THE MANIPULATION OF SHIP STEEL.
The difficulties and uncertainties which once attended the use of steel in ship construction are become matters of somewhat ancient history, and yet a history which is so familiar to the majority of our readers that it is scarcely necessary to now relate it. It may, perhaps, be sufficient to mention, that the steel supplied for ship-
building previous to the year 1875 could be used only to building previous to the year 1875 could be used only to
a very limited extent, and with extreme caution. Not only was the element of price a formidable obstacle to its general use in mercantile shipping, but the variability
and uncertainty of its quality constituted a still more and uncertainty of its quality constituted a still more
cogent deterrent to the employmient of steel in all descrip-
tions of vessels, cogent deterrent to the employment of steel in all descrip-
tions of vessels, even when built for wealthy Governments, with whom cost of material was a minor consideration.
It was about the time we have named that the memorable It was about the time we have named that the memorable
discussion upon the steel question took place at the Institution of Naval Architects, when, in response to the challenge of Sir Nathaniel Barnaby, Mr. James Riley, of
Landore, promised that within twelve months a quality Landore, promised that within twelve months a quality
of steel would be produced fully to satisfy the requirements of the Admiralty and the private shipbuilding
trade. As will be remembered, that promise was abuntrade. As will be remembered, that promise was abun-
dantly fulfilled; so that, at once, the Admiralty laid down wo corvettes-the Iris and Mercury-to be built of the new "mild steel" at Pembroke. Lloyd's and the Board
of Trade gave immediate atteution to the subject, and the former especially instituted such an exhaustive series of experiments as satisfied them that at last they would bee of steel without any qualifying notasification to ships built of steel without any qualifying notation against their
names in the Register Book. During the twelve years which have elapsed the popularity of mild steel has been continuously upon the increase, until at the present time it is found that upwards of 90 per cent. of the ships
under construction in this country are being bailt of that under con
material.
But, although it was early seen that the steel difficulty had been overcome, evidences were speedily forthcoming
which indicated that the safe employment of mild steel necessitated certain precautionary measures not needed in the manipulation of wrought iron. In the first place, it
was found necessary to institute tests of the tenacity and ductility of the material, in order to insure that only should be employed. These tests, which were at first
shat should be employed. These tests, which were at first
made by Lloyd's surveyors upon the premises of the shipmade by Lloyd's surveyors upon the premises of the ship-
builders, are now conducted at the steel works, and only approved and duly certified plates and bars are allowed to leave the manufacturer's premises when intended for
classed vessels. It may be, and indeed has been, urged that this course of procedure is equally necessary in the case of ship iron. No doubt there is much force in the
representation, but whatever may be said in favour representation, but whatever may be said in favour of
testing wrought iron on the manufacturer's works will apply with far greater force in regard to a material having such a wide range of tenacity, ductility, and other qualities
assteel. Now that nearly all the ship tonnage on the stocks is of steel, the question of testing at the iron works the small quantity of iron entering into ship construction is of little or no moment, and what is required in that way is doubtless
sufficiently done at the shipyards. But with steel the case is widely different; and so keenly is this fact aspreche Clyde the surveyors employed upon testing steel at the manufactories exceed in number those engaged in surveying the construction of ships. It is to the former class of officials that some of our correspondents appear recently appeared in The Enaisere. So thorough and satisfactory has been the testingsystem, not only of Lloyd's
but also of the Admiralty and Board of Trade, that the failures experieniced in the use of mild steel at the Royal and private shipyards have been very few indeed : and
cases of failure have in most instances been traceable to the neglect of those precautionary measures to which allusion has already been made.
A consideration of the properties of mild steel which nary wrought iron, and of the measures which the most recent experience shows should be taken to avoid failure value, both to tho into a ship, may perbapall vew the material with some amount of suspicion, and to the shipbuilders who bave so far had the good fortune to escape the pitfalls into which others bave stumbled. Some of these
sources of failure are more frequently experienced than others, and a few are familiar to all who have had any. thing to do with the manipulation of mild steel. Others,
however, are not so generally known, and, unfortunately, however, are not so gen
scarcely yet understood.
The simplest and best known among the properties peculiar to mild steel, or rather, which distinguish it from ductility which the material suffers after punching. This was an early-discovered difficulty in the use of steel for objectionable guality would seriously interfere with the extended employment of an otherwise most desirable material. It was observed that the loss of ductility and tenacity through punching was comparatively trifling when the thickness. But when more than $\frac{1}{2}$ in. thick, the loss of strength and deterioration of quality was so considerable, that at first it was believed punching would have to be
dispensed with in favour of drilling in the larger steel ships; a change which would, of course, involve a serious
addition to the cost of construction. Experiments made under the direction of Lloyd's Committee showed, howculty. It apeared that the apparent deterioration in the quality of the material after punching was due to a only very slightly beyond the side of the punched hole.
rupture, and when once a tear commences in a material such as steel it rapidly extends. So thin, however, is the
film of material in the disturbed condition, that a very slight rimering, or even the ordinary countersinking, was found sufficient to remove it. Hence the remedy was at once reduced from drilling to rimering, or countersinking; and as the latter process is inevitably necessary in many parts of a ship, and rimering is not expensive,
the possibility of building large ships of steel at a modethe possibility of building large ships of steel at a mode-
rate cost seemed to be again restored. This was improved upon the further bogary ber that without rimering at all the simple act of annealing set the whole matter right, by restoring the original qualities of the punched material.
This difficulty once past, there appeared every prospect prospect has been fully realised by most shipbuilders, and might with prudence and care be experienced by all.
So skilfully is the manufacture of Siemens-Martin steel o skifully is the manufacture of Siemens-Martin stee
now conducted at the recognised steel works in England and Scotland, and so carefully is it tested after manufacture, both by the makers and the surveyors to the
Admiralty, Lloyd's, and the Board of Trade, that we Admiralty, Lloyd's, and the Board of Trade, that we
question very much if one ton in ten thousand which find their way into the shipyards is of improper quality. Surface defects and lamination are, it is true common; but these are mechanical faults, originating in the rolling mills, and have no reference to the quality of
the steel. But despite the uniform excellence of the steel But despite the uniform excellence of the steel
sent into the shipyards of Great Britain, failures in its sent into the shipyards of Great Britain, failures in its
employment have not been infrequent, and especially so of late at certain shipyards wherein modes of manipulatio presently. In considering the causes which lead to the fracture of mild hands of the shipyard workman, it will be found that they may be classified under three distinct heads. First,
we have the failures due to overheating the steel, or "burning it," as it is termed ; second, those due to manipulating heated steel when below the temperature at
which such manipulation should cease; and thirdly, those which such manipulation should cease; and thirdly, those
which attend the bending of steel when in a cold, or rather, perhaps, we should say, unheated condition. The rather, perhaps, we should say, unheated condition. The
failure of steel through overbeating when first noticed by the workmen seemed to be of a paradoxical character Accustomed as they were to working upon hot wrought
iron, which, the hotter it is made the more plastic it becomes, they were surprised to find that after a certain temperature was passed the steel lost all its ductility and tore asunder like hot cast iron. Although this discovery in this respect is wears ago, and the property of mild stee heating angle bars and plates in the furnaces of the shipyard, a large quantity of material is still destroyed. This occurs much more frequently in some establishments this description of failure is almost unknown. Fortunately the mischief al ways declares itself when done, for as the material is in every case heated in order that it may be the more easily bent, the bending which follows overheating invariably discloses what has been done by the fracture done to steel bar. One could fain wisht a "black heat" were so clearly apparent as that which results from "burning" it. It is to be feared that many steel plates in ships now afloat are brittle and in a state of molecular tension bordering upon rupture through having been heated and afterwards hammered or otherwise manipulated after redness had disappeared, and the material had arrived at black heat." This, too, is a singular property of steel which is not shared by wrought iron, or, at all events, to an appreciable degree. It is, unfortunately, the most because, as already remarked, mischief may have been done to a plate when no evidence of the same is to be seen. Very often indeed are boss, oxter, and other plates in the shell of a ship, which must be heated in order to be bent to form, damaged in this way without the brittle ness of the plates being manifested until they have been rivetted into place; and in many instances it is to be feared, it is never discovered at all. A fine hair-like line upon the plate indicates a crack ind plates in place have been more than it could endure. But how about the cases when the "hair-like line" has not been seen, and its existence is hidden with paint? And have nout the cases wherein the stresses due to riveting stresses of the quate have? It is to be hoped that most o these failures are detected in the shipyard, for cer tainly they are not cheerful things to contemplate, and
would be far worse were it not that, after all, a crack will not admit very much water into a ship, and that very ew plates require to be heated at all when working them to form. Indeed, the disposition just now bending by powerful hydraulic machinery operating upon unheated plates. Considering the highly ductile qualities of mild steel, it is matter for surprise that this disposition was not earlier manifested; and now that a start has been made in the cold bending and flanging of the material, there is no saying how far or in what directions it will proceed. Already machine makers are competing with each other in the production and shaping cold steel to the various form and equired in shi construction. No difficulty has so far been experienced in the bending and flanging of plates up to $\frac{1}{2}$ in. in thickturned through an angle of 90 deg., so as to shape them for garboards and plate keels throughout the entire length of a vessel. Success in the manipulation of such
thicknesses has not apparently been so uniform as to warrant shipbuilders generally in placing entire confidence in the system, so that at the present time gar-
board plates above $\frac{t i n n, ~ t h i c k ~ a r e ~ b e i n g ~ b e n t ~ t o ~ f o r m ~ i n ~ a ~}{\text { a }}$
heated condition in shipyards where cold flanging is very generally applied to thinner plates. Other shipbuilders
are, however, persevering in their efforts to dispense with are, however, persevering in their efforts to dispense with
heating altogether; and judging by the expensive machinery they are fitting up for the purpose, it would appear that they are sanguine of ultimate success.
Before considering the nature of the failures hitherto Before considering the nature of the failures hitherto
encountered in the cold bending of steel, and investigating their causes it will perhaps be desirable to indicate the portions of the structure wherein it has been found advan tageous to apply the system. Reference has already been made to the garboards, and as the material for these plate is at least as thick as any other part of the hull requiring excessive bending, it is with the garboards that, so far, the greater number of failures have occurred in cold bending A very simple and ordinary instance of the advantage of
cold flanging is, bowever, seen in the case of bulkhead plates when wrought vertically; for by flanging one edge of each plate, or tlanging both edges of alternate plates The use of vertical stitfening angle bars has been avoided The flange is, of course, at least the breadth of the stiffen ing bar which would otherwise be required, and the breadths of the bulkhead plates are arranged so that the vertical stiffening flanges are not more than the usual 30in. apart. Not only does a great saving in weight of
material result from the adoption of this device, but saving is also effected in the rivetting. Whether or not the stiffening afforded is an equivalent to that of the angle bars is, of course, quite another matter, hut, nevertheless, one worthy of serious consideration. Indeed, this aspect of the question seems to have been largely lost
sight of in the efforts made to effect economies of weight sight of in the efforts made to effect economies of weigh Bulkhead plates are always much thinner
and cost.
than their vertical stiffening angles, and consequently the than their vertical stiftening angles, and consequently the
flange cannot contribute the same stiffness as the angle dange cannot contribute the same stiffness as the angle
bar it supersedes; besides which the angle bar has "ar it supersedes; besides which the angle bar has a
"root," while the flange has none, but only a more or less open curvature where " root" should be
Another common application of the flanging system is t the upper edges of floor plates and intercostal longi tudinals of cellular double bottoms, and quite recently the in the same way. The purpose in each case is, obviously, to dispense with the short angle-bar attachments to the o dispense whe the ater achments to the floor plates in the latter. The objection common to every case plath ina case is the same, viz., the want of stifmess, such as is pro flanging, however sharp may be the turn, can possibly produce an equivalent to the angle bar connection. This edges of intercostal firders or lougitudinas are flang edges of intercostal girdersor longitudinals are flanged in
order to connect them by rivetting to the transverse floo $\underset{\text { put }}{\text { plates. }}$
But whatever may be the structural disadvantages of flanging, as compared with the arrangement it supersedes, tion of the material, which is rarely more than eight twentieths of an inch in thickness. But in dealing with the stouter plates for the garboards, the results have not been so encouraging. Thicknesses of twelve-twentieths of through an angle of 90 deg, with that invariable measure of success which is necessary in order to establish confidence in the system. A great deal, of course, depends on the machine employed for bending the plates, and upon the care exercised by the workmen in its use. Some machines have been found to yield a smaller proportion of failures than others; but, so far as we are aware, absolute freedom from failure has not been experienced with any of the appliances for cold-bending thick steel plates which are at present in use. No fault can be found with the quality the steel, which had all been tested and foun required amount of ductility. Re-tests of broken plates have served only to confirm those originally made upon them for failuy were issued from the steelworks. The method employed in bending the plates, or upon the system of cold-bending when applied to such considerable hines act is identical with that of the ordinary machine for bending hot plates in use at every ship yard, the force being applied by means of a long cast iron or steel roller free to revolve at the extremities of a pair of levers. But while in the common bending . bydraulic cold-bending, machines the motive force esult epressure. This can, however, scarcely affect the hat the orce is abse must either bend or break. But as a great steel plate, the use of the hydraulic press is essential to the system. Some experiments recently made in cold
bending by hydraulic pressure have yielded interestin and encouraging results. It has been found that by simply aunealing a stout plate, the angle through which it can be aafely bent is considerably increased. Plates which been satisfactorily turned cold through even a greate angle after being annealed; and very recently a stee plate of no less than lin. in thickness, which was repeatedly broken in a plate-bending apparatus before beyond were attained, was, after aunealng, safly buli pressure. In egithor thay increase in there any grounds for attributing failure either to hardness in the material or a want of the proper ductitity for ship steel but it is quite clear that the operation of annealing comibrium which was previously wanting, or, at all event which was essential to their enduring the stresses set up in the bending machine.
Hence there appears to be good grounds for believing in the cold-bending of thick steel ship plates will soon be
entirely overcome. In view of the economies in cost of
construction which may be effected by the cold manipulation of steel in shipbuilding, such a consummation is much to be desired.

ON THE LAWS OF STEAMSHIP PROPULSION By Robert Mansel, Whiteinch, Glasgow.
In continuation of my note in The Engineer of July 5 th, 1889 , re-stated in its concrete form, I have endeaat a trial speed, say at rate of V nautical miles per hourIf, as in common logarithms, we adopt the Briggs or decimal base, the number 10, raised to a power propordecimal base, the number 1 , raised to a power propor-
tional to V, as exponent, will give a number equal to the numerical ratio $\frac{\mathrm{E}}{\mathrm{W}}$, where E denotes the gross power developed by the machinery, to propel this particular
vessel, at the speed V, and W the portion of this power vessel, at the speed V, and W the portion of this power
absorbed, as it were, by the machinery in developing the absorbed, as it were, by the machinery in developing the gross power. Or again, also, equal to $\frac{\mathrm{P}+r p}{f}$; that is to say, the ratio of the gross piston pressures during this
speed-assuming the engines to be compound-to the speed-assuming the engines to be compound-to the
pressure f, at which, under the same external conditions, the engines would begin to move. I have in my letters fully explained how this quantity f-known in mechanics as Morin's constant-is to be determined, and further, that this constancy must be understood as subject to conditions which may cause changes in its value, for adjacent ranges of speeds. To express this in definite symbols, we may write:-
(1)
$10^{\circ \mathrm{V}}=\frac{\mathrm{E}}{\mathrm{W}}=\frac{\mathrm{P}+r p}{f}$.
Or, by taking the common logarithms of the members,
(2)
$c \mathbf{V}=\log \cdot \frac{\mathrm{E}}{\mathrm{W}}=\log \cdot \frac{\mathrm{P}+r p}{f}$.

Again, from the definition of pover-at one time named necessarily follows: N being the number of revolutions, per minute, of direct-acting engines, and d, s, and r the of the areas of the two pistons respectively; also, P and p the respective mean diagram pressures upon them, we must have:

$$
\text { (3) } \ldots . . . \mathbf{E}=\frac{d^{2} s}{21,010}(\mathrm{P}+r p) \mathbf{N}
$$

In the Watt conventional horse-power units; and, as a (4) \ldots Log. E. $=\log \cdot \frac{d^{2} s}{21,010}+\log .(\mathrm{P}+r p)+\log . \mathrm{N}$. Again, Morin's constant f, viewed as a resisting pressure upon the same pistons at their rate of travel, necessarily
(5)

Log. $\mathrm{W} .=\log \cdot \frac{d^{2} s}{21,010}+\log . f+\log . \mathrm{N}$.
And, by taking the differences of (4) and (5),

$$
\log \cdot \frac{\mathrm{E}}{\mathrm{~W}}=\log \cdot \frac{\mathrm{P}+r p}{f}=c \mathrm{~V} \text {; by (2). }
$$

Hence, (5) ou writing $\log \cdot \frac{d^{2} s}{21,010} f=\mathrm{C}$, we have:

$$
\log \cdot W=C+\log \cdot N \text {, and } \log \cdot \frac{E}{W}=\log \cdot \frac{E}{N}-C .
$$

That is to say

$$
\begin{equation*}
\text { Log. } \mathrm{E}=\mathrm{C}+c \mathrm{~V} \tag{6}
\end{equation*}
$$

also, the explicit value of V :

$$
\begin{align*}
& \mathrm{V}=\frac{1}{c}\left\{\log \cdot \frac{\mathrm{E}}{\mathrm{~N}}-\mathrm{C}\right\} \tag{7}
\end{align*}
$$

Either of the two latter forms, I characterise as the most accurate, simple, and direct application of the involved principle, and capable of a direct test by their application
trial data.
In this important equation, \log. $\frac{\mathrm{E}}{\mathrm{N}}=\mathrm{C}+c \mathrm{~V}$. The term C has the value, $\log \frac{d^{2} s}{21,010} f$, or proportional to the value of Morin's constant. The explanation of the other term $c \mathrm{~V}$, is to be looked for in the direction: that it is a quantity proportional to the velocity of
"Poncelet's current." That is to say, the retrograde "Poncelet's current." That is to say, the retrograde placed by a vessel of m immerged mid section moving with the velocity V. Obviously, this will vary inversely
as the section of the current, and experience shows that as the section of the current, and experience shows that
this is much greater than the section of the vessel. Hence, since current $=\frac{\text { quantity }}{\text { section }}=\frac{m \mathrm{~V}}{\text { section }}=c \mathrm{~V}$, suppose? c is, necessarily, a small quantity, and the experiments on prisms by Dubuat and Duchemin yielded Poucelet deduced values from $\frac{1}{6 \cdot 46}$ to $\frac{1}{12}$. In steam vessels, from the position of the propeller, whether paddle or screw, the slip, and other circumstances, we might expect, and do find, a greater range of values. As
explained-Poucelet's "Mécanique Industrielles. Des Re-explaned-Youcelets "Mecanique ndustrielles. Des Resistance, pase 434, ec.-this current has a variable
velocity in its section, extending from its greatest value, near the vessel, to a point outwards, at which the current is insensible. Poncelet there imagined an enclosing is insensible. Poncelet there imagined an enclosing forced through this imaginary pipe, of which the hull of the vessel forms the upper side.
only correct view of the problationate of this to be the only correct view of the problen of fluid resistances which
has ever been offered. The assumption with which I have set out involves that the iudicated horse-power, for a given speed of vessel does not vary as the cube, or other
power of the speed; the law being: the speed itself is power of the speed; the law being: the speed itself is The subject, admittedly, presents many difficulties; ; but anyone who will take the trouble to examine, carefully, a
few cases, will, I think, arrive at the conclusion: this theory agrees exactly with experimental facts.
Although I may, already, have furnished sufficient illustrations, by the analysis of many published sets of trial data; on the face of them, complete and honest, and by competent parties, another case or two-out of hundreds at my disposal-may neither be misplaced nor valueless. In Industries of March 16th, 1888, 1 noted the Thetis, as follows:-

Steam Yacht Thetis.
Triple-cyltunder Comp
Obed.
spedss.
7.31
Revs.
powers.
Ind.

cefore, $\mathbf{C}=-1^{1 \cdot 4730}$
Also, $c=-103$
Hence (7) $\mathrm{V}=\frac{1}{103}\left\{\log \cdot \frac{\mathrm{E}}{\mathrm{N}}-(-14736)\right\}$. And the test-

Here the differences are very small. Highly probable, there has been alight err the observation, or prrected mars the otherwise perfect agreement between the formula and the trial data.
As a second exan
powerful mexample, take the much larger and more powerful merchant screw vessel "Caridad," built by M. Rowan and Son, Glasgow. Tried on 27th June, 1883; this vessel furnished the following trial data :-
s.s. Caridad.
 test, as follows :-

Log. E	$\begin{aligned} & =2 \cdot 4216 \\ & =1 \cdot 6227 \end{aligned}$	$\begin{gathered} 2 \cdot 6141 \\ 1.6959 \end{gathered}$	$\begin{aligned} & 3.0207 \\ & 1 \cdot 8366 \end{aligned}$	$\begin{aligned} & 3 \cdot 2028 \\ & 1: 8822 \end{aligned}$	$\begin{gathered} 3 \cdot 3823 \\ 1 \cdot 9222 \end{gathered}$
Log. $\frac{E}{\text { K }}$	= 7989	. 9182	1.1851	1/3206	1.4401
Subtract C	1745	1745	-1745	1745	1745
Differences	6244	7437	1.0106	1.1461	2656
Log. differe	1.7955	-1.8714	. 044	0592	102
Log. 0804	-2-9053	$-2 \cdot 9053$	$-2 \cdot 9053$	$-2 \cdot 9053$	$2 \cdot 9$
Log. v	8902	. 661	1.0992	1.1539	1.1971
$\therefore \mathrm{v}$	7.766	$9 \cdot 25$	12.57	14.25	15.74
By data, V	7.772	$9 \cdot 25$	12.676	14.042	${ }^{15} \cdot 74$
Difference	= - 600	00	-10	+20	

Again, I repeat, the observed speeds obtained by a
system of means of runs, with and against the tidal drift, are affected by small residual errors, due to variations in the rate of drift, in the time occupied by the trials. Were the experiments distributed over the entire time of the
ebb and flow of one tide, and indeed, very generally, the algebraic sum of such errors will be found to vanish From the foregoing cause, speeds obtained with very low powers are, generally, very erroneous; and in many cases have served to mask the true relation of the data
In further proof of the perfectly general and consistent results yielded by these formula, I will, further, add the application to two vessels from the Admiralty trial data tables, as follows:-
 interested in the question can, easily, follow out the very simple process of finding, for any set of trial data, the values of the quantities Log. $\frac{\mathrm{E}}{\mathrm{N}}$. Further, on drawing by scale the values of these, as ordinates, to the correspondends will lie iw either, one straight line going Caridad-or, in two s raight lines-example, the Italian warship Lepanto, see The Engineer, September

7th, 1888, and communication of "W.S." in The Engineer, October 5th, 1888. Or, it may even be, in three straight lines, an example of which 18 given by the analysis of
Mons. De Bussy's trial data of torpedo boat-THE EngiNEER, April 9tb, 1887. According to the elementary principles of co-ordinate geometry, these lines cut the axis of ordinates, at distances from the origin, equal to the values of the quantity C , while the respective corresponding values of c, are the natural tangents of the angle, which these lines make with the axis of abscissm. July 22nd.

Robert Mansel.

THE CROSSNESS OUTFALL WORKS.
 VISIT OF THE SOCIETY OF ENGINEERS

On Tuesday, July 30th, the Society of Engineers paid a visit o the sewage outtall and precipitation works al Crossness. Meese
works were begun by the Metropolitan Board of Works, and are being completed by the London County Council. This latter body seems to think that it has a social mission as well as an administrative one to perform, and refuses to accept coal from collieries at which piecework is done. The result is that whereas formerly the authorities at Crossness paid fourteen shillings per ton, they now have to pay as much as twenty-three. The works at Crossness are highly interesting, and although an official of the Board of Trade, has violently attacked them and stigmatised them as representing flagrantly bad masonry work, and has even stated that the bricks have been put up without the use of the trowel, yet, for all that, we doube whether better work Thames of the whole of the sewage of the south of London, and with what has already been spent and what will still have with what has alread beect, it is expected that the total cost of these
to be expended to be expended, it is expected that the
stupendous works will amount to $£ 650,000$. We are often stupenaous works wuildimount to
reproached with buily the present, and our rephoached structures are sometimes contrasted with those of the Egyptians and the Romans, who built for all time, but the monumental works at Crossness would bear favourable comparison even with the cloaca maxima. There is an existing reservoir occupying about seven acres, divided into four compartments
and capable of holding some $4,000,000$ cubic feet of sewage, which and capable of holding some $4,000,000$ cubic feet of sewage, which
can stand for about eight hours per tide, and is discharged at high can stand for about eight hours per tide, and is discharged at high
water. The sewage reaches Crossness by an 11 ft . in, barrel water. The sewage reaches crossness by an to the reservoir. The existing works are about to be supplemented by the pre cipitation works now in progress, the contract of which has cipitation works now in progress, the contract of which has
been let to Mr . Wm. Webster for the sum of $£ 258,166 ;$ these comprise the adaptation of the four compartments of the old reservoir, and the addition of a new reservoir, in area about two and three-quarter acres, in two compartments, affording together $1,000,000$ cubic feet additional capacity. All the six compartments are to be used as precipitation tanks, and are arranged in successive and progressive order; they provide alco gether for fully $12,000,000$ cubic feet of eflluent per day, the
discharge of which will be distributed throughout all the hours of the twenty-four, except when the tide is above the flow level when the effluent will pass into an effluent store underneath the new reservoir, which store will be emptied into the river whe the level of the tide permits. The sewage before entering the precipitation tanks will be treated with lime water and iron water, and will remain quiescent in these tanks for about two hours, during which time the solids will be precipitated, after which the effluent will be run over the tips of weirs as quietly as possible, so as not to disturb the preep be finally discharged into the river. e river.
and passed into a sweep or mechanically swept of the floor pumped into another reservoir, divided into compartment known as sludge settling channels. Then it will undergo second settling, by which its bulk will be further reduced; the second effluent, or "liquor," will then be gently allowed to flow over weirs, and will be used for making the lime water. The "settled" sludge will be passed into a receiver beneath the sludge settling channels, and thence be pumped through pipes extending along a jetty into the sludge steamboats, which wil
convey and discharge it into the German Ocean The "liqur or second effluent, being insufficient in quantity for making the lime water, will be supplemented by river water admitted at high water into the adjacent settling ponds. The "liquor" and water will be pumped up to the liming station, to be erected on the top of the sludge settling channels, where the slaking and mixing will be effected; and thence the lime water will be run through pipes into the low-level sewer, which brings the sewage to the main sewage pumps, and will be supplied in such quantities as to furnish about four grains of lime to each gallon of sewage. On the top of the sludge settling channels, and next the liming station, there will also be an iron and supplying the solution in such quantities as to furnish about one grain of iron to each gallon of sewage the lime and iron being both added to the sewage before it is allowed to enter the precipitation channels. Mr. Houghton is the engineer Mr. Webster's experimental station, where he is trying his electrolytic process of purification, is in full working order, and is giving results from which it is possible to make calculations of cost. He claims to obtain 40 per cent. of purification by his process, and estimates the net cost per million gallons at 158 .
The precipitation is effected by oxide of iron, two grains of which The precipitation is effected by oxide of iron, two grains of which
are required per gallon. This is obtained by means of sets of are required per gallon. This is obtained by means of sets of
three strips of iron, of which two represent negative poles and three strips of iron, of which two represent negative poles and
one a positive pole. These pieces of iron are in connection with a dynamo, driven by a 50 -horse power engine, worked at a dyamo, driven by a
one-third its power, and the effluent is run past these strips of iron through several settling troughs, until it becomes so clear that it is fit for drinking; indeed, Mr. Webster's faith in his process is so great that he did not shrink from subjecting
himself to the severe test of drinking some of the effluent himself
himself.
The company were entertained at luncheon by Mr. Webster, and there were present, amongst others, Mr. Jonathan R. Baillie, president; Mr. Henry Adams, vice. president; Mr. Jabez J. H. Cunningham, J. H. Cunningham, member of council; Mr. G. A. Pryce Cuxson,
secretary ; and Messrs. W. J. Botterill, W. F. Broadberry, J. L. secretary; and Messrs. W. J. Botterill, W. F. Broadberry, J. L.
Chapman, J. Etherington, E. A. Glover, F. Hovenden, A. Lund, H. R. Newton, H. C. Petter, H. A. Roechling, J. S. Tamburini and E. H. Toulmin.

University College, London, - At the Session of Council on Mechanical Technology was conferred on Professor A. B. W.

H.M.S. INFLEXIBLE.

We publish this week the fifth of our series of views descriptive of the various types of vessels included in the British Navy. It is taken from a photograph by Messrs. Symonds,
High-street, Portsmouth. The Inflexible is an armoured turret High-street, Portsmouth. The Infexible is an armoured turret Director of Naval Construction, as a " central citadel ship with turrets placed en cehelon. It was built at Portsmouth and time to take part in the bombardment of the forts at Alexandria a year afterwards. The engines were made by Elder and Co., of 8010 indicated horse-power. The principal dimensions,
\&c., are as follows:-Length, 320 ft .; beam, 75 ft .; extreme $\& c .$, are as follows:-Length, 320 ft ; beam, 75 ft ; ; extreme
draught, 26 ft . 4 in. ; displacement, 11,880 tons ; speed, 13.80 knots; coal capacity, 1300 tons. The leading characteristic in
the structure of this vessel, which is quite a typical example of the structure of this vessel, which is quite a typical example of
its class, is a huge central citadel protected by a belt and bulkits class, is a huge central citadel protected by a belt and bulk-
heads of iron armour plates, 16 ft . high and 110 ft . in length heads of iron armour plates, 16 ft . high and 110 ft . in length,
placed immediately over the engines and boilers, the turrets placed immediately over the engines and boilers, the turret
being superimposed upon a thin armoured deck covering the whole. This armour is 24 in . thick in the centre, thinning to 20in. at the top and 16 in . at the bottom. Practically it is not so strong as the sides of the Trafalgar's "womb," which has
18 in . of compound steel-faced armour upon it. The Inflexible has a raft body at either end, entirely unprotected with plating,
and with shallow light plating over the sides, the Inflexible would still be one of the most powerful of our battleships. The cost was $£ 648,811$ for hull, $£ 146,457$ for machinery. To whis must be added the about $£ 900,000$.
It is unlikely that any more of the Inflexible class will ever be built. They were the outcome of an idea which has been exploded, more particularly since the introduction of high explosive shells. The unprotected rat-bot-mentioned projectiles, mere shambles by the use of these last-mentioned projectiles and one single shot penetrating the cith powerful protected auxiliary batteries, are the outcome of a better principle. But as we said before, the Inflexible is well worth modification.

FRENCH PATENT LAW.

French patent law has many peculiar features, viewed from the standpoint of the English lawyer and the English patentee, and as it is in some of its most peculiar provisions that it may readers, and as the International Exhibition now being held at Paris has naturally directed considerable attention to French in dustrial questions, it may not be out of place to set before inventors and manufacturers the broad outlines of French law

The conditions of validity, in so far as they relate to the ufficiency of the specification and to subject matter, are somewhat similarly treated both by French and English law. On the question of novelty, the inquiry in England United Kingdom prior to the date of the patent. In France the scope of the inquiry is much wider, and apart from the benefits conferred upon Englishmen and the subjects of the other States who have joined the Industrial Property Convention of 1883, the law is tersely summed up in the 31st Article of the Act of 1844, which says, "No discovery, invention, or application to which in France or abroad, and before the date of the deposit of the application, sufficient pablicity has been given to enable it to bo worked, shall be reputed new. Under the for the International Convention of 1883 , the publicity given to an invention even a few days before, by deposit at the London Patent-office of the lew daperifation and drawings, was enough to invalidate a patent taken out in France; but by Article 4 of the Convention, any person belonging to a State forming part of the union who has duly made application for a patent in one of the contracting States, enjoys as regards registration in the other States of the union a right of priority during six months.
Fiscal considerations in France enter largely into every branch of the law, and one finds that the patentee who has not paid his yearly instalments before the beginning of each year of theterm of his patent forfeits all his rights. Closely counds of forfeiture The first of these is that a patentee who has not worked his The first of these is that a patentee who has not worked his
discovery or invention in France within two years from the date of the patent, or who has ceased to work it for two consecutive years-unless he can in either case show good cause for not working it-forfeits all his rights. This provision remains untouched by the International Convention of 1883, and subjects of foreign States, even though members of the Union, must
still work their invention in France if they desire to retain their patent rights.
Prior to the International Convention, a French patent in all cases became void if s $_{2}$ the Patentee imported into France articles made abroad similar to those protected by the French patent,
but so far as regards Englishmen and the subjects of other but so far as regards Englishmen and the subjects of other
countries who have joined the Union, Article 5 of the Convencountries who have "That the introduction by the patentee into the country where the patent has been granted, of objects the country where the patent has been granted, of objects
manufactured in any of the States of the Union, shall not entail forfeiture of the patent.
It is on the question of infringement that the greatest
difference exists between French and English law. In England difference exists between French and English law. In England infringement gives rise only to civil rights; in France, infringement is a misdemeanour, entitling the patentee to put in motion the procureur-generral, and to proceed before the correctional 2000 f , whilst for the second offence imprisonment from one to $2000 f$. , whilst for the second offence imprisonment from one to
six months is to be awarded in addition to the fines, and in all six months is to be awarded in addition to the fines, and in all
cases where the infringer is a workman, or has been employed in the workshop or factory of the patentee, the courts may imprison the infringer from one to six months. Summary means are also provided under which a public process server may draw up a detailed description of the articles alleged to be infringements, and may, if necessary, seize the articles com plained of. It is, of course, open to the alleged infringer in France, as in England, to attack the validity of the patent, and the correctional courts have jurisdiction to try issues of that
character. They may also award such damages, if any, as the character. They may also award such damages, if any, as the
patentee has sustained, but the infringer is also liable to be sued patentee has sustained, but the the patent before a civil tribunal. As with all other misdemeanours, the right of action is barred after three years from the date of the commission of the offence unless proceedings have meanwhile been taken. It will thus be seen that though a French patent is-to use the words of Articl 11 of the law of 1844-"granted without guarantee to either the reality, novelty, or merit of the invention, or the accuracy of the description in the specification," a large measure of pro is able to support before the courts the patentable character is able to supp
his invention.

THE IRON TRADES EMPLOYERS' ASSOCIATION.
Several important labour questions which have recently come to the front in the various branches of the iron and engineering industries, and which are certain before very long to occupy serious attention, are dealt with in the report or the tras
Trades Employers' Association, which was submitted to the Trades Employers' Association, which was submitted to the briefly alluding to revival of the engineering industries, which now seem to have reached a point at which an improvement in now seem may be looked for, and trade again be made profitable to the capitalists, points out that the past twelve months have been characterised by movements in the labour market, which in many instances, have been disadvantageous to the employers who have had to complete large contracts upon greatly advanced rates of wages to the workmen. In the chief engineering and shipbuilding centres the wages had been advanced in variou degrees from 5 to 10 per cent., and demands for further advance were coming to the front, which were an indication that the wages question was still very much disturbed in many of the
industrial districts. Amongst the foremost movements in connection with the labour market that are just now largely occupying attention, the report deals specially with the eight hours' agitation, and the overtime question. With regard to the eight hours movement, this had of late not only been made a prominent topic for public debate in many ways, but it had become a constant subject for discussion in every trades union and amongst workmen in all the leading industries of the country. Except, however, in the form of legislative enactment for fixing the hours of labour in all trades, and declaring eight hours as the measure of the day's work, there has been no definite plan formulated
for giving effect to this proposed limitation of working time. for giving effect to this proposed limitation of working time. State intervention in the regulation of working hours for adult State interve, the report points out that they looked hopefully for a speedy limitation of working hours to be brought about by the voluntary cohesion of trades unionists. That view was distinctly put forward by the Council of the Amalgamated Society of Engineers, in their annual report issued in April last, when they proposed to agitate for the abolition of overtime, coupled
with higher wages rates, as a means for securing the desired objects of the society. The Steam Enginemakers' Society, in its last annual report issued in February last, also very vigorously
opposed all attempts to fix the measure of a working day by opposed all attempts to fix the measure of a working day by
legislative means, and relied upon the co-operation of trades unions for the accomplishment of the object in view. Upon the overtime question "the men," adds the report, "do not
accept silently the orders of their leaders for its abolition, and accept silently the orders of their leaders for its abolition, and
will not in many cases consent to abandon its practice, because
ale and induatrious workmen are quidk to toe in it the means
of increasing their weekly inomes.
Henee they rebel of inereasing their veekly incomes. Hence they rebel against
the mandates of their comnitteses and are
and time under the adraneced retes of pay which hacompany it Thin statementit true, generaly, ppeaking, of al brananeese ot the

 which they may maies their social condition, and thus add to the

 sations tomards emplogere of sikiled habour. Unader repested threats of expulion from their unions and the orfetiture of
their monetary rights in theiri fund, the men had been ordered
 the inustico and immorality of which were of the most glaring atended with friction in many didtrictes, especially in the iron
 report

 Aftecting the interestats of the engine ering and the iron trades, the

 the threatene indeastries of the eountry would make common cause in the support of ome euch measuro os that which had
 diarfees and wiur regard to this matter, it it is tated that trom mation had reached the Association which showed that their members were alarmed at the new classification of merchandise
traffic, and the revised table of rates and terminal charges which had been issued by the railway companies in connection with the Railway Canal Traffic Act. It was feared that new and very onerous conditions were about to be enforced upon them, and
at a special meeting of the executive committee it was resolved to engage an expert who should analyse the new tables and
state the objections which it might be found desirable to offer on behalf of the members of that Association. The resolution of the executive committee had been carried into effect, a carefully drawn schedule of objections had been officially signed by
the secretary, and presented to the Board of Trade. At the present moment it was not possible to add more to this statement, as the matter was now under discussion between the
Government officials and the managers of the several railway companies, and would again at an early date be before the
general committee of the Association.

ABSTRACTS OF CONSULAR AND DIPLOMATIC REPORTS.
France: Trade of Cherbourg in 1888.-The trade of Cherbourg has not recovered from the check caused by the stoppage of the
nightly line of steamers to Weymouth. The iron mine at Diolette has been worked with energy in the past two years, and
the results are encouraging. The quality of the ore has improved; and the traces of sulphur, which prevented it from
being made into steel, are disappearing. The chief difficulty is

 discernible causes extraneous to the capacities of the trade, all
obviously remediable. The steamers were too expensive and large, intended for more passengers than could at first be
expected, and business was checked by their having to meet the expected, and business was checked by their having to meet the
competition of the steamers to Southampton, running five
nights a week. A smaller class of well engined steamers, connights a week. A smaller class of well engined steamers, con-
veniently arranged for both goods and passengers, making the veniently arranged for both goods and passengers, making the
voyages both ways by day, and leaving ample time for discharg. ing and loading, are required for this trade. The passenger
service ought to be prosperous, there being many persons coming to or going from this locality, Avranches, Cherbourg, Dinan,
Dinard, Granville, St. Malo, \&c., who would prefer the voyage by this port if it could be made conveniently; but they are
deterred by the night passage, and usually go round by Boulogne or Calais,
Grecee: Public works of the Morea.- The railway from Patras to Pirgos is making good progress, and has been opened as far
as Achaia. A railway across the Morea from Argos to Calamatta has been commenced; the breakwater at Patras has been carried out by a French company, and is now a fair protection against
winds from north-west and west, and the harbour works will soon be commenced. The managing committee of the Corinth Canal has deferred payment of interest due to the shareholders, the
canal was to be completed by 1888 at a cost of $£ 120,000$, but this cannot be done before 1891 at double the cost. The canal was to nearly four miles long, and it was estimated that
there would be $10,480,000$ cubic yards of excavation. A com-
mittee was appointed by the Government to inquire into the
difficulties which had arisen, who reported that the time for
completing the work should be extended, that the gradients the sides should be reduced, that the sides should be protected from slips of earth by retaining structures, that the amount of cost be increased to $£ 240,000$. The time for completion has accordingly been extended to November, 1891. The price of labour continues cheap-about 1s. 6d. per day; many peasants
from Bulgaria, Montenegro, and even Asia Minor having found their way to Greece.
Roumania: Trade
Roumania: Trade of Galatz in 1888. - British shipping
increased by 38,542 tons, or 15 per cent. over 1887, and its proportion of the total tonnage at Sulina from 66 to 71 per
cent. The commercial relations between Roumania and cent. The commercial relations between Roumania and commercial treaty not having made any progress. This has had decreased by 55 per cent. in volume, and $42 \cdot 9$ per cent. in value under the previous year. The trade thus lost has for the most coming from the former by sea and from the latter by rail
 Coal from Great Britain through the Danube ports increased by
31,000 tons continue to be imported from Great Britain in other countries, although the price is slightly higher, and in
many of the shops there are articles of British manufacture formerly coming from Austria. There is reluctance on the part
of some British firms to correspond in any language but English. In most cases French or German is understood in this country, and in cases of difficulty translations can easily be
obtained, but English is for the most part little and imperfectly obtained, but English is for the most part little and imperfectly
known. There have been instances of orders intended for England having been placed elsewhere through the diffcultie spondence.
South Australia, progress of.-The United States Consular Agent at Adelaide reports:-The colony of South Australia has made rapid strides in civilisation and material progress, in spite of numerous checks from dry seasons, and their inevitable results,
At the end of 1887 the population amounted to 317,446 , an increase of 68,651 , or 27.7 per cent. over 1878 . The resources of
the country have been better developed, copper, gold, silver, and the country have been better developed, copper, gold, silver, and
tin mining are flourishing industries. Agricultural implements,
jams, oil, and wine are largely produced, the manufacture of jams, oil, and wine are largely produced, the manufacture of
flour has improved and increased largely in the last few years, the introduction of the roller system having given it a great impetus; so the prosperity of the country does not depend so much upon increase both in cargo and passenger steamers, but the sailing vessel trade is gradually decreasing. Shipping entering the port
in 1887 increased by 70,500 tons, or $9 \cdot 15$ per cent. over 1886 . Though this was a decrease 67,912 tons, or $7 \cdot 45$ per cent. unde 1884, the highest year reached, it was an increase of 388,684 tons,
or 85.8 per cent. over 1878. The average size of the vessels arriving was $927 \cdot 7$ tons. The tonnage owned and registered in the colony was 34,868 tons, and the average size of the
vessels but $1113 \cdot 6$ tons. There are two lines of British mail steamers, the Orient and Peninsular and Oriental Companies. In addition the Messageries Maritime Company's
boats, and those of the Nord Deutscher Lloyd's Steam ship Company call every month, and a company has
been organised at Hamburg for ruuning a line of steamers from thence to Australia. There are several lines of British cargo steamers calling ; the British India Steam Návigation
Company's boats call occasionally, but there are no steamers from the United States, though there is a splendid opening for them. The import trade of the colony in 1887 amounted to
$£ 5,274,663$, an increase of $£ 283,117$, or 5.7 per cent. over 1886 ; but this amount was slightly less than in 1885, and less by fell off between 1885 and 1886 by $£ 815,580$, and in 1887 further decreased by $£ 25,875$. For this decrease the increasing trade between this colony and New South Wales is mainly respon-
sible. In 1886 the trade between here and Sydney increased over 1885 by nearly $£ 1,035,000$, and in 1887 by about increased over 1886. Imports from Queensland have grown 100 per cent.
since 1885 , when they were valued at $£ 76,590$. this and the remaining colonies during the last three years has had a downward tendency. Imports from the United States declined from $£ 189,377$ in 1885 to $£ 176,472$ in 1886 , and to might be developed to an unlimited extent, is gradually falling away, though there is a wide field here for American enterprise. Among the goods imported in 1887 were:-Coal to the
amount of $£ 81,765$; agricultural implements, $£ 37,260$; hardware, $£ 37,260$; iron, bar and rod, $£ 28,980$; galvanised, $£ 46,570$ machinery, $£ 76,510$; oil in bulk, $£ 56,925$; wire, $£ 28,989$. Grea
Britain supplied ironmongery, machinery, and every variety of entire imped articles to the extent 141 per cent, of th entire imports. The imports from the United States, $2 \cdot 25$
per cent. of the whole, consisted chiefly of kerosene and other mineral oils, the bulk of American manufactures being comcent. of the imports. The recent protective tariff will probably have a deterrent effect upon the import trade, and this will be but the tariff is not prohibitive, and the free list is the mos extensive of all, consisting chiefly of articles which the Colony
has no facilities to produce. The annual value of the exports in a great measure depends upon the crops; but the highes figure ever reached was
only a medium harvest. The exports for 1887 , owing to the failure of the harvest of 1886 and the dulness of the times, only cent., consisting of everything the Colony produced, went to Great Britain, and only $£ 29,090$, or 85 per cent., to the United to $£ 25,667$, copper and copper ore to $£ 248,745$, iron columns and girders to $£ 6570$, manganese ore to $£ 5324$, and vehicles to
$£ 11,039$. The mining industry has received great impetus by the discovery of the Broken Hill and other mines in the Barrie district of New South Wales, about nine miles from the South of the richest silver mines ever discovered, and is said to rival even the great Comstock mine. The lode is several miles
in length, and varies from 60 ft . to 100 ft , in breadth weekly output of ore varies from 1200 to 1500 tons, which yield from 40 oz . to 450 z . of silver per ton, There are numerou
other mines in the district which are not doing as well as they might, owing to the difficulty in obtaining machinery to concen-
trate ores which are easily obtainable from extensive lodes that
are not of a rich description. There is a wide field here for the trade with this Colony by manufacturing machinery of the nature indicated. Some silver mines of great promise are being developed about 250 miles from Adelaide, which bid fair to be twenty or thirty square miles in width. Assays of ore have given from 40 to 60 per cent. of lead and from 60 oz . to 100 oz . of silver per ton; but the share marke is dull, partly through the reaction after the excited state of th market when the discoveries were first made, and partly through the delay between the floating of the companies and the prope development of the mines. Gold mining progresses steadily
and in addition to the Teetulka and Woodside finds a fresh discovery is reported beyond Terowie about 180 miles from the capital. The refs seem to be exceedingly rich quartz assayed having yielded from 6 oz . to 14 oz . per ton. Gold has also been found in the McDonnel ranges in the far north; the reefs are extensive and rich, and afford great opportunities of fortune for thorough miners. The whole of the machinery for gold crushing and concentrating comes from England and the other colonie while America might command the whole trade by a little push ing. The revival of the price of copper through the operations of
a French syndicate has given a fresh impetus to the working of the copper mines here. Most of the mines were closed, the town deprived of half their inhabitants fresh exertions and induced the opening up of new mines the would not pay to work during the time that copper was quoted at the low figure of $£ 32$ 10s. per ton. The Moonta and Wallaro mines are again in full work and pay good dividends. Durin 1887 the copper exported was the largest in any year except
1884 , when the amount was 4572 tons, but the value was the lowest reached except in 1886. The railway system of South Australia extends over 1500 miles, and there are 273 miles being constructed. The lines extend nearly 690 miles north of
Adelaide and nearly 200 south. The most important line pened is the one to the Victorian border connecting Adelaid with Melbourne, 510 miles, and with Sydney. There is railwa communication with Broken Hills, 310 miles, tapping all the rade from the Barrier district, Angle Pole, 690 miles north of Adelaide, but there are 1000 miles to be constructed. A line is being constructed from Paimerston, in the northern territory, to Pine Creek, 146 miles It is proposed to push this line inland and connect with the
trans-continental, but there is considerable difference of opinion ere about completing that line. Many are averse to the colony increasing its public debt to the extent necessary for finishing finished on the land grant system, American capitalista experience in this kind of work will find here a splendid opening. The line will traverse some of the richest grazing and mineral country in Australia, and open u a route that would with efficient steam service bring these colonies several days closer to England. The railway return show that the total cost of railway construction in the colony was $£ 10,045,955$, and the revenue in $1887 £ 839,715$. Deducting working expenses, the net revenue was $£ 451,260$, or 4.5 pe money borrowed was 4 per cent., so that the money invested in railways has, after paying interest on money borrowed, contributed the railwass of the colony have made, for in no previous yea have the net receipts been sufficient to pay interest on the cost of construction. The railways have recently been placed under a board of three Commissioners, who are not subject to Parliamentary control. It is hoped that under this management The railways will e considerably more profitable than hitherto The great cry of the land is for water, of which it is mostly impossible to get too much. The Government has realised this, and is carrying out large schemes for water conservation, such rainfall is good and the conformation of the country affer facilities for such operations. In drier districts recourse is had to boring. Artesian wells are fairly numerous in the arid bush country, and promise to be a great source of benefit. The rainfall in $1887-25.701 \mathrm{in}$.-has been only exceeded twice
in the last twenty five years. Between 1875 and 1887 the lowest rainfall was $13 \cdot 434 \mathrm{in}$, in 1876 ; the average, 20.600 in . the highest, 28.964 in ., in 1875 . With the gradual subsidence
of the depression in this colony the glut in the labour of the depression in this colony the glut in the labour
market became less pronounced, and there is a fair demand for all kinds of labour, especially artisans an
tradesmen, who can always find employment at remuner tradesmen, who can always find employment at remunera bricklayers per day, 8 s . 4 d . to 9 s . $4 \frac{1}{2} \mathrm{~d}$.; brickmakers, 12 s . 6 d . to 13s. $6 \frac{1}{2} \mathrm{~d}$. per thousand; engineers and ironfounders, 8 s .4 d . to 7s. $3 \frac{1}{2} \mathrm{~d}$. per day; quarrymen, 6 s . 3 d . per day; sawyers, 8 s . 4 d
per day; shoeing smiths, $7 \mathrm{~s} .3 \frac{\mathrm{~d}}{\mathrm{~d} .}$. 9 s . $4 \frac{1}{\mathrm{~d}}$. per day; wheel
wrights, $9 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. to 10 s .5 d . per day. The question of th admission of Chinese into the colonies is the burning questio through all Australia. As far as this colony is concerned the
influx of Chinamen has been very small, and in none of the colonies is the Chinese population large enough to cause any alarm. The greatest outcry is from the labouring classes, who ment are largely dependent upon the working classes for thei seats, they cry down the Chinamen right or wrong, and endea vour to hide the real cause of the agitation behind the reason
that the Chinese are not desirable colonists. The most degraded representatives of that nation are held up as a sample of all. The consequence is that almost the whole land cries out emigrate to these colonies-the loafing criminal and the trader The former class are guilty of those crimes and offences for whic thrifty people, whose commercial integrity is beyond cavil, and whose presence is a direct gain to the country. The class, and in this the Chinese Government would co-operate Increased trade, the development of the mineral resources, and retrenchment in all Government depariments, show for the present financial year an estimated surplus of income there has been an annual deficit averaging $£ 243,965$ a year
The public debt of the Colony amounts to $£ 21,048,867$, averagin 63 2s. 8 d d. per head of the population. The interest on this is $£ 877,016$, or $4 \cdot 11$ per cent., varying in rate from 4 to 6 per
cent., and absorbs nearly one-fifth of the yearly revenue; but as most of the principal was expended upon reproductive works, upon as a good investment, and in time will be the backbone progress during the next fifty years of its existence than in the

THE PARIS EXHIBITION-MACHINE TOOLS.
messrs. hulse and co., manchester, makers.

PARIS EXHIBITIONMACHINE TOOLS.
Mrssrs. Hulse andCo.,Ordsal Works, Manchester, make a fine
display of admirable machine display of admirable machine
tools at the Paris Exhibition, a few of which we illustrate. Fig. 2 is an improved double geared screw-cutting lathe, with independent action for sliding and surfacing. The sliding and surfacing actions are operated by a side shaft driven from the la the spindle through an independent giving three different speeds; ${ }_{\text {and }}$ friction clutches, operated at the front of the sliding carriage, are provided for putting the actions in or out of gear instantaneously. The guide screw for screw-cutting is inside the bed, where it is well protected and acts more nearly in the line would if arranged outside, rewould if arranged outside, re-
versing mechanism acting on both the back shaft, and the guide screw is applied on the fast headstock, and the slide rest has an action for rapidly drawing the cutting tool back from the work and advancing itagain. The lathe has 6in. centres, and the
bed is 5 ft long. bed is 5 ft . long.
Fig. 1 is an improved hollow spindie lathe for turning, screw-
ing, and finishing studs, pins, \&c., up to 1 itin. diameter out of long bars. The bars are passed through the spindle, which is fitted with a concentric chuck for gripping them while being operated on. Immediately each article is completed and cut off,
ward so as to present a fresh por-

$$
\begin{aligned}
& \text { ward so as to present a fresh por- } \\
& \text { tion to the action of the cutting }
\end{aligned}
$$

tion to the action of the cutting tools. Much time and expense is saved by this system as compared with the old plan of cutting putting it into the lathe. The lathe has only one headstock, which is double-geared, and is carried upon a bed formed with a trough, for catching the lubricant, and with shelves for holding the cutting tools, \&c., not in use. The sliding carriage, movable along the bed either by guide screw or rack and pinion mechanism, at option, holds a capstan rest for six cutters and a screwing apparatus, he several cutcers for sling, eidly put in or out of position for operating on the work; and adjustable tops are provided for insuring exact repetition of diameter and length.
Fig. 4 is a 5ft. patent radial drilling and boring machine It stands on a base-plate, tee-grooved throughout its upper surface. The radial arm is carried by a vertical slide, which is raised and lowered on the upright frame automatically by a sorew 5 ft . being admitted under the spindle when in its highest position. The spindle slide is traversed along the arm in either direction by a quick-threaded screw and hand wheels, one upon the sinde itseli and the other at the end of the arm, for con-
venience in working. The spindle is rotated by a long revolving tube, with hard pun-metal adjustable bearinga above and below, and has a variable self-acting feed motion by a serew, with adjustable nut for taking up end play. Single gearing is provided for drilling, and treble for boring; and these, in conjunction with a four-speeded cone pulley, give eight changes of speed.

Girard's Hyprauhic Slide Rallway.-The invention of Girard who was killed during the Franco-German war has been again
brought forward, and as the Chemin de Fer Glissant is now to be brought forward, and as the Chemin de Fer Glissant is now, to be een at work in the Paris Exhibition,

"COLUMN" VERTICAL DRILLING AND BORING MACHINE,

RADIAL DRILLING AND BORING MACHINE,

The illustration herewith represents an oiler, the cover of which is self-closing, common with the ordinary oiler. It is manufactured by the Penberthy Injector Company, of Detroit, Michigan. As will be seen by this sectional diagram, the cover is held in place by a spring of fine wire, which passes down through the oil way and
is fastened in its concave, threaded base is fastened in its concave, threaded base. The filling of the oil cup is readily effected tension of the covering which of course is always sufficient to keep the cover in place in ordinary use, or even against any considerable jar of machinery, while a cover so attached cannot be lost.Scientific American.

HANSELL'S STEEL WHEELS FOR COLONIAL TRANSPORT WAGONS.
Messrs. Hansbll and Co., of Sheffield, may be said to have been one of the pioneers of the steel wheel and steel casting trade, and amongst their many specialities in this line are the above, which were introduced by them as long ago as 1884, and they are particularly busy in this line at present. These wheels are for travelling on rough roads in the colonies, Spain,
America, and in hot climates generally in place of built-up America, and in hot climates generally in place of built-up
wheels, which are so constantly giving way in consequence of
the variation of temperature, Hansell's improved wheels being the variation of temperature, Hansell s improved wheels being
without fastenings or joints, and entirely in one piece. We without fastenings or joints, and entirely in one piece. We
hear that a large user reports having twenty-five transport wagons now in use, and these wheels have been ruaning under

these upwards of five years, and great satisfaction has resulted. They are now practically as good as new, and the many drawbacks of wood and iron wheels formerly used are now entirely removed through their adoption. The annexed engraving
illustrates the article.

LETTERS TO THE EDITOR.

[We

unexplained derailments,

Sir, - When I wrote last week under this head, I referred to the steam acting in one cylinder as causing vibration laterally, in spite
of a rigid connection between cylinders, but perceive that 1 am
 intended forther to have written. Those who urge that steam
intion cannot cause lateral vibration, do so on the claimed fact that
act wing to rigid frames the power is so distributed that the cylinder acts on each rail with equal effect, and as the steam
pressure on the cylinder end has its opposite equal at the axle-box, Shere can be no tendency to cause lateral movement. Admitting
this to be so for argument, it is then perfectly clear that in order to secure perfect equality at the rails the two wheels on the axle
must be absolutely rigid; the axle itsolf must be equally rigid against bending and torsion, and there must be no play whatever onserved, it is obvious that the off-wheel cannot take up its share of the work, which consists in rolling forward on the rail and
pressing its axle against the forward side of the box. If the
forward side of the box is not there to be pressed forward the whole of the work will be done by the near wheel,
which will press forward its own side until the frame is
 of the yielding of wheels and axle and the lost motion. This
action constantly changing over from one cylinder to the cannot fail to cause swaying, and does so, as anyone can see, especi-
ally in outride cylinder engines. Inside cylinders are steadier and another wheel to get at the off rail, but has to pass to each rail through an almost equal length of axle and one wheel. It is al
very well in half theory to imagine an engine as a self machine giving off power equally at two wheel rims, but this will
not answer in practice. Anyone who has watched an Amerian

locomotive move from rest may have observed occasionally that
when the axle-boxes have been loose and steam has come between when the axle-boxes have been loose and steam has come between
the piston and front cover, the top of the wheel bas moved back, under the influence of the pressure, turning as a lever upon th rail as a fulcrum. I san an Ammerican enfinine, because in these the
wheel is wholly exposed, and the peculiarity becomes visible. The wheel is wholly exposed, and tho peculiarity becomes visisle. Th
wheee lollls back, in fact, until the axle-box prosses gainot the rea side of the guides, and then the wheel rolls forward, not under the
action of the crank pin, for this rolls it backwards, but under the pressure of the frame on the axle as the oframe is forced forward by
the steam on the front cover. Thus in a 4 ft . wheel with a 2 ft . back wittessure of one ton in the cyinder pushes the ale-bo back with a pressure of half a ton. The cylinder cover advance
with one ton presure with one ton pressure. There is thus a net forward action of ha practice to assume an engine as self-contained. Furtber, when it is argued that steam acting on the frame in
one direction through the cylinder cover exactly counterbalance itself by transmitting an opposite pressure through the piston to
the axle guides, and therefore the frame side does not tend te move forward, it is quite overlooked that this action only take
mone placo on the assumption that the moving parts have no weight.
Actually, the steam pressure on, say, the forward cylinder cover is not resisted by an equal prossure on the axle guides, but by the piston. This, on the dead point, is moving forward over the rail
at the same velocity as the cover. Steam is admitted between them, and urges one forward but checks the other. The cylinde pumped agninst it by the inertia of the priston, \&c. The whole side of the engine moves forward without a corressonding back action one-half the pressure taken up by inertia. Then for 1001 b. trans opposing prossure. chosen a net result in one case of 50 lb . forward, and in the other case 50 bb. backward. The engine does not move back simply becaus of its own inertia, which carries it forward to a position where it
can utilise the energy stored in the moving parts ; but the activity is there and must have its effect, and this must be on one side only. In fact, while the off-side of the engine is free to continue
unimpeded in a forward direction, the working side is for the unimpeded in a forward direction, the working side is for the
moment being forced back by steam on the back cover, which acta on the cover with full power when the crank is at a position of least and cannot exert forward turning effort. Inertia may thu xert a great influence on the distribution of power which no probably most severe at high speeds, because of the increase of the inertia action being more rapid than the increase in the rapidity of and seems to indicate that inside portance of good axle-box fits

4, Fenchurch-avenue, July 27tb.

the loa viaduct.

SIR, - I have just read with great interest the account of the above viaduct in your issues of April 19th and April 26th. and would,
with your permission, offer a fow comments upon it. The first point that strikes me is its remarkable resemblance to the Kinzua别 and short spans very similar, and the construction of the trestle nd the mode bracing tnem almost identical, with the sam features in the Kinzu
December 22nd, 1882 .
It is very pleasing to see the good points of American engineercertain points in which the Loa Viaduct differs from its prototype and for which I have a difficulty in discovering a justification. The irst is the quantity of metal used. At Kinzua a viaduct 2052 ft , long with a maximum height of 301 ft and an average height of
176 ft , carrying a ft . 8 jiin. railway, with the beaviest locomotives in use anywhere, was constructed with 1562 tons of iron. At Loa height, carrying a 2 ft .6 in , gauge railway, required 1115 ton and heavy locomotives, contains 76 of a ton of iron per foot in ength, while the Loa, with a n. per foot, or nearly twice as much.
It cannot be urged that the Kinzua is a flimsy or dangerous
atructure, for all the sizes and strains have been published, and in common with others I have checked considerable portions by cal then, is the immense excess of metal at Loa used and what it justification? A second point that comes out on inspection is the complicated nature of the girders at Loa, as contrasted with the simple type at Kinzua. I have endeavoured to count the rivets in boft. girder at Kinzua, as agginst 1500 rivets in 190 ,

Loa. Surely this must mean greater cost, while what advantage is obtained I cannot discover
These lofty viaducts are of such importance in mountainous countries that the question of their economical design is
worth discussing.
W. C. KERNOT worth discussing. Professor of Engineering.
The University of Melbourne, June 17 th.
P.S. - It would be interesting to know the cost of the Loa viaduct. The Kinzua cost $£ 49,375$, or $£ 24$ per foot. -W. C. K.
 ikely to set up the Kinzua Viapuct as their modiel, or to recognise be reminded that as embodyithe stresses in a structure may be the same whether altang in England, America, or Australia, the opinions of engineers in the several countries may vary very much many bridges and viaducts that we know of. - ED.]

indicator diagrams,

Sir, -With regard to Mr. Willett's inquiry concerning indicator diagrams, thoro seems to bo a neglect by text-book writers of that curve obtained is to be compared with any standard curve of expan

In the special case given by your correspondent, and also in most compound engines, it is clear that the sleam of which the car shows the diagram may be divided into two portions, viz, the working steam passing through the cylinders, and the cus The first is a constant amount for the three eylinder, the secon cushion steam varies, as a rule, in each cylinder. The amount of the second can always be obtained by producing the compression up to the initial prossure, and is represented in the diagrams by c) s, and $c^{\prime \prime}$ ' respectively for the H.P., I.P., and L.P. diagrams, an died to the vetween by the piston before cutting off is the amount of working steam. The curve shown by the indicator card is that due to the expansion of these two volumes, and it is to a
ertain extent distorted by the varying character of the second, and certain extent distorted by the varying character of the second, and or the purposes of comparison it is necessary that the standar duce the duce as in the figure. The volume cy represents the part of the clearance space filled by cushion steam and c_{u} the portion of clear ance which has to be filled by incoming steam. Now draw a vertical line A B to represent zero volume of H.P.

epresenting the clearance space, and lay down the H.P. diagram D to touch this.
Produce the compression curve down to cut a horizontal line at the initial pressure of the I.P. diagram in the point K. From this
 he I.P. cylinder. The same method may be adopted for the P. cylinder, and our diagram will be complete, care being taken to form each portion of the standard curve from its wn zero line. The standard curve will then show the expan-
ion if the steam remained in the form of steam throughout be cylinders, and the variation of the indicator diagrams from vill give a clue to the actual behaviour of the working fluid.
Moreover, the true ratio of expansion will be seen to be $\frac{v t}{v}$, the Volume of the working steam at the point of release divided by its
nitial volume, not as usually taken, the ratio of volumes swept by the piston ${ }_{c}$, which often bears no closer relation to real ratio than nominal to actual horse-power.
Garfield Chambers, 44, Reopal Avenue,
Belfast, July 24th.
T. P. Rennoldson

tie repair of roads.

$\mathrm{Sir},-\mathrm{I}$ have read with interest your correspondent, "A Ratepayer 's," lettor, in your issue of the 19 th inst., and venture to send ou a set of the pamphlets published and distributed gratuitously
by this Association, from which you will see that the views ex pressed by your correspondent are almost identical with the prosecuring better roadd at a soaving to the ratepayers. It he will
forward me his address I shall be pleased to send him some of the pamphlets, in the hope that a distribution of them among the nembers of the local board and surveyor responsible for the road
n question may be the means of bringing about the adoption of better, cheaper, and more efficient system of repair than at present btains. Johs Phillips, Hon. Sec The Roads Improvement Association of Great Britain,
57 , Basinghall-street, E.C., July 25tb.
history of wire rope construction.
$\mathrm{Sir},-$ In your issue of June 7 th there is a reference to the invention of wiro rope. The accompanying statement is taken from a
catalogue of the California Wire Works of this city, and I have had occasion to verify its truth :
"The adaptation of iron wire to the manufacture of ropes is due
o Mr. Androw Smith, a civil engineer by profession, and a native of Dumfriesshire, in the south of Scotland. His first experiments
were made in 1828 , were made in cose. As a substitute for raw hide ropes, he the partial success he met with was encouraged by the grat advance in the price of Russian hemp. His frrst patent was dated
January 12 th, 1835; his second patent was dated March 26th, 1836 . anuary 12 th , 1835 ; bis second patent was dated March 26 th , 1836 .
A third patent was granted bim on December 21 st , 1836, and a
fourth patent was granted him March 20th, 1839; and at subse
quent dates other patents were issued him for quent dapes and wiro rope machinery. Since then wire rope ha become an important industry, and has added much to the wealt of the country in helping to develope the iron interests. Mr. Andrew Smith there referred to was born November 30th
798, and died May 17th, 1861 ; was buried in Dryfesdale church 1798 , and died May 17 th, 1861 ; was buried in Dryfesdale eburch-
yard, Lockerbie, in the south of Scotland-a tombstone marks the
burial spot. Smith was undoubtedly the original patentee manufacturer of wire rope. I have been to some pains to hunt up the facts, and find his patents recorded in the Repertory o
Patent far back as 1815 or 1846 ; had a long law suit with Robert Sterling Nowall-lately deceased an regard and
wire rope patents; had wire rope works at Great Grimsby, and wire rope patents; had
later at the Isle of Dogs.

July 8th.

Water-tube bollers,

Sir, -As makers of evory class of boilers, you will scarcely
 at the article in this weeks 8 isue on " Wiater rube Boilers, wh
you kindly inform us who are the "b igh-class engineering world " who are exchanging the Lancashire for either the Galloway or water-tube boilers? We can assure you that there were never so hearly every boilenter of any ros at prosent; and, 1 wo 100 lb . and 150 lb . pressure, and there are some on order to work at 185 lb . Pray what is there to prevent Lancashire boilers being You will admit that there
the early seventies were making tancashire bollermakers who in boilers of the official material also, and some in the sixtios. Do you think they have gone back? If so, we would recommend you to will be most happy to give you introductions to wo thr will be most happy to give you introductions to go through
number of them ; and we believe you will find it extremely dificult to find an equal number of works in the marine, locomotive, and water-tube boiler makers to come alongside of them, either for first-class work or equipment. We can assure you in the Leancashir
boilermakers aro not as far ahead of the others as they wero in seventies, they are still in the van.
forced blast been successfully applied experience is, that they cannot stand firing equal to ordinar Lancasbire boiler every-day practice, namely, 201 lb . of coal pe
We shall be glad to know where the square foot of grate. We shall be glad ation kow when
water-tube boilers can bo seen working satisfactorily doing even this.

Hyde, July 29th.
fire hose connection for locomotives.
Sin, - Noticing a lettor in your correspondence column of July
26 th upon the above subject, we beg to say that we have, for ${ }^{2}$ number of years, made locomotive injectors with a fire hose branch for the purposes mentioned by your correspondent, Mr. Williar
GRESHAM AND CRAVEN, LIMITED. Warren.
Craven

Gresham and Craven, Lhs
orks, Ordsall-lane, Manchester, July 3oth.

THE WHITE STAR LINER TEUTONIC

THE now steamship Teutonic, of the White Star Line, arrived at
Liverpool on Monday after her first trial cruise. She is the firsol merchant vessel built to comply with the conditions of an Admiralty subsidy. As she is to take part in the review of the fleet at subsidy. As she on
Spithead naturday, she is fitted with four of her complement of
twelve 5in. guns. The guns are to be placed six on either side upon the promenade deck, and those at present in position are The vesel bas been buil bhip
buit by Messrs. Harland and Wolff for Messrs. Ismay, Imrie, and Co., and may be regarded as absolutely
the safest ship afloat. She is fitted with twin screws; and the whole of the machinory, engines, boilers, and coal for working either screw independent completely from its neighbour by a fore room to the forward end of the foremost coal bunker, and, in fact intersects the six largest of the twelve watertight, compartment
made by the oloven ordinary transverse bulkheads. This fore-and aft buikhead is piercea by only one locked door, the key which is held by the chief engineer. The doors between th ongine-rooms and the stokeholes are in every instance duplicated
and the duplicate door is in every case under the control of the captain on deck. When liberated they close by their own weight, but they are fitted with glycerine cataracts to ease their descent In the event of water flowing into the ship the dvors will close auto matically. As the water rises in the bilge it will buoy up a hollow
piston attached to a rod. This rod on being pushed up about 1 ft , piston attached to a rod. This rod on
removes the catch that holds the doon
The engines are triple expansion, with three cylinders of 43in. 68 in., and 110 in . in diameter, and they have been constructed to dovelope 17,000-horse power. The pistons have a 5 ft. stroke, and
the machinery, in accordance with Admiralty requirements, bas all the machinery, in accordance with Admiralty requirements, bas al in
been placed below the water line. The boilers are twelve in long, with six furn furnaces are fed with forced air to a moderate extent above tho fuel and under the grate, and the boilers are designed to work up
to 180 lb . The initial pressure in the intermediate cylinder is 801 lb ., and in the low about 161 lb , with a vacuum of 27 in . The indeed, some of the furnaces were not lighted prental cruise as yet, any trials of the maximum speed. The actual trial wil
be made in the Atlantic, starting on the Wednesday after the
The propellers, which are 21 ft . 6 in . diameter, with a pitch of 28t. Gin. and a supericial area of 128 ft , form a subject of specia
interest in this ship on account of the unusual manner in which they are placed. They overlap each other to the extent of 5 ft , 6 in or, in other words, they each extend over the centre line 2 ft . 9in. The centres of their axles are 16 ft apart, and the port side pro-
peller is 6 ft . forward of the starboard, measuring from boss to peoss. The port propeller is a left-handed screw and the starboard
bos. propeller working in theth work away from the ship; and the por revolutions a minnte more than its twin. The propeller shafts are 199ft. and 2055 ft . long respectively, and are entirely encased to the stern, and a large space bas been cut in the frames to admit of the massive casting that carries the screw shafts. The stern-post is
men connected with the rudder-post by a bar on the line of the keel in the ordinary way, the scheme of allowing the rudder to be
suspended without support below having been a oandoned as The vessel herself is 582 ft . long - the longest ship afloat-
$57 \mathrm{ft}$. . in . broad, 39 ft . 4in. deep, and bas a gross tonnage of 9685 tons. She has a cutter stem, and, relying wholly on her two sets yards. 30 , the masts are little more than three bare poles witho Accommodation is provided for 300 first-class, 150 second long, with clear way of 18 ft . on hach a promenade deck 245 ft . Some portion of this promend ache side the deck-houso which is used for stowing the boats. For the awning deck, travelling unusually lavish, even in these days of sumptuous ocean

RAILWAY MATTERS.

The convention for the construction of the Athensarissa Railway was signed on the 27th ult.
To the close of the past financial year the total amount
expended on railways in New Zealand was $£ 14,875,187$.
Ir is stated in the Colonies and India that the Tasmanian Government intend commencing the construction of railway
rolling stock at Launceston on an extensive scale, having now all
In .
Ir is reported that the New South Wales Government intend to almost immediately proceed with the duplication of the
railway from Granvillo to to Liverpool and the Newcestle line between
Adamstown and Taralba.
The South Australian Railway Commissioners have, Colonial papers say, decided to adopt the Westinghouse automatic
brake on the broad gauge, and the antomatic vacuum brake on the
narrow narrow gauge lines in tho Colony.
The earnings of the St. Gothard Railway are now
teadily increasing. Thus, last year they amounted to steadily increasing. Thus, last year they amounted to 2,309081 ,.
as against $2,172,5656$. in the preceding year. It is also said that
there is a good increase this year.
The Montreal tubular bridge, according to a current rumour, is threatened with removal and the erection of a modern
truss bridge upon its way. The estimated oost of the change is set down at about
1, ooo,oo0 dols. The American Enginerring News, however, says the
rumour is with umour is without substantial grounds.
An interesting lecture was delivered on the 23rd ult.
at Simla, by Colonel Le Messurier, on the "Russians in Central at Simla, by Colonel Le Me Messuriirer, on the "Russians in Central
Asia," and was based on his personal experience. Dealing with the Asia," and was based on his personal experience. Dealing with the
question of steam transport on the Caspian, he sated that the
Russians, even with their present steamers, were able to convey Rusians, even with their present steamers, were able to convey
47,000 men from Batoum to Uzun Ada, the starting point of the
Transcaspian Railway, in twelve days. The railway, he said, had Transcaspian Railway, in twelve days. The railway, he said, had
been pushed formard $2 \frac{1}{2}$ miles daily, nad would now be carried
northwards to join the northwards to join the great Siberian- Pacific Railway. When that
line had been comploted, twolve days only would be required to to go
from St. Petersbburg to Vladivostock, and fifteen days to Pekin. A GERANA contemporary gives some interesting comprisons betweon the earnings of railways and tramways in Berlin.
For instance, the average diurnal earnings of Prussian railways
 Berrin Tram way company reached 40.3 marks a day per car. If
the numb in the two kinds of conveyances be compared
whilst they are running, it appears that a seat in a railway carriage whilst they are running, it appears tbat a seat in a railway carriage
only yieldeded 63 pfonnigke in twenty-four hours, as asainst 2 marks
by a seat in a tram car in eighteen hours. Although the contemporary quoted by the Railicay Neurs says the two means of traffic
are difficult to compare, these figures should certainly have attention in the fixing of railway rates.
Professor Milne, of the Seismological Society of Japan, has invented what the Ruilvay Ners thinks a very interest-
ing self-recording instrument for railway trains. "It shows when a train stops, for how long, and whether at a atation, signal, or
siding. It indicates allos the upward and downward vibrations due
to the condition of to the condition of permanent way, and points out the defects in
bridges, sleepers, and ballast, as well as vibrations due to oscilla-
tion tion of the train, Tha The mechanism whas , it it stated, worked satitis
factorily in Japan, and on a journey across the American continent, factorily in Japan, and on a journey across the American continent,
and arrangements sare being made for having it tried on some of
and the English and Scotch lines." It would bo pleasant to think that some useful purpose had been foupd for these much talked-ot jog
instruments, but the above-mentioned seems to be be aseless as
these for the continuous record of earth tremours. Such an instruthose for the continuous record of earth tremours. Such an instru-
ment would, for instance, register a good many miles while the train stood at the ticket platform on Battersea Bridge.
The Bill recently signed by the Governor of New York State, allowing the street railroad companies to substitute
mechanical motive power for horses, is, the Electrical World
observes an in observes, an important one. We hope in time to see it lead to a
general use of electric motors on the roads in this city, but we apprehend that its irst effect ears bee to encourage cable traction, their mindss fixed on cables, and will not be satistied till they have
given them a trial. The difficalty about the destruction of old and new street paving is, however, a serious one, and it may stand in
the way of cablo work on an extensive scale. The situation in the way of cable work on an extensive saale. The situation, in
fact, is not an onfarurable one tor electricity, and wexpect to
see it availed of for the introduction of one or other of the systems see it availed of for the introduction of one or other of the systems
of electric traction. Boston has been setting New York a brilliant example in this respect, but it is still open to New York to bring
itself abreast of the improvements of the day and hour in urban itself abreast of
passenger traffic.
The last quarterly return of railway accidents and casualties in the United Kingdom shows that the three months
ended March 3 sit
with cannot on the whole be compared favourably ended March 31st last cannot on the whole be compared favourably
with the corresponining period of 1888. In one respect, indeded,
passengers were more fortunate, inasmuch as only pighteen were passengers were more
killed this ear, a decrase of five; bunt of injured passongers there
were 40 instead of 344 . One hundred servants of companies or werre 400 instead of 344 . One hundred servants of companies or
contractors were kille, instead of 88 , and the injured were 688 in in
number, showing the large increase of 137 , Sixteen persons were
 whom there were 21 -were killed and 25 injured, instead of 71 and
22 respectively; and of other persons not classified four were killed and seventeen injured. Altogether the list for the first quarter of
the year shows 225 killed and 1139 njured, in place of 209 killed
and 934 injured in the corresponding period of 1888 . Several and ants, injuwed in the corresponding period of raitwas stationsor on railway premiseses
aceidents
besides what are caused by the movement of railway vehicles. If these are included, the total number of personal accidents reported
to the Board of Trade by the several companies amounts to 239
The Delagoa Bay railroad war, says the Railroad Gazecte, is not a large one, but it presents several interesting features,
which our American contemporary presents characteristically in the which our American contemporary presents characteristically in the
following:-":Some four years ago Portugal granted a charter to an Anglo-American company authorising it to build a railroad fiftythe Transvaal gold fields. Fifty-four milos were completed, more
than a year ago, and have been open for tratfic ever since; but
the remaining four miles lay in an extremelv diftive the remaining four miles lay in an extremely difficult country, and
could not be foinsbed within the time limit contemplated by the
charter. On this accunt the charter. On this account the Portuguese Government declared
the concession forfeited, and apparently attempted to take posses. sion of the road without regard for the rights of the company.
But this was not oso easy. England took the matter seriously, and promptly arranged to send a gunboat to the point threatened.
We seemed to be on the eve of a raiiroad war between England and Portugal. But more peaceful counsels prevailed. The gun-
boat frightened the Portuguese more effectively than a general freight agent could bave done. This is not because a a guboati is in
itself more dangerous than a general freight agent. On the con-
On

 irresponsiote autrority, does not. Wo commend the strudy of thi
distinction to presidents who think of engaging in railroad wars.

NOTES AND MEMORANDA.

IT is said that Chicago has now a population of more It man a
Is London last week 2376 births and 1553 deaths were revistered. Allowing for increase of population, the births were
411, and the deaths 277, below the average numbers in the corre-
sponding weeks of the Tus weeks of tic len years
The cost of the working of the electric light in Leeds is given by Mr. Hewson, M.I.C.E., the borough engineer, as aboot
1d. per hour for four 16-cande lamps, and he thinks that the cost of eight 10-candle lamps would
to say, the cost inside the works.
According to an American paper, the cost of distri bution of food in American towns is very great. The distribution
of bread, after it is baked, now costs the average workman in a city as much as it does to grow the wheat, mill it, barrrel it, move it
1500 miles, and convert it into bread, all put together.
The annual death-rate in London per 1000 from all causes, which had been 19.3 and 18.7 in the two preecing weeks,
further declined last week to $18 \cdot 6$ During the first four weks of the current quarter the mean death-rate was $18 \cdot 2$ per 1000,
and was 2.5 below the mean rate in the corresponding periods of the ten years 1879-1888.

Av incandescent lamp known as the Backstrom lamp has a ilament of carbonised silk; the filament is of high resistance
and is run at tbree wats per candle, the 16 candle-power lamp
absorbing 49 wats absorbing 49 watts, so that 15 may be said to go to an electric
horse-power. In the interior of the globe the filament passes
through an eyelet, so that vibrations of a sufficient amplitude to through an eyelet, so that vibrati
break the filament are prevented.
Last year the United States production of lead in-
creased to 180,555 short tons from 160,700 tons in 1887 . The creased to 180,555 short tons from 160,700 tons in 1887 . The
increase was due principaly to the heavier receipt of lead in
Mexican silver-lead ores from 15,000 tons in 1887 to over 27,000 pound. The production of white lead, chiefly from pig lead, was
89,000 89,000 short tons, valued at $10,680,000$ dols.
A NEW artificial leather is described in an English patent of 188 by N. F. E. Rapeand as follows:- "Leather rofuse
or cuttings are ground and mado into a fibrous paste, with which is
mixed mixed a glue or gelatinous compound containing fatty matter and
glycerine. The paste may be spread and formed into plates by
michery ing the composition, the following proportions may be taken:
Leather refuse, $78-90$ parts ; gelatino, $4-8$ parts; tallow, $1-2$ Learts ; glycerine, $5-12$ parts.
parts.
A Paper on "A Flow of Molten Glass occasioned by bhe Accidental iercing of a Glass Furnace," was recently read
before the Paris Academy of Sciences by M. F. Founue. An
account is is account is given of the sudden escape of about 4000 kilos. of
molten glass from the Clichy-la-Garenne Works, and a comparison
is lavas. The absence of bubbles near the surface of the former, and the other differencese noticed between the two streams, arer, attri-
buted mainly to the different chemical composition of the initial buted mainly to the different chemical composition of the initial
magma of each substance. The wollastonite peculiar to the itreous flow solidifies under very different conditions from those of
the feldspars and ferro-magnesian bisilicates occurring in the molten

In their report on the water supplied to London during C. Meymott Tidy, say, during the past month the prond Dr increase in degreeo of freedom from organic matter, manifested by the water supply during the first five months of the year succes-
sively, was not found to be sustained. Taking the Thames derived water for comparison, the mean proportion of organic carbon
present in 100,000 parts of the water, during each of the first months of the year respectively, was found to beas sat forth below
-the mean proportion of 144 prain of organic carbon observed -the mean proportion of 144 grain of organic carbon observed about a quarter of a grain of organic matter per gallon :- January,
$.150 ;$ February, $\cdot 161 ;$ March, $\cdot 161 ;$ A pril, 154 ; May, 144 ; June

Iv the neighbourhood of Ekaterinburg, in the Province ferm, an apple-green clay containing nickel was long ago dis-
covered. The Journal of the Society of Chemical Industry says:"It contains a very pure hydrated nickel and magnesium silicate,
and is free from cobalt, sulphur, and arsenic. 330,000 puds -1 pud and is free from cobalt, sulphor, and arsenic. 330,000 puds -1 pud
$=40$ Ib. of this ore have of late years been treated. By the metallurgical process a nickel containing 97 per cent. of the pure
metal may be obtained. Large quantities of this ore occur in quartz vein which, it is calculated, will certainly yield 2000000 puds
of metallic nickel.
Recent analyses by Hunting of metallic nickel. Recent analyses by Huntinglon prove that the
ore from the quartz vein contains about 7 per cent., and the soft ore from the quartz vein contains about 7 per cent., and the soft
ore $14-19$ por cont. of nickelous oxide. It is proposed to prepare
the pure metal electrolytically an excellent alloy with steel and aluminium. The alloy contains
60 per cent. of iron, 20 per cent. of nickel, and 20 per cent, of 60 per cent."
aluminium."
A methon of making grained negatives for zinc etching without a screen is described by W. T. Wilkinson in the Photo-
graphic Neess. This is done by coating the plates with an emulsion containing sulphate of baryta in very fine powder, and well shaken
up before conting up before conting. Rictures are taken upon these plates, and
developed and fixed in the usual way; but the image, instead of being smooth and nice, will be covered with myriads of fine pin-
holes men, then etched in relief for type blocks. Instead of sulphate of baryta carbonate of soda, \&c., may be used in the emulsion, and
after fixing, immersion in weak acid will develope the pinholes atter ixing, cimmersion in weak acid will develope the pinholes. followed by drying them in the oven at a high temperature, expos-
ing under a reversed negative. Develope and ink up as for the paper; pull the transfers upon ordinary lithograph transfer paper To obtain a
reticulation.
Mr. H. P. Woodward, Government Geologist for Western Australia, sends, Nature some interesting, particulars of
both coal and tin discoveries in that colony. He writes :-"On the south coast, where a small stream flows out, called Fly Brook, coal has been found of a very good quality, but there is no port nearer
than Albany or Yasse and this latter is not a good one. There seems to be a line of coal-bearing country between the const range, which runs north and south from Cape Leeuwin to Cape Naturaiss
and the main highlands; much of it covered with sand and swamps at the surface, but under which, I beleave, we shall find coal
measures which may extend west beneath Perth to the Irwin river There is one 5 ft , seam and several smaller, averaging 17 ft . of coal
in 200 att in 200 ft . of rock. There are two or three outcrops in the bed of the Creek of a much-weathered but good coal, some of which is highly
bituminous. In the Fitzgerald coalfield is only brown coal or
lignite of no value but there is some good-looking gold-bearing country near it. A't a place called Bridgetown tin has been found. Little work has been done yet, but, as far as I am able to judge, it
seems to indicate the biggest thing of the kind that has ever been seems so indicate the biggest thing of the kind that bas ver been
found. One shaft, 18 ff . deep, will wash all the way down at about
4 ll . 4 lb . or 5 lb . to the pan, and they have not got to the bottom of it
yet. The richest works in other colonies are rarely more than 2 Ft
or 3 ft . deep. Tin has been found at the surface, in the sand, over an area of about 100 square miles, but no sinking, except the one
shaft, bas yet been made; and as the surface is covered, either shaft, bas yet been made; and as the surface is covered, either
with sand or clay ironstone, the formation cannot be seen at all."

MISCELLANEA.

Messrs. Wheatlet Kirk, Price, and Goulty have Issued a catalogue with particulars and plan of the Britannia Works, Birkenhead, and of the plant and machinery, \&c., which they are in
structed to sell by auction on the 7 tb, 8th, and 9 th of this month. There appears to be some truth in the rumours from Baku, to the effect that a permanent decrease is showing itself in
the production of naphtha in that region. Many new borings
Mave been made but the results by no means realise the hopes or the production of naphtha in
have been made, but the resul
expectations of the speculators.
The effects of a terrible storm, which swept over Szegedin on the 24 th and 25 th ult, are reported. A Times corre-
spondent says, the gale blew down the circus in the town, carried away twenty-one windmills out of twenty-four in the environs, and
aused the deaths of nine persons aused to the mine porsons,
WE have received a copy of a report of the Electric Lighting Committee of the Town Council of Leeds, which contains
areview of the proceedings of the Committee since its formation and the particulars of a scheme for lighting the town from a central suggestions of the Committee, and shows that the subject is under serious consideration, and that Leeds means to move, but not too quickly.
The Union Steamship Company's Royal Mail Steamer Tartar, which arrived at Soutbampton at 4.15 a. w., on Sunday, 28 th
July, has mado a very rapid passage from Cape Town. Sbe left tat port at $5.43 \mathrm{p} . \mathrm{m}$. on the 10 th July, and the distance run, 5986 miles, via Madeira, was accomplished in 17 days 10 hours 32
minutes, gross time, the net steaming time being 17 days 6 hours
11 minutes, giving an average speed over the whole distance of 14 minutes, giving
Messrs. C. Isler and Co., London, have recently completed some neteworthy artesian wells, amongst them one at
Messr. C. Vaux and Sons' browery, Sunderland a 7 tin. internal diametor tube well, 221 ft . deep, through magnesian limestone.
Tbe supply obtained exceeds 3000 gallons per hour, and is pro nounced of excellent quality. At the Friary and Holroyd's
Brewery Company, Guildford, a supply has recently been obtained Browery Company, Guildford, a supply has recently been obtained
from a 350ft. tube well. Several others are in course of sinking.
We hear that one of the largest firms of manufacturers of traction engines in Great Britain are considering the manufac
ture of Proctor's steam diggers, and that an arrangement is being negotiated with Messrs. C. Burrell, and Sons, the present sole manu facturors, whereby a sub-licence will be granted to the firm in question. Should this arrangement be carried out, the opposition
to the improved system of digging land will in a very great measure to the improved system of digging land will in a very great measure
be done away with, and a strong impetus will be given to the nufacture of steam diggers,
The Government Geologist of New South Wales has supplies may be bored for with good prospects of success. Water bearing formations extend for 60,000 square miles in the arid parts of the colony, where permanent supplies are most necded ; and
the system of artesian wells is being widely adopted throughout Australia with the most satisfactory results. Large tracts of good tally valueless throug the want of a regular water supply all the yeay
is said, capable of supporting flocks and herds.
The "Journal" of the British Society of Mining students for June shows that this Society is well supported by ournal is well, printed, and the June number contains a large number of illustrations than usual, and many are inserted in the
text, which is a cerefully edited. The papers include "Coal Cutting
W.
 W. Walker, Jun.; "Description of Seams and some Metbods of
"Hiking in the Forest of Dean Coalfield," by J. J. Joynes; and
Historical Notes on Underground Haulage," by H. F. Bulman.

The Sims-Edison electric torpedo is described follows in the Scientific A merican:-" The torpedo consists of a
submerged portion attached to a float having the form of a boat. The submerged portion is a spindle-shaped copper shell containing the propeling machinery, a cable by which che current is conveye dynamite or other explosive. The spindle-shaped shell is con nected with the float at the bow by means of a triangular stee
frame, and at the stern by a post and an angled bar. The float frame, and at the stern by a post and an angled bar. The float,
which is of copper, is made air-tight and filled with buoyant
material, so that if it should be perforated it will still be able to ustain the submerged part, The triangular frame whish connect the two parts at the bow extends up over the top of the float, and serves to either lift obstacles with which the torpedo comes in con-
tact or to depress the torpedo, enabling it to run underneath tne obstruction.'
Themonthly report of the Steam Engine Makers' Societ just issued is very much a repetition of the preceding one. The re-
ports from various districts are to the effect that there is continued ctivity in all branches of trade, with employers frequentl requiring men who cannot in all cases be supplied. There is
tainly no indication in the reports of any approaching slackening
off in the activity prevailing throughout the industrial centres Most of the works have sutticient work to keep them fully em ployed all through the present year, and in some instances we slight but almost inperceptible decrease, the percentage of out-of ndergo further reduction. It remains at a little under 2 b pe cent. of the total membership on actual donation, and this is the
lowest percentage of unemployed that has been recorded for a

The following information respecting the river and anal for ure has been notified at Schmaleningken; the Vistula, at Thorn; the Canal of Bromberg,
at the second lock; the Oder, at Ohlau; the Spree, at Berlin; the Elbe, at Hamburg; the Weser, at Bremen; the Ems, at Nieppen; and the canal from the Rhine to the Marne, at Altkirch-frontier of Alsace. The total traffic, ascending and descending, reported at the above places, attained the following proportions in 1887 :-
32,863 boats with cargoes, and 35,989 without cargoes, in all to a total of 168,852 boats, with a tonnage of $28,577,000$ tons against 157,722 boats with a tonnage of $26,210,000 \mathrm{in} 1886$; and
146,378 boats, with a tonnage of $22,951,000$, for the years 1881 to 1885 . M. Hewin Belle, the French Consul-General Franfort-on-the-Marne, from whose report these particulars are
taken, states that previous to the year 1881 there were no complete eturns relating to German river and canal traffic. The weight of oods shipped on these boats amounted in 1887 to $17,568,000$ tons,
in 1886 to $16,002,009$ tons, and for the average of the years 1881 to he to 14,318,000 tons. The increase in the general movement at average of the preceding years, was, for the number of boats, $15 \cdot 4$ per cent.; for the capacity of the vessels, 24.5 per cent.; and for
the quantity of goods shipped, 22.7 per cent. The tonnage
the rafts passing the localities in question amounted in 1887 to $2,217,000$ tons, in 1886 to $2,061,000$ tons, and for the average of the
years $1881-1885$ to $2,313,000$ tons. Compared with the last figure the falling off in 1886 was at the rate of $11 \cdot 1$ per cent., and in
188744 per cent. Berlin, Hamburg, and Emmerich are the most mportant centres of German river and canal navigation.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTIOE.

* With this week's number is issued as a Supplement a Twopage Engraving of her Majesty's First-class Battle-ship Inflexible,
11,800 tons. Every copy as issued by the Publisher contains 11,800 tons. Every copy as issued by the Publisher contains
this Supplement, and subscribers are requested to notify the fact should they not receive it.
* The Enginers is placed gratuitously at the disposition of visitors to the Exposition Universelle de 1889 at Paris, at the Colonies Francaises, Esplanade des Invalides. $*$ Le journal The Esainger cst mis gratuitement à la disposition des visiteurs de lexposition Universelle de 1889 à Paris, au
Bureau des Renseignements Commerciaux, à la Section des Colonies Francaises, Esplanade des Invalides.
* The Enginger can be purchased, and is also open to perusal, at the Salon International de Lecture, Champ de Mars, Terrasse
des Beaux Arts. des Beaux Arts.

CONTENTS.

TO OORRESPONDENTS.

machine for cleaning waste.

SCANTLINGS IN ROOF STRUCTURES.

Foreion Subseriptions for Thin Paper copias will, until further notice, $\begin{aligned} & \text { be } \\ & \text { received at the rates given belone:- Foreion Subseribers paying in advance }\end{aligned}$
 advice to the P_{1}
increased rates.

 ADVERTISEMENTS.
$*$ The charge for Advertiements of four lines and under is three shillings,
For every tuo tines afteruards one shilling and sixpecce: odd lines are

 veil be sent onaypeptication. $\begin{aligned} & \text { be Inserted unless delivered before } 8 \text { ix } \\ & \text { Advortitements cannot } \\ & \text { oclock on thursday evening; and in consequence of the }\end{aligned}$

THE ENGINEER.

AUGUST 2, 1889.

unexplained derailments.
The useful feature in Mr. Wiseman's paper published in our impression for June 28th, was that it called atten tion to a subject of some importance. It is not to be sup-
posed that we are prepared to accept all the author's conclusions as correct. The discussiou now going on in our
pages unfortunately only goes over very old ground. For example, all that Mr. Booth has to say in his letter appeared in very nearly the same form about twenty-eight years ago in very nearly the same form about twenty-eight years ago
in the pages of the Mechanics' Magazine. No one will dispute that his conclusions are in the main sound as far as they go, but they are practically of no moment in this connection,
and have really little or nothing to do with derailments. The idea that an outside-cylinder engine is more likely to the lateral action of the pistons, will not be readily accepted by anyone who has had much experience with both classes of engine. All those who have hitherto
taken part in the discussion have curiously enough failed to see the way in which an outside-cylinder engine is worse than one with the cylinders inside. It is the variable lifting action on the guide bars that does
harm, if any is really done. We may very readily harm, if any is really done.
have a pressure of about ten tons on a piston, and in certain positions of the crank as much as one-fifth of this may be exerted on the top guide bar. As the piston
approaches the end of its stroke, this vertical effort dies away to nothing. It is at a maximum and at a minimum twice in each revolution. We have one leading corner first lifted with a force of two tons, and then the other leading corner of the engine raised with a similar force. Now, furthermore, it is known that when an engine
lurches, the load on the wheels is altered. Experiments made in France have gone to show that a rocking engine -which must not be confounded with a "boxer"-may put no load at all for an appreciable period on first one entailed should the up thrust on the guide bars synchronise with a lurch will be readily understood. It is this upheaving effort that is to be avoided, and it is notorious steady, other things being equal, in about the ratio of the square of the angle of inclination.
So much being said about the oscillation of locomotives, we may endeavour to draw our readers back to the question really at issue. Are there really any such things as variably take place under conditions which leave no doubt that the cause must be sought for in the engine? Our reply to the first question is that, when the truth is told by railway employés, a derailment is seldom, if ever, in-
explicable. Some puzzles are presented, however, at very long intervals. It has fallen to our lot to see two curious derailments, and we give the particulars, because they show how small a bearing what has been written hitherto in our pages has on the subject. In the first case, a four-
wheeled goods van was being shunted at a roadside wheeled goods vane washed it at a moderate pace and then left it to itself. The van had no brake. It crossed the switch and entered a long straight siding, and when left the road. A most careful examination of the road failed to give any explanation. The wheel mounted the was of iron, in very fair condition. There was no drop in the road, which was well ballasted. Measurement showed that the gauge was about $\frac{1}{8}$ in. tight. The van was empty. A ramp was extemporised, a tow rope attached to the pulled on the rails again in less than ten minutes, and safely lodged against the stop block. In the second case, a goods train, drawn by a six-coupled engine, ran with
steam off at a very slow pace through a junction. The line was gently curved and in beautiful order. The engine passed over a crossing all right, and ran about twenty yards along the main up line, when, without any preyards along the main up line, when, without any pre-
liminary notice or lurch, its leading wheels left the rails, and it ran for a couple of yards, bumping over the sleepers. Then the driving wheels left the rails, and the whole why the engine got off. Our own opinion formed at the
too great for the slow speed. The engine ran off inside. No one was hurt, nor was there any damage done, save a few leaves broken in one leading spring. It is obvious that in these cases none of the causes so fully described by our correspondents could have operated.
Many years ago Mr. D. K. Clark carried out numerous experiments on locomotives. He found that lateral oscillation could be almost wholly prevented by careful balancing. But there is reason to think that Mr. Clark drew certain deductions which are not strictly consonant balanced, and these he greatly improved by working on proper principles He may be said to have done all that proper principles. do; but he did not think enough of the cing constance that there are disturbing forces at work which no balancing can affect. He mentioned these forces inded but he does not appear to us to have forces, indeed, but he does we appeak-1856-sufficient importace to them. A great many engineers have worked at the problem since, and it is doubtful if anyworked at the problem since, and it is doubtru The best thing rether inside or outside cylinder, run with remarkable steadiness at any attainable speed, and a rough running engine is the result of speed ; and a rough running engine is the result of faulty design or bad workmanship. When ain has curiosities of locomotive practice which need clearing up. Some years ago, a number of tank engines with outside cylinders, all alike, were found to wear their flanges on one
side more than the other. They were employed in workside more than the other. They were employed in work-
ing passenger trains. The line is crooked enough, but the ing passenger trains. The it was assumed that the fault curves balance each other.
must lie in some way with the engines, which ran chimney must one trip, and foot-plate first on the return trip. They were run for a fortnight chimney first on the down trip of about fifteen miles. The wear of the tires was carefully taken by template. They were then turned round, and run bunker first on the down trip. At the end of a fortnight, it was found that the excessive wear had been words, it was not the engine, but the road which was to blame The cause was, so far we are aware, never cleared up. Everyone who has ridden much on a footplate knows the on straight roads some engines are liable to swing. The rough lateral jerk of an engine running at speed is rapidly changed to a smooth swinging motion to-and-fro across the rails, and the head of the engine will be seen to deviate right and left in a very alarming fashion. This swinging motion can be stopped by shutting off steam for two or three seconds. More frequently it is terminated by the engine entering a curve. This motion of which we speak has nothing in common with lurching, or pitching, or "boxing." It partakes in its nature of the swing of a pendulum, amplitude of the swing would go on inceasing until the engine climbed one rail or the other or burst the road. It is possible that derailments have been thus brought about, but it can scarcely be said in such a case that the cause was obscure. In almost every conceivalot be found in a moment fault is in the Thus, for example, a case of derailment presents itself. Nothing about the road is to be found wrong, save perhaps a joint a fraction of an inch too low. We come to look at the engine, and find a leading axle-box set fast in the horn plates, or one spring a couple of tons weaker than its fellow on the other side. We met with a case once in which a passenger engine,
single, with 16 in . cylinders, 22 in . stroke, ran off the road on its first trip. Very little harm was done, and it was put in regular work, and in a month it was off the road again without apparent cause. It was sent in for repairs, and it was then found that the horn plates would not square across the engine. The leading axle-box was nearly one quarters of an inch The cause of derailment was manifest in a moment
There are good engines and bad engines; engines so much out of order that they should not be permitted to run; but the badly made and badly kept engines are very derailment is so seldom due to the engine. It is to the road, as a rule, we must look for defects. At the same time, we must not forget that a badly running train may pull a tender, and with it the
tail will sometimes wag the dog.
street watering with sea water.
The consumption of water differs from that of most commodities, in that the demand is the greatest when
 and in sea-side towns there is a further increase in the consumption of water, inasmuch as the population is often doubled during the summer season by visitors, and this is precisely the class that uses the most water per head of the water thus consumed during the summer months only a small proportion is used for potable purposes, and it is only this small proportion which must be fresh. It will, therefore be seen at once what an enormous savin in water would be effected if sea water were used in all cases where fresh water is not absolutely indispensable and especially for such purposes as the flushing of sewers and the watering of streets. The advantages to be derived from sea water for such municipal purposes as the above have frequently struck engineers, and are set forth in a paper read by Mr. S. H. Terry before the Civil and Mechanical Engineers' Society. There have not been wanting schemes for supplying sea water even to inland towns, but hitherto it has been objected that sea water, though so abundant, was an expensive com modity to supply to towns, and it has even been asserted was any effect of sea water on the pavements, for instance now been exploded bencial. neers of our lares sea thor with sea water for street watering, and they have found
it answer beyond their expectations. They find that sea water not only does no injury to the pavement, but, on the contrary, has rather the effect of perserving it, inasmuch as it covers the metal with a thin fort of coating and binds down moisture, which forms a sort of coating and binds down the dust for a long period. Indeed, it is proved that sea water is whereas in cases where it has been found necessary to water the streets several times in the course of the day water the streets several times in the course of the day
when fresh water was used, one watering was found to when fresh water was used, one watering was
According to Bloxam's "Chemistry-Organic and Inorganic," sea water contains in every thousand parts $29^{\circ} 0$ parts of chloride of sodium, besides 0.5 of chloride of potas-
sium, 3.0 chloride of magnesium, 2.5 sulphate of magnesia, and $1 \cdot 5$ sulphate of lime, or rather more than $3 \frac{1}{2}$ per cent. of solid matter. A gallon of sea water contains about 2500 grains of saline matter, of which about 1890 grains are common salt-chloride of sodium-the remaining 610 grains being composed of the salts enumerated above, and
it is due to the deliquescent character of one of these salts -chloride of magnesium-that any material having once been moistened by sea water remains moist for a considerable period. But after storms there is also present in sea
water taken from near the shore-in the vicinity of weedwater taken from near the shore-in the vicinity of weed-
covered rocks-a considerable amount of organic matter from the destruction of sea-weed and the consequent
mixture of its glntinous sap with the water. It is
believed that it is to this glutinous material that the forbelieved that it is to this glutinous material that the for-
mation and endurance of the bubbles of sea scum, which mation and endurance of the bubbles of sea scum, which
occasionally in gales are driven some distance inland, is occasionally in gales are driven some distance inland, is
due. As, roughly speaking, about 80 lb . weight of various due. As, roughly speaking, about 801 lb . weight of various
salts are present in every water-cart containing 224 gallons salts are present in every water-cart containing 224 gatons which may or may not be injurious, is, in the course of a few weeks, spread over the streets of a town by the watercart. This fact had created a feeling that the use of sea Mr. E. Buckham, M. Inst. C.E., Borough Engineer of Ipswich, was so much impressed with it that he instituted inquiries on the subject, and requested information from water for watering the streets. The result of this inquiry water for watering the streets. The result of this inquiry
is of the greatest interest. Twenty-three of the engineers is of the greatest interest. Twenty-three of the engineers
written to replied that they were no longer using sea written to replied that they were no longer using sea
water, as they had no works for the purpose; twelve stated water, as they had no works for the purpose; twelve stated
that they were using sea water, some with suitable works and some by merely filling the carts by hand; and two and some by merely filling the carts
that they were about to have works.
The engineers of two towns-Ramsgate and Folkestone -spoke adversely of sea water, and stated that it destroyed all kinds of road material except wood. Some advised its use for sewer flushing if a sufficient volume was employed; others, again, were of opinion that sea water tended to produce gas when brought into contact with sewage, and should not be used for sewer flushing except in large
volumes. But it is probable that sea water only produces volumes. But it is probable that sea water only produces
objectionable effects in sewers when these are particularly objectionable effects in sewers when these are particularly
foul, and the influx of sea water stirs up the deromposing foul, and the influx of sea water stirs up the deromposing
matter deposited in them. With regard to the efficiency of sea water as a means of preventing dust on roads formed of flint, gravel, or granite, the testimony of those who have used it is almost entirely in its favour. Indeed, to say that all persons having control of street watering to say that all persons having control of street watering
should use sea water, where it can be had, for reasons of shound use sea water, where confort of the inhabitants. In his district he finds that one cart of sea water is equal to two carts of fresh water, and gives more lasting and to two carts of fresh water, and gives more lasting and
beneficial results. He states that the macadamised roads that are watered with salt water are a pleasure to drive upon in the summer season as compared with those watered with fresh water, and they never seem to have a loose stone upon them.
In answer to Mr. Buckham's question, whether sea water occasions any offensive decay of street refuse, and if
so, whether this is greater than that which would be occasioned by rain or fresh water, the pithy reply was: "No, when the scavenging of the towns is regularly attended to. Without enumerating all the favourable
answers that were received, it will suffice to state that answers that were received, it willowing important seaside resorts reported in favour of sea water--Portsmouth, Tynemouth, Great Grimsby, Great Yarmouth, Hastings, and Littlehampton. Hastings, which has a population of 42,258 , and a rateable value of $£ 309,219$, has erected very extensive works at the cost of $£ 9000$ for sea watering, which means a charge of about 3 d . per head of the population, or $\frac{1}{2} \mathrm{~d}$. on the rateable
value. Great Yarmouth, with a population of 46,159 , vande. Great Yarmouth, with a population of 46,159 , salt water supply for street watering at a cost of $£ 4500$. Here an 8 -horse power Otto Crossley gas engine has been
erected, with a 12 in . pump, engine-house, tower, and erected, with a 121 in . pump, engie-house, tower, and
tank, containing 22,000 gallons, settling tank, and suction pipe, fixed to the jetty. There are about 9000 yards of main, ranging from 8ft. to 3in. cast iron socketted pipes, lead jointed, forty stand posts, twelve automatic
flushing syphons-Field's-each connected to tanks holding 2000 gallons of sewer flushing. The total expenses, including interest and capital, repayment of loan in twenty years, depreciation of wages, gas, oil, \&c., are
under $£ 500$ per annum. For this amount some $30,000,000$ gallons are raised 44ft., at a cost of 4 d . per 1000 gallons. Of this volume about $5,000,000$ gallons are used for
street watering and $25,000,000$ gallons for sewer flushing street watering and $25,000,000$ gallons for sewer flushing. street watering alone was $£ 404$, on an average of each £552. To keep the automatic trucks of the size mentioned properly going the cost would have been $£ 700$ per annum.
The charge for water at Yarmouth was at that time 1 s The charge for water at Yarmouth was at that time 1 s
per 1000 gallons. The cost of watering for street per 1000 gallons. The cost of watering for street
watering and sewer flushing, including all items men-
tioned above, is less than 3d, per head per annum, tioned above, is less than 3d. per head per annum, and
something under 1d. in the pound. At Gosport a simil
something under experiment has been made, with highly satisfactory
experiment has been made, with highly satisfactory
results. These facts speak eloquently for themselves,
require no further comment. In some cases, however, the water companies offer a very strenuous opposition to the introduction of sea water, and Mr. Terry instanced
the case of Kirkhallerton, near Redcar, on the Yorkshire coast, where a very neat scheme was got out for the supply of sea water for street watering, and it was also intended to supply sea water for bathers to the houses, and but for this intention the scheme would probably
have been carried. The law, however, with that far have been carricd. The law, however, with that far here stepped in, and showed that, inasmuch as the district here stepped in, and showed that, inasmuch as the district
was within the limits of supply of the Stockton and Middlesbrough Waterworks, a loan for such works of proposed supply would be illegal. The logic of this kind of argument will strike everyone when it is pointed out that the water company only proposes to supply fresh
water. It seems rather a bad chain of reasoning which water. Tt seems rather a bad chain of reasoning which have sea water because a company has a monopoly of supplying fresh. It amounts almost to saying that because people have milk they shall not have beer. But,
nevertheless, the law had its way. Here we are brought face to face with the impotence of the Local Government Board, on which we have had occasion to comment in the columns of The Engineer on more than one occasion The discull which followed Mr. Terry's paper wa Houghton, Cockrill, Matthew Hall, Elford, and NewR. E Mion R. E. Middleton, the chairman, pointed out, it was much to be relle obectors to the use of sea water for street watering had not come
forward. Their silence, however, gives all the more éclat to its merits.
From the very brief and rapid survey that we have given of the main arguments in favour of sea water it winl be seen that its employment for the watering
of streets at any rate is a perfectly practicable idea, and of streets at any rate is a perfectly practicable idea, and
one that can be adopted with economy and success. It one that can be adopted with economy and success. It
remains, however, to be seen whether it could be introduced into inland towns as well. If this could be effected at no unreasonable cost, a very great saving of fresh water would be the result, and a great service to
the community would consequently be rendered. For the community would consequently be rendered. For,
apart altogether from the great scarcity of water which is now vexing the minds of our municipal engineers, the increasing size of our towns makes an adequate supply of water annually a question of greater and greater diffi of the scientific spirit of the age cleanlmess may be said to be advancing at quite an alarming ratio, and that the demands made on our water supply for municipal purposes are growing almost daily. In London, indeed, this is felt very appreciably, and it would be interesting
to see an experiment tried on a large scale of flushing our enormous sewers and watering our interminable streets with sea water. For this purpose London is more favourably situated than any other capital in Europe almost, Constantinople and Lisbon perhaps alone excepted. must be done, and that speedily; and Mr. Terry's paper may therefore be received as containing what-at least appears to be-a very practical suggestion, and know, the first attempt to bring together in an accessible form all the pros and cons, and experience and practice, connected with the subject. The moderate cost of the the proposal very easily within reach of realisation.

the northern coal trade.

The difference in the position of the two branches of the northern coal trade is exemplified just now. In Northumberbut in Durham the sliding scale arrangement is at an end, and no systematic method of determining the method of adjusting
wages has been agreed upon, so that labour difficulties are imminent. The middle of the year, and up to the end o autumn is, however, with the Durham coal trade a period o
low demand, whilst in Northumberland, owing to the largeness of the exports, it is the period of the briskest sale. Northum-
low brian steam coals are mostly in demand for export, but in
Durham there is a large production of both Durbam there is a large production of both gas and house
hold coal, which find their period of fullest consumption in the wintry days. This year the demand for steam coal has shown a sharp increase-attributable in part to
the growth of the steamship, and to the fact that all our steamships now are finding full employment, and are, of tion of the merchant navy was idle. This change of the
ther mercantile navy from sail to steam is one of the factors which affect the coal trade to a very considerable extent. For instance,
in the last month officially reported on, we increased our steamers registered in the United Kingdom by thirty-two-an increase that must have its effect on the consumption of coals. vessel time to time the number and the tonnage of the sailing our shipping rapidly from wind-impelled to steam-impelled -in short to coal consumers. We do not see the exact bought at our own ports, a large part being sent to other countries and to coaling stations, so that it figures in the
exports of coal, though in reality it is merely shipped for a
largely British, which take their supplies there. Notherthum berrand sends out a not inconsiderable proportion of that steam coal, and thus it is benefitting by the increased prosperity of the
shipping trade. On the other hand, Durham has decidedly
bepfite beneatted by that advance in the iron trade's prosperity which
has allowed the increase in the price of coke to be marked it is also benefitting by the higher prices now paid for the gas coal it produces in such quantities. But the contracts are, on
the whole, longer in Durham than in the county, so that the coalowners are a little later in reaping the benefit, and this is in great degree the cause of the
uncertainty that has prevailed as to the wages question in the more southern section of the coal trade of the
Forth. The Northumberland coal contracts are more geneTorth. The Northumberland coal contracts are more gene-
rally for the shipping season, whilst in the case of the
gas coal of Durham there are contracts that are made for one or two years at a time. There is a benefit in a falling hand, there these long arrangements of sale, but, on ane other the present, to advance still more in the course of a few months. The issue of the difficulty in Durham has anxiety, because that county is the largest of the coal-producing the North is dependent on it.
machine mining in illinois.
The reports of the Inspectors of Mines for the five districts of the State of Illinois give special prominence to the subject of machine mining, a and some of there are reported to be the
of interest. In the State named there comparatively large number of 272 mining machines at work; and they, with 3088 men, produced $2,243,210$ "tons of lump the "-the ton being the American net ton. In a few instances in "driving;" but, deducting these it experimental a summary that 251 machines, operated by 2915 men, produced on the average 8795 tons of coal per machine -though the output varies considerably in the different districts of the State, accord-
ing to the thickness of the coal. The reports of the inspectors ing to the thickness of the coal. The reports of the inspectors speak at some length of the advantages of the system of coal-
getting by the machines, most of which are of the Harrison type. The machines give a greater subdivision of labour, and it is claimed that, generally speaking, the use of machines leads to reater skill on the part of the men who operate them, or who he users of the explosives, the blasters, and others expert in their work, lightens the hardest of the labour, and increases the output of the coal. Elaborate statistics are given of some thirty-nine mines in which machines of one kind or other are at work, of the classes of men employed in connection with them, and of the wages earned on the average by many of
them. The mean of the whole may be given thus:-The daily wages of the cutters is 2.33 dols.; that of the
helpers is 1.70 dols.; the blasters earn on the average 2.07 dols. per day; and the loaders, 1.79 dols. The "timberers" earn 2.02 dols. daily, and the labourers 1.43 dols. In one or two
mines there is a little variation between the summer and winter prices ; but this general average must be looked upon as a satisthe companions of the machines. If the yield of the machines is a large one, it is to be remembered that the first cost of supplying the machines for a mine is heavy, and that the wages has a larger proportion of lump, and also the use of a smaller quantity of powder for the blasting of a given quantity of coal. These are no small advantages; and the largeness of the number of three kinds of machines would seem to point to the belief
that they are proved to exist. Several of the Inspecters that they are proved to exist. Several of the Inspectors of Mines acknowledge that there are advantages which more than also be admitted. It is a rather singular fact that in this disalso be admitted. It is a rather singular fact that in this disof America-we should find so frequent a use of machinery in the coal mines, whilst with us it is so rare comparatively. As it is, however, the facts officially stated by the Inspectors of Mines give authenticity to what must be looked on as an interesting feature in the production of minerals. There may be United States which are not stated, and which foster the use we have named, but the fact in itself is one that is worth referring
to here. to here.

our united states trade in plates,

Welsh and English makers of tin-plates have long been accustomed to announcements that preparations were being
made in the United States for the manufacture of tin-plates made in the United states for the manufacture of tin-plates
there on a scale large enough to render the importation of the
British-made turer knows, there are considerable obstacles in the way of the realisation of this idea, and these hitherto have not been found surmountable. A fresh attempt, however, is now being made
which calls for notice. It is a project to lay down an experimental tin-plate plant at Pittsburg, at a cost of about $£ 1000$, to demonstrate that the tin-plates can be made with
American materials. The next step would, of course, be to try again for an American tin-plate import duty-the agitation for which is, in fact, a resumption. The plant
is proposed to be shown in working order at the forthcoming Exhibition of the Pittsburg Exhibition Society. It are of interest. Why, it is urged, should America send
$20,000,000$ dols. a year $20,000,000$ dols. a year abroad for tin-plates which might give
employment to 100,000 hands? It appears that in 1888 there were imported into the United States-mainly from Wales and
England-over 333,615 tons of tin-plate. This, it is estimated, meant 900,000 tons of ore, 500,000 tons of coke, for furnace use,
450,000 tons of pig iron, $1,250,000$ tons of coal or other fuel in the sheet or tin mills, and about $3,000,000$ dols. of earnings. Naturally, American importers would like to save all this, if they could only get an import duty to protect them. A fund towards the plant has been opened at the office of the American Manu-
facturer, Pittsburg, and American iron and steel firms are subscribing to it. We do not think the desired import duty will be gained for some time to come. Similar attempts have
been made in the past. At the same time, the matter is worth keeping an eye upon, for our tin-plate exports to the United States are growing. In $1873,2,153,477$ boxes of tin-plate
were exported from Grat Britain to all countries; in 1879, were exported from Great Britain to all countries; in 1879,
$3,534,169$ boxes ; and last year, $6,953,128$. America absorbs every year the giant's share of our tin-plate shipments, and it
is to the increase in the American custom that those satisfactory enlargements are mainly due.
engine for electric lighting installations. ONE of the most important considerations in establishing an
electric lighting plant is the choice of a good motor. This is a matter of special importance in the installation of the large
central stations which it central stations which it is at present the custom to establish
for the lighting of large towns. It is no longer customary to for the lighting of large towns. It is no longer customary to
multiply the number of engines; on the contrary, one must have recourse to large and more important and more perfect motors ;
economy of combustible, the cost of the ground, \&c., are expenses economy of combustible, the cost of the ground, \&c., are expenses
which it is absolutely essential should be taken account of. More
over, over, high speed engines have alwayss be ten rise to unpleasant sur-
prises in installations of this kind, in which the engine like horse, must, once set in motion, run uninterruptedly until its work is done. It is for these reasons that we now see all those who have
the most experience in these matters作
those interested in this branch of engineering to seek out the best builders they can find in the various countries. Thus we
now see the firm of Hick, Hargreaves, and Co., entrusted with the building of the cogines for the important central station at Deptiord, and another firm of whom we had occasion to speak
some time ago in our journal-vide The ExaIngre, vol. 1x.,
pages $341-319-$. pages 341-349-P. Van den Kerchove, favoured with important orders for the city of Berlin, which is the highest eulogy these
firms could receive. Seeing the importance of these installa-
tions, we tions, we are happy to say that we have obtained particulars of these engines, and hope soon to be able to publish a description
and illustration of the second of them.

LITERATURE.

Practical Gold Mining. By G. C. Warnvord Lock. 8vo., pp. 778. "Want of success in working a gold mine is generally due to one cause, viz, ignorance how to extract the gold;
and to convey information that will help to dissipate that and to convey information that will help to dissipate that
ignorance this volume bas been written. The superficial ignorance this rolume has been written. The superficial
reader will probably gee in this book a family likeness to reader will probably see in this book a family likeness to
its predecessor, 'Gold, its Occurrence and Extraction,'
produced by the present author and his father in produced by the present author and his father in 1882, and now out of print." The above extract from the
preface explains the relation of the present work to the preface explains the relation of the present work to the
laborious compilation of the late Mr. A. G. Lock, published in 1882, and of which Mr. G. C. W. Lock claims to be co author, although in the preface to the earlier volume he is credited with having edited and seen the work
through the press, no doubt a most essential service, but through the press, no doubt a most essential service, but
scarcely sufficient to constitute authorship as it is usually scarceey sufticient to constitute authorship as it is usually
understood. However this may be, the new book is subunderstood. However this may be, the new book is sub-
stantially the old one limited and reduced. By the
omission of omission of the chapter on geographical distribution,
covering 745 pages, space has been found for considerable covering 745 pages, space has been found for considerable
additions to the sections devoted to working and reduction additions to the sections devoted to working and reduction
processes, so that as a final result 1229 pages are brought
down to the more manageable quantity of 778 . The book down to the more manageable quantity of 778. The book the Transactions of the American Institute of Mining Engineers, the reports of King Hague, Raymond, and been largely laid under contribution. Unfortunately, however, the plan of composition dispenses with references whether information said to be new, is so or not. In one case a machine, by an inventor who has been dead for eferring to the earlier volume, we find that the but on introduction was in 1882, and we are left without information whether anybody has used the machine, and with what result, during the intermediate years. The system of arrangement adopted is alphabetical, which gives rent in the chapter on complete mills and reduction works, where the descriptions jump about from the A mine in California to the B in Australia, the C in Colorado or New Zealand, and so on, the diversity being heightened by interpolating woodcuts of stamp batteries and other machines, also in the order of the makers' names. A mong these latter we find at p. 530 a cut of six drum sieves in cascade series, given among methods for the treatment of quartz mill
tailings, for which purpose they would be about as useful as rabbit netting would be for whitebait fishing. Very little care has been taken in correcting quoted statements
when the originals are manifestly wrong, and American when the originals are manifestly wrong, and American blunders in spelling common European names are reproduced in a very annoying fashion. The Boss process of continuous pan amalgamation is said to have been intro-
duced in 1887, whereas it certainly was in use on a considerable scale in 1881, and most likely was well known at an earlier date. The Linkenbach buddle is figured
and described at some length, but the inventor's name is and described at some length, but the inventor's name is
not mentioned. It is not easy to see a reason for this omission, as the machine is perfectly well known, and has been described by the inventor and several other persons, In contrast with this reticence we are presented in supplemental chapter with a somewhat erusive notice of two machines and a stone-breaker which comprise process ${ }^{\circ}$. which cannot be described in detail, as the whole of the patents are not fully secured; but the advantages over every other process, in the inventor's opinion, are set
forth at length, as they also are, in a more concise style, but forth at length, as they also are, in a more concise style, but
in posting bill form, on the page fronting the preface. As in masting of literary propriety, these notices would have ound a more fitting place in the advertising pages at the nd of the book. There is a tolerably volummous index, which, however, is a somewhat delusive guide as to the actual contents. For example, not having noticed the
Stetefeld furnace in turning over the pages, we consulted Stetefeld furnace in turning over the pages, we consuited
the index, and found three references which yielded the the index, and found three references which yielded trans-
following results :-Page 598, "It is more easily then ported, but more expensive to build than a reverberatory probably work well with a large supply of ore;" and finally, page 639, "It reduces loss of gold to a minimum by instantaneous roasting. These items, though, no doubt, interesting, wir scarcely satisfy anyone wishing to details of a not unimportant appliance in the extraction of gold, and which might fairly have been looked for in a practical treatise of 778 pages. Taken as a whole, we fear to extract the gold is not likely to be very effective, owing to the uncritical way in which he has used his materials.

4 Course of Instruction in Machine Drawing and Design, for Technicol Schools and Enginecr Students. By Wilu
Sheffield: Published by the Author. 1889. 4to.
Numerous as are the books for instruction in machine drawing and design, we do not know of one which, pre
ceding this, has anticipated it. The system upon which ceding this, has anticipated it. The system upon which
the author proceeds is to imitate the sequence of opera the author proceeds is to imitate the sequence of opera-
tions which would be followed by a competent draughts
man in his work in the drawing-office. With a given subject to be dealt with, the type of design for the article dimensions and strength are made, and the design finished accordingly. The examples chosen are all of the actua working drawing type representing modern practice, so alc the student learns, not only the application of usual calculations in designing, but a knowledge of the proper made in practice. He learns nothing that will have to be unlearned. The set of exercises on the steam engine, for instance, is arranged so as to encourage the student to make working drawings of details to as large a scale as possible, and afterwards, from their own drawings, to build up and complete the general drawing. This system Mr. Ripper, who is the assistant professor of mechanical engineering in the Technical School, Sheffield, found to work very successfully, the students becoming really interested in what is very like making parts and putting together a real thing. The same system is followed out with the lathe. The student is led to make those calcula tions which are necessary to enable him to do the thin in hand; he learns to make a calculation for its immediat practical application, and to find out the reasons for things nstead of merely drawing things from a copy. Drawing is thus made a really valuable training. The book is illustrated with a large number of excellent plates, but besides these a large number of explanatory sketches are given in the text. Besides the subjects we have mentioned, there are many others, including instructions in drawing, drawing instruments, sketching, \&c., calculations of stress
and strain, strength of materials, as far as necessary to the and strain, strength of materials, as far as necessary to the are given of the methods of setting out spur, bevel, helical, and other kinds of gearing, propellers, \&c. The plates are well drawn, some are coloured, and the whole of the
work of the book does credit to author and printer. We can strongly recommend it.

The Chemical Analysis of Iron. By Andrbw Alexander Blarr 8vo., pp. 282., London: Whittaker and Co. Philadelphia
J. B. Lippinct, pincott. 1888.
The multiplication of special analytical processes and methods for the examination of iron and steel and the rise to a very voluminous literature, production, has give part is scattered through the journals of societies and other periodical publications; and although these hav been reproduced in systematic form by different writers as, for instance, in the successive editions of Mr. Crookes "Select Methods in Analysis," the want of a really good modern book of a reasonable size confined to the details of iron analysis must have been felt by many chemists. This want is likely to be very fully supplied by the present volume, which is the work of a distinguished American specialist, the author having acted as chief chemist to the United States Testing Board for
 1880 . To the Census Board, and Geological Survey in laboratories are clearly described, and what is of mor importance, the precautions necessary in manipulation are very fully treated. Several new processes, includias on for rapid determination of silicon in pig iron, by Mr. A Ford, are especially noticeable. The methods of examining fluxes, fuel, firebricks, furnace and producer-gases
are also fully described. The illustrations are especially are also fully described. The illustrations are especially good as representing the best modern appliances. These we believe, are those that were used in the investigation of American iron ores made for the Tenth Census of the United States; and although in many instances they may be beyond the means of private laboratories, still are use ful as indicating a standard to be worked up to. There are many interesting nowie be the apparatus described, particularly in those for pulverising nunerals, and for fil tering under pressure on asbestos, and in the deternination of carbon by combustion. A new form or burette, by Mr 1. H. Garret, of Philadelphia, appears to be a very considerable advance upon that by hrr, which is generally endeavoured to give the credit of originality to the proper person, but, as he points out, this is not always easy to do, and therefore he hopes that he may be assisted by hi reats in correcting any mitakes the may have mad in this particular.

BOOKS RECEIVED.

The Handy Book of the Law of Joint Stock Companies under the Companies Acts, 1862 to to 18866 , with Divirections for Forming a Com
pany. By Jas. Walter Smith, LL.D. Nineteonth thousand. New and revised edition. London: Effingham, Wilson, and Co. 1889.
Gascous Fuel, Gasoous Fuel, ncluding Water-gas; its Production and Applical
tion, lecture dolivered an tho Association Hall, Poter-streot,
Manchester, on March 29th, 1889. By B. H. Thwaite, C.E. Manchestor, on March 29th, 1889.
London: Whittaker and Co. 1889.

Hydraulic Motors, Turbines and Prasure Engines, for the Use of Enginerers ANanyfacturro, and Students. By G. R. Bodmer With Enginecers, Manyfacturers, A.M. Inst. C.E. Wit Whittaker and Co. 1889.

The Practial Manage's Slide Rule Companion; being a Treatise
on the Enginar's Slide Rule, adapted to Mill and Factory Calculations, de. By Josept Howell, Dundoe. Second edition, revise
and enlarged. London: Simpkin, Marshall, and Co. Construsione ed Escerciinin delle Strade Forate e delle Tramire
Vol, v., Part IL., Nos 26 (Fonderia delle ghisa e del brono)
and 27 (Considerazioni generale sulle Forroiro seocondario and
econonnche). 1889. Unione Tipografico-editrice, Torinese, 33 , Via ocononnche).
Carlo Alberto.
Ministero di Agricoltura industria e commercio- Diresione egenerale
dell agricultura. Annali di A gricultura, 1889. Revista del Servizio dell' agricultura. Annali di A gricultura, 1889. Revista del Sor
Minerario nol 1887 . Firenzo tipo rrafa di G. Barbera. 1889.
 Soventh edition, thoroughly revised by W. J. Millar, C.E.; with
Sevent oden
Electical Engineoring TTables, Tests, and Formule for the use of
Encineers, by Androw Jamieson, M. Inst. C.E. London: Charles
Griffin and Co. 1889.
Theorctisch.-.-raltischess Handluch der Gas-Installation. Von D.
Cogliovina. Vienna: A. Hartleben.

THE PARIS EXHIBITION. - MISCELLANEOUS EXHIBITS
Quitrino the Machinery Hall for awhile, and making tour of some of the "galeries" devoted to the various industries of different nationalities, we find examples of processes and products of manufacture worthy of some attention. In the court devoted to glasswork on the eastern side of the Central Dome, we find some sheets of plain and silvered plate glass of extraordinary dimensions. The glassworks of St. Gobain have placed vertically in this court a sheet of plate glass no less than 25 ft . high and 13 ft . 5 in . wide. The weight of this plate is given as 938 kilos., or 2060 lb . The area of the plate is given as $31 \cdot 28$ square metres, or it is 336 square feet; the weight per square foot is thus 6.13 lb .; the thickuess of the glass is given as 012 m . To the left of this are three huge mirrors placed vertically side by side so as to form balf of a room. These are all approximately the same size, the largest being 19 ft . high by 11 ft . 11 in . wide, which is the largest size ever silvered. These latter de manufacture of the Compaguie Française de ha Chapelle, who have works at Aniche, Recquignies, over Jeumont, in the north. Sheets of plate glass variety thek for aquariums, cc., are shown, and skylights. In this court thick block glass for tubes, ranging from the boiler gauge glass type up to the enormous size of 5 in . diameter and 18 ft . long. Passing from this court through the Japanese section, which is replete with manufactures of great merit, we enter the
Russian Court.
Here, as one would naturally expect, furs predominate, a fine show being made by the Grunwaldt house of every possible application to which bruin's skin can be put. Not the least profitable and interesting of Russia's industries are her mines. These are well represented in this section by specimens of raw material, models, photographs
and plans of the mines and machinery. We notice first of and plans of the mines and machinery. We notice irst of
all a large artistic trophy built of blocks of anthracite all a large artistic trophy built of blocks of anthracite
from the Koschkine mines of Rostov-on-the-Don. Some 345,000 tons of this fuel have been brought to the surface from an average depth of nearly 50oft. during the eight from an average depth of nearly 500ft. during the eight
years the mines have been worked. As no smoke is evolved in the combustion of this substance, it is eminently suitable for war ships, and is already in exclusive use as fuel in the vessels of the Black Sea flotilla and the Central Russian Railways, An analysis by Professor Tchirikoff shows small percentages of oxygen, nitrogen, hydrogen
and sulphur, and 93 per cent. of carbon, its calorific and sulphur, and 93 per
property being cited as 7.9
Further on, the Auerbach mercury mines show specimens of the ore obtained from their mines at Bakmoutb Central Russia, with photographs of the mines and the transport of mercury to the market. It appears that the annual production of mercury from these mines is now 358 tons, the yield being 150 lb . per ton of mineral. The seam of cinnabar was discovered in a coal formation in the year 1879 by Mons. Minenkoff, but the mine has only been in operation for three years. The ore, which is furnaces, mercury vapour thence passing over to the condensers. The copper mines of Verchotor are also represented by a vieces interesting display of ore specimens and samples of pieces of finished copper which have been subjected to property of Colonel W. Paschkoff, and are situated near the river Belaia on the Ural range. The new central Laboratory of Electricity, lately started in Paris, has apparently been at work here, for we notice a conductivity certificate made out as recently as the 25th of June last, on a sample of wire drawn from copper from these mines. The results of the tests are worth noting. 3128 wire was 083 millietre diameter therefore per kilometre at 25 deg. Cento as compared with Matthiesen's results. The annual production of these mines is about 240 tons. In the same section we find an extensive exhibit of the Metallurgical Company of Central Russia, who have large works at Kamenskoie, aulphexibit ores containing iron, aluminium, silicium, clay of phosphorus, ©c. A system of manufacture from section. The system is the invention of Paul de Kristof orovitch, and comes in chiefly for use in paving
streets, the cost being about one-tenth that of natural granit, The bong about one brh ceptible of a high polish, and the substance itself, which the inventor terms "pyrogranite," possesses the
property of impermeability, and greater mechanical resistance than natural granite. Blocks used for pavin are about 4 in . thick, a square yard being laid with fifty or sixty bricks on a 2in. sand bed, and costing about one franc. Any form can be given to the raw material, the
inventor having also used the process in the manufacture of containing vessels for electrical storage batteries.
Leaving this section, we enter a wide court, which gives access to the Norwegian, United States, and Swiss
sections. Exhibited in this court are some very choice pieces of work in enamelled ware, and in stones and crystals. From the mines worked by M. Alibert in Siberia, are shown specimens of a beautifully-grained
green stone, called "Nephoite," which lends itself to the manufacture of various articles of vertu. Blocks the product of these mines. A notice is put up that specimens of these minerals will be given to those who apply in writing to M . Alibert, in French, the same being年ivered to applicants between the 15th and 31st of October, in the Vestibule des Sections Etrangeres Cote
Suffren, on presentation of the acknowledgment to their Suffren, on presentat
letter of application.
Passing now through to the Galérie Desaix, which contains an extensive exhibit of musical instruments, we find
a very good demonstration of the working of organs
electrically. The two large organs installed at either end of this spacious hall are controlled from a three-manual key-board and set of pedals placed in the centre of the hall on the ground floor, of Messrs. Schmoele and Mols, who use compressed air in conjunction with electrical action. Messrs. Merklin and Co., organ architects and builders in Paris, to whom is due the demonstration of the system in the Exhibition have already introduced it into a number of churches and cathedrals on the Continent. From the keyboard one or other of the organs can be controlled, and judging from the recital which we heard in the evening, the effect produced are very pleasing. We say in the evening ad visedly, this being the time when well-conducted recitals are given, in contradistinction to the earlier part of the day, when instruments are being tuned up and muscular musical machines of the "World's-fair" type are in full blast.

The western end of this hall contains some exceptiona exhibits of various kinds, chiefly Russian. For instance we come across an electrical measuring instrument o portable dimension, which is called an avometre, that is The one instrument measures ampères, volts, and ohms, in the Russing the invention of is. explanation of it action. Adjoining this is a so-called constant primary battery, invented by Mons. T. Kornfeld, Electrical Engineer of Odessa, and introduced into France by the SociétéCentrale de Produits Chimique. The main idea seems to be totak up as little space as possible. To effect this each element is composed of a zinc plate immersed in a narrow rectan gular vessel of carbon constituting the other electrode No porous partition appears to be used to prevent polariplates have lugs at either end, which are screwed to wooden frame capable of being raised and lowered, while the carbon cells have emptying tubes fitted to them, running into one main horizontal pipe. Some figures are given with reference to the performance of the battery It consists of forty cells occupying only 2 ft . by 1 ft . 8in. the zincs weighing 220 lb ., with an active surface of 32 square feet. The total energy of the battery is said to be 1000 watts, of which 750 are available, and the expense of maintenance is said to be proportional only to the energy utilised. When we inspected the battery only half of it was there; probably its better half.
Close to it is a case of integraphs, the design of these interesting pieces of apparatus being due to Mr. AbdankAbakanowicz, and their construction to G. Conradi, of Zurich. A Warsaw firm, by name Rejchman, also has an exhibit of magneto call and bell apparatus, and the continuous current Kechniewski dynamos for which they are the concessionaires,
The continuation of the Decauville narrow gauge to the Machinery Hall, places that end of the Exhibition within only fifteen minutes of the most remote end in the Place des Invalides, including stoppages. This is the time occupied in transi, and does not include the time spent in getting past the ticket office. If this latter time was plotted as a function of the hours of the day there would be little or no rise before noon on week days, but a maximum in the afternoon between four and seven. It is just as well to avoid the "peak," and make the tour early, if the visitor wishes to closely inspect apparatus. In the Place des Invalides there is a building specially devoted to posts and telegraphs, in which are assembled a most varied and interesting display of telegraph instruments and appliances. Here are the Hughes and Baudot type printing telegraphs in operation, the Wheatstone automatic transmitter, and numberless forms of transmitting and receiving in-
struments.
The recent invention of M. J. Munier, struments. The recent invention of M. J. Munier,
by means of which he works "multiplex" with Hughes by means of which he works "multiplex" with Hughees
type printing instruments, is especially worthy of note The system is as yet quite new, the instruments here exhibited being the identical ones used between Paris and Dijon. Only two currents in opposite directions are used, instead of tive as in the Baudot system, the method being to utilise these currents for each transmitter, and its corresponding receiver at the distant end for a given interval of time. To demonstrate the system four instru ments are connected at one end and four at the other, in series with one another, although the same principle could be applied to a greater number. Professor Hugbes himself saw this new adaptation of his ingenious instruments $o f$ me portion of the Exiration at its performance. $\underset{N}{ }$ amiration at its performance
Nothing can be more original than the bamboo cane combined posts and insulators used in Annam and Tonkin Nothing is simpler than to cutaniche in the top of the post,
drop the wire in, and follow it up with a peg or wedge. The cane being hollow, and possibly its natural properties, cane being hollow, and possibly
probably keep up a containing samples of a system of compound aürial telephone or telegraph conductors is shown by A. Fortin Herrmann, near the entrance. The bare wires appear to be kept separate by wooden beads slipped over them, the same being kept closely in contact by fixtures at the ends.
and separated.

Naval Enginerr appointwents.-The following appointments have been made at the Admiralty: Froderick Λ. Hillyer, engineer,
to the Firebrand ; Frederick TT. W. Curtis, engineor, to the Pre sident, additional, for service at Woolwich: Samuel Aston engineer, to the Hero, all to date July 19th. Prancis H. Lister, ongineer, to the Hero, all to date July 19th. Francis H . Lister
assistant ongineer, to the President, additional, for service in Comptroller's Department.
The Gold Miniva Exhibition. - In consequence of certain unfortunate circumstances in connection with the Alexandra Palaco, a meeting of the Exbibitors at the forthcoming Gold Mining Exhibition was held at the Cannon-street Hotel, E.C., on Wednosday. A resolution was proposed to the effect that owing to the position
of the Aloxandra Palace Co, the site for the Gold Mining Exhibition should be removed from the Palace to the Spanish Exhibition at Earl's Court. This motion was carried unanimously.

HORIZONTAL BORING, DRILLING, AND SURFACING MACHINE.
the britannia company; colchester, engineers.

HORIZONTAL BORING, DRILLING, AND SURFACING MACHINE.
The machine which we illustrate is constructed with powerfully geared boring heads, having steel spindles, driven by strong spur and mitre gearing, with variable feed, self-acting in mounted on upright heavy and for surfacing; the heads are a vertical adjustment by a screw and hand-wheel and a traverse adjustment by rack and pinion. The upright bar rests are made with socket heads to carry the boring bar and bushes, one tically by screws and hand-wheels. The driving cone pulleys

the excavation was first taken out to within 10 ft . of the bottom Trenches were then dug out for the walls, which are all built up to the water level, and on the north wall the fender course now on, $\begin{aligned} & \text { out as shown in the illustration }\end{aligned}$
The main dock cutting, at present 2000 ft . long by 250 ft . wide but which will eventually be 6000ft. by 300 ft , widening out int three branches, is shown in our illustration No. 2. In the fore ground the excavation is seen to the finished bottom, and the dock wall is now being built, where an excavator is shown at work on the left of the view.
Illustration No. 3 is from a photograph of the middle branch of the Salford docks, and this is 1200 ft . long by 225 ft . wide Here the excavation was taken out to within 4 ft . of the bottom
and trenches were then dur for and trenches were then dug for
the walls, which have now been built up to the water level for the greater part of the length. The method of building the dock walls is very clearly shown in this illustration. Uprights 11 ft . by 4 in . are fixed in the exac line of the dock walls to be erected, and battens and shut kers t . slide between these uprights,
following the work as it is built upwards, the inside face of the shutters being coated with sof soap, so that they leave a smooth face on the concrete surface of the wall. This branch is also now being bottomed up.
Our illustration
Our illustration No. 4 shows one of the numerous types of
have four speeds, and double gearing is fitted, giving eight
 The machine illustrated above has steel spindles 3 tin diameter and is capable of boring holes up to 24 in . diameter by 42 in . long and has a double set of boring heads and bar rests, the foundation plate being 12 ft . by 5 ft . The total weight is about $7 \frac{1}{2}$ tons but the machines are made of all sizes to suit purchasers

THE PROGRESS OF THE MANCHESTER SHIP
CANAL.-THE MANCHESTER DOCKS SECTION. CANAL,-THE MANCHESTER DOCKS SECTION.
Thrre is probably no portion of the Manchester Ship Canal on which greater progress has been made since the work was com-
menced than in the No. 9 section, or what is known as the dock mencen at Manchesto. section, or what is known as the dock tions, page 93 , from photographs taken in May last, showing the state of the works on that date in several branches of the Salford docks, together with one of the new types of steam excavators which has done very excellent work in the main cutting leading out of the docks. The docks section includes 110 acres of docks five miles of quay wall with two locks-one 600 ft . by 65 ft ., and the other 3501t. by 45tt--having intermediate gates, a weir of tour openings, each 3oft. wide, and the requisite approaches.
The contractors' agent on this section is Mr. L. P. Knott ; the sub-agent, Mr. J. H. Dutton ; and the engineer, Mr. A. H. 0 whes; whilst Mr. J. Kyle is the compa and Mr. J. Dean, the chief assistan. About 1900 men are yards of excavation, 450,000 cubic yards of concrete and 30,000 cubic yards of masonry and brickwork. Of this, 1,700,000 cubic yards of excavation had been completed on the date the photographs were taken, and the work is progressing at the rate of
180,000 cubic yards per month. Of the concrete work, 80,000 cubic yards had been completed, and this is progressing at the rate of 17,000 cubic yards per month, whilst some 5000 cubic yards of masonry have been erected, chiefly, however, in
boundary walls on the De Trafford estate, which abuts on to the boundary walls on the De Trafford estate, which abuts on to the
docks section. Mr. Knott, the contractors' resident agent, we docks section. Mr. Knott, the contractors' resident agent, we
may add, has also charge of the No. 8 section, where 1100 men are employed, and which includes $3 \frac{1}{2}$ miles of canal with locks swing aqueduct, swing road bridge, and two hydraulic lifte at has made further progress.
Our illustration No. 1 is taken from a photograph of the
north branch of the Salford dat wide, and this is the most advanced portion of the works. Here
excavators which are being em Ship Canal works. This is termed a Frenech partions of the Buette's patent-and it was manufactured by J. Boulet and Co of Paris. This machine, which cuts 18 ft . deep, fills 700 wagon per day of ten hours, each wagon holding four cubic yards of earth, and under favourable conditions would excavate and load up as much as 3500 cubic yards in ten hours. There are on the ladder twenty four bucketa of about nine cubic feet capacity each these empty into a shoot at the back as they turn over the top tumbler, and there is a plough-shaped tool which loosens the earth in the bucket. The machine weighs about seventy tons and travels on three 80 lb . rails, the gauge of the outside pair of rails being 6 ft . 7 in ., the middle rail making a 4 ft . 8 f i . gauge with that furthest from the cutting, and these two rail answer for the road and for getting water and coals to the machine
Amongst other excavating plant employed on the Salfor docks section are three of Ruston and Proctor's well-known
steam navvies and three of Whitaker's excavators. In the adjoining Manchester docks, of which we propose giving illustrations in a subsequent notice, the work is being carried out on an entirely different system to that which has been adopted in the Salford docks. In the Manchester docks a trench is being taken down from the surface-all on rock-as there is not con venience for getting machines down for excavating, and the dock walls are being built to the water level in these trenches after which the dock excavations will be taken out by cranes on the dock wall.

IMPROVED RAIL RAISER.

The engraving given above illustrates Bohler's rail raiser now being introduced by Mr. J. Melling, of Dashwood House, London. It is designed to do the work usually requiring from lour to six men by aid of two men, and to take the place of the sleepers and rails. The lift is directly vertical, steady, and certain, in all of which particulars it is vertical, steady, and certain, in all of which particulars it is very superior to the
lever, and in addition to this it will raise the rail 5in. to 6in. in oue minute. It is 2 ft . long by 7 in . wide, so that the platelayer can proceed with similar work on the adjoining pair of rails, During repacking of the sleepers it does not interfere with the passage of trains, as it acts as a sleeper in position.

The death is announced of Mr. Henry Dean Denison, of the firm of Samuel Denison and Son, Leeds. The business of
the firm will henceforward be carried on under the same style by the surviving partners, Messrs. Samuel and George Henry Denison.

FOOT BRIDGE ACROSS THE AIRE AT BUCK MILL.

BRIDGE ACROSS THE AIRE AT BUCK MILL.
The above engraving illustrates a new foot bridge erected across the Aire at Buck Mill by the Idle and Baildon Local Boards, and connecting the two townships by a pathway, which avoids a road distance of about four miles. The general characer and type of the bridge is clearly shown by the engraving. The approaches at either end of the bridge are 6 ft . wide. The superstructure of the bridge stands on two piers and two abutments, the foundations to the piers and abutments being of solid cement concrete. The piers, which have angular cutwaters and abutments, are built of sandstone ashlar, from Windhill Wood End quarries, filled in solid with rubble and cement The coping, or girder foundation stones, consist of large sandstone ashlar blocks. The superstructure, which is about 12 ft , above the river at low-water level, consists of three spans measuring 88 ft , between centre of bearings, making the total length of the bridge 264 ft . The whole of the superstructure is of wrought iron. The main girders are of the single lattice type, ft . deep, and placed 6 ft . apart, from centre to ceutre, with parallel horizontal booms, vertical struts, and diagonal ties placed 8 ft . centres carrying a 3 in . plank platform on the plates rivetted together. The diagonals are flat bars, and plates rivetted together. The diagonals are flat bars, and girders are braced together and stiffened by means of a complete and ornamental system of horizontal and diagonal wind bracings of the top, bottom, and sides. The fixed ends of the girders are carried on bearing plates, bedded on sheet lead upon the foundation stones, and bolted down, and the end plates of the girders, at the joints of the piers, are also bolted together. Suitable plank plinth, iron railing, and hand rail structed by Messrs. J. Bagshaw and Sons, Batley, the contract price being $£ 770$

COLONEL WETHERED'S RAILWAY CARRIAGE LOCK.
THE railway carriage door lock which we illustrate is the invention of Colonel Wethered, of Woolwich. The Metropolitan Railway Company, never backward in testing any promising invention, having given his lock more than a year's

Fig. 3

practical trial, he has been enabled to perfect it, and it now appears to embody every requirement

The advantages earmed are that it is not only a simple and strongly constructed lock, which automatically fastens the and on "its being closed, the outside handle squaring itself, but on its being closed, the outside handle squaring itself, but
from the manner in which the bolt is retained in the lock case when the door is open, and the easy manner in which it is again liberated on closing the door, there is an absence of all
jar, as \{the most gentle push from outside, or pull to from inside, securely fastens the door
One new result and most important feature secured is the
reverse action given to the spindle of the

means of the inside bandle the latter being operated in mirectly opposite direction to all inside handles previously used. It lifts up to open, and falls on closing the door
The advantage of this new principle is apparent, as it

provides a safe inside handle, so that the more a passenger leans on it, or the more shaking the motion of the train gives weight of the inside the door becomes fastened. The falling projecting the bolt into the door staple, and to retain it there, consequently the efficiency and security of the lock is rendered independent of the bolt spring, for should the latter break, which it is not liable to do, as there is little strain on it, the falling weight of inside handle would automatically project the bolt, and keep the door securely fastened.

The form of mechanical arrangement which Colonel Wethered prefers to employ, is shown in Fig. 2, for giving a reverse action out of the of outside handle. While it is neatly boxed in and it admits of the extent of movement of the inside handle, as well as force employed to open the door, being regulated as required by a simple variation of the length of the interlocking toothed followers.
In the case of all previous door locks having inside handlee, the latter have been pivotted on the spindle end of the outside handle, so that the inside handle had to be pushed down to open and hitted up to close, consequently the bolt springs being em
ployed to raise the inside handle as well as project the bolt

these had to be made very strong, which causes friction, wear, and jar when the door is closed.
When the door was fastened the weight of the inside handle acted in a direction to draw the bolt out of the staple and leave the door open, so that when the spring became weak, its falling weight, combined with the shaking motion of the train, was liable to open the door. When the bolt spring broke, the door would not remain fastened, the compartment wa rendered dangerous and useless, and had to be locked up. The Metropolitan Rail way Company would appear to be satisfied with the protracted trial given to Colonel Wethered's lock, as they are about to fit it to the new trains.
Foig. 1 is the lock case, with side plate removed, showing the position of the bolt beld back by the stud on catch or paw when the door is open. On closing the dour the projecting nose
of the pawl rides up the incline on the striking plate, which frees the catch stud on the bolt, Fig. 1, when the latter is projected into the staple by the force of both the spring and the weight of falling handle combined. Fig. 3 is the toothed follower case with side plate removed, showing how spindles of outside and inside handles are operated by the segments A and B.

700-Horse-power Engines and Boilers Fitted on Board Ship In Three Days. - A remarkably quick piece of work is reported from West Hartlepool ; the s.s. Ermanarich, recently launched from the yard of Messrs. W. Gray and Co., was sent down to the
Central Engine Works at three o'clock on Wednesday afternoon, her engines and boilers of 700 -horse power were put on board, the connections made, and they were successfully steamed for four hours in the presence of the official and owners' inspectors, on Saturday morning, and the ship returned to the builders' yard by noon on Saturday-tbat is, in less than three working days from
the time she left there. We think this "beat the time she left there. We think this "beats the record;" even and one on which the Central Marine Works may be congratulated.

TRACTIVE POWER OF LOCOMOTIVES.

The diagram below gives the tractive power, in pounds, of locomotives per pound mean effective steam pressure on piston nations relating to size of cylinder for given tractive power length of stroke, maximum diameter of driving wheels, \&c., and also for facilitating the comparison of the tractive power of different engines. As an example of the use of the diagram, of er pore wheels 60 in diameter. At the point marked Din the diameters of driving wheels at the bottom of the diagram, with a pair of dividers measure the length of the ordinate from the base line up to the line marked 17in. diameter, transfer this to the scale to be used when length of stroke equals 22 in ., and read off 106 lb , as the tractive force

which will be exerted for every pound mean effective pressure on the piston, or $\frac{17^{2} \times 22}{60}=106$. Again, given the diameter of driving wheels, length of stroke, and tractive power, required the diameter of cylinders:- Reduce the tractive to pounds per pe used for the given length of stroke, set it off over the given diameter of wheels, and read off the diameter of cylinders required. Other uses of the diagram will readily suggest them-
selves to locomotive engineers.
G. R. B.

MILITARY VELOCIPEDE IN FRANCE.

THE Minister of War has just officially sanctioned the employmont of the velocipede in the French army for conveying dispatches.
Each infantry regiment of the active army is to contain four Each infantry regiment of the active army is to contain four
velocipedists. The chiefs of the corps themselves to choose these velocipedists among the men of all grades in the reserve and the fulfilling the service. The velocipedists are to provide their own
" mount," and keep it in good condition. In addition to the pay " mount," and keep it in good condition. In addition to the pay of their grade, they have a right
day as an entertaining premium.
day as an entertaining premium.
The service of velocipedists on campaign or during the grand manoeuvres is to be arranged by the generals commanding the army
corps. In fine, these general officers are equally to regulate in every detail, the dress, equipment and accoutrement of the velocipedists. It is to fear that such a method of recruiting may soon pleasing as possible to certain favourites, whatever may be, moreover, their skill and vigour from the point of view of the velocipede The question has nevertheless been studied in France, if not as thoroughly as in England, at least with sufficient attention for the general staff-officer to form a distinct idea of the services one may
expect from men, properly mounted and animated, for the trans. to lay before the r
The journal, the Sport Velocipedique of Paris, official organ of the Union velocipedique franchise," issued the first article on the velocipede in the army. Quite a tournament took place after it they came to deeds. On the April 22nd, 1886, velocipedist of Pau, M. Daniel, the same who went from Pau to Calais -1100 kiloms. in 7 days 4 hr . 50 min. -Offered to place at the disposition of six trained velocipedists. For reasons it is unnecessary to mention here, it was considered preferable to have recourse to the "Union
velocipedique franchise " which supplied eight velocipediste In the interval a practical attempt had been made by the Velo Club Grenoblois at the instigation of M. Terrier, one of its members, On
the 15 th of August, 1886, M. Brionnet carried a supposed dispatch from Grenoble to Bourg d'Oisans -752 m . in altitude-on a bicycle in a very short time. M. Dumoolard went on a bicyclette to pres-
pare, starting from Grenoble, at Tencin and Goncelin, the revictualling and cantonment of a troop on march, that very quickly also In fine, in another direction and on a bicycle, M. Terrie was The three velocipedic instruments of most common use bad been put into requisition according to their respective qualities, This
original attempt won for its authors the praises of the Minister

The manouurres of the 18th corps in 1886 came at once in
corroboration; General Cornat verified in his report the corroboration; General Cornat verified in his report that he had not employed any other estafettes, and that his messages had been carried three times as quick as before. The experiments were con.
tinned in 1887 at the manoeuvres of the 19 th and 17 th corps, and in

1888 at those of the 3rd and 16 th corps, and gave equally very satis-
factory results, always employing velocipedists as estafettes. Those of the 9 th corps were very well conducted, and gave rise took part at these manoeuvres were twenty-five-nine with bicyclettes, ten with bicycles, and six with tricycles-under the
command of M. Martin, sublieutenant in the 7 list territorial, and command of M. Martin, sub-He tenant in the 7 st territorial, and president of the Veloce Club of Angers, for the transmission of orders between staff-majors and the different services. They were distributed in bands, each with a chief. The roads and paths followed in the manoeuvres were gene rally bad, the sandy soil of the roads and the pebbles railed by the passage of the cavalry and artillery often rendered the velocipedists difficult. In spite of that, in a distance of cantonment one hour and a-half, and sometimes even two hours, before the estafette by horse, without fatigue and without being obliged to rest before setting out again; although it was often
necessary to take a devious road, which increased the distance to per lb. mean effective steam
pressure on piston in pounds

THE following subjects have received attention during the past Light Railways (Ireland) Bill, -On the order to go into Com-
matte on this Bill, Mr. W. H. Smith moved that it be referred mittee on this Bill, Mr. W. H. Smith moved that it be referred to the Standing Committee on Trade. Mr. Storey thought that it had been the intention of the Government to consider of measure
Committee of the whole House. It was not the kind of men Committee of the whole House. It was not white, because it dealt
which ought to be sent to a Grand Commit which large sums of public money, which it was deliberately prowith large sums of pubic it raised, questions which were seriously
posed to give away, and contested by a considerable section of the House. If the Governmont persisted in their motion, he should take what means he
could to resist it. Mr. W. H. Smith said that notice was given could to resist it. Mr. W. H. Smith said that notice was given
of this motion some time ago, and no serious objection was of this motion some time ago, and no serious objection was
taken at the time, provided hon. gentlemen interested and taken at the time, provided hon. Gentlemen interested and
Irish members were added to the Grand Committee by the
Committee of Selection. The principle of the Bill had Committee of Selection. The principle of the Bill had
been affirmed by the House, and it was such a measure been affirmed by the House, and it was such a measure
as could be most usefully considered by a Standing Committee. as could be most usefully considered by a standing
Mr. Craig asked when the Government proposed that the Grand Mr. Craig asked when the Government proposed end it would meet
Committee should meet. Sir M. Hicks. Beach said as soon as the fifteen members were added, and this would depend on the Committee of Selection. Mr. Whitbread said that as soon as the order was given the Committee of Selection would be pres-
pared to act. The House divided, and the numbers were-For the pared to act. The House divided, atty
motion, 231 ; against, $60 ;$ majority, 171. Mr. O'Doherty then motion, 20 following:-"That it be an instruction to the said Commitre that they have power to insert clauses in the said Bill enabling the promoters of a light railway in proper cases to use their capital in construction of piers and in the purchase or hire of proper steamers in cases where the line and the cost of construction
arms of the sea, the length of the would be excessive or two lines of railway might be required. Ir. A. J. Balfour said that he did not think that there were many cases in which the proposal of the hon. gentleman would apply, but be effected, he was prepared, on behalf of the Government, to accept the proposal.

THE FORTH BRIDGE.

ON page 96 we publish another illustration of one of the pairs ion, like that we published last week, helps to convey a more adequate idea than has hitherto been possible of the enormous proportions of the structure. It is from a photograph taken by Mr. Carey, C.E., on the 24 th May last, when the cantilevers were
completed to about 630 ft . from the vertical columns, and courteously placed at our disposal by the engineers.

TRAVELLING CRANE.--DEPTFORD CENTRAL ELECTRIC LIGHTING STATION,

ON page 89 will be found an engraving illustrating a large
rope-driven travelling crane, erected by Messrs. Vaughan and Son, Manchester, over the two 1500 -horse power engines and of the London Electric Supply Corporation. The engraving also erves to illustrate the roof and masonry of part of the building. We shall give a further illustration of the crane, with some particulars, in another impression.

The Sanitary Institute -At an examination held for local surveyors, July 250 and selves. Questions were set to be answered in writing on the
and the candidates were examined vive croce on the 26 th. The following candidates were certified to be competent, as regards their sanitary knowledge, to discharge the duties of local surveyors:-
William Gibson, Bonhay-road, Exeter ; Joseph Bennett Massey, William Gibson, Bonhay-road, Exeter; Joseph Bennett Massey,
64, Burn-street, Burnley Joseph Radcliffe, Cambridge-place, Tod64, Burn-street, Burnley; Joseph Radcliffe, Cambridge-place, Tod-
morden : David John Reid, 2, Post-office-buildings, Inverness ; morgen; David John Reid, 2, Post-office-bu
Samuel Towlson, 54 , Hanover-road, Plumstead.
The Conkmavar DaN. - The damage by the Johnstown flood is
reported by the Board of Inquiry convened to approach $9,000,000$ reported by the Board of Inquiry convened to approach $9,000,000$
dols. They divided the losses into six classes, and put the first five at 4,791,749 dols, covering 3364 cases, with an average loss of
1424 dols. The total loss under Class 6 is $1,112,192$ dols, with 445 cases. The aggregate loss of borough property is 168,180 dols. cases. The aggregate loss of borough property is private property so far reported amount to $1,731,662$ dols. The
Board has not yet heard from the Cambria Iron Company, the Board has not yet heard from the Cambria Iron Company, the
Johnstown Manufacturing Company, or the Cambria and WestJohnstown Manufacturing Company, or the Cambria and West-
moreland Natural Gas Company. The total loss reported to date moreland Natural
amounts to $7,894,064$ dols, and assuming that the 491 cases not fully reported upon will average as the others, 1550 dols. each, the fury reported upon wite average a, is estimated at $8,65,114$ dols.
Technical InsTruction.-Surely, if nothing else will waken the
British public to a knowledge of the puerile meddlesomeness of those who lead the attempt to force the taxpayer into paying schoolmasters for that precious amateur thing they call technical
instruction, the following definition from their te lo Bill ought to do it sion 'technical instruction' shall mean instruction in the principles of sienceand ant applicable to industries, and in the application
of special branches of science and art to specific industries or emof special branches of science and art to specific industries or em-
ployments. It shall not include teaching the practice of any trade or industry or employment, but, save as aforesaid, shall include
instruction in the branches of science and art with respect to which grants are for the time being made by the Department of Science and Art, and any other form of instruction which may for the time being be sanctioned by that Department by a minute laid before Parliament and made on the representation of a local authority of its district," In other words the propagandists propose to an Act first, and then find out, if they can, what they are to teach for their money afterwards. It would pay to give a few of these
men a good salary, and ask them to be kind enough to take a permen a good sa
petal holiday.
LiverpooL Overhead Rallway.-The contract for the Liverpoothoverhead Railway has, U it appears, been finally concluded.
Although common in the United States, this particular type of road has never before been introduced into this country Tunnels have always been preferred. The emission of steam
and smoke by the ordinary locomotive at the level of dwell ing-bouse windows, and close to them, has always been con-
sidered highly objectionable. But the experience derived sidered highly objectionable. But the experience derived
from the working of the underground railways in London has demonstrated that the nuisance is just as great in tunnels, only
that the sufferers there are the that the sufferers there are the passengers and railway
servants, and not the outside public. It is becoming daily more and more clear that the steam locomotive is out of place in town and cities, at whatever level the road is carried. All that is wanted is a really good substitute in the way of a practical electric loco
motive, and then tunnels or overhead lines beco motive, and then tunnels or overhead lines become equally avail composed of steel joists resting on columns, and covered with iron Mooring. The order for the joists is said to have been already
placed with Messrs. Dorman, Long, and Co., of Middlesbrough and will comprise several thousand tons. The engineers of the line are Sir Douglas Fox and Mr. J. H. Greathead, MM. Inst. C.E.,
London, and the contractor is Mr. J. W. Williams, of Manchester.

LANCASHIRE AND YORKSHIRE RAILWAY.-SIGNALLING ARRANGEMENTS-EXCHANGE STATION, LIVERPOOL.

SIGNALLING ARRANGEMENTS AT THE LIVERPOOL
EXCHANGE STATION, LANCASHIRE AND YORK-
SHIRE RAILWAY.
shire Railway Company, which has within the last few months been pany, is one of the most commodious in the country. We are indebted to Mr. .. Edwards, of the Railway Signal Company, Fazakerley, fo
the drawings and particulars from which our engravin of the sigaa the drawings and particulars from which our engraving of the signal
arrangements and the following description has been prepared. It is arrangements and the following description has been prepared. It some account of it will interest our readers. There are six plat orms
and ten passenger lines in the station, having platform faces, and in
one of the bays there is and one of the bays there is a middle read, which is used for the purpose
of engines running round trains. There are six lines of rails outside of engines running round trains. There are six lines of rails outsiide
the station-viz, three down lines and three up lines, and the roads re so arranged that trains from the down east main line can be turned into either one of seven platform lines-viz,, $1,2,3,4,5,6$, or 8 , and
rains from the down west main line can be turned into any one of the rains from the down west main line can be turned into any one of the
een platform lines in the station. Trains from the down loop main can be turned into either of seven platform lines-viz, $4,5,6,8,9,10$
or 11 The eame operation can be performed for outward or 11 . The same operation can be performed for outward going
trains, $i . e$ e, trains from either $1,2,3,4,5,6$, or 8 can depart from the station and go to either the up east main or the up west main; and
similarly trains from roads 1,2 , or 3 can depart for either the up west imilarly trains from roads 1,2 , or 3 can depart for either the up west
main or the up east main ; and from roads $4,5,6$ or 8 to either the up loop main, the up west main, or the up east main; and trains from oads 9,10 , or 11 can depart or either the up loop main or the up west
nom main. It will therefore be seen that by this arrangement of the roads
the greatest facilities for working traffic and utilising the roads in the tation have been obtained.
The signalling arrangements are operated from two signal cabins, one in cabin A contains 168 levers in one continuous frame, being one of he largest ever constructed, and the whole of these levers are in
peration except two. The locking frame in cabin B contains 136 lever operation except two. The locking frame in cabin B contains 136 levers
in one continuous frame. The system of interlocking between the
levers is that which has been for a many years past adopted by the
Railway Signal Company, and is known as "tappet locking," the lock
ing boxes being arranged on an improved system, and carried on step ing boxes being arranged on an improved system, and carried on step
brackets, so that instead of being one under the other, each is in advackets, so that instead of being one under the other, each is is
advewing the locking gear to be easily got a for any purpose that may be necessary. The whole of the locking for
the 168 levers in cabin A is contained in four locking boxes, an the 168 levers in cabin A is contained in four locking boxes, an
occupies a space of about 2 tt . in. in width by 1 ft . Cin . in depth. 1
will be seen from the plan that fixed signals have been provided for al mportant movements, and for both main line, running, and shuntithg, hand signalling thereby being almost entirely dispensed with at thi
importantstation. Although the traffic at this station is a very heavy one, and from its being a terminal station the necessity arises for a
good deal of engine shunting, the large locking frame in cabin A is
Cund to be easily operated by two signalmen and one telegraph boy uuring the busy part of the day, and during the night and on Sunday
it is found necessary to employ only one man. it is found neeessary to employ only one man. The whole of this im
portant station has now been in operation for over twelve months, and
the signalling arrangements have been found so complete and satisfac he signalling arrangements have been found so complete and satisfac
tory for dealing with the traffic that it has not been found necessary to ake any additions or alterations since the opening.

Payphlets and Periodicals Recrived.-Paper read before the Leed Sole
Solers," by J. F. Elsworth. Leeds: Joenkin Davenport. - The Maso
ience Cone Construzione ed Eserciso delle Strade Ferrate e edelle Tramvie. "Impiego del Ferroire per transports dei Malatio e Feriti in Guerra." Tren
Sanitar, pel Lott, Gio Franceso, Randone. "Third Annual Reporto
the City of London College Science Society." London: City of London
 Biology."."IIron Viaducts for Highways," by J. A. L. Waddell, C.E.,
Kansas City, Mo., U.S.A. Kansas City:s. G. Spencer; 1889. This describes a proposed system for America of employing a consulting engi-
neer and limiting the number of contractors invited to tender for
oridge work, much as wo do in England. "Water Gas: its Chemistry
History. and Prospecte." Reprinted from the IVon and Coal Trade Revicu.
 in the chair, Thes Withers, was olected a member, and appplications for membership were receivea from John W. Nesmith, president and principal
owner of the Col Iroworks, and from Jomn Philisp Maxwiol State
Engineer of Boulder Colliery. Mr. Angeil sna Mr. Campabell, appointed
 rated and gave a description of the Fourteenth-street viadiuct o
Denver The viauct wil extend from Holliday-street along the south
bank of Cherry dreek, over the Platte River to Platte-stree io in North

 superising engineer United States Gel. Jur., gave a description of the
proposed new diam at Elpaso, Tax, over the Rio Grande, Rrio. This dam,
built, will make the largest fresh water reservoir in the world and is

 oines wide and fifteen miles long, to be used for manufacturing and
rrigating, and to have gates to control floods, a silt reservoir, fushes,
t. The members discusused the Conemaugh and Quaker Dams, and irrigating, and to have
sco The members disis.
adjourned at $10.30 \mathrm{p} . \mathrm{m}$.
STaNDaRD Scrbw Threads for Appakarvs. - The sub-committee
pppointed by the General Committe of the Electrieal Section of the
London Chamber of Commerce to consider the recommendation of London Chamber of Commerce to consider the recommendation of
tandard or uniform types, desire too obtain information as to the extent
0 which the British Association screw thread has been adopted by the tandard or uniform types, desire to obtain information as the the extent
owhich the British Association screw thread has been adopted by the
lectrical trade up to the present. No steps save been taken by the

British A Asociation to bring their standard scrow gauge before the trade
other than the publication in their 1884-Montreal- report of the report
竍
 Preece, Mr. R. . . Crompton, Mr. E. Rig. Mr. Ar. A. Le Neve Foster, Mr.
L. Clark, Mr. E. T. Wood, and Mr. Buckney, and were "appointed for
the the purposo of determining an auge for the manutacture of of the various
corews used in telegraphic and electical apparatus, in clokwork, and
or other analo
ons for other analogous purposes," In the report of the British Association
for $1885-$ Aberceen- it is stated that the standard scress s.
officially adopted by the the telegraph department of the Post-office, and officially adopted by the telegraph department of the Post-office, and
this step alone mey be relied apon insure their general a option
by the telegraphic and electric instrument trades in the course of a few

 ments and apparatus manufacturea by and for the Post-office deparment
a circular to that effet bavin been isue to ell firmo manufaturing
or the General Post-office." Notwithstanding the above, a consiiderab. or the General Postoofice", Notwitbstanding the above, a considerabio
number of manufacturers of electrial sinstruments are still quite unas-
cuainted with these screws, and the Committee foeling the

 not use the British carsociation screw, have you any reason other than
that you do not tare to ineur the expense and troubele invovedo by their
adoption Note, the name and address need not be given if there is any
objection to doing so. adoption
objection to dote, the so.

AMERICAN ENGINEERING NEWS

Shipbuilding yard.-An extensive shipbuilding yard is to be
stablished at Newport News,, Va., in connection with Mr. C. P. Huntington's railway and steamsship interests. steel steamers. wiil
be built here for the Morgan line, and the United States and Brazil mail line, and repairs made to the existing boats of these elines
The plant will be in operation by Junuary next, and the keels will The plant will be in operation by Junuary next, and the keels will
then be laid for two steel froight steamers of 3500 tons each.

 penters shop, patter shop, and mould loft, 300., ft. by 6oft., with
thre stories. The Chesapeake and Ohio Dry Dock and Con-
struction Company bas been incorporated to manage this enterAn Exposition for New York is projected to be held in 1892, to
celebrate the fourth centenary of the discovery of America by Columbus. Already the disususion over the site has been commenced. Many objections are urged to its location in Central
Park, as it would seriously injure the park, which should be an Park, as it would seriously injure the park, which should be an
attractive faeturo for the large number of visitors who will come to
the the city. Staten Island bas boen suggested, and would be easy of
access by a number of additional steamers to the present ferry lines. A better location for some reasons is suggested on the norrth side of the Harlem river, above New York, and on the shore of Long
Island Sound. The objection to this would be the means of access, handling of the existing traffic during the busy hours of the day and a newe elevated road would during to toe busy begururs of the day,
built the whole length of the city and suburbs by 1892 . uilt the whole lengtt of the city and suburb by 1892 .
New steamers.-Four fine new steamers have been senger lines from New York. The Punitan, of the Fall River Line,
running between New York,
and Fall River, running between New York and Fall River, by way of Long
Island Sound, one of the favourite water routes to Boston, is of the
usual American type of boats for the service, with olow, usual American type of boats for the service, with a low hull, wide
deeks projecting on guards beyond the hull, two or three tiers of upper decks, and a most elaborate interior furnishing. The
exterior is painted white. She is 420 tht. long, 5 Sift. beam of hull,
and about 9 oft. wide

 saloon, below the main deck, 108 ft . 4in. long by 30 ft . wide and
1 12t. high. A continuuous promenad runs round the saloon and
hurricane decks. The wheels are of the feathering type, 35 ft . diameter-smaller than usual ; the buckets are 14ft. long, 5 ft .
wide and of fin. steel. Each wheel woighs about 100 tons, and they will make about twenty-four revolutions per minute. The
engine is vertical, of the beam type, and 7500 -horse power. The high-pressure cylinder is 75 inn . diameter and 9 ft . stroke, and the
low-pressure cylinder 110in. diamoter and 14 ft , stroke, both of the
cylind cylinders are at one end of the beam, and at the the other end
is the connecting-rod. The cranks weigh nine tons each, and the

 throughout, and the interior rittings, Pecoration, and furnis hing is
elegant and elaborate. The Connecticut, a new boat for a competing Sound line of steamers, is 357 ft. long, 8 , 8 ft. beam, and $\begin{aligned} & \text { and } \\ & \text { from keel to pilot-bouse. In her machinery there is a radical }\end{aligned}$
fom power. The the engines being of the oscillating type, booo-horse
triven at thirty revolutions the fenthering pattern, and will be make twenty miles ant hour. The Sandy Hook and Monmouth are
two steel thinute 'The boat is expected to
drem two steel twin-screw boats, running on New York Bay between
Now York and Sandy Hook, conneocting with the New Jersoy
Southern Railrond for the nem Jersey coast. It is a favourite route for wealthy families living at these resorts, and the company has put on these boats to further
inerease its popularity. They are 230ft. long, 37 ft . beam, and

 internal furnaces, Each is equipped with an Edison incandescent
elecertic light plant of 200 lamps. The fitting, decorating, and upholstery is in the highest style. As the trip ic only one hour
long each way, and no night trips are made, state-rooms are not required, but in their places are private saloons or parlours for the handsomedation craft.
A centreboard steamer.- - A form of steamer adapted for ocean and
iver service combined, designed especially for ocean freight
 at the forward end by a solid bulkhead forming the bow, and will contain the machweeny them towards the stern. These hulls
ordinary keel. Between the hull argo, and will each have an ordinary keel. Between the hulls will be a strong adjustable keel,
on the same principle as the centreboard used so suceesefully for
yachts. If the ordinary which draught she could run up the Mississippi to St. Louis, on going to sea the keel could be lowered 14ft. to give her a d draught
of 2 fft . When lowered the upper part of the keel will be held in place by steel braces projecting from the inner sides of the hulls.
Twin screws would be used. An experimental ship is to be built on this system, and is to be designed for a high rate of speed a
sea it will be built by The Milford Harven Sleampship. Line, which has been projected for
the past ten years, is again being talked about. Mr. Austin Corbin
presin the past ten years, is again being talked about. Mr. Austin Corbin,
president of the Long Island Railrod, is the leading spirit of this
scheme, which is to run an entirely scheme, which is to run an ontirely y new line of swift well equipped
steamers between a point at Fort Pond Bay, near Montauk Pont,
at the easterly end of at the easterly end of Long Island, to Milford Haven, in Wales, the passengers being carried by express trains over the the miles
lengtt of the island to Brooklyn and New York. The sea route
mond would be 2781 miles long. Whether there is anything at the back Stret railcay expenses.-The following estimates of the cost of
construction and operation of street railways for horse, electric, and cable traction, have been prepared by persons interested in
putting in an improved system of traction at Baltimore, Ind. The putting in an improved system of traction at Baltimore, Ind. The
figures are in each caso for a line ten miles log:-Horse cars
Track, 70,000 dols.

 forty motor trucks, at 1500 dols, 60,000 dols, ; building, 10,000 dols.;
total, 462,000 dols.

firemen, 1095 dols.; wear and tear at 3 per cent., 13,860 dols
interest, 27,720 dols, total, 51,891 dols.
Cable system-Coal,
 sheaves, 4000 dols,; wear and tear at 3 per cent., 23,694 dols.
maintaining cable, 13,200 dols.; interest, 48,180 dols.; total, 101,210 has been often suggested application of electricity to signallin extent. One of the latest systems is the Palmer system, in whicb brushes on the engine make contact with a pair of rail lengths
placed between the track rails. These rails are connected with placed between the track rails. These rails are connected with ings, cc., and connected with electric apparatus. In the event of between the brushes and the rails at the end of the block soction on which the danger axists, and a gong in the engine cab is set ringing, and continues to ring until the engineer or fireman stops
it. Very large claims are made for it, but it seems to be too complicated to be practicallly adopted for regular service under the far, to the general introduction of electricity is, that it cannot be relied upon, but is likely to fail at any time, without apparen cause and without warning, and so lead to accident.
The Canadian Pacific Railhay Company
Maine has been Pananed for traffic Maine has been opened for traffic. The route commences at
junction with the International Railway branch from Sherbrooke crosses the State line near Holeb Pond, and runs through a wild country to Greenville, Brownville, and MMattawamkeag, where con-
nection is made with the Maine Central Railroad. There are nection is made with the Maine Central Railroad. There are numerous bridges and trestles. Near Mattawamkeag the line
crosses the Penobscot river by an iron bridge of two through truss spans of 150 ft. two of 100 oft. span, and 62 ft . of trestle approach.
At Ship Pond is an iron viaduct 1405 ft . long, with one 100ft. span, twelve 60 ft . spans, twelve 30 ft . spans, and 225 ft . of trestle. The height is 120 ft , the Daft Electric Motor Co. began experiments on the Ninth
the light loads, the load motor of increased power. Beginning with woighing twelve tons, was hauled over the entire length of the line, speed of $14 \cdot 6$ miles per hour. The maximum speed on the level was $16 \cdot 36$ miles per hour. An empty train of three cars ran on the
up-town track at a mean rate of 23 miles an hour the up-town track at a mean rate of 23 miles an h hour, the speed on the
level being nearly 28 miles. These practical tests have brought out new motor has recently been built, which has been designed for regularly hauling trains of six loaded cars on the Ninth Avenue
line.

LAUNCHES AND TRIAL TRIPS.

On Wednesday morning, the 31st ult., Messrs. E. Finch and Co.
launched from their shipbuilding yard at Chepstow, the second launched from their shipbuilding yard at Chepstow, the second or
intermediate caisson, built to the order of the Barry Graving Dock The s.s. A The s.s. Attila, built by Messrs. R. Craggs and Sons of Middles-
brough, for Messrs. J. H. Lennard and Sons, also of Middlesbrough was taken out on Saturday for her official trial trip, and although
the weather was anything but favourable, the result prod the weather was any thing but favourable, the result proved, we are Westgarth, English and Co., of Middlestrough, having cylinders worked throughout the dayi na mery satisfactory - worse power and sions of the vessel are 280 ft ., by $37 \mathrm{ft}$. . 6 in. by 25 ft . 6 in. She has been ments. The oil pamps are Messrs Tangyes' Duplex pumps, and the On Tuesday the s.e. Ironopolis proceeded from the Tees on her and Sons, of Middlosbrough, by Messrs. Raylton, Dixon, and Co.,
 305ft. 3in., breadth, 38ft.; depth moulded, 2.2ft. 10in, with a
deanweigb carrying capacity of over 3700 tons. She is fitted with
rised quarter deck, having brid classing her as a "'partial awning deck." Her engines have been

Midd

On Saturday. afternoon a steel screw cargo steamor 225 ft . by
32ft. Gin. by 5 Itt. in., was launched from the works of the Blyth Shipbuilding Company at Blyth. This vessel is named the King gow. The engines will be supplied by the North-Eastern Engi-
neering Company, of Wallsend, and are of the tri-compound kind the cylinders 16 din., 27 in., and 44 in . by 33in. stroke, and boilers to work at an ordinary pressure of 1601 lb . The hull and machinery
have been constructed under the inspection of Mr. James Dykes,
superintendent superintendent engineer of Newcastle-on-Tyne. The Blyth Ship. The berth vacant by the launching of the King Affred will be immediately filled. The company bave, also, two new vessels at their
outfitting quay, both rapidy approaching completion. In addition, they are executing repairs to opeveral vessels in the river. A large
number of men are employed in the construction of the numb
The s.s. Prudentia, built by Messrs. Palmer's Shipbuilding Com-

 cargo of crude and refined petroleum. The vessel was designed by
Messrs. Flannery, Baggalley, and Johnson, and has been buit nder their superintendence. She is fitted with engines havin supplied with steam from boilers having heating 42in, stroke, and 4500ft. Electric and steam heating and cooking apparatus are fitted, together with powerful pumps for the quick handling of oil cargo. She is also arranged with a view to the carriage of general
cargo, if desired. The dead weight on board at the trial was abol 3000 tons, and a very satisfactory progressive trial was made, steam being easily maintained, the ful speed runs giving a mean of 10.7
knots. Steam steering gear, evaporator, and feed heater are fitted, handling.
The new vessels launched from the Clyde shipyards in the course compared with twenty one e vessels of of 23,902 tons in July, 1888 ,
nd 8790 tons in July, 1888 , and 8990 tons in July, 1887. The aggregate tonnage put into the
water in the seven months is 156,728 , against 118,352 tons in the two or three exceptions, all the vessels launched in the past With The been steamers, and those are nearly all constructed of steel. against 16,000 in the same month of last year.

The new steamship Columbia, which left Southampton tion on the 26 th at 6 p. m. The steamer that has made this
rapid voyage is the latest addition to the fleet of the Hamburg-American Packet Company. She was built, as we
statei last week, by Messrs. Laird, of Birkenhead,

THE IRON, COAL, AND GENERAL TRADES
OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

From our own Correspondent.)

THE satisfactory condition of trade which it has been possible to report now for some time past is continuing. On Wednesday, in
Wolverhampton, and to-day-Thursday-in Birmingham, the Wolverhampton, and to-day-Thursday-in Birmingham, the
markets were fully as good as any that have gone before them markets were fully as good as any that have gone before them
for many weeks past. Indeed to-day the market was perceptibly
tron 5 per cent. to millmen, which has now been conceded to the ironworkers. And ironmasters reported the probability of further
dvances in prices arising out of this additional concession, carry ing with it, as it does, an increase in the cost of production. The act that sorkers' wages are rising in Darington, and that $2 \frac{1}{2}$ per cent., making them 711 per cent. upon the basis rates of hat in most trade centres cost of production has not yet reached its limit.
Consumers of iron are indeed now becoming convineed that it is
useless to any longer delay placing orders, as the market seems useless to any longer delay placing orders, as the market seems
certain to further rise against them, consequently there was to-day
better demand a better demand, and makers' prices were obtained with less bartering than for several markets past.

 trip, 24 in. wide to 13 g ., $£ 7$. These prices are at the Pelseil
Company's works for ordinary sizes, with the usual extras as per their list.
The sheet prices of ordinary sizes of Messrs. E. P. and W.
Baldwin, of the Welden Ironworks, near Storrport become
 B. charcoal, $£ 1910 \mathrm{~s}$. and E.B. charcoal, $£ 21$ 10s. Doubles, 21 to 24 w.g., are 30 s , a ton above singles; and trebles, 25 to 27 w.g.g.,
are 60 . above singles. The above prices are at the Wilden Works, rates. Messrs. Jobn Knight and Cof the is Hill, now quote as follows: -Rolled bars lin. to 6in. wide, and not rounds, angle iron, \&c., not exceeding 2 cwt , each bar, Knight's
cown
 $£ 20$ 10s. Rounds and squares, not less than s, are 10s. per ton
above bars ;

 extra. Strip iron, $1 \frac{1}{2}$ to
rolled bars.

 ${ }_{36}{ }^{2}{ }^{2}$.
 thereof, 20 s. per ton extra. Extra widths: For each additional
inch, 10 , per ton extra. Tinned sheets are quoted by the same firm at 24 s , per owt. for
coke singles, and 26 s . for charcoal singles Tin-plates are Coke singles, and 26 s . for charcoal singles. Tin-plates are quoted:
18s. I.C charcoal, 22 s . I.C.; second ditto, 20. I.C.; and coke, Galvanised sheets are in better request on the week. There
seems no indication of spelter prices receding. Galvanised seems no indication of spelter prices receding. Galvanised sheet
consumers, therefore, seeing no probability of reductions, and
fearing further advan fearing further advancese, continue to give out orders more freely.
Makers of black sheets for galvanising purposes correspondingly benefitted, gard thalvaning purposes are, of course,
demand theorted yesterday a better demand than for some time. These last descriptions of sheets
remain strong at the association rates of $£ 715 \mathrm{~s}$. for singles, and £8 5s. for doubles. It is just now the dull season for the Australian demand for palvanised sheets, so merchants do not consider th although there certainly has lately been room for improvement;
$£ 1210 \mathrm{~s}$, for 24 gauge at works is still the basis price. The marked bar makers report a good demand, some of them They are firm, therofore, onders to thast till $£ 8$ basis. Some end of the quarter.
theo sales have taken place in merchant iron at $£ 7$, and common bars are in steady
request at from $£ 610 \mathrm{~s}$, to $£ 612 \mathrm{~s}$, 6d, and $£ 615 \mathrm{~s}$. request ar from $£ 61$ s. to $£ 612 \mathrm{~s}, 6 \mathrm{~d}$. and $£ 615 \mathrm{~s}$, Alike for bars
and for shoets some good orders have been booked for the Argentine Republic.
account, imonmang them being the Earl of Dudley and the New British Iron Company.
Iron and steel plates are in good call in connection with railway

work for Japan, which has been received by local engineering | firms. |
| :---: |
| Boil |

deliver and tank plate makers hold considerable orders for early opened. Hoops and strips are $£ 7$, though more money is demanded by
some makers of the former descriptions. The advance of $£ 1$ in gas tube strip-bringing it now to $£ 7$-is not a practical rise to the
full extent. Four months ago the Association fixed it at $£ 6$, but latterly some makers have been getting as much as $£ 6$ gos 10 ,
Demand is good. Some gas tube makers are full up with the end of the quarter.
was not without its influence in crude matal 1s. on Tuesday "Change wis afternoon, though apart from this the continued
 Vale hydrates are quoted 62s. 6d., B.F.M. 57 s . 6d., and common
47 s . 6d. Derbyshires sell at 54 s . 6d. to 55 s s., Northamptons 54 s , and Lincolns 56 s . 6 d . to 57 s .
Coal is.
The advance in iron workers' wages will obtain until a new
sliding scale is sliding scate is arranged, which will probably be in September
The accountants to the Mill and Forge Wages Board will, whe that month opens, again examine the books of the twelve selected firms, to ascortain the selling price for the months of July and
August. The data then available from both examinations will afford
scalo:
On
bars were . bars were advanced 5 s , per ton, making small rounds $£ 75 \mathrm{~s}$, for
three-eighths size.
bringing the now priops and thin strips were advanced 10 s , The consumption of steel in the Black Country is now estimated to be about 5000 tons per week. Of this quantrity is now enly aboutimat 1500
tons is made in the district. It time past, that an attempt ought to be made to produce the odd
3500 tons in Staffordshire, by ade making plant to the purposes of basio steel production. The sug.
gestion has been adopted, in several cases, with a fair measure of success, though until lately the volume of demand and profitable
ness of large expenditure of capital upon new enterprises.
law
that that the metallurgical trades are new so noticerprises, Now, however,
proposal has been repeated with more earnestness vigorous, the
unlikely that we shall shortly see a considerable development of

It is recommended that puddling furnaces now standing idle

 could be carried out in the oxiting
aditition to staff or general chargeg.
Rumours wero currenenal upon theer market to-day-Thurday-of
contemplated additions to tho stoe makion facilitios of the district

 greatly increasesed oost of materials and fuel. Thh improvementen in the eornary ind inuetries of the Midlands is
indicated in the activity in the business of transport. The Inaficto on tho railways is is extendings, and now the the tanals ane
 transport of goods by water which constitutuses an in portant and vance
in the movement for the utilisation of the waterwass for
 Miriands. This firmo of carriers has introdueed steam barges upon
tho various canals botween Staffordsbire and the ports. $B y$ means
 journey with horse locomotion one of these small draugh
steamers will carry a load of 20 tons, and will tow another boat containing an additional 30 tons, The ad vantages which this inno At the hallf. yearly meeting of the Railway Rolinin
 cent. per anum upon tho paid-up portion of the preference sbares.
and 4 per cont upon the ordinary shares. The propeects of trade Weror roferred to as hopeful; and it was stated that sinco the tor
mination of the half - var contracts bad been entered into, would nearly absorb the whole of the capital at the disposal of the directors.

NOTES FROM LANCASHIRE

(From our oun Correapondent,

In the iron trade of this district the upward movement of prices

 deoidote element of strength to the market. With regard to other
conditions which are ontributivg to the upward movement in prices,
 of which is really the most serious consideration in connection with
 slack, however, aro moro plentiful, and tho increased output of may, it it does not actunly bring about cheaper suppier, at any
rate tend to modity to do dificititios now being experienced in obtaining adequate supplies of coke for iron-making purposes. In
the inisbed iron trade the demand from this district is not quite so brisk as it was, owing probably in some measure to
sion in the depres
隹 as much work in band as sthey can get through, and are still very
indiffery

and there was again a very strong tone all throush Forl For sem,
 the actual business done at the full prices quoted was only small figures which makers would have accepted a week or or so back. For
 a decided tendency to stiffen upon late rates. Of distriet brand
 shire, that prices remain scarcely more than nominal. Where there
are sellers in the market 51 s. less 24 represents about the average figure for both forge and foundry Lincolnshire, and for
Derbyshire the average quoted prices are 52 s . to 53s., less 21,
delivered here, the cheaper makes, which are the only brands really offering in the market, baving stiffened up quite 1s, per ton durin
the week. The continued advance in warrants has necessarily
tended to stiffen the price of outtide brands of iron offering here,
and good foundry M Middesbrough is not quoted under 50s. 10d. net and good found ry Middlesbrough is not quoted under 50s. 10d. net
cash delivered equal to Manchester, whilst Seotch brands bave
advanced fully 1 s , per ton, Glengarnock, delivered at the Lancashire ports, being quoted at 51s.6d., or about 56s. delivered equal to prices
Hematites, following upon the advance in Scotch iron, show a
strong bardening tendency, and good foundry brands delivered Mere are now quoced at about 61s. to 62s., less 2
Manufactured iron remains very firm at the full rates quoted last
week, $£ 615$ s. being the minimum for bars delivered in the Manchester district, with hoops quoted at $£ 7$, and sheets at from $£ 8$ to $£ 85$ s., per ton. There is scarcely so much new business coming
forward, but this is more than counterbalanced by the restriction of the output, caused by the interruption of operations at many or the forges owing to the hot weather, and makers have still more
than they can do to meet the requirements of their customers, on account of contracts already placed,
Steel-plates for boiler-making purposes are in fair demand, and
there is a decidedly stronger tone in prices. Scotch makers, who have been selling at $£ 815 \mathrm{~s}$, to $£ 817 \mathrm{~s}$. 6 d ., are now firm at $£ 9$, and Yorksbire plates, which were readily ohtainable at $£ 817 \mathrm{~s}$. 6 d. , are
now quoted at $£ 95 \mathrm{~s}$, per ton delivered here. The upward strengthens the position of local makers, who have all along been
bolding out for 595 s. per ton, and at this figure they are exceed holding ou
ingly firm.
The reports with regard to the condition of the engineering
trade remain practically much the same as those I bave given for some time past. There is no slackening off whatever in the general activity throughout all branches of trade, and in most departments the leading concerns being very pressed, with work. This is especially builders, boiler makers, and locomotive builders
The new pneumatic rivetters-Allen's patent-which were some Co., of Manchester, and of which a descriptive notice was given important works. The whole of the rivetting on the new girde
impore
 being done by one of these rivetters, and the firm have now
ordered a plant for their own yard at Derby. The Grangemount ockyard Company, who a apopted this system of rivetting soo these pneumatic rivetters for their new yard at Alloa, and I underrivetting is giving every satisfaction.
Messrs, Heenan and Froude, of N
the bridge department of their works, and the orders they bave Yorkshire Railway Company, while amongst foreign orders they are constructing a lattice girder bridge, 1650 ft . in length, fo South America. In their engine department they are also very busy with orders for their well-known Tower spherical engines
combined with various types of dynamos for electric lighting, and order to keep pace with the increasing amount of general work pelled to extend the workshop building and to lay down new plant In the coal trade a generally steady business is being done, and athough tery slow demand, requirements are quite as large as could
only in ver only in very slow demand, requirements are quite as large as could
be expected for the season of the year. Common round coal suitable for ironmaking and steam purposes meets with a tolerably engine fuel there is good demand generally, but the holiday stoppages and the short tome movement in teme cotton maniufacturing mon the market, and this description of fuel, in consequence,
anch more plentiful than it has been of late. As regard price there is a slight hardening tendency in some cases, but no general upward movement, and the quotations remain practically
nchanged from last month; best coal at the pit mouth averaging 10s. per ton, second qualities, 8 s . to 8 s . 6 d .; common round coals,
6 s .6 d. to $7 \mathrm{~s} . ;$ good qualities of bugy, 5 s . 9 d. to $6 \mathrm{~s} .3 \mathrm{~d} . ;$ best
at the pit
The shi
ery bbing trade is somewhat irrogure; a fown ares advanced, but in other quarters a very dull business is still reported difficulty in getting Docks, steam coal ranges from 7s. 9d. to 8s. 3d. per ton, according to quality.
All descrit
All descriptions of coke suitable for ironmaking purposes con inue in very brisk demand, with a steady hardening in prices,
best qualities at the ovens now fetching from 15 s. to 16 s , per ton Barrou. - The hematite pig iron trade is brisk, and orders ar still on the increase. Bessemer qualities are in especially gooo
demand and in increasing consumption. Business is increasing al round, and makers find a fuller inquiry as well for prompt as for mixed Nos. of Bessemer pig iron, and to 49s. 9d. for No. 3 forge rates ars expected. The works reare all well employed, and the smal number of furnaces now standing idle are gradually being put in
blast. In the steel trade there is a marked improvement, and the everal departments are all briskly employed. The mills engage ull of orders, and the greatest activity is maintained in the out put. Orders are coming to hand from all sources, and there are ears' busy work being now assured. Prices show an advance fo ails, heavy sections of which are quoted at $£ 417 \mathrm{~s}$. 6 d . per ton,
nd some makers who are heavily sold forward are asking $£ 5$ per on. The shipping and engineering trades are more and more ome importance practically from all sources. Importan Admiraty work is expected which will find plenty The directors of the Naval Construction and Armaments Company whose works are at Barrow, have just issued their first repor he company was incorporated in February, 1888, the yard a Barrow has not been actively in operation, except to a very limite
extent, for morethan about eight months; the first eight mont company's existence having been mainly occupied in reconstruction and additions to the yard and machinery, which have resulted in the company being now in a position to undertake work of
the largest and highest class. Under these circumstances it ha been deemed expecient to extend the financial year beyond th
first eight months, to the 30 th June, 1889 , that being the close profit and loss, no credit has been taken for the increased values o the materials purchased, nor for any work in progress, but only for
the profit on work completed, which is necessarily but a smal proportion of that contracted for; the unfinished contracts on the incidental to every new company, and the fact that nearly all the large contracts are unfinished, the directors are not in a position to declare a dividend, but the balance carried forward and the profit current year. Having regard to the large amount of order
actually
contract
future
Eas received an order from ber Majesty's Government to
contract has been entrusted to the company affords gratifying vidence of the confidence of the Admiralty in the resources of the Barrow yard and the ability of its administration.
The company has been further invited by the Admiralty to tender
 proposed works at Bilbao are for the present in abeyanece, the directors having concentrated all their efforts to perfect the
Barrow yard. Four vessels, of a combined tonnage of 17,500 tons have already been contracted for with the Pacitic steam Nav: gation Company; and one of these vessels, the Oruba, of 5600
ions, was delivered in a perfect state of completion in less that Cons, was delivered in a perfect state of completion in less tha
twelve months from the signing of the contract. The Orub is now on her voyage to Valparaiso and back, and bn
afforded the higbest satisfaction to her owners. The account show a margin to credit of $£ 5356$ 15s. 11d, which is
carried forward to next year. Only $£ 300,000$, which is carried forward to next year. Only
half the authorised capital, has been called
On Tuesday the Naval Construction and Armament Compan passenger screw stenmer named the Santiandsomely-modelt built to the order of the Pacific Steam Navigation Company, ions of the Santiago are 350 ft . by 455 ft , by 31 ft . 9 in ions of the Santiago are 350ft. by 45ft. by 31ft. 9in., moulded
upper deck. The hull is buite entirely of steel on the double supplied by the Barrow Hematite Steel Company. The vessol is schooner-rigged with two steel pole masts, and
externally presents a very light and handsome and fitted in every way for passenger service in a tropica applinnces for the safe and efficient working of the vesse including a complete installation of electric lighting to all parts of the ship, is supplied complete in every respect, as usual in first type, having cylinders 31 in , 49 in ., and 78 in . diameter by 60 in . diameter by $18 \mathrm{ft}, 6 \mathrm{in}$. long, and two single-ended boilers 13 ft . 9 in . diameter by 9 ft . 8 in . long, at a working pressure of 160 lb . per
quare inch, and will indicate on trial about 3500 indicated horse power, giving a speed of about $14 \frac{1}{2}$ knots. A sister vessel tion by the builders, and is nearly ready for launching. tron ore is in very large output, and prices
Apprebension is felt that a strike in the Durham cokefield migh Coast, as nearly all the coke used in this district comes from the advancing, and the consumption is increasing. Mr. Thomas
Nicolls, for twenty-five years with the Barrow Hematite Steel ompany as works manager and other capacities, has bee appointed general manager
pany's Works at Rochdale.

THE SHEFFIELD DISTRICT
 (From our ovon Correspondent.)

Hematites have gone up to 62s. 6d. per ton, and there is vidence of a still greater stiffening in prices. For common iron,
$47 \mathrm{~s}, 6 \mathrm{~d}$, to-in some instances- 50 s . per ton is being asked, but supplies are being delivered on easier terms. The Staffordshire
iron firms are universally raising prices, and the effect is telling in Yorkshire and Derbyshire.
At the Newhall lronworks of the Brightside Foundry Company
very successful casting has been made of a 40 -ton anvil block, be used under one of the large steam bammers at a manufactory i Savile-street. In this, the largest casting ever made by the firm, three molten metal was run into the mould, which is about 1lft. square rom four different points, the work occupying one minute. The aasting will take more than a week to cool. Other noteworthy weighing 17 tons, and a large ingot mould, 12 tons in weight the large establishments devoted to the production of military Important colliery extensions are now taking place in Sout Yorkshire. I have already mentioned the sinkings at Conisbro belonging to the Denaby Colliery Company, which, with others
will undoubtedly greatly influence the future of the coal trade of The Northern district. The Thorncliffe seam of coal is now being
unk to at the Wharncliffe Silkstone Colliery, and it is intender oo get down to the Whin Moor seam, which lies about 65 yard being driven at the Sovereign Colliery, near Dodworth being driven at the Sovereign Colliery, near Dodworth. The
Silkstone seam has been largely exhausted, and as the wind ing machinery is still on the spot, an effort is being made
to reach the Flockton bed, which is believed to be about
2 ft . 9in. in thickness. At the Nunnery Colliery, Sheffield, he owners contemplate sinking to the Sillstone seam a Darnall, at a point about half-a-mile from the Manchester Barnsley to the Silkstone seam, the drawing shaft being sunk so not to interfere with the working of the Barnsley seam. The up cast shaft has been sunk, and the coal is said Chave been ascer Thorncliffo Collieries, are preparing to open out the Flockton sean at the Tankersley Colliery. These extensions affect the leading districts in the coalfields of Sheffield, Barnsley, and Rotherham.
Much activity is reported in the steel and iron departments. Much activity is reported in the steel and iron departments,
Bessemer and crucible steel is equally in brisk request. At the Pbsenix Bessemer Works, Iekles, Messrs. Steel, Peech, and Tozer been in ture bas been erected, and the special machinery put down for the production of tires includos two six-ton hammers and tire rolling
mills, driven by a pair of engines supplied by Messrs. Davy mills, driven by a pair of engines supplied by Messrs. Davy
Brothers, the Park Ironworks, Sheffield; with five new boilers supplied by the same firm. A satisfactory start has been made
with orders which have been obtained from most of the leading railway companies of this country. The new works will afford
employment for about 100 additional hands, and will increase the output by about 150 tons per week.
plates, \&c., bas been commenced, has bere the manufacture of steel stael come freely in, and there is every prospect of the plant being Earle's Shipbuilding and Engineering Company, Hull, the shares in which are largely held in Shetfield, are at present very
well off for work, their orders including the machinery for the Portsmouth Dockyard. The engines are of 12,000 indicated horse-power. Earle's Company have also recently obtained
the order for the engines of H.M.S. Andromache and H.M.S. Apollo-building at Chatham-each of 9000 indicated horse-
power, and the machinery, of 7500 indicated horse-power for
H.M. building at Pembroke. The company are now about to deliver the machinery of 3000 indicated horse-power each for H. M.S. Blanche have completed the contract for the engines, of Dockyard, and 1200 indicated horse-power each, for H.M.S. Magpie, Redbreast, and Redpole,
built in the same yards. The Magpie, which is a single screw
composite vessel, on its trial trip in the Channel for this class, the contractors obtaining 882 indicated horse-power,
or nearly 25 per cent. in excess of the guaranteed power. The

Redbreast has had its natural draught tried in charge of Mr.
W. B. Dixon-Messrs. Earle's encineering manager-when ever W. B. Dixon-Messrs. Earle's engineering manager-when even
better results were achieved, as the mean of a splendid run of
thirteen bours without a single hitch gave an average of 900 indicated horse-power, and a speed of thirteen knots.
Messrs. Samuel Fox and Co., Stocksbridge Works, Deepear, have again had a most prosperous year, the report which has jus been issued intimating a profit during the twelve months of
$£ 35,1949 \mathrm{~s}$. 6 d ., whicb, added to $£ 3416 \mathrm{~s}$. brought forward from declare a dividend at the rate of fifteen per cent. prer annum, towards which an interim dividend at the rate of ten per cent. per annum was paid on the 1 st of March last. This wit
absorb $£ 36,000$, leaving $£ 267515 \mathrm{~s}$. 6d. to be carried forward the next account. Mr. Henry Sharp, late managing directo to succeed the late Mr. Fox in the general management of th works and business of the company. The directors state that in for the position.
Messrs, Joseph Rodgers and Sons, cutlery manufacturers, Shef
feild, were lately visited by the Shah of Persia while he was in
Shef解 his departure, the Grand Vizier bas intimated to the firm that they bave been appointed "Cutlers to his Majesty the Shah of Persia. The Grand Vizier, in making the intimation, expressed the hope that this and other appointments would contribute towards an
increase of those friendly commercial relations which the Shah dosires to see existing between the two countries.
A good trade mark is salf the battle in winning a market in the hardware trade-always, of course, giving quality. Messers. George
Butler and Co., Sheeffeld brought out a razor which they designated the "keen" brand, with the head of Shakespeare on the
blade. The name is suggested by the line of the bard of Avon "Keen as is this razor's edge invisible." Among other firms whom they have supplied are Messrs. Kirby, Beard, and Co., 5 , Rue
Auber, Paris, who recently received an order from the Baron Thastav Rototscchild, which he purchased at theor establishment. forwarded to Hamburg to be hollow ground, but the process has now been thoroughly mastered by the Sheffield artizans, and Shef-
field hollow-ground razors, of which the "Keen" razor is a remarkably fine type, are sold the world over.

NOTES FROM SCOTLAND.

(From our oon Correspondent.)
Busingss has been exceptionally strong in the Glaggow pig
iron market this ween, and a further considerable advance has
ind iron market this wrice of warrants, which have been up close on cared to predict as likely to be attained during the prosent year. A great impetus has been imparted to the market tyr the peacing
of Admiralty shipbuilding orders on the Clyde, and the tone was further strengthened owing to the shipments being much larger
than of late. They amounted to 12,275 tons, as compared with tal2 in the corresponding week of last year, and they embraced
1999 tons to Canada, 1215 to the United States, 825 to Australia, 680 to Russia, 400 to Germany, 47 to Sp Spin and Portugal, , 775 to
Holland, 200 to Italy, 160 to India, and 60 to Belgium, the coastHolland, 200 to Italy, 160 to India, and 60 to Belgium, the coast-
wise shipments having been 5738 against 4089 tons in the same of two as compared with last week, and five less than at the corre-
 o be materially decreasing.

 The position of the manufactured iron and steel trades has been
further improved and strengthened by the orders for Admiralty further ipproved and strent sthened by the orders for Admiralty
vessels placed on the Clyde. These consist of five second-class
cruisers of the Medea type each of 3400 tons cruisers of the Medea type, each of 3400 tons and 9000 horse-power.
Of these vessels three have been secured by Messrs. Thomson, of Clydiebank, and two by the London and Glasgow Engineering and
Shipbuilding Company. With reference to the last-named contract, it should be noticed that although the London and Glasgow
Company has a reputation for producing machinery of the very best the engines for the two thim, but will be made by a Lompand firm. This arrangement has cost muccas more money than if themment harere, ben turned out fully
equipped with machinery by the builders. The Fairfield Company equipped with machinery by the builders. The Fairfield Company
have received an order for two sets of ongines of 1,2000 horse that are to be constructed in the Admiralty dockyards. Mucb of the materials for these vessels and machinery will be supplied by
the makers of iron and steel in the Glasgow district, and the orders will prolong the activity that no There was firm
onfines and tenders to the value of $£ 38,887$, of which five worth $£ 6250$ went to the Philippinos, seven worth $£ 4637$ to Bombay, and
twelve, valued at $£ 28,000$, to Alexandria. The other shipments of the week were machinery, with $£ 11,726$; sewing machines. $\{5736$;
steel goods, $£ 14,071$; and general iron manufactures, $£ 37,300$. The tone of the coal trade bas materially improved this week. has enlarged both for export and home consumption. Furnace is satisfactory. Prices are also better, 7s. being now easily got for nain coals, free on board

THE NORTH OF ENGLAND
THE Cleveland iron trade bas still furthor improved since this
time last week. At the market held at Middlesbrough on Tuesday time last week, At the market held at Middlesbrough on Tuesday
last, there was, however, no further advanee in prices. The
attendance was somewhat below the average, and the feeling was attendance was somewhat below the average, and the feeling was
one of hesitation, because slightly lower prices were telegraphed
from Glasgow surprise that the market of the district which produces more pigg
iron than any other in the world should be so much affected by every litle ehange which takes place in another market, where
much less is produced. The explanation is probably to be found in the fact that Glasgow consumers take more iron from Cleveland
than do the consumers of any other district. That being so, their ideas as to buying, or refraining from buying, at any particular
time must naturally influence the ideas of those who supply them Notwithstanding the slightly easier feeling which provailed on
Tuesday last, the aggrogate advances sinco last market-day amount
to 18. 6d. per ton, while Scotch pig iron during the same
 G.M.B. iron for August delivery, and consumers offier about 3d.
per ton less, For delivery to the ond of the year, d. more than
the above-named figures represents the present price. The value per ton less. For delivery to the end of the year, 3 d . more than
the above-named figures reprosents the prosent price The value
of warrants may be taken to be about the same as that of makers'
iron. Inasmuch as the latter is at the moment very scarce,
those who require prompt supplies have usually to go to the public stores for them. Since the previous Tuesday, 5069 tons have been taken out, and since the beginning of the month about 16,000 tons. It is confidently anticipated that the aggregate stocks of the dis-
trict will be found to bave decreased by about 20,000 tons during trict will be found to have decreased by about
July. The price current of forge quality is now 41 s , per ton, and of East Coast hematite 52 s . 6 d . per ton. Suan . Shipments from the Thes
of
between the bens, , the 1st and the less than in the corresponding portions of ons, which is somem
oither May or June.
Finishe or
Finished iron is tending upwards in value, because of the
gradually increasing cost of production. Common bars are now
 $\frac{1}{2}$ per cent, discount. The demand for finished steel is steady, and the market value about the same as last week.
Is sufficient clearance allowed in railway tunnels between the carriages and the masonry? This question may well be asked, in view of the fact
men, travelling from Tynemouth to Newcastle, in separate trains, arrived with their heads smashed, owing to baving had them outside the window when passing through the Shields tunnel. It
is said that the accidents occurred at about the same place. In both cases the side windows were also broken, owing to
the men having been driven against them. It is not sufficient o contend that no sensible pa tunnel. That goes without saying But it is certainly the duty of railway companies to convey safoly a large number of persons who are not characterised by the posses-
sion of even an average proportion of sense ; and such persons ought not to be able e to brong serious injury upon themselves by indulging in any vagary of the above kind. The Shields tunnel is
a very old one, and when it was constructed the Board of Trade inspection before permitting passenger traffic was, if existent at all, probably less rigid than it now is. At any rate, why should there
not be another official inspection forthwith? Otherwise there will certainly be more heads smashed, and an alteration will have to be made in the end.
the ironworkers, namely, the demand recently made by some of to remain idle on Mondays during three months of each year, is the Theme of general conversation.
The contention that the
The contention that the practice would not result in a diminished output is thoroughly disproved by all past experience.
It was shown conclusively at the recent meeting of the Board of Arbitration, that there ere, on an average, doubbe the number of
employes absent on Monday nights than there are on Monday employes absent on Monday nights than there are on Monday
mornings. This was explained by pointing to the greater facilities everywhere offered for drunkenness on Mondays, as compared
with Sundays. As a matter of fact, the loss of production has always with guneater in strict proportion to the loss of time; ;ecause the greater number of to those who are at work. The change, if made,
untold hindrances
would also be singularly unuust to labourers, mechanics, and other would also be singularly unjust to labourers, mechanics, and others not actuail ironworkers, who would thus 1ose a days s work per
week against their will. But the worst result of all would be the the British manufacturer to lose some of his markets, and might by taking away his margin of profit, in time cause him to close his works altogether. These considerations are so forcible, and so very
obvious to all except the ironworkers themselves, that there is little fear that Mr. Dale, the refereeers will take their view. But
nevertheless, whilst the matter is still wasettled, it cannot be dis cussed too frequently or too thoroughly.

WALES AND ADJOINING COUNTIES.

(From our oon Correspondent.)
A " boom" has been started in the coke trade this week, which threatens to have an important influence on iron, steel, and tin-plate
trades generally ; that is, if it can be maintained. For some time suptries of coke have been inadequate, though strenuous efforts have beon made to increase work. One large esteel works, Cyfarthfa, will and other coke ovens, for general supply. The coke "boom" was very suddenly worked. On Monday, coke prices at Cardiff were
respectively 7 .s. and 18s. 6 d . for furnace and foundry. On Tues.
desp day 20s. and 21s. were asked, and on Wednesday there were indisteel has gone up two weeks in succession, and I note an improve, ment in demand for foreign ore which will tend to lift prices. At this rate of in the question of prices. Higher quotations can be but

 upwards to $£ 6$ s. sd., bing a common quotation.
The iron and steel works generally are in a good condition. At
some, water still gives a little anxiety, and in several men are scarce,
At S At Swansea this week Glasgow pig warrants were from 45s, 42d.;
Middlesbrough No. 3, 41s. 9d.; hematites, 51s. 7d. Generally, pig is advanced 1s. per ton this week.
In the steam coal
continues good, and prices firm. Coal and comeshaintained; demand totalled 163,289 tons, a very good total for this time of the year
Swansea was a trifle over 30,000 tons; Newport kept trade. The coasting trade last week was close upon 20,000 tons.
At the Cardiff Exchange this week there At tere Cardif Exchange this week there has been a good
attendance, and a creditable degree of briskness in trade.
several days the demand for beest steam coal was considerable, and very marked efforts were noted in placing orders for prompt atten
tion. It is expected that a good deal of Welsh coal will find its
 11s. 6d., not 16s. 6d. as I see quoted ! and small bituminous coal, which keeps in strong demand, is at 9 s , 6 d .
The quotation of 16s. 6d., oddly enough, is about the local price
house coal is delivered at to consumers, and it is a subject of wonderment to many how coal that is at 11 s . 6 d , at pit should, by the handling of a few middle men, increase in price so oreadily. It
is hero that railways benefit. The prico of any coal used in London
年 Railways are sharing in the general prosperity. Rhymney keeps 5 per cent , and the Taff Vale is, as usual, giving 10 per cent. with Patent fuel works are doing well. Best is quoted at 11 s , 6 d . to
12. 6 d P. Pitwod is at 17 s . 6 d . Best anthracite is offering at
Swasea By arrangement with other railways, the Cambrian has esta blished an excellent footing at all the great centres, and its
"through" coaches are to be seen at the various seaports in the
West West, and in all the large towns, In connection with the London
and North-Western, the route this year from the and North-Western, the route this year from the great worksbopl
of England has been made both cheap and easy. 1 have previously noted the capitai way in which Mr. Conacher has dovetailed hi railmays in Blaenan, toorist routess to Ltandudnons, or staabe-toy to
Ireland, runs to Cardiff, Liverpool, Manchester, London, are all well worked in. This month, with, tha evisistof tof, Lo Queen to Bala,
will still further tax the Cambrian and Great Western. In tin-plate there is a good deal of buoyancy. Last week the
shipments were over 59,000 boxes from Swansea alone, make 54,000 , and judging from tonnage, the exports next week will bestill larger
On 'Change Tuesday signs of improved prices were visible. Latest
quotations were: Cokes, 12s. 9d. to 13s.; Bessemer, 13s. to 13s. 3d.;
Siemens, 13s. 6d. to 13s. 9 d . Men are agitating for advances, but makers are powerless.
Plates to be in harmony with increased cost of material should be Plates to
1s. more.

NOTES FROM GERMANY.
 (Hrom our oron Corresponden.)

In the iron industry all branches are well and remuneratively employed. On the silesianiron market orsines
is very firm, and tending upwards. On the 20th inst. the Breslau wholesale merchants have again raised the prices for wrought iron
and plates M. 5 p.t. The galvanising works are in brilliant emand plates $\mathrm{M} .5 \mathrm{p} . \mathrm{t}$. The galvanising
ployment.
Prices remain unchanged
The liveliness of the Austro-Hungarian iron market has been unfavourably influenced to some degree by the strikes of the styrian and for pig the demand is very extensive In the wrought iron branch orders are coming in most freely, and the latest rises have been introduced without any difficulty. The supply of rails for
the second line of the Karl Ludwig Bahn will be about 23,000 t. the-Convention-rail works have tendered at 96 fl . p.t. $\begin{gathered}\text { Steel } \\ \text { The }\end{gathered}$ works, foundries, and machine shops are in good operation. The
Kaschau-Oderberg Railway Administration has awarded to GanzRinghofor an order for 130 freight cars.
and a firm tendency being maintained. In the pig trado dinquiries and a firm tendency being maintained. In the pig trade inquiries
are increasing, while prices have a rising inclination. The iron and steel works are actively employed. The Vieille-Montagne
and
Company have raised the price for rolled zinc from 53f. to 54 f . per Company have raised the price for rolled zinc from 53 f . to 54 fr . per
100 kg . The statistic figures of the five past months give a pretty favourable result. ${ }^{\text {Import }}$ in pig was uncommonly high, being
$84,165 \mathrm{t}$. (against $64,730 \mathrm{t}$. in 1888 , and $33,428 \mathrm{t}$. in 1887 , for five

 German export has decreased of late, in spite of the works having after England, Belgium is the most likely to take the place of Germany in export business. Thus, the increase of Belgian export standstill being in itself, equal to a relapse, is in reality larger than stated by German official accounts.
unfavourable condition, and there is no change to note either in
The Siegen iron market has incrensed in firmness, and in all branches great activity prevails. In iron ores the output continues large, and prices have been again raised, M. 1450 being noted fo-
best sorts. The blast furnaces are best off, 9000 t . Spiegeleisen 20 p.c. - having been booked for America at M. 72 p.t., and for
inland 6000 t .- $10 \cdot 12$ p.c. - at M . 67 p.t. Blooms have also ob-
 out discussion. An export order for 14,000 t. 20 p.c. Spiegeleisen
has been aceopted by the United Siegerland Works. An order of has been accepted by the United siegerland Works. An order of
like importance has not reached this part of the country for some time, and is likely to create a further upward movement in the Siegerland pig trade.
The situation of the Rhenish-Westphalian iron market has
remained firm during the week- prices are remained firm during the week; prices are maintained without
exception, in most branches a rising tendency prevailing For exception, in most branches a rising tendency prevailing. For
Spiegeleisen M. 69 is noted for tho 10 to 12 p.c. grade, otherwise
the the pig trade has remained wittin its former limits. Forge pig and
basic are in
M. 58 to 59 red request ; Bessemer shows a rising inclination,
 Board o measure likely to prove highly advantageous to export.
pig, a
Bars are in as brisk demand as ever, and the orders booked are sufficient to keep most works well employed for the greater part of the year; inquiries from abroad seem also to be slightly increasing.
The plate mills continue to be in full employment. There is an impron
M. 10 p.t., noted in our last letter.
Foundries, machine and agon factories, are, on the whole, actively employed.
At the tatest tendering for steel rails for the Berlin Railmay
dministration, the lowest offers were M. $130,130 \cdot 50,133 \cdot 75,135$ further rise, equal to that of the raw materials. At a tendering -while a Rhenish works asked 141f. The Silesian Berg und Hültenmünnische Zeitung gives the
following statistical numbers regarding the output and consumption of coals in Germany from 1872 to 1886 . It was in tons-
1000 kg .:-

1866.
$58,066,59$
$2,660,291$
$8,65,240$
$51,961,549$
1,116

The consumption of brown coal has almost doubled within a export has decereased after a rise in 1884, and has become even weaker than it was in 1882. The brown coal pits of Bohemia have
the benefit of this increase in import. They sell their output as rown coal pits, is site of the comparatively he herman Although the growing demand for brown coal is chiefly for household supply, the consumption of pit coal is also vastly increasing,
owing to the enormous and constantly growing supply required for oam and general manufacturing purposes. Import of foreign pit coals has not perceptibly increased, while export has doubled since
1872 . For the last five years, however, a slight falling oft is to be be, per head, $1539 \mathrm{k.g}$. . in 1886 , against $1022 \mathrm{kg.g}$ in 1872 . It is
assumed that one-quarter goos for domestic, and three-guarters for industrial use. Thus, industry consumed, in $1886,40,000,000$ tons, against scarcely $24,000,000$ tons in 1872 , which shows an increase
of $66 \frac{2}{2}$ p.c. The total output of coals in Germany rose to $73 \frac{\mathrm{~s}}{\mathrm{~s}}$ mil-
mion tons in 1886 , equal to $201 \cdot 870 \mathrm{t}$. per day
"

The late Jonathan Prigstuan.-The memory of the late
Mr. Jonathan Priestman, of Shotley Bridge, near Consett, Durham, is to be perpetuated in a way which, when living,
he would heartily have approved, and which deserves more requent imitation. Mr. Priestman was formerly general manager
of the Consett Ironworks, and latterly an extensive coal and shipowner. He was always distinguished by his philanthropic
tendencies. Consequently the memorial is to take the form of a pormanent fund to enable nemecsitious persons belonging
to the neighbourhood of Shotley Bridge, and who are temporarily out of health, to be sent for a time to wome suitable
convalescent home. On Saturday afternoon to some onvalescent home. On Saturday afternoon last the various
friendly societies of the district organised a demonstration in aid of the above fund. The afternoon being fine large numbers attended,

AMERICAN NOTES.
(From our oven Correspondent.)
Ngw York, Joly 22tht, 1889. THE threatened great strike in Pittsburg has
been averted by a practical yielding of the firms been averted by a practical yielding of tho firms
on the question of as aliding saale. The workmen
and their families surrounded the work rendered it timponssible for ounded er noo- works and
men or deputy-sheriffs to obtain admission. The men or deputy-shoriffs to obtain andmission. The
workmen of the mills operated by Carnegie, Pbipps, and Co., in other parts of the oity,
throatened to quit work and assist their friends at Homestead, which is a s suburb of Pittrburg
The contest would have been a prolonged one It was bad gencralship to attempt to force non uni on labour into the mills at this time, when
oxcitement is running bigh on the question of
, wages. The puddlers' scale is being signed by
manufacturers all over the country, The is trade is too good to allow of any contest over the
wages question. Too much work is in hand and in sight to allow of any dolay or troublo.
Prices for the most part ne firm in all
Prices for the most part aro firm in all markets.
Autumn business is vory promisin Autumn business is vory promising, and much
winter bridge work for the North-Western States is in sight. Winter is the favourite time for
erecting bridges over streams in the Northern States, as the ice forms a good working basis There is still great commotion among the railroads all favourable. The latest private information cives the estimato at $475,000,000$ bushels. Th
Government estimato is $490,000,000$ bushols. The average exportation for the past ten years has
been $133,700,000$ bushels, and average production $445,000,000$ bushels. Home consumption has been $312,000,000$
The latest rumour is that a plan is under con sideration for a series of trusts among railroads
by which the difficulties which have beset the rairroad companies heretoforo will be surmounted Anything which promises relief from the present
condition of affairs will be considered earnestly The earnings of 117 railroads for the month o
Juno were $311,577,710$ dols, against $30,224,110$ dols in 1888. The miloage incroased from 76,000 to 7 rom $4 \cdot 48$ to 4.56 . Forcontage of oarnixg months gross increased
Farnings incroased to 197,460,793 dols, on thing like a concerted attack will be made by railroad int
Commission.
The copper situation is unchanged with 50000 ons awaiting sale. The Tamarack is atanding out for full prices. Western buyers are making large purchases of tin-plate for fall requirements The iron trade is stronger than thirty days ago, plato and pig iron. purchasos of structural an pathracite pigrnaoos is 34, poosent tons pror weetion and
por of bituminous and cork furnaces 80,000 otons sper
woek. The hardening tendency still continues and as southern companies have all advanced prices, northern furnaces will withdraw the quota.
tions recently mado to meet the southern cut good many rumours are afloat concerning com mercial combinations, the objective point of
which is to arrest the force of competition and which is to arrest the force of competition and
control production. Prices in mills and shops are control production. Prices in mills and shops are
firm, as most buyers now desire early deliveries. Electricians are crowded with work
The Board of Contron of the Bessemer Steel Rail Company, Limited, roport sales op to June
30th of about 575,000 tons rails in all this year ngainst 934,987 tons for the frost half of last. against sales last year to June 30th of 934,987 tons. This great falling-off bas not been attended with such serious results as might be supposed
Rail mills are turning their attention to billete Reil mills are turning their attention to billete
and slabs intended for use in various channels of and slabs intended for use in various ctannels of
manufacturing. So far this year the throe ocomons ; the Edgar Thompson, 134,700 tons. Much of this material is for repairing requirements.
We have over 150,000 miles of track, and upward of three-quarters of a million tons are needed for ron track in which repairs are 60,000 miles of with steel rails. The threatened strike in one of the Carnegio mills at Pittsburg was averted by
iberal and timely y concessions.
Sales of rails for the
Sales of rails for the week foot up about 20,000 quotations, 29 dols. to 30 dols. Old rails mire moving quickly. Sales wero made at 22.75 dols, 18 mols. There is wanted, Old steel rails are material. The activity in rolled iron continues nd all mills east and west have about as much demands of bridge builders are orowding in every day, and some of the orders are exceptionally large. The small buyers who always wait are
crowded out in the rush. Crude iron markets are irm everywhere. In the South the advance made urther advance is talked of, but will scarcely take place.
No. 3 , at $15 \cdot 50$. aron is offored here at 14.50 dols. oke foundry, at 16.50 dols 16 dols, ; and No. orresponding quotations for Pemeylvanin anthra
 o 15.50 dols. A fow companies are dolining to sell for autumn delivery at quoted rates, in the belief that demand and consumption is laying the
foundation for higher prices. We are looking for n advance in ocean freights, Wire rods are quoted bere at 43 dols. Steel ship plates are active at 2.25 , delivered. Heavy orders for be delivered from and after August 1st. A heavy novement is setting in for merchant steel, , shee nails. Quite a number of enterprises, calling for a great deal of material, bave come to market for supplies, and the effects bave been beneficial on
prices and on the confidence of halting investors. prices and on the confidenco of halting investorss.
Merchant iron is strong at 1.70 to 1.90 . Nails range from 1.70 to 1.9 .9 for cut in eostern markets car load lots. The hardware manufacturers and jobbers are doing an immense business. The rapid
filling up of the Far West is helping trade much.

Shop and factory and mine equipments aro needed.
Mill work of all kinds is abundant. Labour strikes Mill work of alkinds is abundant.
are not occupying much attention.

NEW COMPANIES

The following companies bave just beon regisGraydon Dynamite War Material Syndicate, This company was registored on the 20 th ult., ounders' shares and the remainder preferenoe shares, to acquire any inventions or patenta, for
all countries other than the United States of America, relating to guns, torpedoes, cartridg ges, Mmerica, relating to guns, torpedoes, cartridges,
ahells, and other projectiles, ce., the invontions of Lieutenant Graydon, late of the United States Navy. The foundrors' shares are to bo issued as
fully paid up, in consideration of property acquired cully paid up, in consideration of property acquired
by the company, but will not entitle the bolders o any dividend until 15 per cent. has been paid After such payment, the surplus profits available do into two equal parts nd balf to the holders of founders' shares. The first s
Lieutenant Colonel F. Baring, St. James' Paliceo C. Jones, 4, Tokenhouso-yard, E.C... Hä.Mïted
E. Bauman, 100 , Woest End-lano, Hampen

Thero is not to be less than two nor more than the subscribers. Any holder of preferponce shares is eligible as a director. Remuneration, $£ 200$ per annum each. Registered office, 8, Drapers.

Uruguay Great Eastern Railvay Company, This company was revistorod on the 22 nd ult., acquire from the Government of the Oriental Reputbic of Uruguay, or others, the concession to construct and work a railway from Monto Video
or Pando to the Lake of Merim. The subscribers are:-
Betzold, Bartholomew House, merchant share
. Besto, 38, Manry.-row, Gouso, merchant. Nownt.

The number of directors is not to be less than three, nor more than sevon; qualification, twontyppoint the first. The remuneration of the board sirector, to be divided as they may determine.

Edvard Bennis and Company, Limited. This company was registered on the 24 th ult., an agreement for the purchase of the business of a mechanical engineor carried on by E. Bennis, and the steam engines, lathes, patterns, stock-in-
trade belonging to the business, and all contracts rade belonging to the business, and all contracts
in connection therewith, and cortain inventions for which letters patent have been granted. The first subscribers are:-
E. Bennis, 365, Blackburn-road, Bolton, mecha.

w. J acountant Sutelifto, "Godiey, "Chëshiro, cëment manu
 . Hardman, 71 , K̈ng "ströt, M̈ancheneiter," soil
There is not to be less than three nor more than five directors. The first are J. E. Livesey, W. J. Sutcliffe, and W. H. Ronwick. Romuneration as
the directors may determine, but not to exceed the directors may atermine,
t2 2s. per meeting, and first-clase rat railway fares
trom place of residence. Registered office, Bamber-court, Boiton, Lancaster.

General Electric Company, Limited

This company was registerod on the 26th ult., with a capital of 20000 , dividod into 7000 first and 4000 ordinary shares of $£ 5$ each, to acquire and take over as going concerns the businesses carried on under the style of the General Electric Company, at 7 , Queen Victoria-streot, E.C., and 73, Bentham-road, South Hackney, undor the style of the General Electric Company; also the businoss carried on in Clegg's-court, Chapol-
street, Salford, Lancaster, under the style of the street, Salford, Lancastor, undor the style of the
Manchestor Electric Works Company, and the Manchestor Electric Works Company, and the proprietors of
scribers are :-
-Gustav Binswangor, 71, Queen Victoriastreet, J. H. Ward, 22, Lower P̈huiumöre-pihce, Kenising. ${ }^{2000}$

The number of directors is not to be less than our, nor more than nine, and the first aro Gustav Binswanger, Max Binswanger, and Hugo Hirst,
and two directors to be appointed by Jobn Heary Ward. The two directors so appointed are to be paid $£ 214$ out of the funds of the company in any year in which the profits of the company shall be
more than sufficient to pay a dividend of 10 per more than sufficient to pay
cent. on the capital paid up.

THE PATENT JOURNAL

 Condensed from the Journal of the Commistioners of
Application for Letters Patent

When patents have been "communicatod" the
name and address of the communicating party are printed tin

22nd July, 1889
ni,G66. Prebarisa Grisdisa Sorraces, 8. Dixon and Doryma Manchestor. H. Rawclifo and J. East. Manchester.
Atrccisino Locks to Trusks, W. Wakelam, 1, ,.28. ATrac
Willenhal.
 London.

 Leeds. Conkisa Bortuss, T. Bowskill and W. Durant,
 Haifax. Divino Yarss, \&ce, J. B. and E. Whitoley,
 Nall, H. Peck, London.
Colour Privtina, J.
Brackers for Displaviso Boots, de., J. R.

Yars Spinsivo Machinks, D. R. Malcolm,
Corsick.pols Rnvos, C. F. Grimmott and J.F.
4. Cosman, sirmingham. Foobso Bed, dec., A. A. Vernon, nda.

L

monton. 11,65 . Railway Rails and Cuarrs, G. Brocklebank,

 ind T. Breakell, London. A. Abol and J. Dewar,

 Anderson, London.

,670. BkLL Bvovs, J. Gibson, London.
London.

$23 r d$ July, 1889.

nibig. Carvisa Fork Guards, do., F. C. Askham,
sheffeld
she

 Del stata.) Machins, R. Wilson and J. J. Robins, Strefchivo Macuines, R. Clegg, Longsight.
TREADLE Motios, W, H. Doughty and LREADLE
Lownon
Lownes,

,695. VkLociredes, w. H. J. Grout and G. Watta,

Sin. Avio.

Crorcolur Beerive, w. F. B. Waterhouso,
Cry Heath.

Dheos Trknaiar, T. C. Sargeant, Northampton,
Trovera, A. Talt, Bath TRoougre, A. TTit, Bath
GLovzs for Cyouste, W. sykes, Horbury, near sominixa Electrucity, F. W. Engolbach

d. Sodion, de., T. Parker and A. E. Robinson, 11,708, 8uspenvoiso Trousers, M. Schnerb, jun.

 London.
11,71. BAFETY Fuse, J. Altschul and R. H. Punshon, Lovidon.
11, AkRep Mineral Waters, R. Punhbon and
J. Altchul, London.
 shoffield. Mithe Mitre and Bevel, v. Broughton, Bir-

London
1,719 . P

 ,7ard. Lencoonsion Toors, T. E. Thorpe and w. J.
 oomfield, London.
Skrvants' Lives in Window.

 United Stata.) (
 ondon.
 ind A. Cunnew, London. Scott and H. D. Smith, Bitor Sioorivo, J. Gardener, London.
Bcovino GRIIN, H. H. Lake.-(G. S.
 Prodeciso Frzse Water from Ben Water, H.
 raiction Clutor and Brakk, w. H. Batts,

750. Movvo 24 hth July, 1880.

Lond Mouno Curtains To and Fro, W. Holbrook,

Covers for Cookiva UTExsils, H. Inglis,
Cater hetal Matce-boxas, A. J. Thurman, Birming Aro Laspre, J. Kent, London.
Fish Forks, T. Gibson, Birmi
 Dyviroo, de., Mackine, J. Don, A. B. Duncan,
W. Don, Dundee.
 ADvERTISINo TABLET, S. Skerritt and H. Jones, hoffield. ATtichuent for Boors, R. R. Ambler, Keigh
 hatias. Lock-surs and Bouts, J. C. Bourgeaud, Bir

 SHups' Ascogose, J. R. Steele, Liverpool.
WhELIS for Roid VEHICLEs, H. Willams, Reiventro. Neckribs from Moviva Our of
R Posirios, E. H. Churchill, Bristol

 London.

$$
\text { 25th July, } 1889 .
$$

11,sol. Bonuro Watke, Heatiso, and Cookisa, J. A.
 On YDReLe Moron, J. Graham, E. D. Collicutt,
E. Thowburn, Newceaste-upon-Tyne. Lck Pणubry for Blisms, P. A. Woolidridgo,

11, Birminimp for Subrgnding UmerklLas, F. R. Bakor,

11,809. 8TRA
$8 t$. Neota.

11,810. Heatre-boxes and Gas Burners, J. A. Till
 P. Murray, Manchester.
11.812. FR.Miks for As riomatio GLassess, R. B. Robin-
 11,814. Reaulatina Tension of Bobbiss, J. Newton

 11,823. VELocirkose, G. Gilbert, Birmingham.
11:84. MuLes for SpiNsixo, J. Calderbank
 Cutting, Derby.
11,82. FLoors for Fowis' Housse, dc., C. A. Jones
 11, 829. Lawn Teswis Nets, J. M. Mcquade, Man 11,80. Portable. Pomping Apraratus for Bathe, D.
Noble, Londo. 11,831, SEPRAATiox of Dust from Air, J. Higgin. 11, B33, COCCLEERR for Elvectical Condectors, E. R.
 11,835. APPA
 11,838. Richeourg, Rravace) Slekprs, R. D. Ker.-(T. Kcr,

 11,852. Crocers, F. Froughton and J. Bennett, London.
 ${ }_{11} 11,855$. ARer, Livivicuat
 London. Her for Cabtridors, R. F. Walker,
 11,861. Conrads, London.
 Binstead, London.
11,863
B FTros-HoLe

 26 huly, 1889.
11,807. Resooviso 8cius. from Boilers, J. Platt and

 1, Powell, Birmingham.
11, 70 . Antiskric Lisicas for Curs, p. J. Deane, ${ }^{11}$ Lignd. Astringognt Enema Syrivog, C. J. Deane,

 11, B77. Spennycook, Glasgow, for Scisooss and SeEnRs, W. Bartram, 11,878. Chilesd Boxes or Bushes for AxLes, E. Birks,

 London.
11,882. Rosstivo Ores to Obtain Metals, 8. Trivick,

 11,887. CLuMEs for PAPRE and HowDers, dc, w. Jones, Bradiord.
11.888. Cowsinuction of Guss, J. Potts, Newcastle-लn-
TYne

 Lu, Sondon. Divisa Mechanism of Biovclus, R, R. and A.
Parker, London.

 11,897. DRAWwa Pzws, G. Mr.

 Ketchum, London.
11,903. SPRivas, J. Gilligan and A. TUney, London.

11,904. Watran-closers, E. Cubbon, London.
11,905. Perubctiva Combustion, J. Gilligan and A
 London.
in,on. Deastivo
Sturm, Germany.) 11,908, Garmontowss 11,90. Curs, C. RH, Avery, Loodon. London.
11,90. ConTIINED DookwAys, R. Haddan. - (M. Chiolen, Germany.

11,94. Platres for Voltaic Batteries, A. Reckenzaun 11,915. Consw-muluso Machises, J. E. Evans-Jackson.

of Pulexs, P. J. Holloway
 ${ }^{\text {Litandon }}$ Inda-Rubber Buyrer, de., A. Spencer London.
11,922. $\mathbf{C o}$
1,922. Composition for Coveriso Walls, G. F. Red
 H1,924. Indicativa stations in Cainiaoss, F. w.

 (J. B. A Aherton United States)
11,928. BoLr and Lock 11,,928. Botr and
United Statea.)

27th July, 1889.

 11,332. Powder Distributino Machinery, W. Walters
 11,934. Cooriso UTessin, H. and E. McClelland and
 ss, H. H. Taylor,
 Coventry.
11,9ss. IIzes for Fixing Coloves, \&e., R. Leigh, Farn-
worth ${ }_{11,939 .}{ }^{\text {Worth }}$ Rortecriso $C_{\text {ricker }}$ Bats, E. Whitehouse and
 ${ }_{11}^{11,942 . \text { Lemiti Curps, F. E. Blackmore, Reading. }}$
 H. H. Joorhouse, Bradford. Where
 11,948. Hester.isa of Wispow Ssshes, J. S. Lovell,

 London.
Lond Liensina $^{\text {Lind }}$ Tobscoo Pipes, A. J. Haughton,

 Liverpool.
1,963. Roorimo in Ricks, w. Dowland, Pontrilas.

 Belfast.
Hi, Mor Michines for Mouldiso Woop, \&c., A. Martin,
London. 11,97.1. Mortoo of Verricues, C. H. Maxwell-Lyte, G
Miles, and F. F. Ommanney, London.

${ }^{11} 11,974$. Putach ow, London. 11,974. PakPikisso ANrisertics, F. G. A. A. Roberts,
A. Shearer, and \mathbf{W}. B. Giles, London.

 11,979. ENAMkLLNo ARTicles of Corper, H. H. Lake 11,980. Pseviaitic Maching for Distributiva Lieuids,
G. F. Strawnon, London. 11,981. SkParatiso Forkion Bodizs from Cofre:
Berkies, w. A. Dieseldorf, London.

SELECTED AMERICAN PATENTS

404,394. Mectanism yor Cobitonina Traversing
 Claim.-(1) The combination, in a machine, of the
reciprocatng or truversing bed witt a p piston con which said piston reciprocates pivotted or hinged one end to the frame or foundation plate of the ma ma
chine. (2) The combination, in a machine, of the
 its end closed and provided with 1 ar erief valuere and an
which cylinder said piston reci procates, and in which the said cylinder is pivotted or hhined an ono ond to
the frame or foundation of the machine. (3) The combination, in a machine, of the reciprocating o
traversing bed with a piston connected to and moved traveraing ged with a iltwon connected to and moved
with sidd bed a cylindor in which said piston recipro
cates cates pivoted or hinged at one end to the rame of
the manhine, and sprigg so counterbalane and cause
said cylinder

piston connected to and moved with said bed, a
cylinder in which said piston reciprocates pivotted or hingeor an onicen do th thiston reciprocates proviveted or machine, springs to cause said cylinder to normally
assume an upright or substantially vertical position assume an upright or substantially vertical position
and means tordjust the tersion of sid aprings
The combination of the reciprocating or traversing bed, a piston hinged to it on antransverse axis, and a cylinder closed at one end ard hinged at or near the
other end dllso on a transerse axis, and in wwich the piston reciprocates, the said eylinder having an aper-
ture at or near one ond for the admission of air above tho piston when fully lowered. (6) The combination
of the reci procating or travering bed a p piston hinged of the reciprocating or traversing bed, a piston hinged
to it on a transverse axis, a cylinder closed at one end

404394]

and hingod at or pear its othor ond also on a trank
verso axxis in which the piston reciprocates, the sidd cyilnder having an aperture ant or near one end for for the
eyd
admission of unr admission of air above the piston when fuly lowered,
and a pressure relief valve at or near its closed end.

 air in the cyllipder. (8) The combination of a main
frame, a reciprocating traveroing bed, and a spring
continuly
 opposing gits movement and tending to bring $1 t$ to
contral and fixed position.

 the combination of a main supply pipe connected with
a source of water, and also of gas, and provided with

 evgise the veck of a a epphon bottlo and hold it against a nozze substantially us described. (2) In a device
for botting aecrated liquids, the conbination of a main

supply pipe connected with a source of water, and
Iso of gas, and provided with means by which one or both or them may be admitted to it, as deserired, nozzlee
connected with said pipe by an invertible connection connected with said pipe by an invertible connection,
and a yoke pivotted to the invertible connection, each nd a yoke pivoted dethe ivgerde the neck of a syphon bottlo and hold it akzinst a nozze, and provided with
a ring or hook adapped to engage the valve lever ot the a ring or rook adapted to engage the valve lever of the
bootto ind
bottlo is being filided, it oubstantinon posility pas describedile the 404,470. Vournerter, L. Daft, Plainfield, N.J.-Filed Claim- -(1), A voitmeter consisting of a coil, the core of wimich is opvovidem with and siotted oxto onsion nupport.
ong acam-bhaped armature within the slot, and having

404,470

uniform field of force, and is operated by repulsion in
acordance with the variations of the current pasing
 oxtension, the cam-shaped dramature eupported thererin,
and a slotted adjustablo polar extension G1, substan tially as described. 404,477. Expansible MaspRIL, P. H. Grifitn, Buffalo,
 with tapenng arbour A, provided with an internoily
screw. thrasded contral aperture and with parallel
dovetail longitudinnal grooves at the periphory of the wedge-shaped jaws D, having paralle poriphory g at their
heads, and the spindo. B, having the head Cand cirheads, and the spindio B, having the head Cand cir
cular nat ϵ, the whole being constructed to operate

404,477

substantinlly as and for the purpose stated.
pansible mandrills, the combination, with a
a
tapering
 rovoving, screw.threaded spindie eengaging said arbour
provided with have provided with a head having a circular base, and a re
movablo nut upon sadd spindle movabi nut unon said spindide, said toes engnging the
nocke in and
object stated. spinde, substantially as and for the

404,486. Fezd Roll fon Planina and Souracina
Machinks, L. P. Hoyt, Aurora, Ill. - Filed October 3112, 1888 . The combination, with a rotary shaft and
Ccead roll section arranged about the same, of a aet of springs interposed as convections between the shaft and rill secton and arranged in lines stangeotial to
ane shaft the compresion and expansion of ald sprigns during tone heteral movement. heroingefore set
forth, of the roll section being in lines langential to the shaft, substantially as and for the purpose de.
seribed. (2) The combination, with the hollow roil section provided with internaly y arranged abutmonts.
of the ehaft carrying a hub which is piovided with jaws, plates arranged for engging sith jaws, and
abutm abutments and springs held between the phates, sub-
stantially as set forth. (3) Δ chambered roll section

containing radial guideways combined with a hub held upon a rotary shaft and carrying springs which are
confined between tollowers that engago said guideways, substantinily as and or the purpose set forth
(4) chambered roll section containing radial gide ways, combined with ou hub held upon a rotary shaft
and carring springs which are retained bett

 and therein retained by
for the purpose described.
404,529. Sturyino. Box , L. C. S. Frick, Butfalo, N.Y. Claim.-The combination with the stufing-box $\mathrm{Al}^{\text {l }}$,
of the giand C , provided with a tapering cavity, the tapering bushing loosely fitting all around its sides in salid cavity, so as to leave an annular space, the flange
d, the shoulder k, the oval shaped packiog E, fittiog

In an oval cavity in the bushing, so as to leave a space
d between the two, and the ring
 settlement of the piston by wear, so as to preserve the
fit of all the parts, substantially as set forth.
 Claim, (1) A locomotive cab seat, comprising a
stationry frame, aspring platrorm having a yelding
connection with the stationary frime and adiutable cosnede tonsion, and a seat supporting frame a araveged o
as
 404,662

comprising a stationary frame provided with lateral
cars for attachment to a side box in a locomotive cab,
 arranged on the spring plato seat, supportiog frame
stationary frame sund hive tolesco suric stationary frame and have telescopic movement with
relation thereto, substantially as set forth. 404, 739. ExTavsi Mrcansis3, J. D. Smith, Murfrees-
borough, Temn. - Filed December 18th, 1888 . Claim.-The combination of the staci, the exhaust pipe, a pipe pivotted in the stack and having its lower
end movable in relation to the exhaust pipe, and a

mechanism for adjusting the lower end of the movable
pipe, the upper end of the movable pipe being conpipe, the upper end of the movable pipe being con-
tracted and
substantandilly as as deratercribed. and thereby partially closed,

A Masonese Mowstais is Colorano--A syndi-
cate of Chicago and Pennsylvantis capitalists have cate of Chicago and Pennsylvania capitalists have
Tound a hage mountain of almost hemmicaly pure
manganese of tron to
 is the spiegeleisen of commerce, and every manuin hise furmaces will know the value of these dis-
coveries.

