts.-Having put down a system of compressed air supply for the purpose of driving hammers, drills, and riveters, it soon becomes cvident that such supply ma
applications that can be made is for working air hoists. Thess are
now coming into extensive use in this country, and there is ever indication that before long few shops will be without them. The
in economy effected when they are fitted up on a light jiben. The sus-
pended over a a athe or other tool is very considerable, and they save both time and labour. perienced in lowering the ordinary chain blocks, even when
unloaded, whilst with an air hoist the unloaded, whilst with an air hoist this operation is rapidly effected. The load can also be more. readily brought into position, as the
adjustment is very sensitive. Many of the air hoists in use in this country have come from A A erica, where they have been adopted for
some time, but British firms have now commence to them, and reference to Fig. 30 shows one of the " "Ranvell" type.
Their construction is simple, consisting mainly of a long cylinder Their construction is simple, consisting mainly of a ong cylinder
with piston sliding in same; the piston-rod passes through a stuff-
a are also suitable valves for regulating the air supply and exhare The difference between one make of hoist and another lies chiefly in the system of valves, and also in respect to the material used for
the cylinder. For the latter some makers use cast iron, others wrought iron, and others again use brass. Some hoists have only one valve, this kind being used for quick work, and when it is not
desired to keep the load accurately suspended for any length of time. This valve is either an ordinary opening and closing valve
operated by the hand chain, or it may bea valve to automatically close when the chain is released when either raising or lowering the ood. Another typeo valve provides for the admission and release
of the air in the cylinder, and is left open for supply when lifting the load; working in conjunction with this valve and controlled by
the piston-rod in another valve which antomatically closes the air supply when any desired level is reached; at the same time should there be any leakakage of air it it untomatically re-admits just sunticient
airto maintain the load at a constant level. When, howere, it is desired to maintain in a stationary position a varying hooderer, such as a Coundry ladie, a third valve is introduced. Referring to the draw-
ings, Fig. 31 shows a 5 fin . diameter hoist with the regulating
valve 32 and 33 show the starting cock of cylinder being 4 ft . 6in. Figs. hoist. Fig. 35 shows a 7 73. hin. hoist with the valve placed at the top,
whilst in addition to this valve there is fitted a small non-return valve to prevent accidents, in case of bursting of the air supply
pipe or reduction of pressure. Figs 36 or 38 show the safety
regulating valve. In the larger hoists this valve is combined for convenience with the main plug of the regulating valve. It
will be noticed that there is a small \ddagger in. hole near the top of the cylinder ; this ensures that the piston shall be brought to rest before
touching the cylinder cover, since as soon as the piston passes this touching the cylinder cover, since as soon as the piston passes this
port it encloses a certain amount of air and forms an air cushion. port it encloses a certain amount of air and forms an air cushion.
The piston is packed with "woodite," as a considerable number of not harden, and is consequently less liable to permit, leakage.
 described, may be simply suspended, or they can be mounted
on a trolley and light ibbor ordinary shop use to serve lathes and
other tole shop by causing the trolley to man on a a fixed over-head girder. The same principle may also be applied for the purpose of lifting
in almost every kind of craue, and for foundry and shop use they are likely to have considerable application.
Pneumatic clain hoists.-When it is hoist for want of head room or length of lift in preference to
traight lift hoist, and at the same time to por power lifting device, this may be secured by using an ordinary
chain chator hoist in combin was described with arder peversibie rotary pren anatic drills. This form
moter able saving on hand lifting.
They act on the same principle, and where an air supply exists they are very useful.
Portable pheunatic
Portable pneumatic shears. - Shears of this description are of
great service in connection with breaking up ships, boilers, \&c.,.
also in repair work, as it becomes possible to shear bolt heads, \&ce., without damages to the phates, as a a portable power shears are as light and efficient as anything of their kind. They
can be slung from a crane, air hoist, or any suitable appliance, and readily brought into position. They consist mainly of an air
cylinder and piston operating on a toggle joint to work the shear
blades, and will conveniently deal with bolts, \&c., up to 1 lin. liames,
Mining.
rotary motron for drilling throution of the principle of the pneumatic
likely to meet coall, and other ores, is likely to meet with considerable success. Piston air motors, such
as have been described, with slight modification as to the feeding
 light and easy to handle, and the results so far promise an
oxtended application. When maphing comparison of the cost of work as between
pneumatic tools and hand labour pneumatic tools and hand labour-and it must be borre in mind
that they compete largely with hand labour-it is necessary to take
into consideration three points. and the same standing expenses in the form of rent, rates, and out in the same time. (2) That although against this there must be set of the cost of producing the compressed air, yet even sup-
posing this equalled the cost of manual labour-which it does not

- there would still ithere (1). (3) That with hand labour, especially in riveting, caulk-
ing, and place drilling, work can only proceed at a comparatively ing, and place driling, work can only proceed at a comparatively
slow rate, however many men be employed, and however closely
together they work. This frequently becomes a serious matter in chip and bridge building, railway works, \&c., and even were the
cost double that of hand labour, other advantages as regards speed, scc., would outweigh it; ; but, as a matter of fact, when properly
carried out, the saving is very considerable, and it is, in the author's opinion, only a question of time, and that not far distant,
when every engineering shop will find it absolutely necessary, if it wishes to keep in the van of progress,
some similar system of portable tools.
The author is aware that his paper will lend itself to considerable criticism, because (1) he is dealing with a subject which,
although a most important one, is yet in comparative infancy and (2) because there are at present widely different opinions held
by engineers as to the advantages of the system ; and (3) on account by engineers as to the advantages of the system; ; and (3) on account
of the very rapid improvements which are being made in the conof the very rapid improvements which are being made in the con-
struction and design of the tools, which not only makes it difficult to obtain particulars of the latest types, but renders any data as
to their efficiency to osoon become unreliabo. The makers ammit
that many of these tools are in a state of transition. There is, that many of these tools are in a state of transition. There is
however, in the author's opinion, a wide future for this class of
of labour-saving machinery. Notwithstanding, however, the deficien-
cies pointed out, the author ventures to hope that the information given and the discussion which it is likely to elicit may be of the kind assistance they have so readily afforded him, both in sup-
plying information for the drawings and for the loan of the tools which are shown here this ovaning.
The "Litle Giant" liglespect
made to this machine at the last meeting since when a new, was now in the hands of members. By reference to this it will be noted that there is a main casing containing the mechanism,
which consists chiefly of three cylinders, each provided with piston valves, and rotating round a fixed excentric and fixed crank pin. Live air having been admitted by actuating the admission valive
shown in left-hand portion of top tigure, passes through a port shown in lett-hand portion of top tigure, passes through a port
as shown by the arrow, into the value bushing, and from thence
into the cylinders. The action of the compressed air acting on
each piston in turn causes the cylinder to rotate about the fixed crank pin, whilst the fixed excentric regulates the valves for the proper cylinder castings is the pinion which engages through two
of idlers with an internally toothed wheel forming part of the dril
holder, and thus rotary motion is imparted to the drill bit. Thi machine will attain a speed of about 1400 revolutions per minute and the chief advantage claimed for it is that it comprises a high speed engine with a minimum consumption of air, and this
obtained by employing the stationary exeentric referred to i combination with the piston valves, which secures the proper cut
off of the off of the air supply. Further, both the prevented from surround
pass through suitable ports, and are thus prever ing the working parts, as in other drills of this type.
In the description given of the "Little Giant" portable reversing arrangement, although not shown on the diagram, an in detail. It may be stated, however, that when so fitted a handle this handle a valve placed in the shown in Fig. 22, and by revoviving f, reverses the direction taken by the air when entering the valve bushing, suitable ports being also provided. The drill when thus
fitted is capable of dealing with all kinds of drill work where reversing is necessary, as in tapping, tube expanding, wood boring,
kc. Detail drawings on the wall illustration clearly show the working attachment just referred to
Attention must be called to the photographs" of the "Little Giant" drill doing special work at the carragee department of the
London and North.Western Railway, at Wolverton, ia which it will be seen that these machines are driving special saw-bits for
the purpose of cutting out the lamp holes and the purpose of cutting out the lamp holes and openings for the
heating apparatus in railway carriages. This is the first applica
tion of its kind, and members will dobbtess be interested to examine the photographs.
Another diagram*
"Another diagram* to which attention must be called shows the hammer alrendy described and illustrated, in that it is provided with two hollow cylindrical valves, one at either end of the working
cylinder. These valves automatically control the admission and exhaust of the air at either end of the piston through suitable ports, whilst their object is to secure a much longer stroke to the
striking piston than is possible with one controlling valve. Another
disting whe pressed up to its work. The diagram shows a hammer with
stroke of 9in., capable of giving a very powerful blow; and this type of
rivetirg.

IPSWICH ENGINEERING SOCIETY. AMERICAN WORKSHOPS.
AT a general meeting of the members of the Ipswich Engineer-
ing Society on Monday evening, 19th inst., Mr. H. S. Jefferies read a paper dealing with American workshops, founded upon a After referring to the tididiness, good lighting, and general arrange
ment of American works, he continued : I found the electrical driv ing of tools and shafting very generally and extensively used in
the shops 1 went through. Baldwin's people told me that their They found that the cost of the upkeep of the dynamos and motor was about covered by that of the shafting and belting, and in
addition to the extra convenience from the separate driving of the yarious tools, they found they could save about 20 to 25 per cent.
in booiler power, by their being enabled to use large central engines and do away with the shafting and belting and long
stenm pipes. Their shops, like most American shops, were ex
tremely tremely well served with electric overhead cranes, varying from
5 to 100 tons lifting capacity, and travelling up to 30oft.
per minute. The system of tool-rooms is wonderfully well organ
. ised and carried out in the best machine shops in America. But
in foundry work I saw nothing very new or striking. On repetition
in ple as those we have on this side ide mate on much the same princidries the castings were "pickled" in acid, and there was little or no
use made of "Rumblers" such as are employed in this country use made of "Rumbirs. such as are employed in this country
Beyond the longer life it, givesto the tool edges, I personally see no
advantal in no doubt that in castings cortaining many cores, such as engine
cylinders, the rumbling is preferable, as by this means the cylinders, the rumbling is preferable, as, by this means the
sand cores are loosened and fall out, ,thus saving the trimmers in "pickling" them, and besides this the expense of the acid is
saved. In the forge departments I especially noticed the excelle work that was being done under the drop stamping hammers. The boiler work saw in the States was certainly not up to the
standard of this country In one of the large locomotive works,
in which otherwise they turned out good work, most of the flanging in which otherwise they turned out good work, most of the flanging
was done by hand, and all the rivet and stay holes punched; the water space stay holes were, however, rhymered out afterwards,
when the fire-box was riveted into the boiler. Pneumatic tools were used throughout this boiler shop for rhymering and tapping
the stay holes and putting in the stays, as well as for caulking. I noticed in this shop that in many of the boilers for use
in their own country the Americans were putting in steel tubes
and steel firebon and steel fire-box plates, as is common in the States. Most
of the steel plates used were made by the basic process.
The technical details of the arrangement and working of blast furnaces and rolling mills do not, perhaps, concern us a
Ipswich very directly, but there can be, I think, no doubt that in these two industries the States are farther ahead of us than in
any other branch. One cannot meet the masters and principals of American factories without being immensely struck with the vas
amount of work and energy they put into their business. In
Eng England, the majority of us, perhaps, look on our work as the means of makine a certain amount of recreation as well. In the the states, on
and have
the contrary, many look on their work as the means and end of the contrary, many look on their work as the means and end of
existence, and seem to understand neither the necessity nor the enjoyment of recreat they don't seem to appreciate that this is not
ful hard work, but the only object in life. Whether this view of ours is the right one,
is a matter of judgment. In nearly all the works I was in, the standard hours of work were sixty yer week, from seven to twelve,
and one to six. No Saturday half-holiday. In the majority of the shops there was no hard-and-fast system of piecework or day
work; the men made their own individual arrangements with the foreman, as suited them mutually best. There is no of work, by either masters or men; the best men who could turn
out the largest amone out the largest amount of profitable work being paid the highest
wages and it was no uncommon thing to see one man working
three, four, improvers, as the American patent records prove. They are always ready to try improvemonts, and are never afraid of giving
a trial to new ideas, and this characteristic is one reason for
隹 their success in life; the mere fact of many of these new ideas
turning out failures does not discourage them from trying
others others. In considering the question of American competition
how it is likely to nffect first mention the points in which 1 consider the American manu These points are, I think, an unlimited suppply of cheaper raw
material and fuel, and cheaper transport, in many cases better material and fuel, and cheaper transport; in many cases better
arranged and equipped workshops, and more up-to-date tools
and, finally, a higher rate of output from their workmen,
The first point is, I think, the most serious one for English The first point is,
manufacturers, especially for the makers of steel and iron,
and it is almost impossible to suggest how the Amerian and it is almost impossible to suggest how the American
competition in raw materials is to be met in the future. At the present time, owing to the extraordinary activity all over the
world in the iron and steel industries, the American manu facturers have all the work they can do in supplying the demand steel are quoted at even higher rates than on this side. When, however, this spurt in trade slackens off again, I cannot help
thinking that the manufacturers in this country will find the American competition in iron and steel extremely severe again
in every market of the world. As regards the questions of workshops, toots, and workmen, I think that in these matters petitors. Many of our factories here have been esta
blished a long time, and, although we cannot pull all our shop completely down and rebuild them throughout, according to the latest ideas, we can keep them properly arranged, and see that our
tools are kept up-to-date, and that the work in our factories is properly organised, and that the best methods of working are every bit as good a day's work as his American cousin, and I see no reason whatever why, with the free use of the best appliances,
he should not be able to bring his output up to the latter's level.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND
OTHER DISTRICTS. OTHER DISTRICTS
(From our oon Correspondent.)
THE closing meeting of the quarter this-Thursday-afternoon in
Birmingham was a satisfactory one and from the number of in uiries to hand, it seems more than likely that another three months of good, trade lies in front of iron and steel masters and
engineers. Produces are not, however, anxious about accepting orward engagements, preferring to book small lots from time to time at curent rates. Contracts for the new quarter are not
taken except at a decided improvement over present values It seems not altogether improbable that at or just before the orthcoming quarterly meeting marked bars will be still further January 31st, and is the highest recorded since July, 1874. Some makers will not be surprised if a further advance to $£ 12$ is soon
declared, though others are believed to be in favour of "letting well alone, and of not rushing advances andur. The new
bi-monthly average of selling prices under the Midland Iren and
Steel Wazes Board should shortly be declared, when ironworkers' wages will probably go up $2 \frac{1}{2}$ or per cent., and this may have considerable influence in determining the action of the marked in marked bars since April last- twelve months ago-have been
in
10 s. .ence the present level of $£ 1110 \mathrm{~s}$. The rise in unmarked bars during the same period has been even more marked, prices having gone
the from $£ 615 \mathrm{~s}$, to $£ 1010 \mathrm{~s}$, so that as much as $£ 315 \mathrm{~s}$. has been ap from Hoop iron is quoted $£ 11$; sheets, singles, $£ 1012 \mathrm{~s}$. 6 d . to
aded
$£ 1017 \mathrm{~s}$. 6 d .; doubles, $£ 101 \mathrm{ss}$. to $£ 11$, and trebles, $£ 11$ 7s. 6 d . to
 railway contractors, and rail way carriage and wagon building comparises which have recently hooked good contracts or
for South Africa, which have been given out, as regard the last-

 Pig iron is in good request and values are well maintained.
Northampon and Leicestershire piss are 75 s . to 7 7.s. 6 .., and Derby.
shires 76 s . to $7 \mathrm{8s}$ s. The furnaces have been kept working to their full capacity, and seem likely to have to continue in that state for
some time to come. Staffordshire all-mine ordinary pig iron is Coal is not so dear as it was, and in better supply. Good steam
fuel can be had at 7 s .6 d to 10 s , delivered to works. Foundry cokes are e2s., gas cokes. 16s.s. breeere 12.s. 6d. Shallow coal from
Cannock Chase is quoted 13 s. to 15 s ., and best deep 17s. 6 d . to 20s. A good deal of interest is taken locally in the proposed
Wolverhampton, Essington, and Cannock Junction Railway, which
has recently been inder the consideration of a Parling Committee. It will serve about twenty-one collieries. The capital of the proposed company is $£ 270,000$, with borrowing
powers of $£ 90,000$, and the estimate for the construction of the ine is $£ 230,000$. It is estimated that if the line were made, a
saving of 1 s . per ton would be effected in the carriage of coal from the districts served by it to Wolverhampton.
Steel, and Coal Company been experienced by the Shelton Iron, Steel, and coal Company. Atterations and improvements, with a
iew to maintenance of the plant and economy in working, have
been effected both been effected both at the collieries and works during the past year,
and every effort is being made to keep the property of the company up to the requirements of the trades. The company has
declared a dividend of $8 \frac{1}{2}$ per cent. upon the preference shares. The makes of pig iron and finished iron and steel have increased
during 1899 , as compared with 1598 , and the demand has been ctive at advancing prices. The prospects for the current year are
encouraging, and at present there is a strong demand for both iron and stee.. The operations in connection with the sinking of the the surface plant and permanent way are well forward, and the Steeel is cominghed into increasing usome for nairs instead of iron. The
annual report of the Chamber of Commerce of Dudley annual report of the Chamber of Commerce of Dudley observes
that the Admiralty had again sent samples of nails, spikes, \&c., for he inspection of intending contractors, but it was clear that the as the last specification consisted of only 12 tons of hand-made Commenting upon the improvement of values during the past
ear, the annual report of the Birmingham Chamber of Commerce gives the following useful comparison of prices. The three totals
represent, first, the January prices ; secondly, the December prices and thirdly, the highest prices for the year 1899:-Scotch warrants
 $£ 135 \mathrm{~s}$., 11615 ss, and $£ 18$.
New waterworles
New waterworks machinery and plant will before long be
equired by the Town Council of Wenlock, in connection witt the new water supply sc
as possible $£ 23,000$.

NOTES FROM LANCASHIRE.

(From our oun Correspondents.)

Mancheser.-Although there would seem to be ${ }^{\text {a }}$ probability yet touched their highest point, the position of the iron market i still regarded as being too much of a speculative character to
justify any but the most cautious operations. There is however justify any but the most cautious operations. There is, however,
one fact which must have an important bearing upon the immediate
future-the rapid depletion of the iron stores in this country owing mainly to the large shipments abroades in this country, until makers
have a surplus production over their deliveries that they can put into stock-which is not the case at present-the possibilitites of the approaching situation can only be regarded with serious concern.
In the meantime activity is for the most part fully maintained throughout all the principal iron-using industries, the engineering
branches remaining in much the same position that thave reported for some time past, and this necessarily means not only that a large weight of iron is still steadily going into consumption, but that
large quantities will be required for a considerable time forward
The position itself is sound and healthy enough a trade is concerned, but the mere anticipation of an "iron famine" which a clearing out of stocks might troduce would danmont inevit.
ably bring about reckless speculation, with more or less disastrous ably bring
results.
On the Manchester iron market prices for all descriptions of pig
ron show a further advance on the rates quoted last week but iron show a further advance on the rates quoted last week, bu and there was again comparatively very little business reported as being put through at the 'Change meeting on Tuesday. Both
merchants and consumers purchase sparingly, and in most cases only in the smallest possible quantities to cover immediate pressing
requirements. So far local and district makers have not followed requirements. So far local and district makers have not followed
the continued upward move in North-country brands by any actual official advance on their basis rates, but these are little more than
nominal, Lincolnshire makers upon business they are now putting through, and to some extent Lancashire and Derbyshire makers are aso tahking up much
the same position. Delivered Manchester, Lancashire foundry is
 livered Warrington, about 78.s., less s st, for Lancashire, and 75s. 2 d .
to 75s. 8d. net for Lincolnshire. Middlesbrough brands are than maintaining the exceptional prices recently quated, and
delivered by rail Manchester, good foundry qualities could scarcely chester docks, is quoted 82 s . to 82 s .6 d ., and American iron about 80s. net cash.
ness is reported, but this is ouite as much as makers of new buse to bookand prices are exceedingly strong at $£ 105 \mathrm{~s}$, for Lancashire, and
£10 10s. for North Staffordshire bars $£ 115$. to $£ 17 \mathrm{~s}$. 6 . for
sheets. and $£ 107$. 6 d . for r. sheets; and $£ 107 \mathrm{~s} .6 \mathrm{~d}$. for random to $£ 1011 \mathrm{se}$. d . for speceial cut
lengths of hoops, delivered Manchester district, and 2 s . 6d. less for shipment.
foundry qualities not now being obtainuble upward move, ordinary 2 L , but makers' quotations for the most mart are practically with$£ 910$ s. to $£ 10$ and $£ 105 \mathrm{~s}$.; and boiler plates are quoted $£ 105 \mathrm{~s}$., All doscriptions of manufactured metal goods continue in brisk request, makers being exceedingly pressed to keep up requisite
deliveries. Prices are firm, with a hardening tendency, but there is no upwara move inen raised ld per lbat, yellow metal plates being now quoted
 manuaractured metal ooods is, however, anticipated.
All classes of fuel continue in good, steady demand, and colieries in this district are mostly moving away their production
without difficulty, the only descriptions at all hanging being without difficulty, the only descriptions at all hanging being some
of the better qualities of round coal, and it is still exceptional where pits have any surplus output to lay down in stock. In the
open market, however, the position would seem to be if anything somewhat easier. As I have previously reported, supplies are coming in more fully from outside districts, and are being offered
here at lower prices. This, however, does not affect the strong here at hower prices. Chis, however, does not affect the strong
position held by Lancashire collieries, and there is no giving away whatever upon the full rates they, have been quoting for some
time past, but it has a tendency to induce buyers to hold back from placing orders in the hope of securing more favourable terms, and supplies
With ries, there is necessarivity no falling oft in the coal-using indus. iron-making, steam, and general manufacturing purposes. Large
users of the lower qualities of round coal report, however, that users of the lower qualities of round coal report, however, that
they find themselves able to obtain supplies more readily than has been the case for some time past, although, so far as Lancashire coling firm at about 12s. to 12 ls . 6 d . for ordinary descriptions of steam coal at the pit mouth. The situation is pretty much the same in tinue short in their supplies of slack to meet the demands which are made upon them, and they are firm at recent quotations, rang.
ing from 9 s .6 d . for medium sorts to 10 s . 6 d . for better qualities at
 although not in sufficient
upon the market here.
In the shipping trade a continued slackening in the pressure of orders, and a resulting tendency to ease down in prices, is reported.
The basis quotations of the Lancashire collieries remain at 16 s . per ton for steam coal, delivered Mersey ports, but business is not being very readily booked at this figure
Coke makers have withdrawn their
substantial advance in prices which is to come into operation next month.
Barroron.-The hematite iron trade is very strong in tone, and the
orders offering are much more numerous than makers can orders offering are much more numerous than makers can under
take, becase irst of all they are already yery largely sold forward
secondly, they are greatly handicapped in the shortness of supply take, because iirst of all they are already yery largely sold forward,
secondly, they are greatly handicapped in the shortness of supply
of raw material, and thirdly, the high prices to which raw material have risen has resulted in the blowing out of four furnaces, there
being ow only 43 furnaces in blast, as compared with 47 at the being now only 43 furnaces in blast, as compared with 47 at the
end of last month. This is a very serious position, because trade
is going elsewhere, and makers cannot help themselves. Makers is going elsewhere, and makers cannot help themselves. Makers
quote 8ss. to 85s. per ton for mixed Bessemer numbers, net f.ob.,
and warrant iron has advanced to 82 . 6 . net net cash sellers, buyers and warrant iron has advanced to 82 s . 6 d . net cash sellers, buyers
82 s . 5 d . There is likely to be a good business in warrant iron, as warrant stocks are the only available supply of iron that is needed
for prompt delivery. During this week 46616 tons have been
cleared out of warrant stores represent 135,158 tons, being a reduction since the beginning of the year of 62,689 tons.
Iron ore is still a very brisk business, and local qualities are in
active demand at prices which show an improvement on the week,
 The steel t trade is very busy, and with the exception of the
Barrow works, where a breakdown has occurred this week, all the Barrow works, where a breakdown has occurred this week, all the
mills are briskly employed. Heavy steel rails are firm at $£ 7$ \%s. 9 d .
to $£ 10$ per ton. A considerable business is being don to $£ 10$ per ton. A considerable business is being done in shipbuilding classes of steel, and there is every prospect of a long con-
tinuance of activity in this trade. There is also considerable tinuance of activity in this trade. There is
cetivity in the minor branches of the steel trade.
Shipbuilders are all busy, but no new orders are noted. There is, however, every prospect of a ve
builders
The coal and for now orders
The coal and coke trades are buoyant, and supplies are short,
while prices continue to improve. The shipping trade. Sis full of fife. week the shipments of ron and 6837 tons of steel in the corresponding period of last year an increase in iron of 14,128 tons, and in stoel an increase of 1248
tons. Up to date this year the metal exports represent $20,6,79$
tons of iron and 92,841 tons of steel, as compared with 102048 tons, Up to date this year the metal exports represent 206,299
tons of iron and 92,841 tons of steel, as compares with 102,048
tons of iron and 115,2899 tons of steel, an increase in in iron of 104,231
tons, and in steel a decline on the year of 22,448 tons.

The Ramsden Doek lock sill at Barrow is about to be deepened
ft., and with that object this entrance to the docks has been cosed, and John Aird and Company are now busy in putting in he cofferdams, preparatory to commencing this interesting engi-
neering feat. The work is expected to be completed in about four neering feat. The work is expected to be completed in about four
months if favourable weather is experienced. The object of the deepening of the sill is to give greater depth of water for the great

THE SHEFFIELD DISTRICT.

(rom our oon Correspondent.)

ALTHOUGH winter still lingers with us, there is less pressure for catinough intershold sorts. A A giving way in prices is reported from
one or two quarters, but it is not at all general, and the expected lowering of quotations next week may not take place, after all.
There are no stocks at any of the collieries, the market require. There are no stocks at any of the collieries, the market require
ments being quite equal to all that is raised. way delays are less heard of now, although occasionally coalowners complain that they cannot take advantage of the brisk market
through lack of facilities to put their coal doubt be a large increese in wagons before long, as all the wagon-
makers are very busy, and the companies themselves are doing makers are very busy, and the companies themselves are doing
their utmost to add to their rolling stock in engines as well as in wagons.
For the London market there has been considerably less doing of late, and it is reported that merchants have fair stocks in hand. to these stocks, as, given anything like good weather, quotations
must come down. At present, house coal is generally fetching from 14s. to 14 s .6 d . per ton, and in some instances supplies have to taking all that is offerend, and there is ilikely to be a stiffequing
towards the time of the Easter holidays, when practically six days are lost between ceasing and resuming work. A heavy
weight of coal under contract is being supplied to the railway com. panies, while the export business with the Humber ports seems to likelihood of being still higher; 15 s . to 16 s . per ton is easily ob-
tained for immediate delivery, while those who take smaller quantities have to pay from 1s. to 2 s. more per ton. With the
lengthening of the days, gas coal is in less demand, but the falling away is not yet perceptible. Engine fuel is also easier, and
values are still kept up, engine nuts making 10s. d . to 12s. per ton, screened slack from 8s. 6d. to g.s. 6d. per. ton. The coke
ovens are working up to their full output, and more coke could be taken by the market if it were available. Values are maintained steadily at $21 \mathrm{ss}$. to 22 ss . 6 d . per ton.
In all departments of the heavy
industries there is but one
Ironmasters are being pressed rep deliveries, while manufacturers of Bessemer and Siemens steels
for are so heavily booked forward that their output is practically sold
for several monthe. Bessemer steels make $£ 910 \mathrm{~s}$. to $£ 9 \mathrm{l}$ 15s. per ton, while Siemens steel fetches $£ 10$ to $£ 1210 \mathrm{~s}$. per ton according account, there is an abnormal demand, and foreign markets are also ordering very freely. Several of the latest orders have come
from the Indian States Railways, Russia, and several of our Colonies. A very large business is at present being done in
specialities connected with the South African war, in regard to and in repect of camp equipments and like goods. The extreme activity in the collieries is affecting firms who make a sp
corve wheels, picks, hammers, shovels, and similar goods
A comparatively new industry in Sheffield is the production o
articles for electric plant, the demand for which is so great that the principal firms are booked forward for several months. In
Shettield and the immediate districts one of the busiest of trades is the manufacture of pipes for water and drainage, as well as for
electric, telegraph, and telephone wires. The means of production electric, telegraph, and telephone wires. The means of proxuction
have been largely increased, but the demand is still in excess o the output.
In the lig
In the lighter trades an improvement is noted in one industry
which has been most adversely affected by the wa plating industry. Although the London demand is still below the average, the provincial centres are partly making up for the loss sustained in the capital, while French and Swedish markets are
taking an increased quantity of the best Sheffield goods. In the cating an increased quantity of trades the various kinds of sailors' and sportsmen's knives
cutlo ment account, has rarely been so brisk. Files are also heavily Sir Alexander Wilson, Bart., chairman of Charles Cammell and Co., Limited, Cyclops Works, Sheffield-one of the three armourof shareholders on the 2Sth inst., referred to the supply of armour plates for her Majestys ships.
whatever on this score so far firm in particular. Any demand that might be made upon them
would be quite within their capacity, and should necessity arise they were prepared to go still further and increase their output to might be, notwithstanding the fact that during the last two
migh be, notwithstanding the fact that during the last thoy extending their new plant. These views are entirely in harmony
with those of the principals of the two other armour firms, as give with those of the principals of.
in THE ENGINER last week.

NORTH OF ENGLAND.

This has been an exciting week on the pig iron market, prices have gone up at a great rate, not because of any speculation,
because there has been little of that, but because iron is wanted urgently for early delivery, and can only be obtained with the greatest difficulty, as the supply fals considerably bher who are
demand. As there are consumers and other buyers
obligel obliged to have the iron the producers have pretty much their own
way in the regulation of prices, more of it, in fact, than they have had for very many years. The consequence has been that thi thing that has been realised for the last quarter of a century During the first three days of this week Cleveland warrants rose
no less than 3s. 3d. per ton, making 8s. 6 d . advance for the month, no less than 3s. 3d. per ton, makt pris. being that ruling when the
and 12s. this year, the lowest price ber year commenced. The ordinary law of supply and demand is
asssrting itself fery stongly, and traders expect to see esos. ranilised
ast trict appear to be in a position to supply iron for prom the delivery and the others regre that they have no iron in stork, so thpt that they
and
might participate in the extraordinary prices. Procucers as a rule might participate in the extraordinary prices. Producers as a rule unusual at this season of the year, for generally during the winter
months stocks have accumulated. However trade was too goo during the winter to admit of demand falling short of supply dard probably never since 11733 have makers commenced the spring
and
season with so insignificant a stock. The stocks in the public season with so insignificant a stock. The stocks in the publi
stores are also very small, and if they continue to decline as quickly as they have been doing this month Connal's stock will have dis appeared before the spring is over. On Wednesday night the
quantity of Cleveland iron held in their stores was only 42,271 tons the decrease during the month having been 15,577 tons-over
per cent.-while the stock of hematite iron was only 6313 tons, per cent. - while the stock of he
decrease of 835 tons this month

The export of pig iron this month from the Cleveland district unprecedented. Last year was remarkable as being the briskest
shipping year on record, but the shipments for March, 1899 were
very far from being as good as they have been this month.
the 28th the quantity had reached 120,370 tons, as compared with 71,346 tons last month, and 969,139 tons in Manch, 1899 , to 28 th.
What is more significant than this, is that the deliveries would have been considerably larger even than they are if the iron had
been forthcoming. The wharves of the ironmasters are crowded with steamers, and there is general complaint among their ownerlanding of their cargoes, Some vessels, indeed, are sent away in ballast, as the owners cannot afford to have them wait for days for
iron that should have been forthcoming at once. Never since 1873 iron that should have been forthcoming at once. Never since 1873
has there been anything like the present state of affairs in regard has there been anything like the present state of affars in regard
to shipments of pig iron, and considering that the spring shipping it is over. There is in this district now something approaching a famine in pig iron, the demand being in excess of the production,
and the stockssinsignificant. Makers could do with a considerably larger output, but however desirous they may be to re-light idle proper suel cot do it because they cant count upon getting proper supplies of materials, Te se suy for spring delivery are
The maximum price attained for Cleveland pig iron in the figure that had ruled since the early seaventies ; this week, however, 77 s . has not only been quoted, but realised, and holders are very little for sale for early delivery, and are not prepared to sel or the second half of the year, especially as consumers offer 2 s ,
to 2 s . 6 d . per ton less than the prices ruling for prompt. As the opinion of makers is that still better prices will be obtainable, they refuse to entertain the offers of consumers. No. 1 Cleveland pig
iron has risen to $79 \mathrm{~s} . ;$ No. 4 foundry to 75 s . 6 d ., and grey forge to 74s. 4d.
Wilsons, Pease, and Co., of the Tees Ironworks, Middlesbrough, for chese and during this period it is estimated to have produced ove lined. This is believed to be almost a record for the life of furnace, and contrasts with the short lines of American furnaces.
Wilsons, Pease, and Co. will shortly start another furnace which has been rebuilt.
Hematite pig iron has risen considerably, there being much
difficulty in securing supplies. difficulty in securing supplies. Some of the makers have put up
their price for mixed numbers to 87 s . 6 d ., but 85 s . is quoted and readily realised. Rubio ore is fully 21s. per ton, delivered
at wharves on the Tees or Tyne, freights having continued to at wharves on the Tees or that , freights having continued to
advance and in adition to that the Spanish Govenment, on the
22nd inst., commenced to levy an export duty on all iron ore shipped from Spanish ports
actory but is not se presingred iron and steel continues satisangle branches, this being owing to the irregular work at the ship yards. Operations have been much interrupted there ever since
Christmas by the bad weather, and this week has probably been worse than all. In consequence of thesestoppages both iron and shipyards, and there is not such pressure for supplies as was the绪 he good freights, and the probability is that the latter will be main they have to pay 30 to 40 per cent. more for steamers than they with the cheaper vessels. Iron and stee these circumstances somewhat circumspect about advancing prices and are rather inclined to nurse the trade. They have no and quotations this week are practically the same as they were last week in all branches. Iron ship-plates are at $£ 87 \mathrm{Fs}$. 6 d ., stee
 firm at $£ 7$ tior 10s, net at works, and sleepers, for which the demand is
poor, can be bought at $£ 15$. A company is being promoted by Messrs. Geo. E. Hemingway, blishing and carrying on constructional ironworks-iron and steel bridge work, roofs, girders, and boilers. A site for the works has
been secured on the north bank of the Tees between Stockton and Haverton Hill, close to the new railway by which the Northmissioners are to endeavour to open up that district. The new oncern will have excellent railway and river facilities.
The statistics of Mr. Waterhouse relative to the deliveries and realised prices of manufactured iron in the North of England
during the first two months of the current year, are so far uring the first two months of the current year, are so far as
regards prices undeniably the best that have ever been issued for
 months, and not since November, 1875 , has such a high figure
ruled., It is 33 s . 7 d ., or 30 per cent. more than was reported for the corresponding period of last year, and since prices began to
nove up in June, 1895 , the advance has been 52 s . 9 d per to nearly 60 per cent., while as compared with the minimum price ever reported in the maximum of the "boom" of 1880 was 18 s . 10 d .
been 55 s .8 d . The mater below the figure now reported, and that of the prosperous time of
1890 was 10 s .5 d . less. The advance in the last four months was nearly equal to the $15 \mathrm{~s}, 10 \mathrm{~d}$. that was gained in the three and
a-half years between June, 1895, and December, 1898. Further advances are expected to be reported, as the realised prices are
still a good deal below the quoted prices that have ruled for a considerable time past.
In accordance with this return the wages at the mills and forges ing to note that if the advance had been $9 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. instead of 9 s ., the advance of wages would have been double what it will be, as the
price would have come up to $£ 7 \mathrm{7s}$. 6 d . The following is the
summary drawn up by Mr. Waterhouse for the two months onded February 28th

The wages of steel millmen at the Consett Works, and those
establishments which regulate their wages by the Consett sliding scale, will be raised $2 \frac{1}{2}$ per cent. from next wee
As is apparent from the above, the orders Asely for new steamers. Among those which have beening in socently 3 pt. lin. deep, and 6000 tons, which will be constructed by C. S. Swan and Hunter, of Wallsend-on-Tyne, for C. T. Bowring and Co.,
of New York. J. T. Eltringham and Co., of South Shields, have secured orders for four steel screw steam trawlers, while J. P. Ren-
noldson and Sons, also of South Shields, are to build a well-deck
teo to haver, 204ft. 8in. long. Wigham Richardson and Co. are reported and Co., of West Hartlepool, one 329ft. long, and Wm. Pickergill and Sons, Sunderland, one 359ft. long.
Mr F, C. Marshall has retired from
Mr. F. C. Marshall, has retired from the directorate of R. and
W. Hawthorn, Leslie, and Co, Limited, and his son, Mr. F. T.
Marshall, has been appointed in his stead. Mr. F. C. Marshall in Marshall, has been appointed in his stead. Mr. F. C. Marshall in
1870 in conjunction with Mr (now Sir) B. C. Browne and Mr. J.
H. Ridley acquired the well-known engineering works of R, and

NOTES FROM SCOTLAND.

(From our onen Correepondent.)

ThE Glasgow pig iron market has again been very strong this owing to an apprehended scarcity of iron, prices have been moving
further upward. Business has been done in Scotch warrants from
 has been very little doing in Cleveland iron on aceount of its great
sarcity. A few transactions have taken place at very irregular

 one month, 80 s. 8 d . seventeen days, 82 s . Thd . to 82 .
three days, and 8 s.s. 4 d. nine days.
market makes business very difficult to put through.
It seems impossible for makers of pig iron to increase materially
their output nt present, and as a scarcity of raw material is feared the market is full of reports as to the expedients that are likely to be adopted in order to obtain supplies, It is even said that some
of the leading Glasgow iron merchants intend taking a journey to this country. There is certainly a feeling that the trade is likel to be easier in the States than on this side, but whether imports
of American iron can be advantageously made on a large scale remains to be seen
The prices of special brands of makers' iron continue to move

 There are 82 furnaces in blast in Scotland, compared with 83
last week and 83 at this time last year.
ducing ordinary, 36 hematite, and 5 basic ione total 41 are pro ducing ordinary, 36 hematite, and 5 basic iron.
The output of hematite is less than it was a yea
of from 1200 to 1400 tons per week, but the prices of Scotch-made hematite have been advancing, having gone up about 2s. per ton
in the course of the last ten days. Merchants quote this class of iron 87 s . 6d. per ton for delivery at the steel works.
stocks. The stock in Connal and Co.'s Glasgow stores shows recuction for the past week of fully 7000 tons. The total reduction
in these stocks during the last three months has been about 57,000 orss, and if a similar decrease should continue throughou the year, the stock would be well nigh exhausted by the month o
December. The total stock at present in these stores is about 199,000 tons. There is no positive information as to the amount of stocks held in makers' private yards, but ot it is understood tha
these are also being reduced The prospect, therefore, is that i
the present dem the present demand for pig iron continues, prices are likely to go
still higher, and there will be difficulty in obtaining full supplies.
 sponding week last year. There was despatched to the United
States 125 tons, South America 164, India 210, Australia 844 France 20, Italy 1810, Germany 640, Holland 500, Belgium 110,
Spain and Portugal 150, China and Japan 100, other countries 320, the coastwise shipment.
the same week of 1899 .
It has been stated within the last few days that some consumers of iron in the Glasgow district are finding it so difficult to obtain
adequate supplies that they have been obliged to give notice to number of workmen that their services will have to be dispensed with, at least temporarily, unless an improvement takes place in
respect to the amount of iron available. Among the tims so
so circumstanced are Neilson, Reid, and Co., of the Hyde Park
Iocomotive Works, Glasgow. This firm is reported to have booked locomotive Works, Glasgow. This irm is reported to have booksd
orders for ten locomotives for South Africa, and also ten engines
for the Egyptian railwayg. for the Egyptian railway:
The finished iron and steel trades are very firm. Wages are
advancing, and the dearness and scarcity of pig iron is such that advancing, and the dearness and scarcity of
makers will be obliged to raise their rrices.
The coal trade is active, but there has be
in obtaining full supplies. The pressure for shippins difficulty in obtaining full supplies. The pressure for shipping coals has
been consid erably reaxed, owing mainly to an impression that purchases may ere long be made on easier terms, The demand
for coals for manufacturing purposes is well maintained, and notice has been given by coalmasters that contract prices will remicin
unchanged during April, on the basis of 13 s . per ton for splint coal at the pits. The price of shipping coals is somewhat easier. Steam

demand for household coals for home consumption.

WALES AND ADJOINING COUNTIES.

(From our ovon Correspondent.)

ThE steam coal trade continues in strong demand all over the minous remain steady, demand having evidentlly been strengthened by the severe weather, though the high prices prevailing in some
districts evidently affect ocal consumption. This applies ospecially
having advanced prices 5 s. per ton. The result is that local prices ar shown on Saturday last that the reason urged for advancing 5s. per was not a valid ercuse, as the advance in nssessment only amounted to 1 yd. per ton. The fact is that the large ironmasters are also considerable coal exporters, and as they also hold large Govern ment contracts, the troublesome details of local coal business are
not acceptable. At one time, in early iron history, when the 3000 not acceptable. At one time, in early iron history, when the siler
colliers of Plymouth at present were represented by three collier only, ironmasters objected to sell coal at any price. Wm. Crawshay's reply to a buyer was, "I want all my coal for use." Now
ha largest ironmasters are in the front rank of coalowners, Co
Col liers are working well, and are anticipating a good audit, and al over the district, in everything pertaining to coal, the animation io
marked. In the Swansea Valley there has been an increase of marked. In the Swansea Valley there has been an in incease on
colliery labour, especially at the Birchgrove. At Briton Ferry France and Spain have been large buyersat the chief ports. Last week the total from Swansea was over 25,000 tons to France alone. Cardiff has also been shipping freely, also to Port Said. More coal and
fuel reported going to Alenzia, and steady consignments to Cape fuel reported going to Alenza, and steady consignments to Cape
Town. A steamer going out of dock last week from Penarth to Savona with 3500 tons, met with a singular accident, grounding
with one end on bank and the other across the drain. When the water receded she literally broke in two between her engines and boilers. Big ships are now in evidence for coaling and bunkering.
This week the Mimiso in the Australian meat trade, came into Barry ; tonnage, 12,000 ; length, 44 fft.; ; depth, 55 ft . $;$ width, 30 ft .;
 docked in the large graving dock of the Union Dry Docks Company, She has been fitted up with stalls for 1000 honses for South Africa,
and was bunkered this week with 4200 tons at the Alexandra Docks. This fine vessel is owned by Houlder Brothers and Co
Condon.
Patent fuel is in strong request, particularly at Cardiff and

 Rhondda, 15 s .6 d . to 16 s .; through and through, 14s. to 14 s . 6 d . mall, 1 ss . to 13 s , 6 d .
Patent fuel, 19 s . to 2 s.
Coke: : Furnace, 29s. to 31s.; foundry, 22s. to 33s.; special foundry, 3rs. dd . to 36s.
It is being urged that corporations like railways should go in for saams. Lately, there has been an increase of colliery companies,
seane and the tendency is to give the people, more than capitalists, an
interest in them. One in the anthracite district has just been Hoated $£ 10,000$ in $£ 5$ shares
The Lewis
The Lewis Rhondda Company promotion has been closed, having
been largely vor--subscribed. lead properties in North Cardiganshisre are endeavouring to acquire Aberystwith up to the Plinlimmon ranges, and on to the margin of
he Birmingham water shed. Last week a Belqian syndicate started the "Société Anonyme de Mine de Frongoch," Merioneth, $\frac{1}{2}$ milion francs, with 6000 preference shares, apart from deben
tures. The Pritchard Morgan gold mines continue in operation, tures. The Pot hard Morgan gogr mines continue in operation,
but I have not heard of the progress of the Mawddach estuary
 been grenter than from the collieries, and several leading works are
much inconvenienced in consequence, the pressure for supplies, rails, plates, and bars being very great. The exports of the week
include 1150 steel plates for Hamburg and Rostock from Cardiff with one cargo iron to Ghent ; rails from Newport to Highbridge, The one large consignment of rails to opopsham. na falling off in arrivals of fig iron, Whitehaven,
Barrow, and Ulverston figuring principally, and the latter sending Barrow, and eulderston figuring principally, and he latter sending
also ingot monald Swassa imported 4397, tons. A good average output of hematite took place at the Briton Ferry works last weeke,
and the make of steel bar was well maintained. In the Swansea
V Valley the pig iron trade is most satisfactory. Wright, Butler, and Co.s works are in full vigour, and at Uper Forest, Pontar
dawe, and Duffryn, the steel make shows the greatest animation. up to $£ 710$ s.
High pressure is the leading and what with constant arrivals of ore and coke, and despatches
of rails, bars, and plates, each present a scene of almost unpar of rails, bars, and plates, each present a scene of almost unpar-
alloled activity. On 'Change, Swansea, mid-week, strong evidence was given of
on unchecked prosperity in all branches of iron and steel. Since an unchecked prosperity in all branches of iron and stee. since
my last report the pig iron market has shown an advance on all
hands. Scotch, 1s. 2d.; Middlesbors', 2s. 2d. 2 hematite, 31d. hands. Scoteh, 1 ss . 2d.; Middlesboro', 2 s . 2 d . ; hematite, 3 3 hd.
The last named has varied during the week to the extent of 1 s ., and at close was very firm. It was stated that stocks had been
drawn upon to the extent of nearly 20,000 tons, and the general opinion was that no change in the upward progress of prices was
likely, unless the threntened importation from America should occur. With regard to the American bar import, it was main-
tained that sales had been effected by the National Steel Company of America, and the figures given were $£ 617 \mathrm{s}$. . 6 d . per ton
c.i.f.,
range of gauges from 9ft. upwards, probably experimentally known.
Late
and

 Tinpphate pricea are very firm. Malaers ontend that they are

$20 \mathrm{~s} . ;$ seconds, 17 s . to 18 s , bunker, 14 s . 6 d . to 15 s , ; small, 12 s s 6 d . to 13 s . 6d.; bituminous, according to arrangement ; patent fuel
18s. to 20 s . Coke, furnace, 30 s , to 3 s. , best foundry, 3 ses . 6 d. to 18s. to 20s. Coke, furnace, 30s. to 31s., best roundry,
35s. ;itwood, 18s. 6d into trucks, Cardiff prices aro 18 s, , itrm
iron ore, Cardiff or Newport, Tafna, 19s. to 19s, 6d.; Rubio, 20s. iron ore,
to 20 . 6 d.
The ann
The annual meeting of the Miners' Provident Society was held
this week in Cardiff. The membership at the close of the year this week in Cardiff. The membership at the close of the year
was 30,269 ; balance in hand, $£ 2303,40914 \mathrm{~s}$. d . In the course of
the nces of 5 s , per week to the most aged members, whose membership had been sustained for ten years, and who are not in receipt
of disablement pay, from May 7 th, 1900 , until December 31st, 1903. In the anthracie district coal owners do not, so far, agree to join the association. the enginemen and stokers having given in notices. Som. Some little interest was aroused amongst the colliers generally
this week to hear of the deputation of colliery leaders who waited upon the Home Secretary. The deputation included "Mabon,"
Brace, Davies, \&c., and Robinson, from the Forest of Dean. The Brace, Davies, \&c., and Robinson, from the Forest of Dean. The
Home Secretary, after hearing, decided that no case was made out for interfering with the present Local Mines Regulation Act. The the Government. He admitted defects in the Compensation Act, and hoped they would be dealt with by Parliament later on. He could not promise to advocate the appointment of a Minister of
Mines, although such an official would much relieve him. There were mining experts at the Home-office, and he did not think
that the Government would sanction the expense of another minister
ings caused the derthyr Vale by a runaway train on the work an inquest was held, and a verdict of accidental death recorded.
On the eve of my despatch I hear that the Government is again endeavouring to place large contracts for coal. This has given creased tone to the market

THE NEWPORT HARBOUR COMMISSIONERS' WEEKLY TRADE REPORT
STEAM coal firm, a better supply of tonnage having come on.
House coal is quiet owing to non-arrival of sailing vessels. Tin and copper remain about same as last quotations. $\left.\begin{array}{l}\text { Exports for } \\ \text { week ending }\end{array}\right]$ March. 2 tht were:- Coal, foreign, 55,287 tons $; ~$ and coastwise, 16,099 tons. 1 Imports for week ending March 27 th
were : - Pig iron, 2020 tons; iron ore, 3400 tons ; cement, 650 tons
 best, 18s.; dock screenings, 14 s s; ; colliery small, 13s. to 13s. 6 d .
smiths' coal, 15 s . Pig iron: Scotch warrants, 74s. 6d.; hematit

 to $18 s$. London Exchange T,
$£ 136$ 5s. Freights: Steady.

AMERICAN NOTES.
 AMm our oin Correponden

The financial situation is the absorbing feature in Hork, March 21st, 1900. this country. The Currency Law just passed ensures an immediate
increase in the volume of currency to the extent of 10 per cent the Bank Law capital, with the exchange of bonds now out, whic in the aggregate amount to $800,000,000$ dols., and which mone
will be issued by the formation of new banks, an enormous increas will be issued by the formati.
in the circulation is assured.
There is certainly a very great demand for more money because of the extraordinary industrial and commercial activity in all directions from Cape Nome to Southern Mexico. The iron trade is more
active than a few days ago Great combinations are not anxious to push these advances, but establish a higher level of values. The prospects for railroad con stacuition are very Hattering. Inquiuries prompects fors of the Me Mississipp
region show that the greatest activity in building will be there Inquiries from Japan and other far-off points during the past fe weeks would figure up 30,000 tons for steel rails. It is intimated
to-day in some circles that steel rails will be ddynall o-day in some circles that steel rails will be advanced to 36 dols.,
and ultimately to 39 dols. There is a very active demand for girde rails for trolley lines, the construction of which will assume ver large proportions during the coming year. Copper is firm; tin
high; spelter is active; lead is in abundant supply. Electrica ness, and proparations are bein made for still further enlargements during the coming summer to
meet what ever mee
electrical electrical equipment of all kinds. Money averages 6 per cent.
interest, and just at the present time there is a little apprebension of a stringency over the confidence of the introduction of the new legislative measures. A measure has been introduced into Congross
to provide for the printing of $50,000,000$ dols, worth of small notes to provide for the printing of $50,000,000$ dols. worth of small note
ranging from 5 cents to 5 dols. for mailing purposes. All engineer ranging rome cents to 5 dols. for mailing purposes. All engineer
ing plants are overcowded with work. All rolling mills are book ing as much new business as they care to take. Plate iron ba
advanced in price during the past few days 8 , per to

Turnal to the Enger Appointagnts.-Staff engineer : A. W Turner, to the Argonaut, to date April 19th. Chief engineers
A. Hills, to the Charbbdis, and E. A. Short, to the Vivid,
for the Comus, undated. Engineers : A. S. Crisp, to the Duke of Wollington, for the Chamois, and W. C. S. P. Bartwell,
to the Victory, for the sylvia, both in lieu of a chief engineer, to 23 rd, and to the 1 . Cleave, to the Pembroke, to date Mar Vernon, for charge of machinery ofe April 19th ; R. Spence, to th boats, and for electric light duties, and instruction of enginee officers and engine-room artificers in electric light apparatus, and
L. J. Watson, to the Pembroke, supernumerary, to date March 23rd. Royal Meteorological Society.-The monthly meeting of th Society was held on Wednesday evening, the 21st instant, at the
Institution of Civil Engineers, Great George-street, Westminster
Dr. C. Theod made to the loss which the preciett Mr. in the chair. Reference wa Mr. G. J. S. Smonons, F.R.S., who had held the office of decretar
from 1873 to 1899 , wese from 1873 to 1899, except for the two years $1880-1881$, when he was elected president for the second time, in order to preside over the jubilee celebrations of the Society next month. Owing to bein
seized with paralysis on February 14th, he had to resign the pres seized with paralysis on February 14th, he had to resign the presi
dency, and, as he never rallied he died on the 10th inst. A vote
of cond of condolence with his relatives was passed by the meeting,
Twenty-seven new fellows were elected, Twenty-seven new fellows were elected, as well as two honorary
members, viz, Mons. Albert Lancaster, director of the Ber Meteorological Service, Brussels ; and Gen. M. A. Rykatchef following pors were read :-"The Ether Sunshine Recor Ter fol Mr. W. H. Dines, B.A.: "Remarks on the Weather Cond
bions
tion tions of the Steamship Track between Fiji and Haw
Captain M. W. C. Hepworth; and "Comparison by

NOTES FROM GERMANY.

(From our ourn Correspondent.)

All branches of the iron and steel industries continue very busy, and the works are in many
cases so well supplied with contracts that they do not care to accept orders which have to be exe cuted before summer. Prices show increasing
firmness generally, but during this week and the lose all round remains strong and hopeful, The orders for home consumption coming in freely, and foreign demand has also been fairly good,
especially for structural iron. Pig iron is, of especially for structural iron. Pig iron is, of
course, stiff in price and in very good call, but as scarce as before. The production of pig, iron in
Germany, including Luxemburg, was for Februin of present year $620,707 \mathrm{t}$., of which $121,009 \mathrm{t}$ were forge pig and spiegeleisen, 32,768 t. Bes-
semer, 354,985 t. basic, and 111,945 t. foundry pig. Output in January of present year was
$658,512 \mathrm{t}$. ; in February last year $625,158 \mathrm{t}$. were produced. From January 1st to February 28th
of present y ear $1,279,219$
t. were produced, of present year $1,279,219 \mathrm{t}$. were produced,
aganst $1,282,779 \mathrm{t}$. for the same period the year

A rise in the demand for plates and sheets has
een noticed both in the Siegerland and in the been noticed both in the Siegerland and in the
Rhenish-Westphalian district, consumers trying Rhenish-Westphalian district, consumers trying
to buy as much as they can get at the present
rates beanse of plates when the spring trade developes more strongly. Exceedingly brisk employment is reported to be going on at the machine shops, and
the locomotive and wagon factories have, perhaps, never before been so busy as during the past few
months, while prospects for fresh work are very good.
The situation of the wire and wire nail busi. ness, which has previously been stated as improv-
ing, was remarkably firm last week. The wire nail manufacturers are at last profiting from the general upward tendency in quotations, and are
doing quite a remunerative trade now, at least still weak and limited
German total export in January and February of present year was $5,025,237$ t., against
$4,5566,023$ t. in the year before, plus amounting
to 469.214 t. to $469,214 \mathrm{t}$. Coal, corn, wood, drugs, show an
ncrease, while export in earth, shows a falling off against last year. Spring orders come in pretty regularly on the
Austro- Hungarian iron market, and some branches are in fairly good occupation, but as many works had to limit, or even suspend, opera-
tions in consequence of the colliers' strike, makers ind it very difficult to supply the quantities re quired. Products of the Austrian iron industry have for the first time successfully competed on the Constantinople iron market with articles from other countries, and several contracts for bars and sectional iron were lately placed with Aus-
trian firms, both articles having previously been mported from Belgium or England. Tools and locks have likewise been sold in large lots to
Turkey, and there is little doubt that a good business in the above-named articles, the quality of which is stated to be excellent, might be done
to Turkey, provided that prices remain so low as to beat all other countries.
In the Falkenau district the colliers' strike is reported to have come to an end, neerry all the
men having resumed work on March 22nd ; from other parts there have likewise been better ccounts give
4 decreasing.
Firmness and activity are the principal fuatures of the French iron market. Consumers who were by the works some time ago, have now come for-
ward very freely with orders, and numerous conracts, chiefly in manufactured iron, were placed
in the course of last week. The advanced quota tions of 280f. to 3000 . p.t. for merchant iron No. 2, 310f. p.t. for hoops, 310f. p.t. for steel ff the Departement la Loire et le Centre are show ing a strong inclination to raise their pricess
In Belgium ironmasters have likewise tried advance their rates, and the tendency generally appears to be in an upward direction, but a rise
for girders that had been resolved upon could not be carried owing to underquoting on the
part of German works, which are selling girders
 is, however, very likely that in spring and early ron will take place, the outlook being bright in all trades. Plates have been comparatively quiet last week, and prices were a trifle less firm.
Demand and consumption in coal, coke, and riquettes have been extraordinarily brisk, and want of fuel very keenly, in spite of large supplies that come in from abroad. During the first two months of present year import in coal to Belgium
was $560,000 \mathrm{t}$., against $340,000 \mathrm{t}$. for the correponding period the year before. In February 185.000 t . in the same month in 1899 . Increase February, $45,000 \mathrm{t}$. falling to Germany ; while import in 400 tng lish coal rose $156,000 \mathrm{t}$. In coke
about 4000 t . more were imported this year than解, supplies coming chiefly from England, or January and February last year on 31,768 t, Por this year. Belgian export in coal during the
period above
mentioned increased
90,000
t period above mentioned increased 90,000
export in coke, $19,000 \mathrm{t}$. against last year.

ENGINEERING NOTES FROM

 SOUTH AFRICA.(From our ouen Corresponden.) Marizburgh, March 3rd,
Thrig can be no question now of the compara-
ive harmlessness of wounds caused by the tive harmlessness of wounds caused by the
Mauner bullet, and the Boers are having recourse Manser bullet, and the Boers are having recourse,
to "nicking 'the heads, and wherever posible,
are using the Martini-Henry rifle instead of the are using the Martini-Henry rite instead of the
Mauser It is quite probable that the burghers'
disappointment with their new weapon has had disappointment with their new weapon has had
something to do with the edistinct falling off in the
stubbornness of their resistance which
noticed in recent engagements. It is surely ammunition which does not disable an enemy unless it kills him outright or breaks a bone.
As to lyddite, it seems to have satistied all of the exaggerated ideas some people had formed of it. Actual experience of the explosive shows rubble rifle parapet but bseach a 4 ft . earthen or is doubtful whether it would prove of much use against the 6 ft . masonry of a fortress or against naval armour. The picric-acid fumes which arise from the exploded shell do not possess the deadly power ascribed to respirable.
Lord Rob
Complexion on the outlook put quite a new cheerful views now prevail in business and industrial circles. Already orders for pumping and other plant have been cabled home in connection majority of South Africantersana mines. The will be but little fighting once a British enters the Transvaal, and the Boers appear to be
basing their hopes upon continental basing their hopes upon continental intervention rather than upon the defence of their strongholds. At the annual meeting of the De Beers Company the other day Mr. Rhodes justified the
heavy expenditure which that comp taken upon cold storage plant at Kimberley and the Cape ports. There is no question that soon as the war is over there will be a vigorous demand throughout South Africa for refrigerating machinery, both on public and private accoun
Hitherto the for much of its food supplies on tinned stuffs with Australia now pouring in consignments fresh meat and dairy produce this can no longer continue.

United Kingdom Ramway Officers' and Ser-
vavts' Assocuation, Spenking at the anjiver VANTs' Association.- Speaking at the annivernight, Mr. J. Lloyd Wharton, M.P., said that it was noteworthy that during the past year there
had been an absolute minimum passengers, and, he hoped, to railway servants
also.
Trade and Busingss Announcements.-The
business of the Pridmore Molding Machine European Agency will in future be carried on by larger promises at 39, Victoria-street. Besides the Pridmore machines, J. W. Jackman and Co pany of Chicago, makers of the Whiting cupola the S. Obermayer Company, of Chicago; and the Buffalo Forge Company, of Buffalo; and make a
speciality of foundry equipment in all its branches. - The Patent Shaft Limited, has opened London offices at Member management of Mr. Lincoln Chandiler.-Mr. F. T. Marshall has been appointed to be a directo
of R. and W. Hawthorn, Lestie, and Co. Limited, Engineers and Shipbuilders, St. Peter Works, Newcastle-on-Tyne, his father, Mr. F. Marstall, having retired from the board.-The have granted to W. O. Rooper and Robins, ele trical engineers, of Stafford, the sole licence to
make and sell Epstein accumulator plates and storage batteries. W. O. Rooper and Robins will process with the astistance of many of his staff at their new works at Stafford.
New Compantes.-Henry Pooley and Son, 1900
Limited, is a company with a share capital Limited, is a company with a share capital of
$£ 130,000$, divided into $13,0005 \pm$ per cent. cumulative preference shares of $£ 5$ each, and 65,000 share capital, the company is now issuing $£ 70,000$ 4 per cent. first mortgage debenture stock, redeemable at the company's option on or after
January 1 st, 1915, at 105 on six months' notice and in the event of the stock becoming repayable price, The company acquires the business of and Son, Limited, weighin pool, London, Belfost has been fixed at £180,000, payable in cash, but up to $£ 60,000$ in debenture stock any amoun up to
665,000 in ordinary shares. -0 n the 2 2lst instant a company was registered by Jordan and Sons,
Limited, of 120 , Chancery-lane, London, the title of John Langfield and Company, Limited to acquire and take over the business John Langfield and Co, at 11, Blackfriars-streot Manchester and Furnace-street, Dukinfield Chester. The nominal capital of the company $£ 10,000$, divided into 10,000 shares of $£ 1$ each. Dividends and Reports.-The report for 1899
of A. and J. Stewart and Menzies, Limited, states that the net profit amounts to $£ 130,301$, which, with $£ 9743$ brought forward, makes a
total available balance of $£ 140$, 044 , Interin dividends at the rate of 6 per cent. on the prefer ence, and 9 per cent. on the ordinary shares have been paid, leaving $£ 107,044$, which the directors ro mmend should be appropriated as follows :fund, 425,000 ; final dividend at the rate of 6 per cent. on the preference shares, $£ 10,500$; fina
dividend at the rate of 11 per cent. on the ordinary shares, making 10 per cent. for the year, $£ 27,500$, leaving to be carried forward $£ 19,044$.-
The net profits of the National Electric W Firi Company for the the National Electric 4 ring and after including $£ 1222$ brought forward, and writing off $£ 1225$ for depreciation and reserve on
contracts, the balance permits of a dividend of 3 per cent., and the carrying forward of $£ 281$. the report of the directors of Robey and Co . for
the year 1899 states that after writing off $£ 6105$ for depreciation, there remains a net profit of
$£ 36,860$. Deducting debenture interest and adding $£ 351$ brought forward from the previou
year, there is a balance of $£ 30,255$ available division. The directors recommend this sum to be appropriated as follows : To the payment of
a dividend of 6 per cent., amounting to $£ 16,698$ adding $£ 11,000$ to the reserve fund-thus in creasing that fund to $£ 40,000$-and carrying

THE PATENT JOURNAL.

Application for Letters Patent.

When inventions have been "communicated" the printed in italics.

16th March, 1900

Sol Sol sol s012

 ${ }^{\text {5013. }}$.

50

5

5

NTS for ExPA Msio
5026. Raplarons, F. Clarke, London.
5027. Filunyc and Closivo MkD.

 Lo
So32. Electrical Cut-out Devicks, A. Maligranis

London.
and W. Donalason, United Statese.), A. E. Stirckler

Germany,
sofl Bouv

London.
50H4 Mins for Supportixa Buisds, A. W. Bentley
5045. Producino Printing Blocks, A. T. Woodhead

London,
Sotstagrators, F. Gerhard and R. Berg
Londo.
SOOP. BARAScopk or Wrather Indicator, E. Reddiess,

mosi. Miyultiple Lubricator for Machivery, C. Lang
os2. Advertisivo on Pavkaknts, T. E. Andrews, Bir

5054. M
for Hydraulic Pressks, J. Jacobse,
 So57. MAKI
Porpoosk,
London.

Mentin Prodecs for Mordnetiva
M. and D. D. Spence and A. Shearer,
505S. Plovohs, E. A. Probert Worcen

Birmingham.
5061. BortLe Holder, dc., J. and J. Maxfield, She
s.
5062. Condensing Steam, H. T. Newbigin, Newenstle

Srley. Hooks for Steamirrs, H. Dansey, Tedding
Soch. Sockest and Sploor Drain Pitrs, J. A. Reid,
Glagisgow. Blexichina Textur Fabzies, H. Hadfield, Man-
7. Wacon Couplise, J. Edwards and W. Morgan
, Makina Buckle Tonguss, S. Greenfield, Bir-
sobe. Isvertrd Electric Arc Lamps, H. M. Darrah
sofo. Musical. Tov, T. W. and M. Masters, Notting

and A. Rées, Manchester.
5076. Vimwiso Exlaroed Pictures, J. E. Thornton and

London.
soso. MIcromerress, w. H. Lock and H. Isherwood
Losi. Renklino Machings, H. M. Girdwood, Man

Drummond, Glastrow.
Doss. Renomativa the Arc in Electrical Arc Lamp

35:

5097. Hoe Nulls for Boots, E. J. Smith, Ystalyfera,
sogs. MAMINo Bricks, Hall and Boardman, Limited,

son, London.
510. Reckracle for the Storage of Corfer, J . Rohde,
5103. Potato Habvestive Machine, H. Harms and H.

Graham, Liverpool.
5105. TAKivo Beaisos on Board Ship, J. E. Bohm,
SiO6. Watrekproor Devices for Vzhicles, H. Williamx,

S109. Deyivo Tkxtules, A. Pitsch, London
110. Diche

Sooth, China.) Mechanism for Skwiso Machines, D.
5112. Stitch Mecter

London, BRess for Velociprdes, J. E. Challoner,
London.
ndonina and Welohixa Grais, R. Browin,
Tars for Barrels, F. Parsler, Lond
5117. Tars for Barrels, F. Parsler, London.
5118. Coomanatios Muzzie for Horsks, W. C. Peters,

fiut Anilin Fabrikation, Berlin, Germany.).
size Axt, Boxzs, A. Katona, P. Varga, and J. Krom-
pecher, London. S125. Pressorke-ndicating Apparatus, H. G. Prested,
5126. Propuciso Dessovs on Carps, J. Y. Johnson.-
(La Socilte des Desesins Induastriels, Paris, France.).
5127. Roller BEsAlsos, Hs L. G. M.' Zornow, M.

London.
Lonsas for Hosk Pires, L. de L. Wells,
sino

Si35. Merctialal thrbhometre Alirms, A. Morloy,

Londonsdescrat Electric Lasps, W. C. Gale,
Siss. Looms, The Radax Pneumatic Tire Company

silangon. Gins the shutrie in Loows, P. Schmidt
London. $\underset{\substack{\text { Lis.2. Ason. } \\ \text { London. }}}{\substack{\text { Len }}}$

19ht Mawh, 1900.
minghnw Gear for Bictcies, J. J. B. Arter, Bir-
mingham.
514. CLoskt-skat Beackrt, G. Sharpe and A. I.. Haus,

5152, Usiversal Valve Joint, A. Trueman, Bir-

gston-on-Thames.
MPLLEMExT for G
5159. REAPITS MAchivEs, L. Sansarlat, London.

Sid4. Comaske Mkasurixa and Drinkinc Glass, T.
H. Purves, Edinburgh.

 W. Yates and J. B. Bent, Manchester.
SICS. SMoKk-PREVETTINO ARRANEEMENT, G. Gregory,
516. Liviviva Bricks for Builoixa, J. H. Knight, Farnham, Surrey.
5170 . Hasd and Forearm Exkrciskr, L. J. Phelan,
Lind Mon. Maracture of Metallic Salis, J. B. de
Alzugaray, London. S172. Ombalisixa Oxides from Ores, J. B. de Alzugaray,
5173. Dry Prockss of Copyiso Docuarexts, B. Wecheler.

Stits. Consectiva Cables, C. A. Day.-(J. G. White,

Statea).
Sist TRMwars, F. B. Aspinall and A. J. Ireland,
London.
London.
S18co. Toisico Pipk, A. Wyllie, London.
S186. CoNTRoLIIN FLow of FluIDs, T. S. Martin,
London,
sisf. Telgphone-call Recorder, A. E. Lamkin,
London. London.
siss. Toiscoo PiPs, C. Clement and J. Collomb,
London
 Liondo. Currivo Machines, A. MeDonald and E. E. Turner,

 Silit. Hepolisa Apparaters, J. McHardy and J. H.
Reeves, London.

5199. Crcce, H. Glade, Loudon.
5500. PREVERTINo RALWAA Accidents, E. Lawrence, London.
STOM Skorina Hubs of Whekls, H. P. Childress,
London. S20.2. Dkvick for Holdive Shekp, w. M. Ashton,

 London.
S20.e. Lockisa Device, H. C. Walker and C. W. Hildred,
London 52027. Clưorch Gera, E. R. Ralwey and the Salwoy Free
Wheel Gear Company, Ltd.. London. ${ }^{5200}$, GAcours, R. G. Brooke, London.
London. Salo. Leniricativa Axies and Shafts, F. Sarth,
London. Sin1. Crycuse, E. J. Hitchcox, London,
5012. LITr BELTs, E. O. Spetmann, Lond
 seith Coniss and Crearrtres, J. H. MeLean, Wolver-
hampton.

 London,
$\substack{\text { Sand } \\ \text { London. }}$ London.
S2.2.. LITrise Wispow Buixd, J. Hart and G. Romp,
London.

20th Mareh, 1900.

520.0. Couplusa Cars, J. Kordin and E. von Noury,
London. ${ }^{5227 \text { I. Coolusa Ons. }}$ Oils, W. Fraser and J. Bryson,
 Duncan, Glasgow
S22a. Boonax and like Corpousns, T. I. G. Bell,
London ta3o Contriso SLots or Grooves, R. J. Lines, North-
ampton ${ }_{5}^{\text {sampton. }}$ simospheric Oil Burver, de., C. Scouller,

 Dindeo.
sesic Deriog for Cleaniva Knives, H. Barraclough,
Liverpoool. Liverpool.
$\begin{gathered}\text { tasis pooching FLAx, T. F. Mackie and G. Shaw, } \\ \text { Belfost. }\end{gathered}$

6246. LALWN Mo Mowks, w. Lumpley nid E. H. Letts,
stockton--n. Tees.

 London.
seli. Srimisive Hors, J. House and E. W. Lancaster,
London.

 5 67. WJitre Cans, F. Remsbery and J. A. Samuels,

 Lindon.
szis. MAcmene for Poushino Hides, E. H. Brown,
LTondon. London.
524.4. Electro-deposition of Metals, w. Y. Buck, London.
STM. PRivtino TyPE BARs, E. V. Beals and F. A. Gray,
London.
 Iondon.

527s. STRA ps for Boors, H. H. LI Lake.-(The Shawnut
Machinery Company, United Stata.).

Unitad States.)
$\substack{\text { 5250. CRA Kks } \\ \text { London } \\ \text { Shartivo, C. L. Kindsfatter, }}$

S2SEM
London.

 London, Conss for CLosst SEATs, D. Grant and A. Mac-
 S290. A. New Screw-drivina Apparatus, F. Gude,
London. 5291. Machinss for Mrasurina, E. L. Giles, London,
5292. Proukction Aprasatus, J. J. Frawley, London

 5295. Vィpour Bath ApparATus, A. Pfistor-Schmid hauser, London.
5296 . Shirts or Shirt Fronts, R. Ripley, Liver ppol. ${ }^{\text {Prpse, }}$, H. H. F. E. M. M. Drenckhahn and C. H. A.
C. Sudhop, Liverpool. 5298. REckitaclers for Manver, A. J. S. Mortis London.
5999. IRoniwo Apparatus, A. J. Boult.-(Maller and

 Zaiser, London.
5302. ClaARe and Coartre
 S30. ACpisarus for Rosstina, E. G. Martin, London,
5305. Explosios Exoisk, O. Pollak, and A. Spitz, London.
S30. Amp.
London.
 London. Phooraphic Apparatus, E. A. Hardy
ssos. Indicatino Water Level in Bollers, P. N

 London.
532. Triss,
5313, TR. R. Steinhardt, London.
5313. Triks, E. R. R. Steinharat, London. London.
5314: PREvENTINo Locks from BEINo
oved, F. J. J.

 London.
532. Patss for STonuog Batrerirs, H. J. Haddan.-
(c. A. Lindstrom, J, and T. Herritt, United States.)
 532. Match.
5324.
53.
5324. Oprxivo Heragrically - closed Tins, C
Farquhar and R. North, London
 21st March, 1900.
 LLDndin.
5327. Distribution of Current for Electric Tractios,
G. Davis, London.

 msouth. Reclanima Machines, J. T. Wicks, Birming.
 5332. Wrspow Wedozs, B. Parker and Co., Limited
Birmingham.
 Brooks and J. Holt, Birmingham.
 Ibettson, Sheffield.
5336. ConTIIS BAND, B. Parker, and Co., Limited
Birminghe
 633. Precurg Susprxpers, B. Parker and Co
 5341. Mmyil. Tor for Darinkiva Cops, Gardner and Soll, Edinburgh.
534. TRavklivo Mule CAv, A. o. Evans, Pontypridd,

 534. Loom-sisizdixa Mkchaniss, J. Park, Keighley.
5346. Washivo Machivzs, W. H. Murton, W. S. Varlcy,
 London.
539. BBNK Thay for use on Ships, F. J. Hill, Birmingham.
S350. Sovrigan Ponge, C. J. Trevitt, Birmingham.
6551. STRAW HTA, W. Kronheim, Dresden 5351. STRAW Hãs, W. Kronheim, Dresden.
5352. RALIWAV SLekprs, W. M. and E. G. Hodson,

NDLEs, F. O. Kolbe,

 5369. TaKINo UP Suck in Br ME APPARATUS, J. E. s3io. Fokt Brievkrtes or Fike-Liehtrrs, J. P. Dally, 5STiverpool. Appaitus for Dioarvo Potatozs, R. Battersby, 5372. Poroovs Balls of Clay, M. Bradshaw, Liverpool.
5373. Aricolelatrd System of Leveres, P. A. Gagarin,
L.ondon.
 3. Prestan and F. L. Conway, London.
S37. DEconamioxs for HATs, E. H. Spencor, Coventry.
S37. Hopkinson and A. T. Emith, jun., London.

 6380. Cloth Fivishive Apparatus, J. T. Lister,

 and O. Wyerz, and O. Hisidet France.) Nehmer, London.

 O. Imray.-(J. Aivaza, Russia)
 London.
Gsso. RMIWAY SIowALs, J. Shoecraft and C. C. Gardiner
S. s30. Cydon, Cle-drivixa Mechanisa, A. A. Brown,
London.
S39. Cxcius, A. J. Bonlt.-(J. M. M. Tru fault
 5333. StaNDARDs for Electric Traction, R. P. Strachan, London. 5394 INsustors, \&c., E. Nappert.-(0. Schaffer, Gen many.).
5320. GOss, J. H. Barry and R. G. Pemberton,
London. Sobidunichenents for Vehiole Wierls, M. R. Ward,
London.

SELECTED AMERICAN PATENTS.
639,299. Apparatus yon Mancyacturivo Sterio o
 Claim. -In combination, the cylinder \mathbf{A} adapted to
contain the billet to be opated contain the billet to bo operated upon, the ram or
pusher extending into the rear end thereof, the die

seated in a rabbet in the forward end of sald oylinder
the cylinder \mathbb{C} forming an onlarged continuation o the cylinder A and the piercor working in saic
enlarged cylinder C, substantinlly as described.

1890,
cain:- In an apparatus for adjusting the elevation of guns; index plptes j fixed to the gun ; indox curree
h drawn on said index plates ; standard a fixed t.
 hands $c e$ fixed to the shaft c and extencing over the

 casing x for adjustment to the angle of elevation due
to distance ; seale 1 and cross.picece 2 for reading off
639,407

said angle : worm x mounted in the standard sector : on the elower side of the cosing , whereby the
casing sightingbeame and index hands are turne casing, sighting.beam, and index hands are turnee
together and the index hands adjusted for difter ence of level, as the sight line is turned up or dow
toward the target, and the guns brought to the prop elevation by turning them on their trumnions until
the ends of the index hands come up to the index the ends of the index hands come.
curves, substantially as deseribed.
 Caim. - An atmospheric steam engine having in lieu of piston-rod packing a live steam chamber surround
ing the piston-rod between the piston and the outer

air, and means for keeping said chamber filled with
steam at not less than atmospheric presure, wherely

 Cain, -The comminind steoring and warping gear
comprising a drum casing, a chain drum rotatable in comprising a drum casing, a chain drum rotatabbe in
said casing, one of said parts being provided with teeth, taoteded pinions. within said coing provided with teeth gearing with
taid mentioned teeth, arotatable spindle grovided with
sith $\left|\begin{array}{l}\text { said mentioned teeth, a rotatable spindle provided with } \\ \text { apinion gearing with said toothed pinions, a worm }\end{array}\right|$
 a [592938

connected to tho worm wheel to turn therowith, and n
disc connectet to the spinde to torn therewth nand

639,952. STExM GExRRator, J. E. Thoraycenft Claim. - \mathbf{A} stamm generator comprising an upper anuiur. steam and water chamber having a remov.
able side, a fuel opening bounded by the chamber 639952

vater chamber having a removable side, tubes connecting the under side of the upper chanmber with the
upper side of the lower chamber, said tubes being

 Cuane 261, 1Tsio conbinantion with a gun mount, a sund in which the gun can slide, of the gywsocope he hyarnulic gyroscope cylinders governed by the gyroscope, and connected with the pistons of the said cylindere the correcting cylinder, as swinging arm
connected with and controlied by the piston of the correcting cylinder, and a rod connecting said swing. 640051

ing arm with said recoil cradle, substantially ns Sun, h recoir cradede trunnionaned on the ggun mount, and aight carrier carrying a sight-bar, of the gyrucope
the hydraulic gyroceopo cylinders, the swing frame the suspending links for suspending said swing frume from the gun mount, a suspended swinging rod con-
nected with the sight carrier, a bell ronk, a lever connecting one armof the bell, crank with sadd swing.
ing rod, and connections between the other arm of ing rod, and connections between the other arm of
the bell crank and one of the said swing frume susthe beif crank and one of the said swing trume sus-
pending links, for maintaining the movement of
the sight-bar in a vertical plane, sulstantinly
descosibed 640, 115. Scrprrbatrgr, F. Dür, Betin, Gecmany.-
Fled Dermher 11th, 1897 . Caim. -The corbinintion with a working cylinder
and ithe pressure pipe of an engine, of the super.
heater, interposed between the pressure pipe and the heater, interposed between the erressure e pipe and the
working cylinder comprising p housing constructed working cyinder, comprising a housing constructod
with flanges, with a vertical partition, dividing the

uppor part of the housing into two valve chambers and with a pendent heater having n vertical parti-
tion dividing the heater into two chambers, the valves located in the valve chambers, and controlling the
heater chambera, and the cue to the heater chambers, and the cap to the henter, whereby
communication is established between the olower ends
of the heater chambers, substantially as described.

