INSTITUTION OF CIVIL ENGINEERS.
Joun Hawsshaw, Esq., President, in the Chair.
Tar first paper read was "Description of the Loch Ken Viaduct, Ortparick Rail way, by Mr. E. L. J. Blyth, M. Inst. C.E.
This viaduct was situated on a curve of half a mile radius, and
 that the width of the waterray was increased from 2 wist th
the depth of the water at the point of crossing being $29 f t$ in summer., It consisted of seven openings-three of 130ft. each in the centre, semicircular arches of masonry, of 2oft. span, in the abutments; and two openings of 20ft. each at the ends, provided with flat cast iron
tirders. Owing to there being scarcely any current it was not girders. Owing to there being scarcely any current it was not
deemed necessary to set the piers in ite ine of the loch, but they was at a alight angle to the adjacent ones.
The foundations consisted of strong gravel, except in the case of the east abutment of the main openings, where a running sand was
met with, and in this instance e the lower courses of the masonsy two deep-water piers were each formed of two towers, 8 ft . in dia-
meter, placed 8 ff . apart, and connected above the water-level by semicircular arches of masonry. For each tower of the piers a cast
iron tube sti.
diameter, in six pieces, was sunk, the tubes being ectively. of hen the masonry was brought up to the surface the upper castings
of the tubes were removed. Arund the piers 4, ,hoo oubic yards of loose rubble stones were deposited, so as to produce an artificially
deeper foundation. The tubes, when placed in position, sank from 1ft. to 2 ft, by their own weight, until they reached the gravel and
sand, where they remained quite frm. This
the ormed a good test of
thificiency of the foundation, as the weight of the tubes on their narrow edges was equal to from 8 tons to 91 tons per square foot,
while the total weight on the foundations of the finished structure, including the moving load, was only about $6 \frac{1}{4}$ tons per square foot.
The method adoted in sink well sinking. Two plate iron screww pans, of an inverted cone shape,
were employed, one 2ft in in diameter at the top and 1 ft. deep, and
the onther. Were employed, one ${ }^{\text {the in }}$ diameter at the ther, which was only used for the harder portions of oep, the and
vation, 1ft in diameter at the top and 1ft. deep. There were open-
val ings in the sides, covered with leather flaps, top prevent the material
from escaping when the pans were filled. Three arms of round a long rod with a c cross handlo at the pupper end, the screow pans were
worked by four men, and when full were raise by takke. The larger pan raised about one cubic foot of material each time, and the
smaller one about one- 0 ourth of that quantity. Fy these means the abes were sunk in some instances as much as 1 in. in one day, the
minimum being 2in. per day in the case of the north tube of the
west pier, where large boulder stones were encountered, rendering necessary the use of a screw pick. When the tubes had been
lowered the desired depth concrete was deposited within them, varying from whas laid, the corton course being of granite in in latete blocks, for receiving the ends of the girders, which, rested on
wrought iron plates, , inid on thick sheets of vulcanised india-rubber,
to lessen the effect of vibration The bow and striugg irders were each 136 ft . 8in. in length, and were almost identical with a catenary curve, or the true eurve of equal
pressure. The sections of the upper and the under booms were identical. They consisted of a main plate, 24 inin. broad and tinis. thick,
and of two channel irons, each 8in. by tin. in section and tint thick, and ties, of the same section of channel iron, were rivetted. The and ues, of che same section or channee iron, were rivetted. The
trasserse girder for carying the roadway were 6 in. in dethat
the ends, where they rested on the channel irons of the under
 each side. Every alternate girder projected 2 ft, from which T-iron
struts were carried up to the crossingsof the diagoal bracing The
weight weight of the girders and roadway between the points of support
was 88 tonss and of the ballast (2in in depth) 14 tons, , making a
then
 of the upper boom was 33in, and of the under boom, exclusive of
rivets, 2atini. The distance betwen the centese of gravity of the
upper and the underibooms was 17 .04in. The tensile straiu on the upper and the underibooms was 17.04in. The tensile strain on the
under boom amounted to 4.04 tons per inch, and the compressive
utrain on the upper boom to $3: 35$ tons per inch. When the whole strain on the upper boom to 3.35 tons per inch. When the whole
of the load was upon the girders there was no compressive strain
on any of the diagonall, but there were tensilo strains varying from on any of the dianonals, but there were tensilio strains varying irom
$3 \cdot 4$ tons to 7.5 tons, or , qual respectively to 9 cwt. and 1 ton per
square inch of section. The author considered that the bow-and-string girider possessed
advantages over the Warren or other lattice girders, with parallel
 great labour and waste of material, and as, owing to the great
variation in the strains on the diagonal, it was necessary that they
sor shaulo be of varaing din
different sections of iron.
The girders were built in position on staging, and the greatest
amount of deflection of any one girder from its own weight was \$in. placed in the centre of each spative engine. weighing 34 tons, was at 1 miles an hour, and then at 25 miles an hour, the deffection
amounted to from 1 ini. to tin. in each girder, there being no peramounted to from stin. to to ini. in each girder, there being no per-
ceptible difference in either case. Finally, when four engines were
coupled together, so as to give a load equal to 1 ton per lineal foot coupled toge ther, so as to give a load equal to t ton per lineal foot,
the deflection only amounted for fom to sin
It was stated that the total cost of this viaduct had amounted to It was stated
about $£ 13,000$.

The second paper read was "Description of the Centre Pier of
the Bridge across the river Tamar, at Saltash, on the Cornwall Railway, and of the means employed for its Coustruction," by Mr.
R. P. Brereton, M. Inst. C.E.
This communication embraced, in a narrative form, a detailed
ccount of the preliminaries connected with the Albert Bridge, which crossed the reiver Tamanar wheneected with was onlye Al, Aloort. wite Bridge, with
whit precipitous banks and a depth of water to the surface of the mud
of fott A dyke of green stone trap interected the clay slate
formation at this point and croped out to the surface ahove the water on the western bank of the river. It was ascertained, by
borings made in the bed of the river, that rock extended from the
 baly be built, by means of one hundred and seventy-five borings
made within a clinder at thirty-five different places., ver an area of
moft
 erect one pier only in the deep water, instead of three, as would
have been neecessary for the spans required by the Admiralty a and
 son nine of 69 ft . 6 in. ; the total length, including the adjoining land
mopening, being $2,20 \mathrm{ft}$
oThe centre or , deep water pier, intended to carry the weight of The centre or deep water pier, intended to carry the weight of
one-balf of each of the two main spans, consisted of a column, or
circular pillar, of solid masonry, ried up from the rock foundation to above high water mark. Upon
this were placed four octagonal columns of cast iron, 10ft. diameter
carried up to the level of the roadway, which was 100ft. above high water mark. Upon the tops of the columns cast iron standards were
fixed, to receive the ends of the tubes and chains which constituted the trusses of the bridge. The weight at the bottom of the
masoury foundation was about 9 tons per square foot, increased, masoury four
when the brid
In the construction of the masonry pier a wrought iron cylinder of boiler plates, 37 ft . diameter and 90 ft in ling length, and open at the top and the bottom, was sunk through the mud of the bed of the river to the rock. The water was then pumped out, and the mud excavated
the masonry being built up inside, and the cylinder above the ground afterwards removed. It was expected that, by forming a bank round the cylinder after being sunk to the rock, sufficient water-tightness
would be ensured for getting in the masonry. To provide, however, for the contingency of excessive leakage, the cylinder was so constructed as to admit of the application of air pressure. As the
surfaceo of the rock, although very irregular and raged, had a general dip to the south-west, the bottom of the cylinder was formed with a corresponding bevel, one sido being 6fit. Longer than the
other. A dome, or lower deck, was constructed inside, at the level of the mud, and an internal ccylinder, 10ft. in diameter, open at the top and the botom, connected the lower with the upper deck of the
cylinder. The 6 T-ft. cylinder, previously used for the borings, was
fixed eccentrically making an inner skin round the obtom edge below the dome, was connected with the bottom of the 6 -ft. cylinder by an air passage
Details

Details were then given of the construction of the larger cylinder and of the mode of launching and floating it to its position. Whan
accurately accurately adjusted over the intended site water was gradually let
in, unt
rested over towards the east about 7 ft . 6 in. By letting water in upon the
dome the cylinder forced its way through the obstructions at the bottom were then set to worrk, and the greater part of the mud and oyster
shells, which filled the compartments of the air-jacket at the bottom, was cleared out anc the irregular surface of the rock excavated
the bottom of the cylinder being now 82 it. below high water. Sub sequently a leak having broken out through a fissure in the rock on
the north-east, or higher edge, considerable difficulty was e cow i enced in maintaining sufficient pressure with the air-pumps to keep
the water down and the bottom dry. The leak was at length reduced by driving close sheet piling into the fissure. When at its
full depth the cylinder was 87ft. 6 6in. below high water at the lowest place, and then a hemp gasket was worked under the edse of the
cylinder, all round the outside, to assist its water-tightwess. A ring
and built in the air jacket; and a bank of clay and sand was deposited
round the outside of the cylinder to compress the mud. When the water was pumped out of the body of the cylinder below the dome,
and the excavation of the mud was being proceeded with, a leak broke out, and the water overpowered the pumps. Additional
engines and pumps were provided, and efforts were made to diminish the leakage, with varying success; but as it required four pumps to
keep the water down to $54 f t$, recourse to air pressure in the body of the cylinder below the dome became imminent, and preparations fo upward pressure against the dome and cover, the 37-ft. cylinder was loaded with 750 tons of ballast, in addition to its own weight of 290 tons. The pumps were then got into good order, and, by continue
pumping, succeeded in keeping the water down. The mud was ex cavated, the cylinder below the dome securely $\begin{aligned} & \text { boreded acrosss, and th }\end{aligned}$ in cement, in the body of the cyllider was commenced As soon as
the masonry reached the level of the air jacket ring it was thoroughly bonded, the plates of the air jacket being cut out as it proceded.
Upon the top of the bonding course, two courses of hard brickwork in cement were laid, making a perfectly water-tight floor over the jacket, where the leak occurred, was taken yownanand the leak was
diminished by additional sheet piling. The leak was discovered to have broken out at the same fissure as before, and had torn away the the cylinder, but the masonry itself was undisturbed.
The next operation was to draw off the water above the dome nd remove the ballast, to allow the masonry to be proceeded with, ivhich it eventually did at the rate of from fitt to o 7 it. in height per
week. When it was 46 ft . in height the influx of water was entirely plinth the upper part of the cylinder was unbolted at the separate
joints, and floated to the shore. oints, and floated to the shore.

March 11, 1862.

Jond Hawrshaw, Esq., President, in the Chair.
Tre paper read was "Description of the Delta of the Danube, and
the Works, recently executed, at the Sulina Mouth," by Mr. C. A. Hartley, Assoc. Inst. C.E.E.
In the autumn of 1865 by virtue of the Treaty of Paris, the
European Commission of the Danube, consisting of representives European Commission of the Danube, consisting of representatives
from each of the seven contracting powers, was charged to execute
the works necessary below Isakcha to clear the as well as sches anjacent parts of the sea, of the inmediments shich acted as chief enginere, was authorised to levy rates, to cover the
expense of such works, on the express condition that the flags of all In the preliminary studies of perfect three prialiy.
Incipal branches and mouths of the Danube, advantage was taken of the charts made by
Cattain Spratt, R.N. C.B.; and aided by these, and by the
author's own surveys and personal investigations, a brief description was given of the chief characteristics of the progress of the
tiver through its delta. The Danube after a cours of 1 . during which it received more than 400 tributaries, and drained wide and 50 ft . deep, the Bulgarian town of Isakcha, situated on the right bank, at 30 and 40 English miles respectively below
the large corr exporting ports of Galatz and Ibralia. Isakcha was the Sulina, and the St. George branches, and 58 miles in the Kilia, line. The head of the delta was reached, , at Ismail Chatal, or Fork,
15 miles lower down, and here the fresh waters divided, never to reunite ; $\frac{12}{2}$ ths of their volume passing in an easterly direction by the
Kilia branch, and the remaining the Toultcha branch. At 11 ninles below Ismail Chatal this latter branch separated into two channels, the St. George and the Sulina
discharging respectively
2^{2} ths and
z^{2} the
A short account was then given of the three cbannels, from which wwelve distinct mouths, only navigable for fishing vessels: that the river portion of the St. George offered no real obstacles, having an
average width of $1,200 \mathrm{ft}$, and a minimum depth of navigable Channel of 16ft., at seasons of extreme low water ; and that in the from the many intricate windings and numerous shoals - the navigable width being rarely more than 30 oft, and the depth over
the shallows, during seasons of low water, varying from 10ft. to 14 ft . The delta proper was described as seing bounded on the north by
the Kilia branch, on the south by the Toultcha and St. George comphes, and on the enst by the Black Sea ; the enclosed space
compring an area of 1,000 squares miles, and forming a triangle of which the Ismail Chatal was the western apex, and the sea coast,
from the mouths of the St. George to those of the Kilia, the
base. During extraordinary high floods the delta, being unpro-
vided with artificial banks to contain the swollen waters, was almost entirely submerged; whilst at seasons of drought its banks were elevated from 1015
St.
of
wat waters. Adjacent to the months by variations in the upland except when influenced by the wind. During high floods the
inclination of the surface water of the Sulina branch was 3 in. per mile, while during extreme low water it did not exceed lin. per mile.
At tim velocity of from two and a half to three miles an hour, the Danube before it divided at Ismail Chatal, delivered a volume of water equal to nineteen and a-hali millions cubic feet per minute; while in the
dry season, when the current was reduced to one mile per hour, the How did not exceed seven and a-half millions cubic feet per minute. At times of extraordinary floods, such as that which occurred in volume of water then delivered amounted to sixty millions cubic leet per minute, or eight uimes the quantity discharged at ordinary when the witers was sace surcharged they carried torations, that of one cubic inch of sedimentary matter, supposing it to be solidified into coherent earth, per cubic foot of water, and that not more than one-fortieth part of this proportion was transported when the floods
had subsided. Thus, at the former period, upwards of 600,000 cubic yards of diluvial detritus passed into the sea by the several mouths 15,000 cubic yards. The results of the the latter not more tha in a great degree, for the changes which took place from time to time in the position and extent of the sand banks forming the bars across the several mouns. At times of high floods these bars were and the deth over the diminished, their distance from the shore and their height being much influenced by the direction of the prevailing winds. The depth of the sea opposite the delta de-
creased to the north; thus, at three miles from the land, the depth was sixteen fathoms opposite the St. George's

Dhoms opposite the sulina and Kilia mouths.

Daring the interval from 1830 to 1857 the shallows of the Kllia combined with the uncertain and changeable nature of the many branches issuing from the Wilkov basin to the sea, and the distance induced the author to form an unfavourable opinion of the Kiliain spite of its possessing the best river channel-and to recommend,
in preference, the improvenent either of the St . George or of the Sulina, where the sea depths were greater, and the advance of the two latter branches the author arrived at the conclusion that, in nearly every respect, the St. George offered decided advantages over
the Sulina. It was true that, in order to reach the Kedrilles bar of he St. George, double the length of works would be necessary; bu When once the sand-banks wero passed the greater sea depths good navigable depth at the sea entrance. The St. George's mouth was situated at the most salient angle of the delta, was nearer to the Bosphorus, by eighteen nautical miles, than the Sulina, and was more
favourably placed with regard to the safe mancouvring of vessels during N.N.E. winds
of each of the three princinal difference of opinion as to the merits authorities, who had studied the question on the ground, agreed in recommending that, whichever mouth was chosen, the system of improvement should be that of guiding the river water across the
bar, by means of piers projected from the most advanced dry angles
of the of the mouth; so as to concentrate the strength of the niver current
on the bottom of the proposed improved channel , of an prolongation of the river banks into deep water. After considerable the Sulina by guiding piers of a temporary character, in order to five the speediest relief to the navigation in the cheapest manner but it was distinctly guaranteed that this should not prejudice the author then received instructions to provide works which, for the expeniture of a sum limited to $£ 80,000$, six to eight years. This duration of time was based on the assump-
ion that, during such an interval, either the St George would be of the Dred or in might be considered expedient to limit the improv

$$
\begin{aligned}
& \text { of the Danube to rendering permanent the provisional works. } \\
& \text { The designs for the provisional wworks were then matured ; }
\end{aligned}
$$

it was found, in practice, that the cost of strong timber cribs, to bo loaded with stone and sunk at intervals of 2uift. along the line of
works, would exceed the original estimate, choice was finally made of a structure 'composed of timber piling and pierre perdue, sur-
mounted by a timber platform 14ft. wide, strengthened occasionally by solidly constructed cribs of the same width. The works were commenced on the 21 st of April, 1858, a temporary staging, fixe
on piles, being always run out from 200ft. to 300 oft. in advance of the permanent pling. This staging supportud nine crab engines,
 fine sand of which the bottom was composed. The piles were then cross - ties, the whole bey doule longed by two thick trampieces and planking, at 4 ff . above the level of the sea. From this permanen The daily rate of piling on the side next wher, was 20 lineal feet and as soon as this length of sheet piles was completed stones wero
thrown down to protect the footing in the sand, which was liable to be wasked away by the action of the sea. This scourin
action of the sea was so serious, when the skirt of the bar win reached, that it threatened at one time to demand for the completion of the works double the quantity of stone originally estimated. Several plans were tried to reduce its pernicious
effects. That eventally adopted, and which was perfectly
successful, was to advance the open pile work with succossfu, wition, and then [to pave the proposed seat of the pier
sible expedition work with wittac sones, delivered from barges. This pavement withstood the tion of the sheeat and offered no great obstruction to the penetrabeen driven 1 fft. into the ground, after having been forced through
fit. of rubble stone. The estion scribed as being a solid mass of closely-packed third-class rubble resting on a broad base, and narrowing upwards at slopes varying from 2 to 1, near the pier heads to 1 to 1 , and $1 \frac{1}{2}$ to 1 near the shore,
until slightly below the leal against the close pilin. The time occupied in the actual construc tion of the piers was thirty-one months, exclusive of three winter montws each year, during which the Danube was frozeu over, and possible to work, north pier was $4,63 \mathrm{fft}$, that of the south pier was $3,000 \mathrm{ft}$, and the their construction 200, they were built varied from 6ft to 20 ft . employed, and the cost had not exceeded ten guineas per lineal foot. delivered in place varied from 4s. to 58 . per ton; the oak, used for the longitudinal and transverse timbers and for the planking a fender piles, cost 2 s .3 d . per cubic for , per cubic foot. The work men, of whom there were generally 300 , were composed of men be-
longing to more than ten different nations. Labourers were paid 25. 6d. and carpenters 4s. 6d. per day.

The chances which had taken place at the Solina mouth, consequent on the projection of the piers, were then noticed. The
depth on the bar, since the year 1829 , had varied between the
extremes of 7 ft and and 12 ft , the least deppth occurring during the
subsidence of high water floods, and the greatest when the deposits
lodged by those floods had beeen dispersed by autumnal and winter loded In A pril, 1858 , when the works were commenced, there Gales. In April, 1858, when the works were commenced, there
Was navigate channel only 9 ght doep over the centre of the long
shoal forming the Sulina bar. In November, 1859, when the works hhoal been hagrought to a close for the wiorter, the north pier had
hadvaced $3,000 \mathrm{th}$ and the south pier 500ft, and then the depth on
and tho bar was 10 ff ., which was increased to 1 AtL , by the following Δ priil, although the works had remained stationary. Hopes were conse-
quenty entertained that the action of the north pier would, in itself, be sufficient to maintain an improvement; but theso expectations were disappointed, as in August, when the north pief had
reached a length of $4,600 \mathrm{ft}$, the depth on the bar had diminished to

 pier the good effect of concentrating the whole force of the river
current directly on the bar became at once apparent. Thus on the current directly on the bar became at once apparent. Thus, on the
30th of November, 1860 , there was a navigable channel of 12 ft , and
 of the ice in the river, and the furious descent of the extraordinary
high floods, whioh caused so much damage at Galatz, and submerged the whole delta; but this time, instead of the depth on the bar being
diminished, the swollen waters confined between the two piers and directed in a proper line fairly swept away the remains of the bar directed in a proper une fairly swept away the remains of the bar
on the the south bank and into deep water. From that time to tee
present the depth had never been less than 16 ft., and frequently it
 the sum that had been paid in one year only for lightening vessels over the bar, and without taking into account the excellent shelter
which had been afforded, and the great risks which vessels formerly ran of being wrecked off the entrance.
In conclusion the author expren
In conclusion the author expressed his gratitude to the members
 allowed to prevail, could not intitain, whotose enlightened policy, if merce of all nations the best possible means of water communication
with the rich corn-growing countries bordering the shores of the
Lower Danube.

OCEAN MAIL SUBSIDIES.

THE return just issued of the estimated expense of the Post-office prom the tholl of last year, and $£ 153,881$ from that of the year 1860-1. The reduction on the present occasion it ent of the duear to
1the isappearance of the charge for the Galway contract. Annexed the disappearance of the charge for the Galway contract
are the several items, which make up the total of $£ 915,897$:-

 Greytown and Blewfelids

Estimate or lust yeartally omitted from the

 Aus paid by the eolonies

 Aden and Bonbany
India, by alternate

Total for contrnc
$\begin{array}{lll}72,700 \\ 26,058 & \text {.. } & \begin{array}{l}94,375 \\ 22,000\end{array}\end{array}$
21,000
6,000 $\overbrace{2}^{21,000} \begin{aligned} & 6,000 \\ & 0,00\end{aligned}$
$\begin{array}{llll}8,000 & \text {.. } & 6,000 \\ 5,410 & & 50,105\end{array}$

Total charge for the
packet sorvice .. $\begin{aligned} & \text { Post-office } \\ & \text { Department } \\ & \text { D. }\end{aligned}$
$\overline{\text { 2911,092 }} \overline{\text { 2091,095 }}$

- Ot this sum, taking as a bais the cost of the ferrice when that service
does not exceed the amount of the Ocean pootage, and in ill other enes the

Thr Patexs Laws,-Mr Beecroft, M.P., of Leeds, has presented a petition from residents in that town, praying for an amendment of
the patent laws. the patent laws.
ThE Mans.-A memorial from the most eminent firms in the
American trade has been addressed to the Postmaster-General, praying that, on the arr ival of the Δ merican mnils at Queenstown, and them on to Dublin, and
bring them to Holyhead.
was kept open, and the door leading to the adjoining room shut,
the testing spirit lamp showed tho natural negative. When the
window was closed and a small chink (an inch or less wide) window was closed, and a small chink (an inch or less wide) opened
of the door, the indication quickly became positive. If the door was then shut, and the window again opened, the natural effect was
slowly recoered. A A current of air, to feed the lecture room fire, was
lis. Thund entering by either door peated many times without renewing the positive electricity of the adjoining room by turning the machine afresh.
in an open of place, or or even by a water dropping nozzle outside, two or three feet from the walls of the lecture room, was generally on these occasions positive, and the earth's surface itself, therefore, of course
negativs to conclude is due to a paramount tinfluence of positive electricity in higher regions of the air, notwithstanding the negative
electricity of the air in the lower stratum near the earth's surfate On the two or three occasions when the in-door atmospheric electricity, was found positive, and, therefore, the surface of the
floor, walls, and ceiling negative, the potential outside was certainly positive, and the earth's surface out of doors negative, as usu
in fair weth
- I find that steam from a ketle boiling briskly on a common firo is an
 in such circemmtances, as is to bo expected from Faraday's investigation, not consisiderable. Commot air loses nearly all its resisting power at some
temparature botween that of boing water and red hot iron, and conducts
continuouly continuously (not , as I ibeliere, is generaly suppowed to be the cose, by dit
ruption) gr eat ease as to dischar
pletely in a tow seconds.

——

MANCHESTER LITERARY AND PHILOSOPHICAL

 SOCIETY.J. P. Jorre, LL.D., F.R.S., President, in the Chair

A papan by Professor W. Thomson, LL.D., F.R.S., Honorary Ity To rind that atmospheric electricity is generally negative within
doors, and almost always sensible to my divided ring reflecting electrometer. I use a spirit lamp, on an insulated stand a few fee from walls, floor, or ceiling of my lecturo room, and connect it by
a fine wire with the insulated half ring of the electrometer. A decided negative effect is generally found, which shows a potential to be proto the earth by a differencen ected with the tlame, negative relatively of poteartials (or electro motive force) between two wires of one
metal cone I have tested that the spirit lamp pives no sidio-electric of Daviell ing to so much as the effect of a singlo cell. The electrio effect observed is therefore not due to thermmal or chemical action in the
flame. It cannot be due to contact electrifications of metallic other bodies in conductive communication with the walls, floor, or
ceiling, because the potentials of such must alwhes difference of potentials produced by a single cell. I have taken care produced by electrierved nations for lecturem anything that can be Thus 1 observe generarlly in the morning before any electrical ope-
rations have been performed and find ord machine has not been turned since the previous Friday. The effect, when thero has been no o artificina disturbance, has always
been found negative, except two or three times, sinpe the middle of been found negative, except two or three times, since the middle of
November; but trustworthy observations have not been made on more than a quarter of the number of days,
prime conductor, or a slightrity charged Leyden phial, with its inside coating positive put in connection with an insulated spirit hamp, is
enough to reverse the common negative indication. Another very striking way in which this may be done is to put a negatively charged Leyden phial below an insulated eame a common gas
burner, for instance). The flame, becoming positively electrified by induction, keeps throwing off, by the dynamic power of its burning,
portions of its own gaseous matter, and does not allow them to be portions of its own gaseous matter, and does not allow them to be
elctrically attracted down to to Leyden phial, but forces them to non-conductors, ponderance of positive influence to the testing insulated flime a pre- (hat
is to say, is to say, re
this flame).
Half an hour, or often much more, elapses after such an operation before the natural negatively electrified air becomes again paramoun That either positive or negative electricity may be carried, even through narrow pasageses, by air, 1 have tested by turning an electric
machine, with a spirit lamp on its prime conductor, for a short in a room separated from the lecture room by an obligue pime about two yards long, and then stopping the machine and extinguishing the lamp, so as to send a limited quantity of positive elec was kept open, and the door leading to the adjoining room shnt 2 oft. long, 3 it . 4 in. wide, and 4 tin. thick. The plates on each side of of
the narro ness. The two large upper and lower plates were each secured by
ifteen fifteen 2 -in. . bolts, fastened with powerful screw nuts at the back,
and the two centre plates by eight boits of a similar deceription Theso plates were fastened to 1 -in. wrought iron plates, representiong wrought iron 10 fit. Tong by gin. wide and fin. thick. The entripe mas was supported by ribs representing the sides of a ship, 18 inin. deep and 1 in. apart made of 2 in. plates secured by angle irons 4 in. by 4 in., and
Pin. thick; while the back ofthe ribs was still further strent four horizontal strips of wrought-iron, 12 in. wide by jin. thick The armour plates were not wrought, but rolled by Messrss. Brown
and Co., of Sheffleld, and the tonguing and grooving by which the Warrior's plates are dovetailed together was not resorted to in this instance, the plates being planed fat at their edges, and entirel
dependent on the bolts for keeping their places. Tho whe was an admirable piece of workmanship, and outwardly seemed strong enough to resist anything.
The experiment seemed to ex.
iron mad of the kingdom. Amons and ino others were the Duke of Somerset, Lord
Mours prest Mountharles, Lord De Grey, Lord Clarence Paget, Sir William Armstrong, Sir John Hay, Admiral Grey, Mr. Rolt, Captain Ford,
Mr. Scott Russell, Mr. Lidird, Mr Mare, Mr. Samndh, Mr. Fairbairn
and Mr. Thomas Fairbairn, Mr. Landon and Mr. Thomas Fairbairn, Mr. Langdon, \&c. The target was placed
close on the right of the Warrior target, which, all rusty and dinted here and there in rough deep holes, showed signs of the punishmen it took so bravely last October. The guns, six in number, were
placed at a distance of 200 yards from the target, and consisted one 120 and three 100 -pounder Armstrong guns with two 68 -pound guns for solid sho
with 12 lb . charges, and shells filled with sand, weighing 104 lb each, and with two 68 -pounder guns, with 161 lb . charge, and shells
filled with sand weighing 501 lb .each. These five guns were fired at minute intervals, striking the target on the left-hand of the port
and sending the fragments of the broken missiles and sending the fragmens
terrific hum through the nir . Not much insterest was felt in the first attempt, as, judging by all previous experiments, it was thought
almost certain that no damage could have been done. Yet too much to say that, to those accustomed to witness the effect of
sand shell on targets of such strength and magnitudes. sand shell on targets of such strength and magnitude, this first result
was considered conclusive as to its weakness. An examination after these five shots were fired showed that no less than eight of the
main boltheads which secured the plates had given way. This was such a series defection that it could only be accounted for by sup-
posing that the screw nuts fastening the plates at the back of the target had been drawn up too tight. The nuts were accordingly
slackened down, and a packing of laynard put between the armour plates and screw nuts of many of the chief bolts, to deaden the con cussion, and the trial was proceeded with. The same guns were
again fired with the same charges, but this time with live shell, the Armstrongs having a bursting charge of 81 lb ., and the 68° a charg with a tremendous crash, and four more of the armour-plate boll were broken at the back of thin target smapping off as short as if they
were cast steel. The indent made by the shells was not tery wero cast steel. The indent made by the shells was not very much,
though apparently more than was made by the same missiles on the though apparenty more war was nade by ho same missiles on the hammered plates of tope warrior target and ond both the blows of the
68-poud latter velocity of the smooth-bore over the Armstrong guns. The a blow velocity of 1,100 it. per second, and maintain thi $1,650 \mathrm{ft}$. per second, but, after the first 300 yards, lose their velocity Under this experiment one of the plates, which had been prang struck by the sand-shell on the left of the port, had buckled out about an 1 inin, and the whole appearance of the target showed that
it could not stand long. The firing was then continued with one 120 -pounder Armstron with a 20 lb . charge and 140 lb . solid shot three 100-pounders, with 14 ILb charge and 111 lb , solid shot, and
one solid 8 -popunder. The result of this The 140 -pounder struck with a terrific blow between the edges of the top and middle plates, making a deep dint. The escond struck
on precisely the same spot, deepening still further the dint, breaking the fibre of the iron, and cracking the top and middlo plates up to the
nearest bolt-heads. The third shot struck in the middle plate, but the nearest bolt-heads. The third shot struck in the middle plate, but the
fourth hit again exactly in the same spot where the first and second had
gone before, and with a crushing noise went right through the
target, leaving a rugged, large, irregular hole, which, if made in a target, leaving a rugged, large, irregular hole, which, if made in a
vessel at or near the water line, would have caused a formidable
leak. The shot penetrated not only the plate, but the strap of leak. The shot penetrated not only the plate, but the strap of
wrought-iron behind the bolts, 9 in. wide and 3 in . thick, and beyond wrought-iron behind the boits, 9in. wide and in. thick, and beyond
this again bent one of the main ribs outwards. The fracture of the
iron showed that the iron itself was of excellent quality, but there was evidently not the same compactness that is produced by hamwas evidently not the same compactness that is produced by ham-
mered plates, and the rust was distinctly visible between the layers
of the iron. Eight more bolts, too, went at this trial, breaking as of the iron. Eight more bolts, too, went at this trial, breaking as
short as the former had done, but only one of the rivet heads started. It was an extraordinary piece of ill-luck for this target to get three shots in succession in its weakest part, but so it did actually happen,
and the last went through. The next trial was made with three
100 100 -pounders throwing solid cast iron shot of 200 lb , with 10 ll . of
powder. These all hit in the left-hand side of the target, buckling powder. These all hit in the left-hand side of the target, buckling
out the plate they struck till the ends projected nearly a foot, and destroying all, or nearly all, of the remaining bolt-heads in the other
plates. This ended the frst portion of the experiments, which,
when against targets, are always when against targets, are always made at Shoeburyness with shots of
increasing weight fired singly, and then the same charges fired in
salvoes together. But it was seen, after the last trial, that it was increasing wetghr ired singly, and then the same charges fired in
salves together. But it was seen, after the last trial, that it was
useless to proceed with the salvoes; for, as nearly all the bolt-heads useless to proceed retaining the plates had been broken off, it was evident that the first salvo would bring the whole mass to the ground. The firing was,
therefore, discontinued, and the target thus practically struck its flag therefore, discontinued, and the target thus practically struck its flag
at the conclusion of the first half of the experiments. The trial, on
the whole, was considered unsatisfactory. It was admitted on all hands that the target as constructed had most undoubtedly failed.
But the chief "iron men" attributed this failure partly to defects in the mode of fastening, and partly to the plates used being rolled
instead of hammered. The supporters of the teak backing other hand, attributed the failuperters of the the the absence of thimber
between the armour and the skin, to distribute the force and deaden between the armour and he skin, to distribute the force and deaden
the jar upon the plates and their fastenings. These gentlemen
seemed to have much reason on their side when they pointed to the
Wer seemed to have much reason on their side when they pointed to the
Warrior target, which had gone through every ordeal during nearly
two days' pounding, and was still, beyond all comparison, more
perfect than the iron one, which had broken down in little more perfect than the iron one, which had broken down in little more
than an hour's fring. There is no doubt but that Mr. Fairbairn's
target was disproportioned in the strength of its fastening. It was target was disproportioned in the strength of its fastening. It was
suggested that a "washer" between the screw heads of the bolts and
the armour plating of a softer metal, such as lead or copper, might
have saved the bolts themselves from breaking, and that a packing the armour plating of a softer metal, such as lead or copper, might
have saved the bolts themselves from breaking, and that a packing
of tarred felt between the plates and the ribs would have deadened of tarred felt between the plates and the ribs would have deadened
the concussion as much as timber. These may be worth trying,
though we think, with all deference, that nothing cheaper and though we think, with all deference, that nothing cheaper and
more effectual will be found than the timber backing. The chief value of these experiments, however, is not so much to
ascertain the amount of iron required to resist the shot as
to find out what description of fastenings will keep the plate in its position when repeatedly struck. The fastenings are, in fact,
the only great difficulty in the way of making perfectly invulnerable might do the work. We don't say they would, but as every other
description of bolt has been tried, and failed, it would be worth while experimenting to see what these could effect. They might be fastened at the back by driving an iron nail-shaped wedge into
the centre of the rope, and then fusing and welding the wires into every other at Shoeburyness, the much greater force of the blow
inflicted by the old smooth-bore 68-pounder over the Armstrong shot of double its weight was strikingly evident. This is partly
due to the much greater initial velocity of the smooth-bore guas,
and and partly to the fact that the conical point of the Armstrong
shot in nearly all cases breaks off short on striking the target.
A gainst iron targets or ships conical shot are about the worst Against iron targets or ships conical shot are atrout the worst that
can be used, and, both to realise the full effect of the Armstrong gun and to test to the ntmost the resistance of the target, it would also be as well if the Government were to test a target lined with
only nine inches of teak, according to the plan on which the new
iron frigates have been ordered. It would be rather a pity to find iron frigates have been ordered. It would be rather a pity to find the teak at all, and no
tain this satisfactorily.

OBELISK8.

A conresspondent of the Times gives, with reference to the Prince
onsort Memorial, the following particulars of large monoliths, including obelisks:- - obelisk naturally suggests three questions,
"This idea of an obe viz., the material, the size, and the mode of transportation. As to
material, the British Islands give us abundant specimens of the
finest granite, a stone with which we are all familiar. London material, granite, a stone with which we are all familiar. London
finest ge
Bridge is a specimen of the blue-gray granite of Aberdeenshire. All the granite of the Royal Exchange is the granite of Devonshire,
differing but litte in quality and not at all in colour. Waterloo Bridge (at least all the upper part) is Cornish granite of a less com-
pact texture and a somewhat lighter colour. The red granite of pact texture and a somewhat lighter colour. The red granite of
Peterbead, in Aberdeenshire, was, I believe, first introduced into
Londou by the late John Rennie, the engineer, who directed that a slab of it Rhould cover his grave. We are now very familiar with
it, in the polished shafts of the Carlton Club, in all our cemeteries, it, in the polished shafts of the Carlton Clab, in all our cemeteries,
and it is generally the material which we see polished in the drinking
fountains. It is very compact and beautiful fountains. It is very compact and beautiful.
"The granite spoken of as the Ross of Mul
of a brighter red. I have a polished specimen I I brought from that
neighbourhood, which is very beautiful in colour, but very coarse neighbourhood, which is very beautiful in colour, but very coarrse;
but Nicol, in his Geology, of Scotland, seems to suggest two sorts-
viz. 'pale and high red, viz. 'pale and high red. If Heonand, seems to suggest two sorts-
be found in the Western Islands. It the only granite to
westears limited to the Southwe found in the
western extremity of the Island of Mull, and the formation is sur-
rounded by the sea on three sides. I never visited the quarries at
Peterhead, in Aberdeenshire; but the same writer says the granite rounded
Peterhead, in Aberdeenshire; but the same writer says quarries at
of that locality is occasionally sienitic or porphyritic, which latter
characteristic is often geen in the polished specimens. I am not of that locality is occasionally sienitic or porphyritic, which latter
characteristic is often seen in the polished specimens. I am not
aware whether these quarries can be approached from the sea but I aware whether these quarries can be approached from the sea, but I
believe the stones at present are brought by land to Aberdeen, and
then shipped. I recollect, some years since, when there was adesire to then shipped. Irecollect, some years since, when there was a desire to
use polished granite shafts 40 ft or 0 fit. long for the columns of alarge
public building in London, it was suggested that the road bridges in public building in London, it was suggested that the road bridges in
Aberdeenshire might prove unequal to the weight of such large
stones though there was no difficulty whatever in obtaining them in sthes thaugh itself. Leaving for the moment this part of the question,
the quar come to monolithic obelisks. They had their origin, as all your readers know, in Egypt, and notwithstanding all the learning of
Zoega in his great work, De Origine e UJu Oveliscorum, their origin
appeare to be unknown, and no good reason has appears to be unknown, and no good reason has ever been given, in
my judgment, for their introduction. Their use is well-known.
They were set up in pairs before the great temples, and they were They were set up in pairs before the great temples, and they were
used to record the dedication of the temples and obelisks to varions
Deities, the names and titles of the Kings, with the fulsome additions Deities, the names and titles of the Kings, with the fulsome additions
that unually accompanied such dedication, Champolion gives a translation of the inscriptions on the four faces of the Paris obelisk,
which shows they were erected by Ramses II. and his son, Ramses III., with their objects.
"The name given by the Greeks and Romans to these monu-
ments is rather ignoble, - osshos, as your readers know, is the Greek ments is rather ignobs a spit, and obeliscus is of course the diminutive. How many
fere set up in Esypt in the days of its were set up in Egypt in the days of its greatness I have no means
of knowing, but 48 of different sizes were removed to Rome. Augustus set the example, and it was followed by his successors
down to Constantine. During that period of 340 years these 48
obeliaks were set up in Rome, and were standing in the time of obelisks were set up in Rome and were standing in the time of
Valentinian and Valens, A.D. 364, for in the 'Regionary' or cata-
logue, of the public buildings made at that time by Publius Victor, logue, of the public buildings made at that time by Publius Victor,
we read as follows:- 'Obelisks (great), six, viz, two in the Circus
Maximus, the greater of which is 132 ft . high, the lesser 88 ft ; one in
he Vatican 82ft.; one in the Campus Martius 72
Mausoleum of Augustus, 42 ft . Obelisks (small) 42. "All these six great obelisks have survived the ravages of the Goth, the Christian, time, war, and flood, showing the enduring
monumental power of a monolith. The largest of these stonesthat before the church of St. John Lateran-was originally set up at
Thebes, it is supposed 1,700 or 1,800 years before Christ. After remaining 2,000 years in its native city, it was floated down the Nile to Alexandria by Constantine ; that emperor having intended it to
decorate his newly-founded city on the Bosphorus; but, having died becorate his newly-founded city on the Bosphorus; but, having died Rome. It was conveyed from Alexandria to Ostia, and up the
Tiber, in a vessel of 300 oars; it was then removed by land and set up as the spina of the Circus Maximus. The land journey extended date of its being raised was A.D. 357 . It is not known when
was thro

 and

 and

 Nom

 unat on umoly dim
 Nom that it has at some period lain on its side, partially imbedded in a soil which exerted a decomposing action upon it.
"The fallen obelisk is in this respect in a better condition, every hieroglyphic upon it being perfectly legible. On the two lateral faces they are very bold and perfect, and by mining under it in
places I was able to ascertain that those on the under side are in the same condition. The upper face is the most imperfect, the surface being worn and injured, and the figures partially obliterated, though
still very legible. The worse feature is, however, the state of its edges, ail four of which have been broken away from top to bottom,
usually to the extent of three or four inches, usually to the extent of three or four inches, and near the base one
of them has suffered a still more extensive injury. This greatly
deteriorates from
the only real ground for those who think it not worth the expense
of its removal to England. It will be again covered with earth after the visit of his Royal Highness the Prince of Wales, to prevent
the sale of fragments by the Arabs ; but a mudel of it in its present the sale of fragments by the Arabs; but a model of it in its present
state will be forwarded in a week or two to 1, Victoria-street, Westsinster, to the care of Sir Charles Bright, who will, doubtless, have pleasure in showing it to any who are interested in the subject dergoing any decay or deterioration in its present position."

WOOD'S FERMENTING TUNS.

Tus invention, by Alfred Wood, of Lowes, Sussex, has reference in which "covers" or " barm separators " are employed for separating the yeast from the beer as it is formed during the procese of
fermentation. Such covers have been variously constracted to fermentatiou. Such covers have been variously constracted to act
as attemperators or coolers to the fermenting mass in the tun by being formed of a hollow metal vessel through which cold water was made to flow, or they were formed of wood with a coil of metal pipes fixed to the under side, which was consequently immersed just under the surf or the fermenting worts, and through which cold the cover was deposited upon the upper surface of the same. All these contrivances have, however, failed more or less to accomplish the object for which they were intended, because, in the first place, they were wrongfully made to act as attemperators or coolers to the surface of the fermenting mass where the yeast is forming, which particles on being thus cooled were precipitated into the warmer rising to the top of the cover, and being there brought into contact
with the atmosphere Seconly,
Secondly, the attemperating action of the upper surface of the cover
upon the yeast deposited upon it was not sufficient to act upon and upon the yeast deposited upon it was not sufficie
separate liquid particles carried up with the yeast.
Thirdly, the openings through which the yeast rises on to the cover were too small, and consequently the liquid particles and gases
were in a great ${ }_{2}$ measure squeezed out of the yeast before it arrived
The object of this invention is to remedy these defects, and for this purpose a "cover" or "barm separator" is applied to the fersurface of the fermenting liquor, is formed of wood or other good non-conductor of heat, whie the upper surface of the same, upon which the yeast is deposited as it rises from the fermenting liquor, is
formed of a flat hollow metal vessel through which cold water is made to flow. The yeast, which rises freely through a large aperby the cold upper surface of the cover, whilst the surface of the fermenting liquor is effectually protected from any such cooling
action by the intervening non-conductor of heat, and the precipitation of yeasty particles into the fermenting liquor is by this means and at the lowest side of the same are provided pipes for conducting the beer which is separated from the yeast on the cover back again
to the bottom of the tun. On the bottom surface of the tun is formed another hollow metal casing through which, when the fermentation which the beer is cooled and acid fermentation prevented from setting in. In come cases where the fermentation of the liquor is
sluggish it is accelerated at the commencement by passing hot water through the double bottom of the tun; or if the fermentation should
proceed in too violent a manner it is checked to any required extent by passing more or less cold water through the double bottom during the process of fermentation.
Fig. 1 shows a lougitudinal section through the fermenting tun ; sectional plan on line X, X.
ordinary construction, is a cover B, formed of wood or other material which is a bad conductor of heat, this cover is fixed in a slanting
position in the tun, as shown, and fits close to three of the sides of position in the tun, as shown, and fits close to three of the sides of
the tun, thus forming a yeast chamber A^{1}. At the fourth side where the cover is highest a space C is left between it and the tun. At this
edge of the cover is fixed a vertical rim D, and upon the upper surface of the cover B is placed a shallow metal vessel or casing E, the top surface of which may either be plain or corrugated, and insido
which a series of transverse partitions, F F, are fixed in such a manner that every following one has an aperture at the reverse end where a portion of the top plate of the casing is removed. Cold water is made to flow into this casing at H, and is caused by parti-
tions F and G to flow backwards and forward over the entire area of the same, and eventually escapes through the pipe I. A short which also cold water is made to flow. By this arrangement, if cover B, the yeast as it is formed will rise up freely through the wide opening C , will fall over the edge of the rim D on to the cold
surface of the metal casing E, coming in contact with the cooling surface of the metal pipe J, and then gradually casing in a thin layer, will thereby be thoroughly acted upon both becomes by this means perfectly separated from the beer that is point of the cover, finds its exit through the small pipes K K, which conduct it back down to the bottom of the tun. On the structed with partitions M M, having openings $m \boldsymbol{m}$, similarly to the bein period of the process of fermentation, cold water is made to
tat and tain period the partitions M M serving both to cause the water to circu-
flate late over the whole surface of the casing, as also to strengthen the
same so that it can bear the weight of a man when the tun is emptied for cleansing purposes.
The mode of operation in the
fermenting tun is as follows:-The of the cove to big indican by upted line in Fig. 1, so that a certain quantity of the worts lies
dotter upon the top of the cover, owing to the communication formed by
the pipes K K. On the fermentation setting in the yeast as it is formed, accompanied by unconverted particles of starch and gluten, oils of the hops, rises through the opening C and falls over the rim D on to the attemperator E, as already described; it passes down the surface of the same, and the liquid, becoming separated from it, finds its way in a cooled state through the pipes K K to the bottom of
the tun. During the earlier stages of the fermentation it it rouse the thin yeast into the liquor of the fermentation it is best to ings of the the tun through the funnel N inserted in the opention, as by pipes K . This is an important feature in this invenwith the yeust becomes fixed in the liquor instead of being volatilised and lost as was heretofore the case, thus effecting a great saving
in hops and improving the flavour of the beer. Should the fermentation proceed too sluggishly at first it may bo accelerated by passing warm water through the bottom attemperator L. The circulathick, when the openings in the cover leading to the pipes K K are closed, so as to prevent the yeasty beer from passing back into the
tun; a funnel N is inserted into these apertures thre clean beer from a previous brewing is poured in from time to time to make good the loss of the liquor resulting from the formation of the yeast. The beer as it settles from the yeast in the yeast cham-
ber A^{1} is drawn off throug the cok 0 provided for that purpose,
and is also poured back through the funnel N. When the beer

WOOD'S FERMENTING TUNS.

nearly ceases cold water is made to circulate through the fottom attemperator L, so as to cool the mass and check further fermen-
tation, when the process will be completed and the beer fit for use. In some cases the fermenting tun is employed for storing the in space, in waste, and in apparatus is effected. For this purpose the aperture C in the cover, as also the small holes leading to the pipes K K , are effectually closed up and the yeast chamber A^{1} is filled with cold water, thus forming a perfectly air-tight vessel,
which is effectual! y shielded from the heat of the atmosphere, and which is effectualy y shielded from the heat of the atmosphere, and
in which the ripeness of the beer may be hastened or retarded, by means of the attemperator L at the bottom of the tun, at the pleasure of the operator. The beer is drawn off from the tun when required through the cock P fixed in the bottom of the same. The
"cover" or "yeast separator" to the tuns may be arranged in such "cover" or "yeast separator" to the tuns may be arranged in such
a manner as to rise and fall in the tun according to the level of the a manner as to rise and fall in the tun according to the level of the
worts in the same. For this purpose they may be constructed as
shown in Figs, 5 and 6. Fig. 5 shows a shown in Figs. 5 and 6. Fig. 5 shows a longitudinal section, and Fig. 6 shows a plan of the apparatus. A is a fermenting tum of ordinary construction, provided with an attemperating vessel N at
the bottom ; B B is the wooden bottom to the cover, which is not the bottom; $;$ B B is the wooden bottom to the cover, which is not
fixed to the sides of the tun; and E E the attemperating vessels
fixed on the top of the same, into and out of which the water in caused to flow through the flexible pipes $x x$. The aperture
which extends across the cover is in this case situated in the middle of the same, and the cover slopes up to it from either side. A sides of the cover is the edges of this opening, and round all fou ites of the cover is fixed a rim F, forming the yeast chamber; to
this rim are attached the chains G G, fixed to a central chain H, which passes over pulleys I I, and is also fixed to a balance weight J by which the cover is kept suspended in the tun. As the level of
the worts in the tun rises or falls, so this cover, floating on the the worts in the tun rises or falls, so this cover, floating on the
surface of the same, is caused to rise ond fall with it. The pipes K K for conducting the liquor back to the bottom of the tun are made flexible to allow of the motion of the cover, and other flexible pipes, L L L are provided, leading from the top of the cover to the
cocks $\mathbf{M} \mathbf{M}$ fixed in the sides of the tun for drawing off the beer cocks $\mathrm{M} M$ fixed in the sides of the tun for drawing off the bee
from the yeast chamber when the pipes K K are closed. Mr. Wood sometimes forms such floating cover with an aperture at each end of the same, and then forms the cover so as to slope down toward the centre, and in some cases he provides only one aperture a
one end of such floating covers, and makes them to slope down one end of such floating covers, and makes them to slope down
towards the other end, similar to the fixed cover shown in towards the other end, similar to the fixed cover shown
Figs. 1, 2, 3, or the cover is made flat instead of sloping.

VAVASSEUR'S MACHINE FOR RIFLING CANNON.

This invention for a "New or Improved Transportable Ma28, Gravel-lane, Southwark, consists in so constructing and arranging to be driven by manual power the machinery used for
rifling cannon in combination with new or additional parts so as to produce a machine capable of boing readily moved or transported rom gun to gun, and place to place, in order that the operation of rifling may be carried on in the place where the guns are used, as for example, in fortresses or ships, thereby avoiding the expense and inconvenience of removing the guns any distance from their positio
to the arsenal or other place where the rifling is usually done. to the arsenal or other place where the rifling is usually done.
Fig. 1 is a longitudinal elevation of the improved transport machine or apparatus, with the carriage for holding the gun in position for the purpose of rifling the same; Fig. 3 is a plan of the ame machine and carriage; and Fig. 2 is a view, drawn to an enlarged scale, of the arrangement for rifling or cutting the grooves fitted with a saddle B, travelling along the bed carrying the end of the rifling bar C, cross slide D, rack E, radius bar F, and screw G, for travelling saddle similar to an ordinary rifling machine. At one end of the machine is fitted a bracket and chuck H, with a hole large
enough to receive the muzzle of the largest cannon the machine is
designed to rifle. Four or more set screws i, i, i, i, are tapped through this chuck for the purpose of setting the gun or other piec its position woncentrically with the rining bar, and securing it in mounted a fly-wheel J, so that the machine may be driven by manual power where, from position or other circumstances, other motive power is not available.
The bed of the macline is carried on four wheels, on the axles of which are fitted eccentrics K, K, by means of which the wheels may be raised or lowered so that the bed of the machine can rest upon
suitable standards fixed to the machine, or can be lifted on to the wheels and transported from gun to gun as may be required. The bar C used for rifling is hollow; on the end to which the cutters are attached a block L is fitted, which fits the bpre of the gun, so as to slide up and down the barrel freely; the hole at this
end of the bar is enlarged to admit of a cone M. On the surface of this of the bar is enlarged to admit of a cone M. On the surface of
this The cone is fastened to the end of a small rod N, Fig. 3, which is continued right through the end of the bar carried by the travelling saddle B. This end of the rod is screwed, and a small hand-
wheel O is tapped to fit the screwed end of the rod. Between the boss of the wheel and the end of the bar a cam P is placed; the
object of this cam is that, previously to the bar being run back up object of this cam is that, previously to the bar being run back up
to the breech of the gun or other piece of ordnance to be rifled, the cam P is to be so placed as to allow the cone M to recede back
co towards the breech of the gun, a spiral spring pressing against the cone for this purpose; this allows the cutters to fall in towards the centre of the bar, a small spring being used to press on them for
that purpose. When the bar has arrived at the breech end of the that purpose. When the bar has arrived at the breech end of the cannon the cam P is turned so as to bring the cutters back to the the necessary feed is then given by the small hand-wheel O. The block L at the end of the bar, through which the cams project, is made so as to be changed to suit the different sizes of guns or other pieces of ordnance it may be required to rifle.
be placed during the operation of rifling is mounted on four be placed during the operation of rifling is mounted on four
wheels R, R, so as readily to be moved alongside the gun it is proposed to operate upon. The gun is lifted into the carriage, the trunnions resting on V -shaped carriers S , S , with a screwed piece T, T, beneath each, and a nut worked by a worm and whee
similar to a screw jack. This arranzement ans readily raised, if necessary, for the purpose of adjusting it for riffing. The carriages which carry the V-shaped carriers and screws cal also be moved transversely by means of a screw; this, with the screws i, i, i, , for the muzzle, allows the gun to be adjusted readily
and accurately. With this machine the cannon may, in some and accurately. With this machine the cannon may, in som instances, be rined without even moving it from its carriage.
The machine may be also fitted with a bar for reboring the previous to rifling, when necessary, through the cannon being old or badly bored.

MEYER'S SLIDE VALVES

Turse improvements, by H. C. Meyer, of Hoxton, consist, firstly of certain appliances to the ordinary slide valves now in use, and by means of which the friction on the face of the valve is reduced to
a minimum, and consist of eccentric axles provided with wheels placed on the sliding part of the valve, and revolving in bearing placed on each side of the wheels, the bearing bracket or plumme block being fixed on the pressure side of the slide bearing, being close to the wheels in correspondence with rails fixed on the face side of the stationary frame of the valve.
Secondly, in this arrangements the axles are not eccentric as in
the first plan, but will be fixed on to the body of the sliding valve and the wheels will revolve in one and the same position on the rails of the stationary frame of the valve.

Bi Fig. 1 is a front elevation; Fig. 2, vertical section, taken at A, B, Fig. 1, showing slide pressed close to the face forming the water-
tight joint ; Fig. 3 is a side elevation with the slide not closed or raised from the face; Fig. 4, a transverse section showing the application of the metallic double-joint face; Fig. 5, a plan or transverse section showing position of india-rubber packing, to assist in forming the joint. A denotes the stationary frame $; B$, the face which abuts against the face on the slide; C, the rail on which the flanged
wheels attached to the slide travel when the slide is put in motion A^{2}, upright guide for the slide, bolted or screwed to the stationary frame; D, the slide to which the plummer blocks E are secured, such plummer blocks forming the bearings for the axles F of the Wheels: these axles are at the ends constructed so as to form axles upon, this smaller reduced axle being eccentric to the circle of the main portion F of the said axles, that is, close to its circumference and not at its centre. The axle \mathbf{F} is at the middle provided with a lever arm G, keyed on to the axle, secured to another lever H, connecting the same to the other lever arm G of the other axle F, and
to the connecting or working rod I. K is a square rod secured (free to turn) to the slide. Supposing the valve to be shut, as shown in Figs. 1 and 2, and
it is desired to open the same, the connecting or working rod I is moved, which, through the levers G and H, communicates motion to the axle \mathbf{F}, f, giving the axle \mathbf{F}, f, a quarter turn, thas forcing faces; then, by continuing to move the working rod I , the slide is moved from the valve opening, and when the valve is to be shut again the rod I^{2} is turned a quarter turn, causing the hook J to embrace the working rod I, to insure the wheels being kept in contact with the rails while the slide is in progress of being shut, and when the slid is fairly over the valve opening the hook is to be quarter of a revolution and bring the face to close contact.
Fig. 6 shows another arrangement with loose faces; L are loose angle irons brass-faced (cast) bolted to the valve (M), with vertical slots, to allow the angle irons brass-faced (L) being by the pressure tight. For the eccentric motion wooden faces would be preferable to those of other materials. The loose metal faces may be used with advantage for steam engines

W. AND P. A. SAVORY'S WINDING APPARATUS,

Tus invention, by Messrs.
Savory, of Gloucester, conSivory, of Gioucester, con-
sists in applying certain mochanism to the bairel or
cylindrical part of the horichanism co part of then hoori-
cylindrical boiler of a stationary
zont zontal boiler of a stationary
or portable engine, for the purpose of winding ropes or
chans at pit's mouths, or for ploughing or other purposes. It is proposed to phace at
drum round the horizontal drum round the horizontal
boiler, which drum is cuased to revolve by suitable wheels engine. Tbe drum is to be
made of wrought iron with a suitable cast iron head or ring at one or both ends;
this ring is to have teeth cast iuside, to gear into a pinion or pinions on the enof the breadth of this ring is turued out true, to rung a number of rriction rollers
on the barrel of tho boiler.
When two drums are nesd They may beconstructed with and a wrought at the othe
with friction rollers, as before. The rope is to be guided on the
drum in the following manner :-A pulley is fixed on a horizontal spindle in a suitable frame, to receive or bear the rope from the plough or other thing to be deraxn; two other pulleys
are fixed on the same frame on vertical studs or spindes, with are fixed on the same frame on vertical studs or spindles, with
grooves turned in each to fit the rope, and placed one on each groves turned in each to fit the rope, and placed one on each
side of the rope, so that the grooves of the guide wheel are side of the rope, so that the grooves of the guide wheed are
opposite the perphry of the drum whero the ropo runs, and con-
nected with suitable wheels to the internal gearing of the drum ring The eitch of the serew is proportioned so as to move the frame during one revolution of the drum a distance corresponding with a
Fig, 1 is a side elevation of the apparatus; Fig. 2 is a transverse
vertical section; and Fig. 3 a longitudinal vertical section. a is a drum of metal piaced around the herrizantal boilier of the
engine, and causedto revolve by pinions b, b working within heads or rings c, , placed or fixed on eacce end of the drum a, and having b, b, these pinions being firmly secured to the engine shaft p pinions at 1 igk. 2 and 3 . A series of f fiction whecels or rollers d, d aro se-
cured by suitable bearings to the barrel of the boiler, for the purpose of supporting the drum a and maintainivg it in iner, porititon, or the friction wheels d, d, may in some casea be attached to the rim of the
drum a, and rovolve round the periphery of the boiler ends.

At Figs. 1 and 2 will be seen the method of guiding the rope on a horizontal spindide in a suitably conspringeted f fanae, to receive or
bear the rope from the plough or other thing being drava; this bear the rope from the plough or other thing being drawn; this
polley has another manall pulley or roller e e immediately alove it, to
strady steady the rope in its passage through two horizontal groved
wheeds f, f, fixed ou studs or spindles attached to the before-med tioned irame; the edges of these groved wheels touch each other,
thus forning a circular opening for the rowe thus forning a circular opening for the rope to pass through; the
frame is provided with suitable boseses η, 9 , having an internal scrow frame is provided with suitablo bosses g, g, having an internal scrow
thread cut therein to fit on a horizontal screw shaft h, secured by thread cut therein to fit on a horizontal screw shaft h, secured by
brackets or otherwise to the frame of eogine or boile. This scew
shaft is so p laced thet the proves of the shaft is so placed that the grooves of the paild wheels. are opposite
the lower periphery of the drum a, where the rope runs, and is connected with suitible wheols to the gearing inside the drum ring,
as shown at F ig. 3 . The pitch of the screw upon the shaft a, as as shown at Fig. 3. The pitch of tho screw upon the shaft a, as
also the number of teeth upon the wheels driving such shaft, are also the number of teeth upon the wheles driving such shaft, are
proportioned so as to move the frame during oue revolution of the
drume a a distance correaponding with a litie more than the thickdrum a, a distance
ness of the rope.

Trapric Reckips--The traffic receipts of railways in the United Kingdom, amounted for the weok ending the 1st of March, on
 miles and a decrease of $£ 17,680$. The gross receipts on the following fourteen railways amounted in the aggregate, on 6,601 $\frac{1}{2}$ miles,
to $£ 354,060$; and for the corresponding week of 1861 , on 6.445 miles, to $£ 370,485$, showing an increaso of week of $186 \frac{1}{2}$ miles and a a decrease of
$\mathbf{£ 1 6 , 4 2 5 \text { . The }}$. Thecrease on the Great Northern Railway amounted $£ 16,425$. The decrease on the Great Northern Railway amounted
to $£ 1,803$; on the Great Southern and Western to $£ 377 ;$ on the Lancashiro and Yorkshire to $£ 4,461$; on the London and North-
 $\boldsymbol{£ 2 , 9 2 5}$; and on the South-Eastern to $£ 1,159-$ total, $£ 19,320$. But from this must be deducted 1975 , the increase on the Caledonian;
$£ 180$ on the Fastern Counties ;
8 £n the London, Brighton, and ; South Coast ; $£ 518$ on the London and South-Western ; and $£ 280$ on the Nort British Londoin $£ 2,895$, leaving the decrease, as above, $£ 16,425$. The goods and mineral traffic on those lines amounted to $£ 201,813$, and for the correspouding week of 1861 to $£ 218,376$, showing a decrease of
$£ 16,563$. The receipts for passengers, parcels, $£ 16,563$. The receipts for passengers, parcels, de, amounted to
$£ 152,247$, against $£ 152,109$, showing an increase of $£ 138$. The receipts onsixty-six other lines amounted, on $3,507 /$ miles, to $£ 112,230$, and for the corresponding week of last year, on 3,426 d miles, to $£ 113,435$, showing an increase of 81 miles and a decrease of $£ 1,205$. The falling off in the traffic of the past week as compared with the corresponding period of 1861 is principally in the goods and mineral
traftic of the great lines, and indicates the depression of trade in the manufacturing districts. The traffic receipts of the past week show an increase of $£ 3,431$, as compared with those of the preceding week ending the 22nd of February.

RICHMOND, CHANDLER, AND RITCHIE'S SACK HOLDER.
Tus object of this invention, by Messrs. Richmond and Chandler,
of Salford, avd W. B. Ritchic, of Telfast is to retain the orific sacks distended while they are being filled. The improved aack kacks distended wilio they are being filled. The improved eack
holder consists of a pillar or other fixing to which is connected, by
a seet cerew or or other ndinatile the studs for two levers or arms furnished at their lower extremities with holders to which the sack is suspended. The levers are coupled by toothed segments, or other equivalent means, 5 o that
both are expanded or contracted simultaneously. One of the levers is provided with a ratenhet segment, into which a pall gears to hold
the levers apart. By means of this improved holder sacks of any the levers apart. By
size may be held open.

Fig. 1 is a front elevation of the sack bolder: and Fig. 2 is a side adjuastable tracket b, whillar or other fixture, to which is connected tbe according to the length of the sack to bo filled. To the bracket b are fixed two studs for the levers or arms c, c, the bosses of which are
fornished with toothed segments gearing into cech other furnished with toothed segments gearing into each other. To oue
of the levers c is cast or forged a racchet secment d, into which takes the pall G, which is hinged to a stud fixed in the bracket b. The extremities of the levers or arms c, c, are provided with
spiked segments, on to which tho mouth of the sack to be filled is spiked segments, on to which tho mouth of the sack to be filled is
suspended; the segments hold the orifco ope uspended; the segments hold the orifice open. When the sack is
full, or when it is required to remove it from tho holder, the pall e ie taken out of gear with the ratchet segment d to liberate the selvage of the sack. This pall and rathet segment also render the holder
suitable for sacks of various sizes.

THE MERSEY DOCKS.

Tuz Mersey Docks and Harbour Board have shown some prudence by wilhdrawng their rpplication to Partiament-as will be seen on
reference to the procedings in the House of Commons on Mond -for an act authorising them to expend an additional $£ 1,000,000$ in dock accommodation. Wo have repeatedly expressed an opivion under this head that, in the present state of affairs, taking into account, also, the yet unfinished works on the Birkenhead side of the river, the courra proposed to be adopted was rash and uncalled-
for ; and the members of the board seem nt last to have come to similar conclusion, although, in doing 50 , they have sorely offended the steam trade of the port, who threaten to take all kinds of stepe on the subject. At the last meeting of the board the engineer sub-
mitted an interesting report on the condifion of the dock mitted an interesting report on the condition of the dock works at
the time of his entering on the dutiez of his office. Thenew works on the Liverpool side and adjoining the Canada Dock are nearks completed, and the foundation for the shed to be erected over the eastern extremity of the South Carrier Dock, for the use of the Bridgewater Trustees, is in a forward state. Nine cranes are fixed around the quays, and six moro aro in hand to complete that bo considered finimhed, and the briliges across the passages
to the Carrier Docks are in hand, but nothing has as yet
been done towards the construction of the ironwork of the been done towards the construction of the ironwork of the
bridge over the 80-t. entrance into the Canadi Dock, at which point a considerable amount of work will also have to be
done before a "thorough" communication can be effected. Tha done before a "thorough" communication can be effected. The
Woodside Landing-stago is in position. The keisons have beem continuously connected and the deck beams laid, so that now little remains to be done but the surfice finishing. The report recom-
mends that immediate provision be made for laying down rome moorings extra to thoso originally proposed, for, with such a tide as this enormous floating mass is subject to, no precaution will be too
great to guard agaiust accident. Of the Morpeth Dock nearly two hirds, or 420,165 cnbic yards, of the excavations are complete. leaving 226,835 yards yet to be done. The outer sill of the lock,
which will which will connect the Morpeth basin with the river, is com-
pleted, and 12 oft. of the north wall carried up to the level wall of about forty lineal yards. ${ }^{\text {ap }}$ The low water basin, the in the report in the following terms: - "The foundations around its site aro of the most treacherons charracter, being clay
overlaying a wet and flowing sand, which, when bored into, spouys overlaying a wet and flowing sand, which, when bored into, 'spouts
up' in a perfectly fluid state, the rock being at such a depth as to preclude the possibility of reaching it with solid foundations; and, Were it possible to have done so, the danger of tapping the quick-
sand would appear to be so formidable ns to have rendered such a course highly dangerous. The foundations, therefore, must have been a source of grave anxiety, and every precaution necessary to secure the safety of the work seems to hnye been adopted The
soft entrances, the sluices, and large feeding tumels which kead from tho groat floed are built upou a forest of piles, and a similar course has been adopted wherever an indication of weakness has appeared in the substratum; yet, with all theere costly but necessary
precautions, slight settlements have here and there occurred in the precautions, slight settlements havg here and there occurred in the
walls, due to such enormous weights being laid on a bed of com-
 (which are all vertical) will cease after the weight has fuirly talken its bearings; but, in order to provide ag anst the possibility of any dis-
arraugements in the wall, a solid " toe " of masonry in conjunction arraugements in the wall, a solid "toe "o of masonry, in conjunction
with piling of a most substantial character, has been laid. The masonry with piling of a most substantial character, has been aid The masonryl
of the lock, main tunels, nad sluices may be considered in geveral terms as finished. The silicice gates and the conner gates of the lock
are fixed in in position, and the side walls are ready engine-house is rapidly rising, and Messrs. Armstrong's people are fixing the hydraulio machinery. The return walls on each side of Che lock, being the walls through which the sluices are carried, are
completed and coped. The north wall, for its entire length of $1,4611 \mathrm{lt}$ with the exception of a gap of $129 f t$, which still severs it from the river wall, is complete and ready for coping. The report again points out the unreliable nature of the foundation, and alludes in pointed terms to the frequent interraptions occasioned by the breakfore described, which seems to overlie the entire surface of the rockTo deal with these springs, as well as the enormous amount of leakago involved by the wetness of the bottom generally along this site, it has been found necessary to sink another well for pumping purposes: this is now in a forward state, and when the engine is fairly
at work it is considered that it will effectually keep down the wate The completion of the coffer-dam for excluding the tide, for the par. pose of enabling the contractor to complete his excavations, is mainly dependent on the masonry adjoining the river-wall, against which it will abut, so that, until this is done, a large portion of the excavations must remain untouched. The time prescribed for having this
portion of the works completed is the 31st of March, 1862; but, portion of the works completed is the 31 st of March, 1862 ; but,
owing to the many unavoidable adverse circumstances above standed
it mast necesearily it must necessarily be extended for six or eigcight months beyond that period. In reference to the graving docks, it appears that there rewaill bo about 90,000 cubic yards yet to excavate, a quantity which will not be ready for use in less than from fifteen to eighteen They and this if no unforeseen contingeucies occur In regand to the execution of the masonry, the engineer says it is so good that he does not mean in any way to depart from the plans laid down by his prececessor. A summary of the report shows that in round yards excavation, and 272,574 superticial yards paving remaining 38 shutules for heavice lot of hydraulic machinery; no less than 38 shuttes for sluices, 24 pairs of gates, and two caissons to bo built,
besides an infinito variety of work which such appliances involve.

Tui Cosi Trape.-The coal supply to the metropolis, both by January water, still continues depressed, and for the two months, 240,081 tons 8 cwtar, against 285, sivg tons for the corresponding period, showing a decrease of 45,427 tons 12 ewt Sea-borne conl
shows a diminution of 1,786 tons, as also to the cannlu following quantities were brought up by the respective nilway named during February:-London and North-Western, 49.542 tons 3 ewt.; Great Northern, 33,972 tons 17 cwt; Enstern Counties, 12,582 tons 19 ewt : Great Western, 6,964 tons; Midland, 5,912 tons; London, Tilbury, and Southend, 54 tons: total, 109,027
tons 17 ewt: corresponding month last year, 148,608 tons 16 cwt; decrense on the month, 39,580 tons 17 cwt , 148,608 tons 16 cwL ; been entered as follows:-From Newcastle, 119,728 tons: fomm Sunderland, 98,897 tons ; from Hartlepool, 74,046 tons; from Wales, 10,993 tons; from Yorkshire, 3,176 tous: from Seaham, 12,966 tons; from other sources, 13,864 tons; total, 336,664 tons. The quantity
entered from Hartepool, as contrasted with last Febrer nage, shows an increcuseo of 100 per cent.; but for this the sea-borne tounage would have declined considerably more. The sea-borntity of cannel, coal, coke, and patent fuel shippech at Liverpool in February was 49,794 tons, and in the corresponding month of last year
49,811 tons, showing a decreaso last month of 47 tons.

EXPERIMENTS ON LOCOMOTIVE POWER AND RAILWAY RESISTANCE

Mr. John Drxon, Chief Engineer of the Stockton and Darlington Railway, has \mid locomotives on that line, some of the results of which will be found in the subjoined completed a further series of experiments upon the resistance of trains and power of \mid tables. The performances on gradients of 1 in 44 are of especial interest:[Cory.]

Expgringats tried with No. 141 Exgina "Excelsion" on Obiesby Baxik (Gradiext 1 ix 44), Gutsbro' Rahlway, os the 4th Februaby, 1862.
Weight of engine, 29 tons 17 cwt; tender, 16 tons 4 cwt . cylinder, 18 in. diameter, 24 in . stroke; wheels, 5 ft , diameter. The weather was mild, there was no wind, and the rails dry. The engine when

The Second Experiments were with runniny six Stockton and Darlington Railvay trucks, laden with coke, three times up Ormeshy Bank.

	tons. cwt.	tons. ewt.	tons, cwt.	miles.	ft. in.	ft. in.	inches.	inches.	gallons.	gallons.	gallons.	min. sec.						
First trip	5012	478	1040	24	311	9	6	3_{4}	60.92	65°	125.92	$5 \quad 52$	55.96	1,287.8	0.538	${ }^{5 \cdot 503}$		23.01
Second trip ..	5612	4611	103 3	${ }^{2 k}$	37	$3{ }^{3} 4$	5	${ }^{27}$	$76 \cdot 15$	01.25	137 te	$5 \quad 27$	${ }^{61} 106$	1,512-6	0.592	6.517		$2 \cdot 77$
Third trip	5612	4512	1024	${ }^{2 k}$	31	211	5	${ }^{27}$	60.92	61.25	122.17	$5 \quad 7$	54-29	1,432.6	0.531	$6 \cdot 230$		26.28
Average for three trips .. .	5612	4610	. 103	2ł					65.99	62:50	128-43	$5 \quad 28.7$	57.10	1,411.0	0.553	6.083	923	2472

Experineats tried with No. 141 Exaise "Exchisior" betwers Barsard Castie and tie Somati, on the 6th Frbruaby, 1862.

Cylinder 1 8in. diameter $=254 \cdot 46$ square inch area

Total ...
Distance run, Barnard Cnstle to the summit, 13.75 miles in 61 minutes. Speed per mile on the
Distance run, Barnard Castle to the summit, 13.
whole, 13.52 miles per hour $=1,189.76 \mathrm{ft}$. per minute.
Elevation of summit
Ditto
of Barnard
Castie station
$\begin{array}{ccccc}\ldots . . & \ldots . & \ldots & . . & 1,378 \\ \ldots & \ldots & \ldots & \ldots & 583\end{array}$
795f. rise
Being 57.82 ft . per mile, or 1 in $91 \cdot 33$, average gradient.
$\frac{2240}{91.33}=24.52 \mathrm{lbs}$. per ton gravitation.
Engine 29.85 tons $\times 24.52 \mathrm{lb}$. $=731 \cdot 92 \mathrm{lb}$. gravitation of engine.

$={ }^{431.55} 176.00$ ", $\begin{aligned} & \text { gravitation of tend } \\ & \text { friction of tender. }\end{aligned}$
$\overline{1,876 \cdot 77}$, resistance of engine and tender.

$8, \overline{130 \cdot 06}$, total resistance.

Water consumed per hour 1,043 gallous $=3.55$ gallons per horse power per hour.
N.B. Pressure per inch on the piston $=\frac{8,130 \times 392}{508 \cdot 92}=62 \cdot 6 \mathrm{lb}$. per inch.

Second experiment :-Load $95 \cdot 1$ tons over same ground at $26 \cdot 19$ miles per hour with the same engine. Resistance of engine and tender as above
Load $95 \cdot 1$ tons $\times 34.52 \mathrm{lb} . \mathrm{F}+\mathrm{G}$
...
...
...
$\overline{5,159 \cdot 62}$ total resistance.
($26 \cdot 19$ miles an hour $=2,3047$ 2ft. per minute.)
$\div 33,000=363$-horse power. Water, 1,350 gallons $=3 \cdot 72$ gallons per horse power per hour. $\frac{5,159.62 \times 3.92}{508 \cdot 92}=397 \mathrm{lb}$. upon the piston. $508 \cdot 92$
N.B. Steam pressure pro rata inversely as the speed would only be $32 \cdot 3 \mathrm{lb}$. per inch
N.B. Steam pressure First experiment:-Load, including engine and tender, $228 \cdot 6$ tons $\times 13.52$ miles per hour $=3,090$ tons Second experiment:-Load, including engine and tender, $142 \cdot 35 \times 26 \cdot 19$ miles per hour $=3,754$ tons Showing that over one mile per hour.
Showing that mechanically the engine is doing 21 per cent. more work at 26 miles an hour than at 13 miles, notwithstanding the popular notion about the " loss of power" at high speed.
But as the net or paying load is the important commercial question it will stand thus:-

econd ditto
Still showing $1 \dddot{4}$ per cent. in favour of the higher speed, or, say, about the eame.

[^0]the lowest end of the pipes. The shafting for working all the machines is to be conveyed along each side of the annexe in
handsome fluted cast iron columns 10ft. high and 10 ft apart. These rest on bed-plates bolted through slabs of stone to similar bedplates placed beneath masses of concrete about four feet below the arth, so that each individual column will be as rigid and immovable as the building itself. Some of the groups of machinery in this
annexe will be very large and powerful; two in particular, for annexe will be very large and powerfur; two in particular, for power. One is for draining waste lands, and will be worked to show the body of water it can pump out, raising it to a low elevaafter raising it high. There are to be some powerful steam hamme
here, and here also must be put the "stamper," or quartz-crushing nachine, which has been sent from Australia with a cargo of gold quartz for its supply. Here, also, we believe, will be the steam which have lifted and lowered first used in this building, and its erection. It proves how nearly the building is done when, for the first time since the beginning of June, these hoists ceased work on Saturday last, and were removed from their old stations. It was found that this could in lowering the dome scaffolds, but it was slanting timber shoots from the summit to the ground, and sliding In this way they are now thundering dows at a great rate.

LETTERS TO THE EDITOR

(We do not hold ourselves responsible for the opinions of our
expansive steam engines.
Srs, I have read with pleasure the able letter of your corre--
spondent, "V. P.," in your impression of the 14 th inst,, on the practical use of steam expansively in marine engines; and, as ho invites a discussion of the subject, 1 beg, with your permi
words about it and the marine engine generally
From the general tone of "V.P." s remarks fancy that he holds a poor opinion of the steam engine as at present turned out by our
manufacturers. I consider it at best as still in a state of barbarism, as any one must confess it is who reflects for a moment that, in order
to utilise the force of a few cubic feet of steam in a cylinder. for the to utilise the force of a fow cubie feet of steam in a cylinder, for the
propulsion of a ship, it is necessary to carry about the world many propusion of a ship, it is necessary to carry about the world many
toons of dead weight besides the cylinder, and, in lurge engines, many tons of metal in constant motion. Without citing the pon-
derous old-fashioned side lever engines, with their infinity of moving parts, and whose use is still persisted in by some first-class companies, take as an example of modern prictice for paddle-wheel
steamers the Siamese twin engines. Here we have, in constant reciprocating motion, two pistons with their rods, a huge T cross-
head, and an immensely heavy connecting rod, together with a lot head, and an immensely heavy connecting rod, together win a liot
of other gear. These engines work well though when running
before a heary sea they sometimes perform the down stroke in a way beforo a heavy sea they sometimes perriorm the down stroke in a way
calculated to frighten one. A cursory glanee at these engines must convince any one that a considerable portion of the force or the
steam is uselessly expended in tumbling these ponderous pieces about though the object sought-a long connectitg rod is is undoubtedly
obtained. Expansion in the down stroke might be carried to any extent in this chass of engine with success, but scarcely any usy
would it be in the up stroke. As an examplof an engine for corew
propulsion take the "crack engine," double trunks. Here we have a shoption stroke, almost ts large lan amount of cooling serface as can
be obtained with a working cyliuder, and a short slide, wastivg at every revolution the amount of steam contuined in the passages, in
fact, just the necessary conditions for consuming fuel on an arge
scale. On the other hand, it offers great compactness, and it must

 instance lately came under my notice, where, in an engine of 13 -in
cylinder and $12-\mathrm{in}$. stroke, a p phate of 1 ini. thick was fixed in on end of its cylinder, and one of \$in. in the other, leaving them the
orthodoox clearance, and this in an angine by a maker who woul
donbtless consider himself injured were he clased as less than firstrate. No is this by any means a solitiry instance. "V. P." is
fully alive to the necessity of reducing this clearance, and knows
doubtless, that it cannot be kept nnder tin. without rikk of knockin doubtless, that it cannot be kept tuder lin. witbout risk of knocking
the cylinder ends out. It is not consolitory to reflect that from thin lost. In proves, though, the correctness of his argument in favour of a comparatively longs stroke. In the principles he puts forth for
a good engine, viz, high speed of piston, long stroke, and great expansion, together with the means by which he proposes to attain
them, there is, in my mopion, some good engineering sense. The ovelty of running the engines quicker than the screw, acider, a good
the speed, as propoed by you some time ano i, Iconsider
innovation. With a pinion driving a wheel on the screw shaft the ngine must necessarily have more command over the screw than when the reverse is the case. To obtain the all-important object of
preventink condensatiou in the cytinder ho
and conses four methods,
and from the furnaces, as the best one. My opinion is that there is
quite heat enough in the engine-room at present without taking any more, and that a better remedy has been applied, for whos
invention there are several climanants amongst your correspondentsI mean that of placing the cylinder in the boiler or steam dome.
This arrangement effectually prevents any radition of heat from the cylinders an leenct, and renders felt and lagging unnecessary
there. With regard to the details of his engine lhave no comment to make, except that 1 think his pumps should all
discharging their contents in a continuous stream.
Having thus taken a glance at "V.P."s letter, and feeling convinced that a discussion in the columns of The Exarsere, on marine engine economy, cannot fail to be highly useful to the world at large,
I venture to propound, "also for discussion," my own views as to what an economical and tidy marine engine for screw propulsio should be, without entering into the subject of boilers. The
arrangement I advocate is he following:-The boier is place
athwart ships, with the furnaces forward, and through a stuffing box, fixed in the shell at the back the engine shaft passes to the
cylinder inside the boiler. This shaft may either drive the serew cylinder insido the boiler. This shaft may either rive the screw air, feed, ant. Suppose for a moment that this arrangement can be carried out, let us see what benefits are to be derived from it.
First, perfect freedom from condensation of steam and radiation
of heat from the cylinder. Secondly, by properly felting and covering the boiler, and from the entire absence of steam pipes in the radintion of heat map be considerably dimiminished as compared
with present practice, and a ship might thas have an engine room in which engineers and firemen would have some prospect of living
when out on a tropical station. Under the existing order of things when out on a tropical station. Under the existing order of things
at temperature of 120 Faht is a common thing in the engine rooms of steamers in the tropics, as many naval engineers can testify.
Thirdly, as the radiation of heat and condensation of steam would be diminisished, , so also would the consumption of fuel, while the
comfort of the attendants would be wonderfully increased. The comfort of the attendants would be wonderfflly increased. The
most suitable entine for occupying a position inside a boiler is undoubtedy a rotatory one, and hougnckshall pass for one more ot
the many "locos." who have knocked their heads a against this philosopher's stone of engineering, If feel persunaded that it is the
most suitable engine for driving a screw propeller, and that it will

ultimately drive the present reciprocating engine from the field. In making these remarks have no crotehet of my own regarding this
eugine to obtrude upon your readers, my object is simply to call
their attention to it, il order to elicit a discosssion of its merits and some pructical information respecting it. My own opinion is, that
tmany of the rotatory enginines already invented are capable of being
隹 improved by an addition of the equilibrium principle, so as to excel it
nclose a sketch of the arrangement that some of the known
rotatory engines would give for driving a screw propoller. On the
shaft a which passes through the cylinder G, a pinion B is fixed, which drives the large wheel D on the screw shaft e. The sole plate F being also the condenser, on which the pumps aro fixed, and are driven by the screw shaft. If the cylinder be placed inside
the boiler it would be supported on suitable brackets. The details the boiler it would be supported on suitado brackets. The details
for starting and stopping, \&ce, haye already been invented and published, and the combination for simplicity, "the great merit in
engineering, would contrast favourably with the best example
extant of the common engine. in order to produce a good rotatory
The problem to be solved in engine is simply that of fixing on a shaft passing through a plain cylinder a piston that sha u is, at least as well as it is mation in in th round the shaft about its axis, at least as well as it is utilised in the
common engine. When we read that, oven under favourable circumstances, in an engine constructed expressly for the parpose, " of the dimensions cited by 'V. P.'.' expansion cannot be carried to
In of the stroke without losing $\frac{1}{8}$ of the steam, that is, wasting 20 per cent. of the fuel, from clearance alone, surely wo may reasonably expect to get as good a result from a rotatory engine in which no
elearance is required, and in which expansion can be carried to any extent. In addition to this clearance, in the common engine the passages from the slide caso to the cylinder, be they long or short, have to be filled at every revolution with steam that gives no useful effect, thenother increase or waste in the fuel. would gain by the loss. commencement of a voyage, shipowners one port and goos out. through rontathy engine the steam entera therefore, the waste from
filling passages is entirely avoided. In the commo filling passages is entirely avoided. In the common engine a mass
of metal is being constantly driven about in opposite and everchanging directions, which any engineer must know camnot bo done
without some expenditure of power. In the rotatory this loss of power must necesparily be considerabily reduced; for, as all its parts
pay move in a continuous rotating motion round an axis, they parake of the nature of a aly-wheel, and give out again a considerable notion is uniform and steady. Any one who wishes to test the
ruth of this, let him take in his hand a weight of a few pounds, "a book, for instance," move it rapidly to and fro in a straight line at the same speed, anter which he can form his own conecpusiong sa
at the common engine ars of reciprocating and rotatigg is. Ins. In working the valeves and the engin's efficiency depends entirely
 The valves of the Marlborough required 100-horse power to work
hem. All valve connections are a source of trouble and expense. In the stean to the cylinder, and providing for its egress without
the any other apparatus "excepting for expansion," thus obviating
another loss of power, and favouring economy. Take the rotatory engine in comparion with the common re-
ciprocatitg one in a commercind point of view. Instead of having
of transport constantly with the vesel the shape of framing, plummer blocks, rods, de. \&c., occupying a considerable portion of for weesel, and tean, lubrication, doc., as is at
cose present the case, we may with the rotatory reduco this space almost
of boiler room and a scrow alley, and the weight of engings cony; for, as what little framing would be required would hav ightened as compared with present practice. The space thus Ief
for productive eargo would anake a respectable figure in the year duplisate cylinder with its saaft, piston, and pinion being kept on
dand, the vessel might be run under a crane, have her cylindet out and the duplicate in and ready for work in at most a couple of hours: I may remark here that, until the portablo system has been intro-
duced into the marine engine, nothing like perfection will have been reached. With proper arrangemonts on this system nearly
tho whole of a vesels machinery, boiners and all, might be taken out and replaced by duplicates "new or repaired "" during the time
she is ischarging and re-loading, without detaining her a single hour. The marine engine of the present day bears about the same
proportion of excellence to one in the state of efficiency to which
Ill Ilude as does one of the old stationary engines, with its bearings
built in the engine-house walls
to (ime now occupied in marine engine repairs nocessarily keeps
large capital idle, a fuct not at all creditable to the engineering skil of our country, since the remedy is simple and easy of application an indispensable requisite for this. That impedes the production of a good rotatory engine. Steam, the principal agent concerned in the matter, submits to be eonducted
through all sorts of intricate passages at the caprice of constructors, of its being compelled to perform its work at last moving exclusively in straight lines. The other agent concerned ongest, with the least amount of repairs in machines where rotat against the rotatory is that up to the present time no inventor has been able to produce a proper piston for it. This, however, is no
argument in proof of the impossibility of a covered, else what is the use of invention at all? Some time ago correspondent of The Exarxers, " J . D.," in a discussion on portable
engines, stated that in his opinion a good rotatory would after all be the best engine for the purpose. On this letter " "V.P." in your
number of Jannary 10 th, tells him that if he desires it. he will send him a skecch of a rotary engine superior, in his opinion, to any yet nvented; and adds that he thinks he enows hem ail, stating that, in his opinion, the rotatory is the very worst class of engine in
existence. I cannot, of course, know whether this "V.P." and he
onhes exellint whose excellent letter has called forth my present communication agree with "V.P." on this head in toto; and, en passand, I may
mention that "J.D.s"
question in the same number, " Can a body having a reciprocating question, bo balanced by another body having
rotan
rotat
 olicit him to make it known.
Ferrol, February $25 \mathrm{th}, 1862$.

agricultural locomotives

Sm. - In Mr. Romaine's letter, of the 28th ult, he states that he considers " it very dangerous for locomotives to travel about on lown or country roads without first having some mechanical means
of adjusting the boiler." He also speaks of having "suffered great annoyance by the melting of fusible plags out of the crown plates of
fire-boxes. I have had several years' experience with rood locomotives, and
out of the forty engines fitted with my patent locomotive gear, now
in constant work (many having travelled more than 3,000 miles
 up nud down inclinus of one in six), in no one instance has a
fusible plug melted out, or a crown plate been inuured a practical
proof that the mechanical arrangement advocated by Mr. Romain

steam ploughing

Srs,-Will you kindly allow me space in your valuable columns
io correct some errors Mrr. Howard stated in his paper on "Steam

Cultivation," recently read before the Farmor's Olub, regarding
my digging maching travelling over the land. Mr. Howard my digging maching travelling over the land Mr. Howard
states it takes fourfold the power to move an engine over the land
to the to that taken by a stationary engine to transmit its power to the
implement traversing the field. I think Mr. Howard has overlooked implement traversing the field. 1 think Mr. Howard has overlooked
the important element of time, or the speed at which my machine the important element of time, or the speed at which my machine
travels when digging. This mistake has arisen, I presume, in calculating the speed to be the same as that of Boydell's traction engines when ploughing, viz., four miles per hour; whereas the digging machine exhibited. at Leeds travelled at one-fifth that
speed, viz, three-quarters of a mile per hour. I have often proved speed, viz, three-quarters of a mile per hour. I have often proved
that it takes but 10 lb. of steam to propel my machines on a modethat it takes buat 10nd. of steam to propel my machines on a rately level road and 15 lb on the lond, while to dig 7 in . to 8 in. deep, and 8 ft . broad, 80 lb . to 90 lb . is required, showing, con-
den clusively, that eighty per cent, at least, of the power is directly
employed in the digging. Mr Howard is mistake
idea of a self-contasined din in supposing that I have abandoned the myself in the position of thing manventors who were, as he bays, in advance of the people, for I am still convinced that in countries with dry autumns, or in dry seasons here, it is the most economical mode of applying steam to the ciltiva
Devizes, Wits, March 12th, 1862. \qquad Robert Royanse.

MISCELLANEA.

IT is understood that a medium-sized paddle yacht, intermedinte fr the nee the O . Sm Wuiuk Alsstr
va has presented to the officers of the
at Shoeburyness for the time being a very Royal Artilery stationed
useful library, valued at $£ 500$.
THE Scotia, which has just mado so successful a trial trip, has the largest engines ever made on the Clyde, being 100in. cy-
linders, and 12 tt stroke, the Arabia's and La Plata's having 103 in. cyinders and Man stroke metal fuzes, termed " pillar fuzes," which
A Lase quatity of
have been issued in vast numbers for the use of the Armstrong guns, , have been proved in Wool wich marsh, and found defective Company, with a a apital of $£ 80,000$, in shares of $£ 10$. The object is oo supply the district round Gray's, Essex, with water from extensive the Exhibition posidsing hich support the roof of the eastern annex of the Exhibition building have got so far out of perpendicular that it position. The posts under the roof of the western or machinery annex will, doubtless, require to be similarly treated.
ORokss have been received at Chatham, from the Admiralty, directing Mr. Bernays, civil engineer, now employed at Pembroke
Dockyard, to superintend the works in connection with the exension of the dockyard at Chatham. Mr. Bernays will be suc-
ceeded at Pembroke by Mr. MDonnell, acting superintending civil engineer at Chatham. arge quantities at
Surgeonan, Goorgoon. Its anaia, bsis Dre Mre:-In prains, 1,$000 ;$ water, esquioxide of iron, $32 \cdot 94$; carbonate of lime, 8.37 ; silica and alumina, $129 \cdot 89$; carbon, 7 wheriseza on the Surrey side publishes a formal notice Bridge by all lawful means Ho the construction of the - emplo he Duchy of Cornwall; and he intimates that, if his own opposi-
ion fails, the bridge promoters will most likely be compelled to purchase the whole of the whari
Trie advantage to be derived from the concession obtained by the South of Ireland Direct Telegraph Company for a telegraph station reside, and whence they board the steamers, was exemplified this week by the reecipt of the news brought from New York by tho
Cunard steamer Asia some time before it could have been transmitted from Queenstow
A woxo the number of Armstrong guns subjected to proof one day naval guns, to be denominated henceforth 110 -pounders, were con-
viderably damaged, and were returned to the forge. The defecte were similar in each gun, namely, a separation of the coils form-
ing the breech part, which yielded so as to disable the guns from Ir is stated that Mr. Wilson has entered into an engagement with
finter a company about to be brought out for laying down light rails, to
be worked by locomotive power, on the road from Nulhatee to Moorshedabad which has been conceded to him by the Goverenment of India for that purpose. Mr. Wilson proceds to India imme-
diately to commence this work, and to other similar concessions from the Government. ThE pressure upon the departments of the Royal Arsenal at the reduction of the establishment by the discharge of a large number of mechanics and labourcrs, probably to the number or
3,000 men. Some of the men about to be dismissed have been employed as continuous hands on the establishment for seven, eight, and nine years, and are now entering into engagements to emigrate ${ }^{0} \mathrm{Ox}$ Satur
Wes Saturday the officers and workmen of the London and North We Mr. J. E. MP Connell, C.E., atestimonian of their regard and esteem,
to and an address signed by 1,966 contributors, upon his retirement the London and North-Western Railway. The presentation to place in the company's new pattera shop at Wovertrosen, about 1,500
officers and workmen being present three beautiful pieces of plate, of the value of $£ 210$.
Ix addition to the Ir addition to the fusible metal (cadmium, 1 or 2 parts; tin, 2parts; lead, 4 parts; bismuth, 7 or 8 parts) already described by
Dr. B. Wood of Iddinapoplis, U.S., and whieh melts at 150 deg. to
160 deg. Fa, 160 deg . Fah., ho has since discovered another alloy (cadmium 11 part, deg. Fah, , or about midway between the meltinets at about feature to be noticed in Dr. Wood's alloys is the proof given of the Tre railwaper of ther mium.
 only $£ 13,509$. Carts, stage coaches, and omnibuses, however, will get no less than $£ 124,910$. It will cost $£ 700$ to provide clothes for the mail guards, $£ 16,150$ to pay their wages and the wages of mail
porters, $£ 10,960$ for the supply and repair of mail bags, $£ 2,080$ for apparatus for exchanging them on railroads. The whole cost of ha conveyance out mois in the United Kingdom this year is taken
at $£ 755,98$. But for the conveyance of mails abroad-the packet service- the country is to pay above $£ 900,000$.
Tae following appointments of naval engineers have been made since our last:-Henry W. Blake, chief engineer, to the Indus, for the Buzzard; John Langlands, engineer, to the Indus, for the
Shearwater; James Barlow, second-class assistant-engincer, confirmed in the Asia, William, Jones, second-olass assistant-engineer,
confirmed in the Warrior: J. G. Sampson second-d is the Warrior; J. G. Sampson and W. E. Cole, acting W. B. Stephens, engineer, to the Dart; Thomas Jeans, first-class first-class assistant-engineer, to the Asian for ; the Savage; W. W. H.
Bambury, first-class assistant-engineer, to the Dart ; Henry
 Euryalus.
W. AND J. GALLOWAY AND WILSON'S STEAM BOILERS.

Fra. 1 is a section of a boiler to which improvements, by W . and J. Yrtal is a section of a boiler to which improvements, by W. and J
Galloway, of Manchester, and J. W. Wilson of Barnsley, are applied Fig. 2 is a plan partly in section, Fig. 3 is an end elevation, and Fig. a a transverse section of the same boiler. Figs. 5 and 6 are detached views of the saffety valves
In Figs. 1 and $2 l, l$, are two furnaces of the ordinary construction, separated by a mid-feather or water space l; ; m, the bridge, which may either bo made of fire-brick as usual, or a water-chamber as
shown : and n is the Beyond and near the bridge are the two water chambers o, o, projecting from the sides of the flue; the object of which is to divert
the currents of the products of combustion, and thus to increase the the currents of the products of combustion, and thus to increase the
consumption of the smoke. To the upper part of the water bridge m are connected the lower ends of the vertical pipes p, shown also by dotted lines in Fig. 4. The upper parts of these pipes, which are tapered by preference, are connected to the flue n, thus insuring a circulation of water through the bridge.
Tigs $1,2,3,5$, and 6 . On referring to these views the glass marked σ Figs. 1, 2, 3,5 , and 6 . On reterring to these views the glass marked q otherwise, and the glass r is the one through which the interior of the boiler can be examined; both these glasses may be magnifying
or plain, but they must be of considerable strength to resist the or plain, but they must be of considerable strength to resist the pressure of the steam in the boiler. By means of these two glasses The glasses may either be placed in the end of the boiler as shown in Figs. 1,3 , and 5 , or in the shellof the boiler as shown in Figs. 2and 6 . The improvement in applying a glass plate to the end of the
boiler through which the level of the water can be seen is shown in boiler through which the level of the water can be seen is shown in
Fig. 3. On referring to which view it will be seen that a narrow Fig. . On referring to which view it will be seen that a narrow
strip of glass s of about the length of the usual glass water tube is applied to the end of the boiler. This narrow plate of glass is secured to the boiler in the manner shown in Fig. 5, or by any other convenient means, and it will indicate the level of the water in the same manner as the ordinary glass tube; while the fixings, taps, and detached glass tubes or plates are entirely dispensed with.
Figs. 1,7 , and 8 . The safety valve shown in section at the left-hand side of Fig. 1 and in elevation in Fig. 7 is arranged in the following manner:- t is the valve box containing a duplex vavle of the usual construction. This valve is weighted by the lever u. The bent
tube v is secured to the valve box t, or to the shell of the boiler, tube v is secured to the valve box x, or to the shell of the boiler,
and the steam from the boiler has free access to the tube, the other end of which is connected to the under side of a ram, piston, or disc contained in the box w, the upper end of the ram, piston, or diso being in connection with the under side of the weighted lever u. When the pressure of steam in the boiler is sufficiently great to
raise the ram, piston, or diso in the box w, the lever u raises the raise the ram, piston, or diso in the box w, the lever u raises the safety valve any required distance of tits seatings, and holds it open
until the pressure of steam is reduced to lower the ram, piston, or diso in the box w; thus allowing a free escape of steam from the valve. The safety valve shown near the right-band end of the boiler is provided with two flat valves of the usual construction marked t and t, the former opening inwards and latter outwards; both these valves are connected to the weighted tever u, whe his acted upon by nected as before described; by this means when the lever u is raised the valve t^{l} is lowered, and the valve t^{2} raised off their seatings to
allow the steam to escape.
The safety valve showu in section on the centre of the boiler Fig. 1
and in sido elevation in Fig 8 is of the usual construction, and is
ombined with the water flost 8 sual construction, and is of water. x is the water float, the rod of which, after passing through the shell of the boiler, is connected to a chain passing over the wheel y, the axle of this wheel forms the plug of a tap $v^{\text {r }}$ in the bent tube This bent tabe conveys the steam to the under side of the disc or
fexible diaphragm v^{2}, the apper side of which is in connection with flexible diaphragm v^{2}, the apper side of which is in connection with
the lever u; by this arrangement the safety valve is opened in the ordinary manner when the pressure of steam exceeds the desired limits, and it is beld open by the descent of the float x, which pons the tap v in the beat tuve v, and admis he steam to the unde de of the disc v^{2}, when the water descends below its proper workgh level.

The Scorts.- The new steamship Scotia, built under special survey expressly for the British and North American Royal Mail service, made the run from the Cloch Lighthouse on the Clyde to the Bell Buoy at the mouth of the Mersey in 12 hours 4 minutes. The mahinery worked admirably, and, in proof that the vessel is perfectly wn leable, she was easily moved round in the Mersey within he Clyde for Liverne trial trip on Wednesday before the Scotia left the unpropitious state of the weatlier. The distances were performed ader the following conditions :- A gainst a strong flood tide, and the Cumbro Light in 59 minutes ; after passing the little Cumbre, the Scotia was brought round with great ease, and performed the apward run between the Cumbroo and Cloch Lights, but on this occasion with wind and tide in her favour, in 49 minutes; mean following:-

$\overline{30 \cdot 632} \quad \overline{35 \cdot 28}$

Mean speed $\overline{15 \cdot 316} \mathrm{knots}$, or $\overline{17 \cdot 6+3}$ miles
It is anticipated that under ordinary circumstances the maximun speed of the Scotia will be about 19 miles an hour. The tria velerred to was made to test the einciency and speed of the vesse Mr. John Dinnen, inspector of machinery, and Mr. Jence Iuke master shipwright of the Admiralty, Whitehall; the Board of Trade being locally represented by Mr. George Barber, shipwright surveyor, and Mr. H. R. Robson, inspector of machinery for the clyde. The Scotia is to be under the command of Captain Judkins, he commodore of the Cunara neet, who wir now move his sta, from the
himself.
Forbien and Colonal Jottixas.- As our readers will, no doubi have inferred from the rise in the shares and bonds, there is hope in store for the hitherto luckless Grand Trunk of Canadn. The receipts for the week ending February 15 th were $£ 17,674$. Comis 88997 . On the first seven weeks of the half-year the increase in the receipts is $£ 37,836$.-A statement appeared in most of the London journals on Saturday, to the effect that the Indian Tramway Company had received an intimation that the Government of India had sanctioned the construction, by Mr. Wison, an engineer
tween Moorshedabad, the old capita of Bengal, and Nulhatee, a station on the East India Railway. As there are several gentlemen to it is is of England interested in the concession reerred at all, but for a railway, and that it has no conuection whatever with the India Tramway Company. - A circular from the French Minister of the Interior cautions French shipowners against frauds practised in the ports of Cardiff and Swansea with respect the the loading of coal.- During the recent bombariment of Fort greatly damaged, 1tin. iron- plates in whecked with the 15in. oak were found neffectual to resist 521 lb . shot.- The British screws steamer Stella has Grean chartered at New Xork to carry American contributions to the Great Exhibition.-A project has been set on foot to connect Singapore promised to be executed by our Government when the Datch Government laid a cable in 1859 between Singapore and Batavia; it being obvious that the utility of the latter line depends in great measure upon its extension to India, our Goverament accordingly shipped the cable that is now laid down between Malta and Alexline now proposed would have been toon and Singapore, and the wreck of the Indian steamer Victoria, with a portion of the cablo on board. This caused a delay, which involved the loss of the season, andria. The India and Singapore telegraph will save eight days between Indin and China, and the same time between England and China. Indeed, by a slight alteration in the dates of departure of the China mails an additional gain of two days, or ten days in all, Bombay and Singapore, for accidental delays on the voyage
A scoxerocsiy signed memorial and protest of owners and occuThames has been presented to the commissioner, seting forth that between Lambeth Palace and Southwark bridge there are eighty wharves in separate occupations, carrying out a variety of extensive trades, besides factories, mills, granaries, and buildings rising directy from the waterside, with drawing dooks and free landingtial. While expressing their unwillingness to offer any opposition to public improvements, or to relieving the evils arising from the floodings of the river, the memorialists consider that their entire trades would be seriously damaged if any material impediment should be created in the river trambe by the interruption of the landing and
loading of goods. They consider that banked rondway that have been linid before the public wonld materially impede such traffic, and that the present flooding of the river periodically may be prevented by causing the banks of the river to be raised and the wharf walls to be altered.
A costnacr has been entered into by the French Government postal ste Compagnie Générale Maritime for the establishment of a tinique, Santiago de Cuba, and Mexico. The speed at which this service is to be performed is nine knots per hour, and the sub sidy granted is at the rate of 21s.11d. per mile. This contrasts strikingly companies generally. For example, the Royal Mail Steam Packet Company, which conveys the mails between this country and roxico, although required to perform the service at a much higher roxico, although required to perform the ser
rate of speed, is paid less than 10 s . per mile.

TO CORRESPONDENTS.

fans.

ROLLING STEEL TYRES.

 to insert the statement. Rotherham, 10th March, 1862.
the hartley engine beam.

Railway collisions.
(To he Editor of The Engiver).
(Thiged if you will give me a formula for the follovg:

(To the Bditor of The Enginer.)

 lowing plan has sugg
dififculty in future.

 MEETINGS NEXT WEEK.
 permits, "Deseription of Works at the Port
Blyth." By Mr. A Abernethy, M. Tnst. C.E.

 pingle ad.
payment.

If credit be taken, an eatria charye of thoo shillings and sixpence per annum
will be made
 and communications to be addraned to the Bditor of TiIE Exainker, 163 ,
Strand, London, $W . C$

THE ENGINEER.

PRIDA Y, MARCH 14, 1862.
durability of iron structures.
No engineer pretends to assign a precise period for the duration of his structures. They will last for a very long time, for many centuries, perhaps, -at all events he proable to refer to many works of the ancients-to a few of Roman structures, both cisalpine and transalpine, all of which prove the endurance of stone and mortar. Tiles, sound state, by the ancient Romans, are still found Court Palace and in the Lollard's tower of Lambeth Palace, of the endurance of exposed brick work for three or four cenroof of Westminster Hall, or when immersed, as in the old piles of London bridge, or in the caissons of Westminster bridge, will last for centuries. But how is it with iron? The first iron bridge is believed to have been erected only ninety years ago, at Coalbrookdale, and we are not sure whe-
ther it is still standing. It was only about forty years ago that iron came into extensive use for engineering purposes,
and but about thirty years since it was first used under the and but about thirty years since it was first used under the
trying circumstances of railway traffic. And it is hardly trying circumstances of railway traffic. And it is hard1y
fifteen years since wrought-iron bridges began to be used for railways. Now are they really to remain permanently We are going on, apparently in the utmost confidence, as
if these works were to last for ages, -and it may be that we cannot bring up anything to show that they will not last as long as their builders have anticipated. Yet we are forced to own that all our faith in the durability of iron structures is based upon data which are more inferential
than absolute. Some wharfs and piers have been built, which appear to stand very well in sea and river water and Mr. Mallet has come to some most encouraging conclusions from the results of some experiments which he has made upon the corrosion of cast--iron in the Liffey, and
elsewhere. Mr. E. B. Webb has lately published considerable information upon the durability of cast iron piers and lock-gates, some of which information has been
lately transcribed into our own columns. As far as it ately transcribed into our own columns. As far as it
goes, this experience is calculated to inspire the engigoes, this experience is calculated to inspire the engi-
neer with renewed confidence in the applicability of iron to works of construction. But, at the same time, abundant instances can be adduced of the rapid corrosion of
cast iron tubbing in coal pit shafts, even where no sulphur was to be detected. Cast iron pipes do not last for ever either, in the ground, and iron troughs, and other castings, have been found to decay in a comparatively short time As for wrought iron, there are abundant examples of its
decay after some years' exposure. The lightning rods of old steeples are sometimes found to be eaten away by rust and the iron dowels or clamps which have served to bin stones together in old masonry, are now and then found to Iron roofs on buildings are found to go buidly, and rust ron roofs on buildings are found to go rapidy, and galvanising has been found to be but a partial protection.
Iron ships become eaten through in the plates, and boilers working with both " fresh" and distilled water become oc casionaliy corroded in an unaccountable manner and after few years' service. Wrought iron bridges, we must re member, are so recent in their use, that we cannot preten minable from other experience. It has been said that wrought iron, after resting for many years in one position, ecomes crystalline, and the case has been .ista nchor at Woolwich, which, having lain for nearly moved. Iron becomes brittle, too, after loug use. The old axles on the Liverpool and Manchester Railway lasted for from fifteen to twenty years, and at last began to break, promiscuously. The load which they carried had not been greatly increased, nor had they been run at a much higher speed, as they were under goods wags, the speed or whieh did they not hold out indefinitely ? Their case appears to illustrate what Mr. Braithwaite calls the "fatigue of metals." They bore up for so many years and then broke down, just as a horse might have done. Now, as to this matter of fatigue of metals we know next to nothing. At the last meeting of the British Association Mr. Fairbairn related some experiments which he had made, and which showed, often, at last broke the camel's, or rather the girder's back He made a model of one of the girders of the Spey viaduct about " passing" which Captain Tyler made such weighty breaking load. By a simple one-fourth of its calculate this load was changed, or alternately applied and removed, one million times without apparent injury to the girder. The beam was then loaded to nearly one-half of its calculated break ing weight, and after the load had been changed 5,17
times, the beam broke down. It was then repaired, and load equal to two-fifths of the calculated breaking strain was alternately applied and removed, 25,900 times, when
we believe, a second failure took place. Afterwards, with load equal to one-third of the calculated breaking strain, ible injury. We are not to suppose, however, that the changes of tol the in Mar changes of load took place, in Mr. Fairbairn's experiment out their blows upon a bridge at from 10 to 50 or 60 miles an hour. Indeed, it is impossible to say what is really going on in large iron girders, over which heavy trains are constantly flying. They were, most of them, built, too, for a live load of $1 \frac{1}{2}$ tons per lineal foot, some of them, indeed for but one ton per foot. The present maximum load for mo derate spans is nearer 2 tons per foot. So, too, different en gineers have provided a strength varying from two to six ber Mr. Fairbairn was engaged in explaining to the British ber Mr. Fairbairn was engaged in explaining to the British Association that, in calculating the strength of a bridge,
its own weight was first to be deducted from its calculated breaking strength and one-sixth of the romainder taken the limit of safe lond Now, with tubular bridges a the limit of safe under its own weight, yet Mr. Fairbairn would have engiunder its own weight, yet Mr. Fairbairn would have engi neers believe
live load equal to one-sixth of the difference between its own weight and its calculated breaking strain applied as a distributed load
Is it generally known that, in the case of steel, a highly carbonised bar, too harsh for working, becomes, after long If carbon in its solid forkube, showing a loss of carbon if carbon in its solid form will escape invisibly from steel, as any experienced steel-maker can testify it does, what gradual changes may not be going on in iron? We do no it may lead to more searching inquiries, of which, we think, it must be admitted, there is still some need.

steam engine construction

Given, a steam cylinder, a reciprocating piston, and crank, and a constructing engineer will combine them in ngise a hundred different ways. In the earlier steam engines the cylinder was always vertical, with the pistonrod working through the top cover, the vibrating beam heing mployed in the transmission of the power to the crank, Mr. Buil acting pumping engines, having no crank, bottom of the of cyluder, an arrangement which of Mess Thomson's inverted cylinder engine, as originally introduced by them in the Frankfort steamship, and since extensively adopted by other builders. Messrs. Boulton and Watt introduced the side lever engine for steam vessels-Mr. Fairbairn soon taking it up for factories. Another variet foam engine is the "grasshopper. The greatest variety o With the upright cylinder the shaft is variously placed according to the point at which it is required to take of the power. In the more usual plans, the connecting rod grasps a pin placed close to the end of the piston rod, the crank being above. With the shaft at a lower level, the cross head is sometimes bent down so as to work in guide on opposite sides of the cylinder, an arrangement at on time adopted by Mr. Bury for marine engines, and by Messrs. Robinson for sugar mill engines. With the shaft just over the cylinder cover the "steeple" plan is sometimes adopted, and at others, the piston rod is taken out through the bottom cylinder cover, and the connectin od reversed so as to work upwards, the whole being an nversion of Maudslay's "table engine." The same attach ment of parts is sometimes employed with horizontal cy linders, and Messrs. Maudslay's double piston rod engine is no more than the steeple engine laid horizontally. Then we have diagonal engines, sometimes with two cylinder placed at right angles to each other, both piston rods being connected to the same crank pin, according to the plan patented by Six Mare Brun is22, or having the cylim ders separated at a less angle and having the drag-lim interposed as in the Galway steamship Adriatic. The
 ngines and pend liner turn and arrangement trunion like those of asillatipg cylinder in tho trunntitie pritiond hing wheh pon be dis any The which can be dignined as a mechanical principle draughtsmen, and may arouse the competitive spirit of a builder, here and there, just entering into business, but with the practical engineer simplicity and accessibilit will generally determine his choice, although it is a fact that engines which are neither simple nor conveniently ac cessible appear best to meet certain exigencies of space and place on sheord. It is only in this way that we can ample, which work with much friction and considerabl loss of steam by condensation. One important mechanical distinction, it is true, may be made with respect to the arieties of engines which we have enumerated. Some are self contained, while others are not. The beam and side ever engines require firm foundations to which they must be well tied down, the strain at the main centre of the beam being double the total pressure on the piston. Most of the direct acting engines, on the contrary, require no foundations beyond a surface sufficient to carry their weight. In the inverted cylinder engine, however, the lateral pressure on the guides is applied so far above the floor, and in the case of marine engines, the top weight of the cylinder is so great, nd it has such a leverage when the ship is rolling, be securely fosten
As with the pestion
As with ane position of the cylinder and the transmission of the pressure pre the steam from the piston to the crank, of a great wariety of changes, all ottaining much susceptible sult with different degrees of simplicity It is thes that wo have a host of engines dissmilar in opearnus that we identical or nearly so in principle. The eminently practical man finds in these differences abundant scope for compari-
son and eclecticism, but is apt to look with distrust over those broader grounds of inquiry beyond which may arise fundamental changes in practice. The philosophical engineer, and enters, instinctively, upon the pursuit of ideal perfec-tion-an ounce or so of coal per horse-power per hour. The former will revel in the perits of a new piston or an improved valve gear, while the latter, disdaining such material littleness, poises the pinions of his imagination for flight to the practice which shall dispense with ninetenths of the present weight, bulk, and complication of steam engines. In regarding, therefore, the mere structure of engines, we may as well dismiss at once the consideration of maximum pressures, prolonged expansion, and, possibly, surface condensation. Mechanically, then, we may say, that modern practice is tending, visibly, towards smaller pistons running at higher speeds for a given power ; to a unification instead of a multiplication of parts, strains and pressure. With higher pressures and quicker speeds the most accurate workmanship is found indispensable; wearing surfaces of greater amplitude are and for counterweighting the disturbing friction of valves engine acquire increased importance. On land, it is sought, far as possible, to dispense with gearing and to work steam engines more nearly up to the speed of the machinery which they are employed to drive; in steam vessels, the increasing adoption of the screw has, except where gearngines running at high speed, a $3 \frac{1}{3}$-ft. stroke being repeated, in some cases, 200 times a minute. Wrought iron has been fighting its way for years into the place of cast iron, for framing, and even It was once thought a cast iron for wood in beams and connecting rods for land engines, but cast iron rods are hardly made now, and the Scotia steamship are likely to decide the question of cast iron v. wrought iron engine beams. The cast iron main and engines, steam jackets are beginning to be considered as indispensable, both around the sides and upon the ends of the cylinders. With steam of higher pressure, pistons of greater simplicity and longer stuffing boxes are preferred,
and care is being taken to relieve the back of the slide valve from a portion of the enormous pressure now resting upon it. We might thus pursue the details of steam engine change, and, as we hope, corresponding improvement.

RAILWAY ENGINEERING.

THE late Mr . Stephenson once remarked that the construction of machine tools, although a subject of great im-
portance, hardly afforded any field for discussion. This is portance, hardly afforded any field for discussion. This is
now the case with railways. At the time when every wang connected with railway location, gauge, permanent way, locomotive power and working was undetermined, the
field for inquiry and discrimination was almost boundless. field for inquiry and discrimination was almost boundless. There are many who can remember, and all have heard, locomotives for stationary engines and horses on railways
was debated, thirty odd years ago. When the multitubular boiler and blast pipe had carried the day, wide differences of opinion arose as to the gradients and curves. Improvements in locomotive valve gear, and, almost at the same time, the relative merits of outside and inside cylinder engines, soon after occupied the attention of mechanical a deal of nonsense was emitted on both sides. Almost imthe substitution of wrought for cast iron in bridges. More recently there has been a division on the question of iron permanent way, and, at the same time, much inquiry has nearly all, these questions have been argued, and the conclusions acted upon in a manner which would seem to leave little but to slowly accumulating experience in the future. Whatever of freshness may have attached to these subjects has certainly been exhausted. Railway engineers are blase matter of routine, which almost any attentive young matter of routine, which almost any attentive young master. (Not, by any means, that every knight of the level and drawing board can secure an appointment as chief full sco for the study of the mercial features of the route. It is ographical and comjudgment and ability of the engineer are generally exerted to the best purpose. At all events, few engineering errors practice of even our best masters has now and then testified. The nice determination of the line which shall best combine the more important requisites of directness, easy gradients and curves, facility of construction and general adaptation the highest engineering talent, requiring, especialiy, the soundest professional judgment. The temptation to make a direct line, especially across country, is generally strong, way, such a railway will prove actually cheaper in cost than a longer one entering upon the more valuable property along the watercourses. The question of gradients
arises, however, involving much consideration of the workarises, however, involving much consideration of the workprobable extent, and prevailing direction of the traffic. Good refuse one so steep as 1 in 100 in another. An engineer might not be justified in one case in incurring more than a moderate expense to obtain curves no easier than of 10 or 12 chains
radius, while, in another, a 20 chain curve would be the least radius, while, in another, a 20 chain curve would be the least
admissible, and a large sum might, perhaps, be rightly expended in order to obtain a minimum of 0 or 40 chains. The value of property and the convenience of the inhabitants
of the district traversed will also determine greatly the
question of deviations. In respect of bridges, cuttings,
and embankments, too, it is very often the case that much more favourable ground can be had by going a little out of the way. Indeed, the whole question of the selection of route requires, in many cases, the most comprehensive and careful consideration of a vast number of details, upon which the best professional experience, and the ripest judgment, may well be exercised. These once settled upon, however, and standing orders complied with, nearly part of the engineer is past. To draw up the specifications is very much like drawing up a lease or an agreement, at least in so far as the introduction of the conventional clauses of both are concerned. The price of executing nearly all kinds of work is so well-known, too, that an engineer, with even a moderate circle of acquaintance, can undertakings wrong in his own estimates of what his is not much chance of going astray. The omnipresent wrought iron girder-a capital superstructure, too, for a bridge-has but to be repeated, and the conditions which govern the choice of foundations and the width of spans are generally capable of such ready determination that
but little room is left for doubt. As for the different kinds of bridge superstructure, almost all that can be said has become familiar to the engineer. For moderate spans the plate girder will generally be preferred, and wrante span becomes so great that an economical sides of the girder, the lattice offers obvious advantages. As for cost, the leading contractors quote the same price per ton for both plate and lattice girders, so that there bridges, little room for choice in that respect. In many superstructure is, after all, larger number, the cost of the foundations, abutments, and piers, so that the question of superstructure, presuming that it is abundantly strong, is not of paramount consequence.
As for permanent way-such permanent way as is now same kind of knowledge and care as would that of an ironmonger's stock of goods. Dilate as we may about form, weight, and quality of rails, weight and fastening of chairs, bearings of sleepers, \&c., all these matters were practically settled years ago in the practice of the earlier railway engineers. We may modify a little here, and
enlarge a little there, but we are, after all, following so nearly in the old track, that no "outside" observer the best article in that line is, we fear, no better than, if as good as, the thoroughly worked and soundly welded

 long line with steel rails, or of revolutionising rail joints. We leave those matters to patentees and the Permanent Way Company, an organisation perhaps less frequently
heard of since the expiration of the fish-joint patent and the final decision in re Harwood v the Great Northern, but which, we believe, is still in existence.
And as for rolling stock, what has the engineer to do but to digest the quotations of the leading builders, for
no engineer would think of specifying locomotives and no engineer would thimk of specifying locomotives and
carriages differing substantially from the recognised patterns. There is no engineer so isolated but that he can command the most complete plans and specifications of locomotives any day he requires them. He has only to
take care that they are not much too large nor much too small, much as he would in buying a hat or a pair of gloves, Locomotives are manufactured now-a-days, and well it is
that they are. Their value to the world is almost that they are. Their value to the world is almost directly as the readiness and facility with which they can be pro-
cured. Some builders will turn out a better job than others, but few builders, even without the interposition of an inspector, would knowingly send out engines of conin locuous inferiority. So close, too, has competition been in locomotives these many years, that an engineer would cepted the tender whing sent out his specifications, accepted the tender which represented a mean between the they have discharged their proper functions until feel that dictated something out of the her functions until they have dictated something out of the common course with respect
to a boiler, a safety valve, a piston, an axle, or a tyre, but, in the end, their pet preferences are resolved into the orthodox modes. In our own case we have had occasion to pay especial attention to locomotive practice, but we cannot point to any substantial improvement which has been made,
within the last ten years, in that noble machine. A sheet within the last ten years, in that noble machine. A sheet
iron shield has been intruded within the fire-box, and a hollow stay-bolt tapped in here and there, and the result is that coal is burnt with a moderate but indictable produchere and there, steel axles, and so we have begun to wear here and there, steel axles, and so we have begun to wear
ventilating hats and to carry rotatory umbrellas, but in neither case is there a novelty in the essential construction We might go through every detail of railway construc tion and equipment and we should merely find that each was of much importance, but that with the conclusive
arrangements which have already been made, no field was left open for extensive selection. It is well that this is so. The great principles of our practice being determined more likely, therefore, to be in request.

LITERATURE

A Course of Elementary Mathematics. By Jonv Rappord

 Yousg, formerly Professor of Mathematics in Belfast College London: W. H. Allen and Co., Leadenhall-street. 1861Those of our readers who have enjoyed the benefit of a branches of mathematical training-and tereare bate be wisely dispensed with-will remember through how man difficult and often ponderous volumes he had to plod his weary way. Reverting for a moment to our own early year our memory recals a goodly library. "Euclid's Elements, "Co-ordinate Geometry," Hymer's "Analytical Geometry of Three Dimensions," Woolley's "Descriptive Geometry," Snowball's "Mechanics," Whewell's "Dynamics," Webster's "Hydrostatics," Miller's " Hydrodynamics," Hall's " Diffe rential and Integral Calculus," Moseley's "Engineering
and Architecture," and Willis's to say nothing of works on the steam engine, optics, and so forth, treated mathematically, or of others which we have probably forgotten in this hasty retrospect. Doubtless very many of our readers could at once recite a paralle,
list of treatises which formed part of their "first course" as stadents, and a few may be able to add largely to the

Now there are several evils associated with this distribution of one's study over so many different works. The first, and probably the least, of them is the unnecessary expense which has to be incurred. Another is the confusion pro duced in the student's mind by differences in the style, and often in the notation also, of the various authors. Then, again, it often happens that the various treatises overlap
each other, so that time is wasted in extricating the thoughts from the books sufficiently to enable the mind to pursue a clear course of study steadily and progressively, barrassed thoss of time. Finally, your studies are emreference to particular theorems and problems already studied, which is so servicable to the student in a mathe matical work whenever an author is wise enough to pro-
vide it. This last is a very important consideration. The mathematical sciences are so essentially progressive in themselves, and so intimately blended together, that it is impossible to pursue the study of them without keeping up
a constant reference to doctrines or principles which have been previously established. The necessity of this is so obvious that we need not dwell upon it a single moment It is manifest, however, that where you are driven from author to author every time you take up a new branch of
study it is absolutely nection of subjects and parts of subjects kept mind. We are quite a ware, of course, that familiarity with the modes and views of different thinkers gives breadth to our knowledge. But this advantage should be sought after
an elementary course of study has been completed ; the young student is in no position to profit completed; the His first business is to advance steadily along the highway of science; the time for exploring its byways will come
afterwards. afterwards.
In the work before us we have a course of mathematics, written by a single author, costing less than some of the
treatises on single subjects mentioned above, preserving a treatises on single subjects mentioned above, preserving a
consistent notation from one end to the other, avoiding repetition, and keeping up a continuous connection between subject and subject as they are successively developed
These, it will be acknowledged, are admirable charac teristics to begin with. They create a strong primá facie hain perhaps, altogether unexanipled. It possesses othe judgment, a pre-eminent place among mathematical
But before mentioning these it will be well to explai what the volume does and does not contain. It does not books given in our first paragraph. It is a purely mathebooks given in our first paragraph. It is a purely mathe-
matical treatise, and the author does not travel out of trictly mathematical sphere. Common arithmetic an Lau it the former because it may be studise exclude from fal dentage from the ordinaty manale in will needful advantage from the ordinary manuals in popular
use ; the latter, because it is a distinct work of itself, " universally known and esteemed, and everywhere to be easily procured." The author has rightly judged that to insert either Euclid's treatise or one upon common arithmetic in the present volume could be of no possible benefit to the earner. It ollowed by Plane and Spherical Trigonometry, Mensura Dynamics, and Hydrostatics; then the Differential and Integral Calculus ; and, finally, a series of applications of the Calculus to Mechanics.
Professor Young has long been known, and celebrated too, as a mathematical reformer, basing his reforms upon heartily concur. He believes that the study of mathematical analysis should be prosecuted in the same spirit as the study of Euclid-that the reasonings of analysis equally with those of geometry should produce irresistible ing should be that assent to every result of such reasonfrom the reader, and not coaxed from him." He contends that every mathematical inquiry should be entered upon by the student in a sceptical spirit : "he should admit just so much as he is obliged to admit, and no more ; and due watchfulness should always be exercised over the symbols he employs, lest, from his relaxation of the necessary constanse." The author anxiously-almost unnecessarily so, as it seems to us-asserts and re-asserts this view, and insists upon the necessity of bearing it in mind. If the repute provide against such errors (which but few readers likely to do, we think), the author would refer him to many
instances of them. Even in so common-place a subject as the Binomial Theorem it is marvellously easy to go works are there, he asks, who would not unhesitatingly affirm that the following equation holds universally, for all values of x and a ?-
$(a+x)^{-2}=\frac{1}{a^{2}}\left(1-\frac{2}{a} x+\frac{3}{a^{2}} x^{2}-\frac{4}{a^{3}} x^{3}+\frac{5}{a^{4}} x^{4}-\frac{6}{a^{5}} x^{5}+\ldots\right)$
Yet whoever affirms this must necessarily affirm also that-
$(1+1)=\frac{1}{8}=1-2+3-4+5-6+$
which is a palpable absurdity
Again, says the author : Take the subject of the Reversion of Series, which is sometimes applied to develope a root of an algebraic equation; how many are there-guided terms of y from the equation $y=x+$
$y-2=x+x^{2}$, would hesitate to affirm that
But let $y=1$: the statement then becomes
and yet x is known to be imaginary! "All such apparent discrepancies and contradictions may easily be reconciled. Algebra is not in the slightest degree chargeable with them, yet-there they are."
Nor is it by any means in algebraical works only that the due watchfulness over symbols, of which the author urges Me necessics will have found himself stumbing has stad Mechanics will have found himself stumbiing at some time or other-pretty often, many of us-over the mysterious meanings which they sometimes assume in that department fat which Professor Young adduces. Iet a person tole rably familiar with algebra take up at random a modern reatise on dynamics. He may chance to light on one in which he will find such terms as Mass, and Weight and Velocity and Aceleration clearly and well defined He is elocty, and Aty produces on acceleration of velocity of 32 ft . and a fraction per second in the latitude of London hat g is the recognised symbol for this quantity, that \mathbf{M} tands for mass, and W for weight. Keeping all this in mind, he reads on a few pages, perhaps, smoothly enough ill he is suddenly arrested by the staggering statement hat " $\mathrm{W}=\mathrm{Mg} g$." If, as is no doubt often the case, the reader has been intent exclusively upon his symbols, this coader has been intent exclusively upon his symbols, this connected them in his mind with the things signified, he must find it a serious perplexity.
The impediments which this slovenliness on the part of mathematical writers often throws into the path of the quoted by the author, speaks of the confusion created in his mind when a student by the definition of accelerating force which has become generally received. "Accelerating orce, which any one would suppose to be the force which accelerates, is no such thing; it is the effect produced-the he trouble which this phrase at first occasioned us. So serious are the evils which this kind of thing produces that it is doubtful whether the great body of students ever altogether escape them. At any rate, many author f works on science do not. We could name several treatises in which the most manifest incongruities are not only introduced, but paraded from one end of them to he other. A very common blunder indeed is to connect quiferent natures, by plus or minus signs.
It is, therefore, in by plus or minus signs.
It is, therefore, in our judgment, a very gratifying circumstance to have put into our hands this comprehensive has been taken not to play fast and loose with the student has been taken not to play fast and loose with the student and not to stagger greatly to its value. The author has laboured throughout to relieve the student from the monotony of merely moving symbols about, and to show him, to some extent, the practical uses to which those symbols may be put from time to time as he advances. Where ordinary verbal matter can be made available in the elucidation of a subject, he does not scruple to employ it. He says many modern writer have a great aversion to put what is called "talk into The reason is plain and conclusive: "An ardent and in telligent student, who naturally expects, by devoting himself earnestly to the work, to gain something more from the study of analysis than a mere expertness in manipulating symbols, is apt to get weary of this unprofitable exercise ; and knowing, as he must do, that this is not mathematics, becomes disheartened, from misgivings that his own mind is inadequate to the undertaking, that he has no talent for mathematics, nor sufficient acumen to penetrate its mysteries; whereas, in truth, there are no mysteries to penetrate.
This concluding phrase of Professor Young's-" there are no mysteries to penetrate"-if employed by a superbut employed by him, it is the unf to instruct oter his serviceableness as a teacher. It is because he has fathomed every part of his subject so thoroughly that he makes this declaration; and the man who has seen socalled mysteries through and through is the very best person to clear them up for us. It may be desirable to state, in this connection, that the author is not by any means a mere reviser of the labours of other men. Interpersed throughout this volume there are nor which re owe entirely to him, and which it would be difficult to parallel, either for number or excellence, from the works of any other modern mathematician. This is saying a great deal, we know; but it is not more than we honestly sal ; but the extensions and improvements introduced are far too numerous to dmit of that.

We must, however, direct the attention of such of our
readers as may possess themselves of this admirable work to the highly satisfactory manner in which the Differential hands of the author this profound and all-imper the is entirely stripped of profound and all-important study may be properly ell "talk" about the ratios of (whin to nothing, and of infinitesimals to infinitesimals, with which so many writers have clouded the subject, he sweeps which so many writers have clouded the subject, he sweeps utterly away. It is to be regretted, he truly says, that in one of the most interesting and important branches of analysis, and one, too, the elements of which are far from threshold by metaphysical subtleties repugnant to all his previously-acquired notions of mathematical accuracy and orical consistency. He asks for nothing more therefor when he comes to deal with differentials than the student has already become familiar with in vanishing fractions The theory of vanishing fractions has, it is true, to be extended here, but it has not to be modified, still less has it to be overthrown. We cannot refrain from quoting the substance of the author's arguments upon this point, for they will be found full of interest to every one who has tudied the Calculus, and will at the same time werve to ustify the warmth of our admiration of the author's style :-
It is sometimes said, in reference to such equations as those
marked $[2]$, that t if $d y, d x$, are each zero, we have divided 0 by 0 , quotient than any other, for $\frac{0}{0}$ means anything. But the results [2] have not been obtained by any such division of 0 by 0 : they have
been arrived at, in each case, by dividing $\mathrm{F}(x+\Delta x)-\mathrm{F}(x)$ by Δx, and by this operation only. The result is a general expression, over he form of which-implying a law that all the particular cases of
it must conform to-we have no control; but over the particular
cases themselves, so far as their values depend on Δx, we have complete control, inasmuch as Δx is not fixed by any condition, but is free to take any value we may please to give it. Our aim has
then been to select from the innumerable series of possible or then been to select from the innumerable series of possible or
admissible values-all conforming to one and the same law--that admissible values-all conforming to one and the same law-t that
which would be the last or ultimate value in this series, if it were
formed by first giving to Δx some finite value k, as small as wo flease, and then continuously diminishing k down to $k=0$; the
palue of the ratio thus obtained terminates the entire series of value of the ratio thus obtained terminates the entire series of
values, and continuously unites with the individuals of that series in as strict obedience to the law of the general expression. It has
been objected, however, that this is to change the original hypothesis: to make that (namely, Δx) 0 at the end of an operation,
which at the beginning was a finite quantity. But there was no
"original hypothesis" as to the value of Δx : this quantity original hypothesis" as to the value of Δx : this quantity Δ
(or h) was designedly left free from all restriction as to value at the
outset, violating any previous restriction, give to it any might, without
and with a view, of course, to its uttimate value, 0 . It must not be verlooked that the fundamental operations of algebra-though
ealled by arithmetical names-are quite free from arithmetical restrictions: $\left(x^{2}+a x\right) \div x$ is $x+a$, and would still be $x+a$,
though there were no such thing as arithmetic in existence; as it is thus universally true, it it true when the symbols stand for numbers
-any whatever ; so that when $x=0,\left(x^{2}+a x\right) \div x=a$, whatever
number is put for a. We thus see that the differential coefficient $\frac{d y}{d x}$ derived from any function y of x, is not so derived by dividing 0 by 0 uantity Δ dividing the algebraic quantity Δy by the algebraic tion $\Delta x=0$. Having thus found the true value (say $f(x)$) of the vanishing fraction $\frac{d y}{d x}$, we are justified then in writing $\frac{d y}{d x}=f(x)$ and consequently in writing $d y=f(x) d x$. This is more than tating the truism $0=0-$ it is conveying the information that the
ero $d y$ comes to be zero by multiplying the zero $d x$ by the factor $f(x)$, and in no other way. Those who object to regard $d y, d x$ as zeros
call them infinitesimals; which in reality is only using a long word call them infinitesimals; which in reality is only using a ong word
for a short one : an infinitesimal has no finite value; and this is al that can be said of zero,
because it is more precise.
It remains for us to express our surprise that the author whose avowed, and, for the most part, well-sustained design is to wring assent to his propositions from the reader, should have claimed for the three laws of motion that D'Alembert put forward what he considered an à priori demonstration of the first law, and that Professor Playfair endeavoured to do the same thing in a more mathematical manner. But we know, also, on the other hand, that Poissin, who has seldom been surpassed as that the velocity communicated to a body will not become slower and slower of itself, and end by being entirely extinguished: it is only by experience and induction that his question can be decided." And this view of Poissin' is the accepted view of most modern philosophers. We should be sorry to go to the length to which Mr. John Stuart Mill proceeds, and assert that all science is of necessity inductively obtained in the first instance; but when we remember that from the time of Aristotle down to that of Galileo it was believed that all bodies in motion had, by their own nature, a constant tendency to move more and more slowly, so as to stop at last, from some inherent cause of fatigue-we say, remembering this, we find it impossible to go farther than Dr. Whewell when he says, though the discovery of the first law of motion was made, historically speaking, by means of experiment, we have now attained a point of view in which we see that it might have been certainly known to be true, independently of experience." "This law," he adds, "in its ultimate form, when completely simplified, and steadily contemplated, assumes the character of a self-evident trath." It seems to us rather unlikely that a doctrine which it took men ages of existence and numerous refined experiments to find out, and which even now philosophers themselves cannot see to be evidently true without its being completely simplified and steadily contemplated, should wring a ready assent from every student of this elementary course of mathematics. We may be taking a harsh view of the matter out this certainly seems to us a serious blemish in Professor Young's excellent, aye unrivalled, work.
> *These equations need not be given. They merely express values of $\frac{d y}{d x}$
derived from certain equations, from which the reasoning of the author derived from certain equations, from which the reasoning of the author
starts in expounding the nature of the differentialing process. The careful
ceader will have no difficulty in following the suithor's mes reader will have no difficulty in following the author's meaning through
the passage quoted.

THE PATENT JOURNAL

Grants of Provisional Protection for Six Months. 202. Jous WATr, Lorrimorestreet, Walworth, Surrey, and Thowas Ssaith
Haviside, Cornhill, London, "Improvements in the manufacture of
 6. BakRow Moss, Liverpool, "The application of steatite, either alone
or in combination with other substances, to the manufacture of bricks,
fire-brick recordiu1th January, 1862
Whill
Woon, Monkhill, Pontefract, Yorkshire, "Improvements in the process of manufacturing pomfrat or liquorice cakes,"-Pemetition re-
corded $11 / h$ Fedrent corded 11th February, 1862 .
34. Tuosis Drvisos, Belfast, Antrim, Ireland, "Improved means for
preventing the corroding of steam boilers."-Petition recorded 13 13th water closets.",
Jous HkXey Jonsson, Lincoln's-inn-fields, London, "Improvements In electro-magnetic time-keepers."-A communication from John Henry Koosen, Dresden, Saxony.
Ki. JoskPs WaLL and Triom consiruction and arrangement of apparatus for regulating the flow or passage of fluids.
for turning and alosing the cartridg, York, "Improvements in apparatus
brech-loading fire-arms." . Jous Cooks, Willington, Durham, "Improvements in the method of propelling ships and other vessels." treet, Westminster, "An improved
ling in and with railway trains."
and WmLovonby SMiTh, Dalston, Highbury,

 25. JAMrs Comur, Belfast, "Improvements in machinery for winding cors,
and in the treatment of cops for warps and other py

 provements in oil and spirit lamps, and in the means of producing light
therein, parts of which improvements are applicable to lamps generally." ratus used for lighting cergars and other, tobacco."-A communication
from Pierre Duchamp, Boulevart St. Martin, Paris. mication from Jules, Lemoine, "Rue Saint Paul, Paris. 3. Whusu B Bsis, Tower Hill, London, "Improvements in omnibuses
and other carringes."-Petitions reorde Isth Fbruary, 1882. 00. RCCHARD HOME SKELLERS, Sonth-terrace, Hatcham Park, Surrey, "An 2. Johs StasDisi and Johs Goodex, Egerton, near Bolton, Lancashire,
Improvements in man

 hens MmuIsorox, Oaken Gates, Shropshire, "A new or improved

 gaiters."
Si. Marc Asporse Fraxcois Mexsoss, Rue de 1 'Echiquier, Paris, "Im-
provements in burners for heating by gas."-A communiation from prove
parsents in burners for heating by gas."-A communumication from
Carten Richard Meyn, Carlshäte, Rendsburg, Holstein.-Paitions re-

ments in the construction of washing mach ines".
oo. Tuoo As BARE, Carlisle, "Improvements in machinery or apparatus
for cutting,
stances." 392. Thomas Nestay Kirkiax, West Brompton, and Vresos Frascis
Exsou, Highate, Middelesex , Improvements in bleaching and dyeing
yarn and thread when in the form of cops or otherwise wound." yarn and thread when in the form of cops or otherwise wound."
98. WILIAM EDWARD NEwTox, Chancery-lane, London, "Improvements

Goddar
186.

0. Jrkmuin Woodrow, Oldham, Lancashire, "A certain improvement in
the manufacture of hats or coverings for the head." 2. Jous PmDINoros, Gracechurchsstreet, London, "An improved ma-
chine for shelling or husking all kinds of grain-A communication from Melchior Nolden, Frankiort on the Maine.
1. Edwis Buss, Percival-street, Clerkenwell, and Hexry Laxplovar,
Holborn-hill, London, "Improved means for viewing microscopic photoHraphs and other minute objects."-Patitions riewing microstopic photo-
2. 1862.

 . Ame Desirge Duparkt, Paris, " Improvements in the ornamenta.
 or steam and air combined." glazing stoneware, red clayware, porcelain, and other kinds of earthen-
ware ments in pianofortes, ")
mil, Tottenham-court-road, London, "Improve"I Improvements in pianofortes,"" ments in apparatans sall vessels."-Petitions recorded 26ith February, 1862. and G2. GEoBor Tork, Bucks-row, Whitechapel, London, "Improvements in,
and an improved apparatus for, manufacturing and reburning animal and an in
charcoal.
4. Cuarles Clark, City-road, London, "Improvements in tea and other
trays for trays tor the tas THis
ments in electric telegraphs, and in apparatus connected therewith, and
employed employed in the manufacture thereof."
12. Wrias Stuart Wood, Larchfleld
provements in valves for regulating the flow, of steam, water, or other
fluids, and in means or apparatus for working or
Irom the thuids, and in means or apparatus for working or actuating them direct
from the governor, or when worked by expansion cams in connection
therewith."-Petitions recorded $27 /{ }^{\text {F }}$ Petruary, 1862.

Invention Protected for Six Months by the Deposit of a Complete

 73. Piekre RkMond, Rue de rechiquier, Paris, "Improvements in doublerein bridle bits."-Deposited and recorded 3rd' March, 1862 .

Patents on which the Stamp Duty of $\mathbf{£ 5 0}$ has been Paid.

Mam Market, Nortolk. Machy 1859 TH, sen., and ADAM Boori, Jon., Mranchester.-Dated 8th M2. AlprkD TyLor, Warwick-lane, Newgate-street, London.-Dated 14th
March, 1850.
8. Joux P Thomas Pataroxe, Birmingham,-Dated 14th March, 1859 .

Patents on which the Stamp Duty of $£ 100$ has been paid WhiLiuy Wrido, Manchester.-Dated 7th March, 1855.

618. WuLuy SMITI, Little Woolstone, Fenny Strattord, Buckinghamshire.
-Dated 10th March, 8855 .

Notices to Proceed

2691. Wriluy Tarlor, Newport Paguell, Buckinghamshire, "Improve-
ments in joints or connections for metal and other pipes and tubes."
Petition recorded 26 Oth 0 otober, 1861 .
 soap."
2ros. Whlias Hollund Furlosar, Mark-lane, London, "Improvements
in the condensation of steam by surface contact."-Petitions recorded
 October, 1861 .
2T33, Gerar Norxay, St. Matthiss-place, Stoke Newington-green, Middle-
sex, "Improvements in the mounting of 'cots or crailles." sex, "Improvements in
recordee $3115 t$ October, 1861
2742 Juws
 and other fifrous materials for spinanimg.,"
2692. Rourbr Musmet, Coleford, Gloucast
improvements in the manufacture of castershiro, "An improvement, or homogeneous iron."-
Petitions recorded lat Noecember, 1861 .

"Certain improvements in the construction of cables or chains for tele-
graphic and other purposes, and for mather Crartain improvements in the construction of cables or chains for tele
graphic and other purposes, and for machincery connected therewith." 2757. JonN FRKcch, Manchester-rood, Bradford, Yorkshire, "Mmprove-
ments in machinery or apparatus for doubling or twisting yarns of worsted
or or the fifrous substances." nent in machinery or appara
or other fibrous substances."
2693. SAM UEL Osborsk, Baysw
 shire, "Inprovements in machinery or apparatus for making pipes and
other articles of earthenware, and in the form of pipes for gas, sewage,
ond 2771. JoHx AsHitions Acordd. Grosvenor-place, Bath, "Improvements in apparatus for attaching horses to carriages." Me Petition recorded 4th Novenber, 1861 .
2694. Roszrx Wros. Patricroft, Manchester ,"Certain improvenents in
steam hammers, and in valves applicable to the same, and to other steam steam hammers, and in valves applicable to the same, and to other steam
engines."
2695. Wrisay Hall, Calais, France, "Improvements in the production of
 apparatus for preparing, spinning, or doubling cotton, silk, and other
fibrous materials, parts of which improvements are applicable for wind-
 improved hyyrometer for measuring the humidity of the atmosphere,
dampness of beds, garments, and for other similar purposes."-Pdition
recorded 6th Norember. 1861 . recorded 6 th Norember, 1861 .
2sol. Joris BARRow, Dalton Chemieal Works, West Gorten, near Man-
chester, ${ }^{\text {I }}$ Improvements in the manufactureof benzole, naphtha, naphtha-
 2804. Hexry Mostuccr, Rue du sentier, Pars,
ratus for goffering or embossing stuffs in high rolief."-Petition recorded
8si4. Roomber. McNAI.

 tetting iron and wooden ships, caissons, dams, and other wooden or iron
structures from decay, and from fouling by vegetable and animal matters,

 Bury, Lancashire. "Improvements in looms for weaving."-Petition re-
corded 16t Novanier, 160.,
2696. SAXURL AMPHLK, Birmingham, "An improvement or improvements

 provements in blocks for hoisting."- Petitiona recorded 3re December, 1861.
2697. Jons F Faxcis HARVE, Strand, London, "Improvements in umbrellas
 apparatus for obtaining motive power from explosive compounds,"-A
communieation from Eugene Barsonti and Felix Matteueci, Florence,
Italy.-P Petition reorded 31et Decmber, 1861.
2698. JJMES GARTH MARSHALL, Leeds, Yorkshire, "Improvements in the Italy.- Peciancu Marsinul, Leeds, Yorkshire. "Improvements in the
preparation of flax, hemp, and other fibres, previous to being spun." Petition recorded 13ih January, 1862 ,
2699. JAMEs GARTI MARsHaLL, Leeds,
machinery and process for producing
fabrics." - Petition recorded producing fibre from woven and other textile
2700. Hzanary, 1862 . 16. Hexry Duscan Prestox Cuwsiavian, AX, Bury, Gosport, Hampshire,
iImprovements in means or apparatus for protectiog screw propellers from entanglement, or being foluled by ropes or other bodies, apsolers im -
provements in means or apparatus for closing up the screw aperture." provements in means or apparatus 1
Petition recorded 15th January, 1862 .
2701. WILLIAM Todze, Gracechurch-street, London, and Arcurbald Read,
Walworth, Surrey, "Improvements in boots and shoes." - Petition recorded Walworth, Surrey,
21at January. 1863 .
2702. WILLIAM EDWARD
in engines to be employed for pumping or forcing air or water, or for other purposes where a rectilinear motion is required."-A communi-
cation from Wellington Lee, New York, U.S.-Petition recorded $28 t h$
January, 1862
2703. Frascors Delasuare Dz Boutryvilue, jun., Fontaine-le-Bourg, Seine
Inferieure, France, "Improvements in machinery applicable to the spinning of fibrous substances."
23B. Jous McK kas add Javes Gaborr, Walmer Bridge Mills, near Preston,
Inceshire "Improsements in sizeing or dressing yarns or textile mateLancashire, "Improvements in sizeing or dr
rials." Petitions recorded $29 t h$ January, 1862 .
2704. FRIEBRICH WLIHELM DARHNE, Swansea,

 18th Pcbruary, 1862 .
eo. Rrchand Heve sklens, South-terrace, Hatcham Park, Surrey, "An
improved self-inking hand stamp or press."-Petition recorded $218 t$ improved sel--inking hand stamp or press."-Petition recorded 21 st
February, 1862
coo. Jouss I Mray, Westminster Bridge-road, Lambeth, Surrey. "Improve-
 emplo
2705.

And notice is hereby given, that all persons having an interest in opposing any one of such applicatitons are at liberty to leave particulars in writing of heir objections to such application, at the said office of the Commissioners any one of such applications are at tiberty to cave particulars in writing ors, their objections to such application, the sid offioe of the Commissioners, within twenty one days after the date of the Gazette (and of the Journal) in which this notice is issued.

ABSTRACTS OF SPECIFICATIONS.

Class 1.-PRIME MOVERS.
Including Fixed Steam and other Engines, Horse, Wind, and Water 2091. T. Grbex, Lete, and R Matures, Stole Ned
mitting motion to machinery."一Dated 21ut Aupust, 1861. This invention has for its object improvements in apparatus for trans mitting motion to machinery. For this purpose, when transmitting motion
from one grooved or plain pulley to another grooved or plain pulley, by an
endless band or strap, an intermediate pulley on which is interposed in such manner that the opposite parts of its periphery are in contact with part of the periphery of the driving pulley, and part of the periphery of the pulle,
which is driven. When the driving and driven pulleys are grooved t reccive the endless band the periphery of the internediate pulley or wheel
may be plain or rrooved, and be in contact with corresponding plain or
mrooved parts of the peripher crooved parts of the peripherics of the driving and driven pulleys; but when
the parts of the peripheries of the driving and driven pulleys. where the end
less 1 and acts, are plain, then those parts of the peripherics which are in Coss tand acts, are plain, then those parts of the peripheries which are in
contet with the opposite sides of the interposed pulley or wheel are to bo
rooved or suitably formed to work in a groove or grooves formed in the eriphery of the interposed wheel or pulley. - Not proceded vith,
2108. S. Esson, Oldham, "Apparatus for heating the feed-boater of s'cam
boilers, upperheating s'eam, and surface condensation." - Dated $23 . d$ According to this invention the patentee proposes that the water to be
supplied to the boilier shall first be heated by means of the exhaust steam placed in the, flues leading to the chimney, the water becoming further
heated by the waste heat from the furnace of the boiler. A tube or pipe of small diameter, open at the lower end, conveys the water to the bottom he water continues its passage within the cylinders to the feed pipe which conveys it to the boiler. The cylinders are kept free from the accumula-
tion of soot or dirt by means of chains or bands pasing partly, entirely.
or more than one tum round them from end to end, where their extre or more than one turn round them from end to end, where their extre
nities are attached to wheels rotating at either or both ends of the cylinder by means of a shaft and cog wheels. These chains or bands thus scrape or
rub off the soot or dirt as it lodges on the exterior of the cylinders, rendering them more capable of absorbing heat and conveying it to the water
within. These cylinders, in like manner, serve for the purpose of sauer within. These cylinders, in like manner, serve for the purpose of saper-
heating steam, in which case a syphon box is placed at their lower
extremity, and an iron casing combining a lever, float, balance weight, and equilibrium valve is suitably arranged in order to carry off any water that
might lodge in the cylinders, and also to retain the steam. The cylinders might lodge in the cylinders, and also to retain the steam. The cylinders
may also be made usfulu for surface condensation by arranging them in
conjunction with an iron vescel or suitable receptacle, and exhausting steam conjunction with an iron vessel or suitable receptacle, and exhausting steam
inside or outside the cylinders, according as they are placed either in the
interior or outside the said vesiel.
 This invention consists, First, in combaning a Giffard injector, and the
uction pipe thereof, with a valve located in the said suction pipe in such a Dosition that it prevents the reflux of the water from the suction pipe when
the steam is shut off from the apparatus. The object of the Second part of this invention is to permit the suction pipe to be fifled with water ,or
"primed," as the patentee terms it, up the end of the steam nozzle, so hat,
when the stean jet is put in operation, it shall begin to act immediately upon dense water. This part of the invention consists in combining the
Giffard injector, the suution pipe therof, and the reflux value before nentioned, with a priming nozzle fitted with a cock or vaive, the combing
tion being such that the suction pipe ean be primed throug the priming
nozzle, and that the latter can then be closed. The object of the Third part of this is invention is to procure a supply of water for priming the suction
pipe by the occupation of the injector, and it consists in combining the second part of this invention with a tank by means of a branch pipe leading
from the discharge pipe of the injector, which branch pipe is fited with a
eock or valve, so that the tank may be replenished with water by the injector itself.
2130. H. Arrwood, Wapping-veall. London, "Improrements in eleansing and
in feading boiler."-Dated 26il Augut, I8e1.
 upper surfaces, and are perforated at intervalk, while curved flanges are
adapted to the sides. Similar conduits are placed at the bottom of the
boiler. The improvements in feeoing bollers consist in supplying them
from below through perforated pipes extending along the lengit, or yearly,
so, of the boiliers This arrangement is for heeping the seditient in astate of agitation, thereby cassing the impurities contained in the water to rise
to the surfice, when it myy be drawn of by the scum plate and cock. For
some waters chemical agents are also used.
 By the present invention a cerfain portion only, and not the whole, of
the steam employed in working or driving a steam engine is to be previously the steam employed in working or driving a steam engine is to be previousf
worked at a higher average prosure per suare inch above the atmosphere,
either in another steam engine or in another separate and independent addition cylinder or cylinders of the same engine. Two facts are well known in connection with steam, to wit, that equal weights of fuel will
jenerate nearly equal weight of either high or low pressure steam, and
hat steam on its discharge from the steam engine retains nearly the whole of that steam on its discharge from the steam engine retains nearly the whole of
the total heat or combined sensible and tatent heat which it had on its admission to such engine. In eases, therefore, where steam engines
are being worked at pressures ranging fom 61 lb to oflb. or 70 lb.
pet square inch above the atmosphere, and where more power is required pet square inch above the atmosphere, and where more power is required
with litle or no sensibie increase in the expenditure of fuel., or where it it
desired to have the same power with a les expenditure of fuel, a part of desired to have the same power with a less expenditure of fuel, a part of
the fuel may be afplied under suitable boilers to raise steam of a pressure considerably higher than that already worked, and the hilig pressure stean
so raised, and which may have a pressure of from 70 lb . to 250 lb or more
per square inch is then per square inch, is then to be worked either with or without expansion, or in a separate engine, or else in a separate cylinder or cylinders oto be added
to the existing engine; and this high pressure steam on its discharge from
such separate engine, or such separate cylinder or cylinders is to be allowe such separate engine, or such separate cylinder or cylinders, is to be allowed
to mix with additional steam, by preference of a lower pressure, and the
mixtur sure engine or engines in like manner as the steam ordinarily supplied to such engines. The steam may be exhausted from the high pressure engine
either into the low pressure boiler, or into any vessel intermediate, between and in direct communcication with the low pressure boiler and low pressure
engine, or it may be exhausted into either the slide valve box, or the cylinder of the low pressure engine. The portion of stama to be worked
twice over may bear any ratio desired to the whole of the steam worked thice over may bear any ratio desired to the whole of the steam worked in
the low presser engine, that is to sy, an eighth, a half, or three-fourths,
more or less, of all the steam worked in the low pressure engine may be previously made to pass at a higher presure through the highe pressure
engine, or the high pressure cylinder or cylinders of the combined engine The high pressure steam may be superheated if desired, either before int
admission to the high pressure cylinder or after its escape therefrom, and
and while on its way to mix with the steam of lower pressure. If desired a
portion only of the steam from the high pressure engine or high pressure
cylinder may be permitted to mix with cylinder may be permitted to mix with the low pressure steam, the rest of
the high pressure steam being taken up in a small quantity of cold water,
so as to heat it to a temperature equal to or water is maintained in the low pressure boileras when at work. The water
o heated is then to be admited as feed water to the so heated is then to be admitted as feed water to the low pressure boilers.
In this case the portion of high pressure steam to be condensed into water
is to be made to pass throumb is to be made to pass through a condensing vessel, into- which vessel is
forced, by a pump or any other means, a regulated quantity of water of
ordinary temperature, this quantity being sufficient only to ordinary temperature, this quantity being sufficient only to take up as
much of the steama as it is desired to condense into water, and so that the
final temperature of the condensing water shall be coual to or above the much of the steam as it is desired to condense into water, and so that the
final temperature of the condensing water shall be equal to or above the
temperature of the water in the low pressure boilers.- Not proceeded with.

Class 2.-TRANSPORT.

Including Railoays, and Plant, Road-making, Steam Vessels, Ma-
chinery and Fittings, Sailing Vessels, Boats, Carriages, Carts, Har-
ness, ఫc. ness, 9 c
2092. T. Grahaigr, Worthing, "The construction of boats, rafts, de."-Dated
21st Augut, 1861 . Thet Auoust, 18 , floating or
two, three, or more longitudinal sections, say ribbed troughs of iron, or any suitable material placed alongside, and apart from each other, and are to be
so fitted as to receive and be firmly attached to and support a deck or floor
projecting beyond the outside ling projecting beyond the out-ide lines of these troughs, and this deck or floor
is to be of a strength sufficient to support the cabins or coverings necessary for the protection of the passengers and cargo, and to protect these floating
troughs from the effect of concussions at wharves, or in passing other float--
ing ing bodies. The troughs are to be formed at stem and stern on the angie of
exit and entry best fitted for progression through the water on which they
are to navigate, and of a sufficient strength folly to resist the phect are to navigate, and of a sufficient strength fully to resist the pressure to
which they must be subjected, when submerged, by the weight of a foll
cargo placed on the deck or carrying platiorm of which they form the
support ; and, for further security, these troughs are to be divided from
stem to stern, croswways or longitudinaly, into such a number of water-tight
ivision as to make submersion, without an almost total destruction of the divisions as to make submersion, witho
troughs themselves, almost impossible.
2095. A. J. Manos, Dublin, "Serewe or spiral propellers."-Dated 22 nd This invention consists in having the blade, of whatever form it may be
(screw or otherwise), so constructed or arranged that it shall strike water while working at any angle that may be desirec througuout its excen, and
irrespective of its pitch, and also that, spaces being left next the parts of the blade placed ancularly, water may pass freely through all parts of the said
blade, and will be held within the perimeter of dise formed by the revolu-
tion of the bladcs.

Class 3.-FABRICS.

Including Machinery and Mechanical Operations connected woith Pre 2094. J. Kask, Tenplemoyle, near Londonderry, "Treating flax, hemp, and
turing from them flbres adapted to be spur into yorn aud thred. "-Dated
21 at Auput, 1861 . For the purpoes of this invention the flax-straw, hemp-straw, or
other substances that sield fibre are, when being steceped in water, o be
subjected to the action of certain ingredients which have for their object to subjected to the action of certain ingredients which have for their object to
induce or hasten the putreftection of the nitrogenous and gummy matter
which surround the fibres in their natural stote The ingred may be used in a solid or liquid state, consists, esscntially, of a nitrogenous
substance or substanices containing phosphoric acid or phosphates, or sbstance or sutstances containing phosphoric acid or phosphates. or
which these latter are added, and which will produce ammonia by putrefaction, such as grcund boncos and guano, a solution of giue to which phos-
phates of soda or any soluble phosphate is added, or yeast. In some case phe patentee prefers using a solution of a a solduble, prospeast
titrate, or caustic ammonia, or other salt of ammonia only
 Thuguat, 1s6l.
wool, orject of material resention is to produce from the hop plant a vegetable wool. To accomplish this the plants are
 parts produce different qualities of wool) and are passed through a cru-h
ng machine to break them ap, and to crush the knots which are some
hat harder than the stalks, and contain What harder than the stalks, and contain a resinous gum more tenacious
than that in the intermediate parts. The crushed plants are next submitted o the action of stamps or hammers, which beats out the revinous or
cummy matter. The vegetable wool, with the waste still adhering to matters, and prepare it to be combed and carded previous tom being speneig
therwise osed in the arts or manufactures ; or it may be used withou being combed or corded. Among other uses it forms a valuable waterial 2116. W. Cussoub, Duilbridge Works, near Stroud, "Apparatus for oiling This invention relates to the operation of supplying oil or oleaginous
mixtures to wool preparatory to its being submitted to the carding engine
for the mixtures to wool preparatory to its being submitted to the carding engine
for the purpoxe of beng worked into silver, the object of this invention
being to effect a uniform distribution of the liquid through the mass of the fibres under operation, and prevent the waste that is conesequent on
the ordinary mode of oiling wool. To this end the patentee employs a
travelling brush or brushes, which, after receiving oil from a dipping
plate, will transfer the same to a roller pate, wil sranser the same ta a roller mounted above the feed apron of
the arding engine, and pressing upon the wool supplied thereto. The
contact, therefore, of this oilid roller with the wool that is pasing
under it will ensure the equal distribution of the oil over the whole surfac under it will ensure the equal distribution of the oil over the whole surfac,
of the wool. 2122. H. Nrisos, Manchaster, J. Carr, Blackbwa, an l G. Harrisox,
Burnley. "S\%j acting muler "-Dated 2 ben August
 2126. F. Tolnavses, Paris, "A new kind of artifcial. fur, to be made by
means of the jaoquard or othe looms veith silk or other lexile malerial."This inventionvelates to the manufacture of a kind of initation par resembling to all intents and purposes that called astrakan. The
patentee produces this imitatiop fur either on the jocquard or on the
conmon ind the iollowing manine -The textie whaterial ntended for
the weft, which is composed of several ends, is first. sized or dressed in : gelatinous solution, then wound on tubular cops or spools which are in ex
posed to a heat of about 150 deg. Fah., by which the fibres are curled. By
 with what is termed a satin or satinade shed. The process is similar to
that used for making velvet, and in order to case the weft wo curl the that used for making velvet, and in order to cause the wert ${ }^{\text {a }}$ curi the
wires or knives are heated to asuitable degree, and they are also provided
with a groove for guiding the knife while cutting the pile. The pile may also be cut on the under face of the fabric

This invention relates to an improved mode of protecting sewing threa soiled by continuous handling, dass, or other similar causes, whilst the invention at the same time prevents the thread or yarn of the clew from becoming entangied on being wound off, as often happens when unwinding
the thread from a skein. For this purpose the patentee encloses eac clew in a small capsule, box, or protecting case, by preference made of card
boord, fitting round the clew, and provided with a hole through which in left protruding that end of the yarn that is sitaated in the interior of the
clew, hus allowing to wind off any suitable quantity of thread from the clew without fear of the thread becoming entangled. The box or protecto borders of which, being applied against each other exactly, fils, the rims or fully to cover the clew inserted between them, the said rims being furthe glued or in any other suitable manner fixed together, but by preference by
glueing all round the line of junction of the two semi-capsules or shells small strip of paper bearing the manufacturer's trade mark, or any otthe
suitable indicaion or ornament yarn or thread of the clew whilst in the interior of the cow of examing the purpose. He prefers making the clew boses or threal protectors of card board, but stont paper, thin wood, sheet metal, gutta percha, leather, or
other similar suitable materials, might be likewise made use of for that purpose.
2134. J. and W. Smiri, Keighley, "Spindles and flyers used in machinery for spinning and twisting fibrous subatancas."-Do ted 2ith Aupwt, 1861.
This improved method of attaching the flyer to the spindle consists in groove or bath screws, and forming in the topor upper part of the spind to the inside of the boss at the epper part of the tlyer, which or locks intocto the
said groove or slot, and thus fixes the flyer at once without screwing. 213s. R. A. Brooxas, Fleet-strea, London, "Tanples or stretching rollers for
looms."-A communication.-Dated 27 th Aupust, 1861 . The main feature of this invention consists in effecting by one and the
same temple or roller, carrying points or needles at or near each end, and extending across the loom, the regular and equal tension on the two sel
vages of the fabric under manufacture. The is produced by the onward movement of the rotation of the temple rolle are seized by the points or needles, whentec are arranged spirally, and inclined
outwards from the centre of the roller. A box for holding the temple or roller extends across the loom, and is furnished with bearings for it to
revolve in. The box and the springs are slotted to elable the position of the temple to b
adjusted. The adjusted. The outer ends of the temple are composed of segments made by
proference of copper, tin, oo other soft metal, and held on the roller by
rings ; the needles or points pass through the segments. - Not proceeded veith

Class 4.-AGRICULTURE.

Including Agricultural Engines, Windlasses, Implements, Flour
Mills, ${ }^{\prime}$ c.
2097. B. SAsuzisoy, Banbury,
-Dated 22nd Aupuat, 1861

This invention relates to those harvesting machines in which the grain grass, after having been severed by cutters which breast the crop, i
intended to be removed out of the track by mechanical means, and is carrie into cffect as follows:-First, in those cases in which the cut grain or gras is allowed to fall on the ground, or on a fixed platform, the inventor places
an upright shaft so that the step that carries it shall be in a line or there abouts with the cutters on one side of them. This shaft he causes to re
volve by means of any ordinary mechanical arrangements, deriving motion from a propelling wheel in contact with the ground; attached to rakes or sweepers. Around or partially around this upright shaft, but not
revolving with revolving with it, he places one or more guides, so shaped that, by the
contact therewith of the arms carrying the rakes or sweepers, these latter
may be made to rise and fall as well as to revolve, thus cnabing them to
enter the uncut crop at the proper inclination, to lay it upon the platorm
or the ground behind the cutross, to sweep the cut copp to one side and to
or release themselves from it at the proper time In many cases it is desir-
able that the rakes or sweepers should not all travel in the same path, for
 not remove it after it has fallen on the ground or platiorm. He effects this
by so shaping the arme which carty some of the raker or sleepers, or by
attaching gertain procections to them, that tome man be guided into one
 Secondy, in those eases in which the cut grain or grass is allowed do fall
on anveling platorm consisting of endless belts or similiar contrivances
which carry the eut crop to ond

 forecing the uncut erop by a rake, fork, or paddele towards the cutters and on
to the travecling platorms leving the removal of the crop, after it is cut,
to he effected by such platiorm.- Not proceded veilh. 2100. J. DUss, Alnvick, "Reaping machines." "Dated $23 r d$ Auput, 1861 .
This invention is carried out in practico as follows:-From a basket fixe on the isvention fram of the carriage is suspended o bent oscillating lever., the
lower end of which is connected with the cutters the said lever carries two puteres slaced at equal distances, one above and the other below the centre
pin on which the lever moves and is suspended. To the spokes of the

 the said teeth a reciprocat may but mot
to be in use. - Not proceded veith.
 This invention cannot be described wit

Class 5.-BUILDING.

Including Brick and Tile Machines, Bricks, Tiles, Drain Pipes, and
House Fittings, Warming, Ventilating, \&c. 2120. R. W. Joves, Cork, "Heating and ventil
 over the heating flues and under the upper filoor of the sudatorium and
tepianium, opreven accidents by buning to which poople are very
tiade in the hot air bath with horizontal flues constructed and covered in the ordinary way The heatdy tues are connected wilh an ordinary
 to whech again are attached perforated pipes which con be arranged in shel
a manner that the general and equal distribution of vapour is so completely under control that the vapour can never become disagreeable
oppresive, nor condense on the obdy
 or sidatorium, and also in the tepidarium, and manitaining the required
difference in the temperature of the two rooss, and, further, tor lowering or or the purpose of ventilation, driving out impure air, so that the aame air
is not lett in the room a minute, but is constantly changed, and which

 flues, the admission of rase, smoke, or any other injurious or deleterious
matter is imossible.and the air is thereby preserved pure. For retaining
heat fine sand is used. 2117. J. Crasstos

 arfaces of the "principals" piecese of timber are fixeded egeegays to ren

 The radical pieces have circles, trefoils, quarterroils, or small openings of
any shape piereed through them at equal or unequal distances. either all
 rolleer at the coderes made ot oun in irooves, othat the ingress and eiress
of air is always under control, insuring pertect ventiation by numberless
 the "principals"" upon which the radical pieces rest either straight, ca: ted,

Class 6.-FIRE-ARMS.
Including Guns, Swords, Cannons, Shots, Shells, Gunpowder, Imple-
ments of War or for Defences, Gun Carriages, §c. 2093. W. R. Ricuin
Augut, 1 B6木.
In contructing In constructing breech-loading rifles (more especially, although not

 he cartridges (which in loch-patate entering the tarreles, and car rying forward
the
 loading ireerarms, he forms the body of the proiectile cylindrica, and o
such a diamert than tit will just enter the bore of the piece, allowance being
 cod. A short length of the projectile at the rear end is made of somewhat same. This enlargement, in loading a breech-loading fire-arn, stops the the breech-end of the barrel, thus preventing its being pushed too far
forward. This enlarged portion, when fored forward by the explosion takes the rifing of the barrel so completely as not to nllow any escape or
windage, and at the same time it ensures the rotation of the projectio as

保 formed or fixed at the back surfaces of the armor-plates may be passed through the ribs or projections and the forks of the bolts; or the
polts or instruments used for fixing the armour-plates, when having ribs or projections at their back surfaces, may be otherwise formed.

 Cecess or channel around the projectile, and rearwards of the belt, that the
direct into and follow the pifiling of the cannon from which such projectiles may

 and oreak up into framgents, the following special mode of manuatacturing
he cast iron pieces intended for filling cases previously cast, as in the Armstrong shells, or for having cases cast on to or round them, as in the
 weak patts of thecether, and the thickness and form of such weak parts
being such that fracture may readily and easily occur. And, further, the
 pally situated at the rear end only of the projectile, and not extending
throughout its length except for purposes of iknition, And, as to the cart
 ear, separate, or part at a certain place or position, or places or positions,
is required, either beforo being placed in the sun, or when pressed down to or other wise, with a stople-cock or other equivalent contrivance for hold-
ing in the power not keeping it dry and which is removed when the
twisted end is broken off or remored.

Class 7.-FURNITURE AND CLOTHING.

Including Cooking Utensils, Upholstery, Ornaments, Musical Instru-
ments, Lamps, Manufactured Articles of Dress, §c.
2099. R. ThuFond, Biomingham, and J. SAxpres, Clifton, " 4 substiute for
castors Jor furniure.

This invention consists of a kind of shoe with a smooth rounded bottom
or bearing surface in substitution for ordinary castors with rollers or balls.

 2135. J. C. C. Azemar, Mark-lane, London, "An instrument to facilitate the practice of the drum "' - Dated 207h Iupust, 1801.
This invention cannot be described without reference to the drawings.

Class 8.-CHEMICAL.

Including, Special Chemical and Pharmaceutical Preparations, Fuel
and Lighting Materials, Preparation and Preservation of Food, Brewing, Tanning, Blecching, Dyeing, Calico-Preanting, Simelting,
Glass, Pottery, Cements, Paint, Paper, Manures, \&c. 2096. J. H. Jolisso

 damp, and which, consequently, may be obtained at a low priee), the resi-
duum or pulp of beet-root tron been extracted therefrom, and the wrack grass, either of which substances
 process, give rise to pulp which may bo pulp hitherto manutacture of paper. After this the substances arre lefte to boak in in an
alkaline ye or liguid composed of lime, soda, potash, or ammonia, common

 washed either with phenic, or tri-nitrophenic, or carbuzotic acid, and
finally well washed in water, anter which they many be beached by any of
the known bleachiog proceses, by preference by means of chlorine or sulpharous acid. The pulp thus obtained from either of the above mentioned
sobstances may then be tued iether of them alone or mived together,
or with any othe pulp puitable for the manufacture of paper, and in any
suitabe proportions.
 This invention consists in applying in the manufacture of paper aluminous
cakes obtained by acting on pit or alum shale or blues, either in a natural
 alum or aluminous cake heretorore employed, and which is extracted and
manuratured from the compound of shale blues or ashes and acid above
tated, at considerable cost.

CLASS 9.-ELECTRICITY.
Including Electric, Magnetic, and Electro-Magnetic Apparatus,
Electrical Apparatus, Galvanic Batteries, \&c.

This invention relates to 0 new arrangement of piles or batteries having
Constant and energetic currents, and yielding useful products at the poles of each element. The principle of this method is based on this theory, that
the electromomive powe of a batery is proportional to the chemical action
hant that takes place by the contact of a metal and an acid, which chemical action,
on the other hand , is is irectly pooportionat to the coloric evolved. Frist, by the exatiation oron of the metal or metallic oxide with the acid used, the seid
themien depolarisation. In order to torm a battery by this method hoo inventor
 chirent hie aetion, and evolve much heat, eg, iron, zinc, lead, copper, and
cilver, nitric and hydrochloric acids, and ciorhydrate, sulphuric, acetic,
sity
 with the least absorption of caloric. . In order to absorb the nitrous vapours,
which are given of as in Bunseris' pile, he ures the oleine or oleic acid from fatty bodies, or non sicicative oils, which are thus converted into conerete,
eliaidine, or elidicic acict, and may be used for making stearine candles. Not
proceded with. proceded woith.

Class 10.-MISCELLANEOIJS

Including all Patents not found under the preceding heads.

lerminating at the bottom in a solid spingle maintained between cross bars

 ylinders carries two pipese extending yupwards. One of thesse pipes commu-
icates with the truncated cone and the o ther pipe is placed vertcally at the other end of the cylinder; the length of this pipe is varied to correspond Each of these vertical pipes has an elbwe at the top directed to the exterior part of the machine. The shatt is hollow from the bottom spinde to the
op of the truncated cone. The other part of the shaft is to be solld or if not there must be means provided to prevent any communication with the
lower part. The interior of the hollow part of the shatit communicates with here is a spindle working in a muitable bearing, and having a pulley or other contrivanco for giving rapid motion to the shaft and parts con-
nected with it. The machine has to be flled with water, and rapid motion Yiven to it, and the water contanind in the truncated cone and horizontal
cylinders is powertully forced towards the circumference, and rises in the Yertical pipes, from whence it is spirted out, but this water cannot flow to
the circumference, nor rise in the pipes without leaving a vacuum in the truncated cone and in the horizontal cylinders The whater from the espyply
reservoir is then drawn through the hollow shaft and pasest trow h the ures near the top of the cone and ills the space from which the water has been orece. The water last supplied is in its turn forced outward, which causes thus obtained, the rapidity of which depends upon the speed given to the
1081. A; J. Mort, Liverpool, "Draving beer and other liquils from caskis,
 domestic use, and consists inallowing the atmosphere to exercise a pressure on
one side of a travelling medium interposed between such liquids and the air, which travelling medium will give or trate ${ }^{\text {prexsure to to }}$ 1952. C. P. Moovx, Corton, Denham, Somersed, "Gates."-Dated 0th Augus

 1983. J. HEsisoway. Robert Tonen, York, "Apparatus for uorking coal,
ironstone, sc."-Dated 9 9h A Ayvat, 1801.

 the eworking of the material or mineral under operation. The drills many be
applied and worked in any number which may be ound expedient, and most
conveuient and convenient, and their action may be regulated at he pleasure or he person
working tho omecine. The namecine may be ppplited to the dirivg of
headings or straight work, an well as to the working of coal or other application. 1985. J. and C. GnyFp1, Walsall, "Machineryf for the manufacture or cutting
of conks and bung,",-Doted jol Aupust, 1861.

 bung io be cut, ana, while the said picee of cork somy rotates, the rapidily

 Not procaukd zith.
193. H. Cuatwix, Birmingham, "C Cortain improvements in the manufacture
of card, needle. pin, and other ceses, and in the application to nch articla of
 so preparc irom pure deal me tree, or orherse such cases, and on the one side he secures the edgesand or top material, the tom parts with ylue, the same being of o regular width tor ollowing the internal
capacity to be uniform and regular, and over this he secures the other side again using strong glue, as being the best and most convenient for uniting
articese so composed. The case this made is shaped on the ontside either round square, or otherwise, ay desired, by means of a rusp, file, or other
suitable moans and applis,
small
modes
In this maision he places a lip or facing of thin bone, ivory, metal, or other
diver
suitable material, finishing this mounting around the
 to the tickness of the material he purposes covering or applying to the
outside of such cases. The rarts
 arranged) the glass panel or panels octataing the photographic picture
and thus treated the case is fif for receiving the leathero or oher covering.
 it be coarse or fine, can be brought to any required proximity to the shuttle
 invention cannot De described without reference to the drawings.
1990. R. A. Gopws, Nevport-stret, Lambeth, "Pumps."-Dated 9 Augus

 working through, astuffing box in one of the ends; through the pendon of the
cylinders the exit passages are formed, and these are fitted wits vilu

 passes he causes the said rod to work through a stuffing box carried by a bar
pasigng from side ot side ot the cylinder,
pand the end or valve e has a circular closes the edges of the hole in the centre come against a ring around the
stuffing box, and so make a tight joint.
 place or ajjust the par custion of the truss, bandage, wirdee, or belt, at ease, or relief, and after havihg adjusted it to such desired position may
there retain it. For this purpose the patentee employs an arrangement or

 1992. C. H. Bukkeck, Southampton-buiddings,

This invention has for its object improvements in the construction of
military and other tents, whereby greater protection is afforded to the occupiers from the effectso of bad weather on damp ground, together with
additional ease and comfort whilst being occupied. For this constructing a tent capabble of accommodating four persons, three uprights are
driven into the ground about two feet apart. These uprights may be parts formed with sockets or joints to connect them together, and are fur-
mished with hooks nuar the centr for supportign the metal rods to which uprights are connected by the rods, which also serve to support the outer
covering of the tent The other end of each cloth or hammock is attached
to

 the kanpeck the ends being tightly stretched up to a peg which is frumly
driven into the ground Two or more such cloths or hammocks may tus
be stretethed be stretched and supported side by side (according to the number of upights
employed), corresponding ones being stretched and supported from the central uprights in the opposite direction. Each cloth or hammock thus
supported ormsen a dry -nd flexible bedo or surface on which the soldier or
other oceupant of the tent an

 may be carried on the knapsack. For the use of cavalry or travellers a licht
portabte metal or otheres mpport my bee substituted or the knapsack suitably
constructed to fold up or attach to the hammock

 facilitate, the
baterial,
bemoun,
removed for
 producing the pattern. Over the veneer they place another sheet of metal,
on the surface of which punches are fxed exacl| corresponing in iorm
and position with the parts to be removed from the veneer ; this plate is
pud poris put correctly in its position, so that the punches come coorrectly over the
correpponding reecsess in the frite plate by means of guide pins. The plates
are then presed together until the veneer is cuts when they are angin are then presed opether until the veneer is eut, when they are again
eparated t the holow in the int plate will be flled with portions of the
veneer which have been toreed with them by the punches, whilist on the

 and the radius bar, and do own to an ond inary windingnorrrel, which is ifted to
the main pillar, and may be actuated either by hand or steam power. The the main pillar, and may be actuated either by hand or steam power. .eche
hoisting chain is wound round the front of the barrel, and there is as ascond

 pall slips over the ratchet teeth without doing any injury or causing
breakege of the parts.

 1999. M. Wiozzul, Friar:
 This machine oracapparatus is cpapali. of making one or more nails at any
number of covoutios or parts of o revoution of its driving gear, and when
the bars

 ham orrs or press rods, and twisted by the traversing and revolving man-
drils which traw the pieces of iron, when cut as herein described, through
rollers in tront of the

 2001. A. Garzesp, Paris, "Aparatus for cutting up and reducing dye and
other zoood."-Dated 12h Aupust, 1801. For the purpose of this invention the inventor employs a tool carrier or
kind of cyinder having the form of an Archimedian serew, on the projec-
tions of which autters are fiod in
 2005. Vc. JArkowsi, Fizroy-spuare,
In carrying out thit hus invention.

 its other end retained in another holder passing through another guide, and
oonnected by a link to a cunk pin haning a pulley uon its axis, with band
operated byanother pulley, by preference of larger diameter, upon the axis

This invention consists in constructing a steel busk or stay fastening, 2009. J. JAcook Bruxskr, Austria, "Producing on porcelain and other

 and prepared colours as well as the vitreous mass or flux are in all case reduced to tho inest powder or dust before being used. On ceramic
prod unts and on enames the ornamentation can be produced either upon
the glaze or under the glize. 2010. J. Lusc uster the glaze.
2010. J. LAxcastrk, Princess-street, Bedford-rove, London, " Producing sand. In carrying out thist invention the inventor places the stone, ballast, or
gravel in a suitable machine for crushing, pulverising, and washing the same, after which it is to be sifited throunh siveres of various sized mesthes
a.corrding to the purpose tor which sand thus produced may be required.
Not Not proceded widh

 costly matogany, and has the advantage orim neitherpearancerating in appear-
ance cracking n tor requiring to bereopoished ococasionally, which is the case
with the finest specimens of knotted mahogany. 213. C. Bixks, Grajoisinn, London, "Treating linsecl and other oils and fats." The specification of this invention is too voluminous to be quoted here in
detail
the dryine pojpects of the invention are as follows - Frirty, to improve
 free, or comparatively free, from (ollour, and especialy from the deep or
dark eolour usauny pertaning to lineed oil, which has been boiled or
treated by the methods hitherto commonly resorted to in order to quicken

 2014. W. Cowrox, Brighton, "Apparatus applicable to sater-closets and
urinals." - Dated 13 Sh
August, 1861. In carrying oat this invention the inventor uses an air-tight vessel in
which water sufficient for one discharg is collceted. As the water accumulates

 closet pan this supply will be cut off she spindle is jointed at its itower
end to the ordinary lever of the cioset, so that, when that teveris rased in
the usual way, the valve will rise and discharye the water To

 metallic tubes without brazine or sodidering ananacturning nay description of

2021. A. A. R. DavoiskNe, Paris, "Kilns."一Dated 14h Auput, 1861.
This invention consists, principaly, in arranging the kill in in such that all or a part of the feed eir is properly heated on reaching the fuel so
as to obtain a better combustion of this latter, and whist at the same time
to or formstruction of the e kinn in the sor the articeles being more equally heated
or firc than was the case in the kilss hitherto made use of.
vol proceded

 other suitable metal or alloy in manner hereatter described. The wire to be
cated is firt passed over a roller or pulley, which is in connection with the positive pole of a a alvanic battery, then under one or more rollers or pulleys
Immerset in a suitabol both or solution, and in whinch a piece of copper or
other metal which is to torm the

 and dried by a cloth or otherwise, and then wound on a roller to be weded as
required. The both or solution beorem ontiond is prepared according to
the metal or alloy with which the wire is to be costed.
 The patentee claims, First, the novel combination of the several parts of
the machines deseribod. for the purpose of washing mineral and other
substance or materials, os set forth; Secondly, the novel application of flexibe dises, worked by revolving cams in the manner described. for the
purpose of producing sudden elevations and gradual depressions of water

 2025. TT. Sinvestris, Wat Bromwich, Stafforldire, "Spring balances or
veighing apparatus."-D

 The patentee claims, First, the construction of stoves wherein the smoke
from the frib-box is cuased op pass horizontally through an opening in the
back of the stove into a central back flue in which it descends, and then back of the stove into a centrat back flue in which it descends, and then
passes into two side flues, whence itassend sito the chimney, sascribed.
Secondly, the construction of stoves having descending and flues, or simply one ascending back flue and a sliding valve eo regulate the
opening into the same, in combination with a throat valve or throat valves

 that regulates the opening and closing of the valve or valves, as described
Forthy, heo onstruction of soves, weerein a seocon movoble grating is
placed beneath, and is fitted in between the bars of the ordinary grating

2029. S. CaRky and W. M. PIRgcg, Bast Ham,
receiving the chacooal required to be re-burnt of an octagon or other many
 angles a bevelled fillet or rib, whereby the eontents of the cylinder or
retort, when in motion, may be reand agitated or sorea, and more
niformiy burnt than in the ordinary circular cylinder. The patentes also
 hang or fita a door in or upon the front plate of the said sy.
so as to facilitite the charging or discharging the contents.
 ${ }_{T} 1861$

 crucibless and pots for chemical and smelting purposes, by bimply cutting
them out on the statite books to to forms desired, and either calcining
them or not as is thought best as for all these purpuses, except buttons,

 any propo

This invention consists, principally, in the combination for such purposes
 pulpy state places it in a mould of the required shape or form, where it
remmins until it has undergone the usual proces of hardening so so to
ive it the consistency and strength of what 1 ts known as ebonite, or other

 climate or temperature, and, consequentily, the e ose of the preeseses.ated bere.
lofore, will not be required to force them into shape. -Not proceded with.

This invention - reates 1 the tho form, and construction of the metal ribs,

 to their peculiar form, are very suitable for having the joints formed thereto
which connect the stretchers to the ribs and runner, and the ribs to the top notch, Another part of the invention consists in forming the metal ribs
and strecthers of umbrellas and parsols of a double trough or similar shape (m), or having two or more longitudinal channels.
 In carrying out this invention the inventor first produces an engraved
plate of hid
inal intended to be reproduced, and from this, by means of the

 plate with a protecting coat of wax, and then immerses the whole in a bath

 operated upon is attached to he upper surralo of the slide, above which a
sintable ppane, sav, or other cutting or slididg apparatus is secured by
means at each revolution of the crank a slice of wood or other substanco is taken
off of the desired thickness, and the cutter may be so regulated as to sheave
 2057. E. S. Catives.s, Slreasbury,
Augut, 1861.

This invention relates to an improved mode of maintaining a constantly unitorm water Tine or level in inproved meters, by compensating for the lost of of
water in the meter by evaporation or otherwise, which is effected polowition manner:- The upper part of the ront chamber of the meter is
partitone of by horizonal partition, and is thereby converted into
space

 in the meter falls belows the proper level the from doat desends, and slighty
 zontal partition, in which the valve seat is fixed, the valve spindle passing
trough a small hole in the bottom of the box, and the gas on entering
 a separate overflow pipe is employed, the top of which is at the correct water
 facture of those kinds of soans in which the boiling is is effected by the
fomporment of steam
 steam amongst the materials employed, which apparatus provides for the
steam employed being pased through a bed of throring materisl and
thereby causing the separation of particles of water therefrom previously to
 applied to spectacles ao archy shappo or formm, having for tide pourpose the
rising of peetacles from before the eyes up to and before, but not on to,
the forehead or hair. 2065. W. Firkis, Flee-street, London, "Instruments for extracting teth."-
 using it, and one of these instruments or appliances, which the patentee
calss the " "utcrum instrument," is constructed with a part or surface,
hereinater

rigid connection, or so contrived as to afford a firm and steady bearing,
rest, or fulcrum tor the second appliance The seond instrument, or
relevator "elevator", is serrated, or otherwise conveniently formed at one end for

 second appliance.

 ciently eut
manner.
773. T. Surrov, King's.Coltege. London, "An improved camera for taking,
phototorraphic portraits and instentaneous pictures."-Dated 2oth Aujust, $\substack{\text { pheto } \\ \text { lisi } \\ \text { hinv }}$
 The nature oft, 1 this inisention consists in the construction of a dipper provided, First, with external ribs or guards, so applied as to prevent
the contat of the exterior surfaces of the vessel Iith the interior surface of
the pans from which it is intendedtodit up the contents, whereby the heated
.

 all possib
surfoces.
aroided.
2075. F.

2075. F. Gre, Royal Italian Opera, Covent-garden, London, "Gasometers and gaumoter tanks."-Dated 20th Auput, 1866 ,

 space being used. The inner or smaller rasometer is arranged to act in the
interior tank independenty of the llyer or outer gasmeter which works
in the ring ormed or outer tank. When thus employing the enclosed and

 to pass horizontally, or in an inclined direction, through the metal contain-
ing vessel, but the arrangement described is preferred.
It wrill
whe seen that
 or crush it in, a strain which it is very much more
than a tensile or bursting strain. - Not procedded vith.

 solid glass hitherco employed for general illuminating purposes, as also for
the production of effects of white or coloured fre at t pubic entertainments.
then

 ordinary feeding along apparatus of the sewing mach mine at sidifprented tensions
while being sewn together. Secondly, in a contrivance for automaticelly

 2087. A. J. Hid Hysurt, Tournay, Bdgium, "Smoke consuming grate."-
This invention consisistsin the combined form or shape and arrangement
 ceded compound bar to give free passigo to
cesp
 The articice e o bue ehearedis, according to this invention, held in a tube and pulleys, so that the article to be sheared has only a rotatory motion
round its horizontal axis.
The etol
zontriel or or holder is mounted on a horizontal shaft, and consists of a regular prism, having six sides or faces, on
each of which is a blade or cutter. The tool parrier spindele, which is sup. ported at two places, is caused to rotate rapidy by,strap and pulley. The
blades or cutters in rotating come nearly in contact w viha a fixed piate or

 handie) in a circules
and spherioun articles. The object of this invention is to dispense with hand washing in the
teansinof lothes and other artices. The improved sapp consist of equal
parts of any ordinary soan and koolin. with about five per cent of ommonin

 This invention has reference to a previous patent, dated 133 Fh February, 1860

 string, or othe
proceceded with.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.
roon Trade and ther Prospects of the Forkion and Howe Trade
Increased Demand from India and China: The Grocth of the Trade

 with Forark
A suiber shade of improvement characterises the reports which we
receive this week from the different ironmaking firms of South Staffordshire. There is slightly more doing than there was las
week at a few of the best houses, and some of the firms, who are not very careful as to the quality of the iron that they produce, are
not worse off as a rule. This, however, does not say much, because, with the advance of the season, the orders were expected
to increase very much faster than as yet had been perceptible, even to increase very much aster than as yet had been perceptible, even
although the American war should not assume appearances more
and been perceptible for some time past, and the condition of the trade in the past six months in particular, has been almost unpreceragement hald out by Earl Russell that the all-disturbing war may
terminate with lordship credit for better information than they themselves possess they are not inclined, from their own reasoning, to share very
warmy in his Iordships views. They are still of opinion
what the Southerners hat the Southerners are not be subdued; and that the attempt
to subdue them, if much longer persiste in by the North, will bring temporary ruin upon the Federal States. Masters are not,
therefore, full of expectation of good from the recent Federal The Board of Trade returns for January, which are noticed at
some length below, are adverted to with satisfaction as showing the some length below, are adverted to with satisfaction as showing
rapid growth of our trade with France in particular at a time when
we so urgently needed new markets to compenste for the loss in the American trade direct. The continent, however, whence a greatly increased trade this year as compared with last
was being looked forward to, is not this week in a condition less unsatisfactory than it was deemed to be at the time of our last re--
port. As some set-off to this unfavourable feature of the prospecto port. As some set-of to this unfavourable feature of the prospecto
of the continental trade, India and China are announced to boordering more freely than for some time past, and the future is anticipate
with some esatisfaction. Home will remain pretty good for iron of large sizes and fair quality, provided the political horizon of the
continent should not portend storms of more than ordinary ruthlessness. Before the revival of trade prices will be as they now are hampton, on Woednescayp, the complaints were very loud of the rates
that were being accepted by South Staffordshire houses for iron de livered in Liverpool in particular. They are almost incredibly low
but the fact of invoice showing the precise fivest but the fact of invoices showing the precise figures having been seen
removes all room for doubt. Shets are being sent bence to Liverpordshire. The quality, however, is proportionate with the price
for fordssire. The quality, however, is proportionate with the price;
and what such iron can be used for is a problem which no one here
Pig-iron continues inanimate; and the make of the district is
about to be reduced by the blowing out of two more furnaces Bilston- those of Messss. Jonens and Murcott.
The quantity of hematite iron stone is small as compared with a short time ago, and the prices of native stone are for white and gubbin from 13s. to 15s. per ton. The is in a somewhat better state

 ps.; Res range from 6d. to 1s. per ton higher. "lietter of license" from
pr. Samuel Grifiths has received his " his creditors; and his "deed of inspection" has been duly pub-
lished in the Cazette. In the reference to this matter last week, some confusion arises from the omission of Mr. Thorneycroft'
name in the statement that the deed contained a recital setting forth that he (Mr. E. Bagnall Thorneycroft) was never a partner in Mr
Griffiths' so-called firm of Messrs. E. B. Thorneycroft Notwith Grimiths so-caled
standing this recital we find that Mr. Grifithss in the this woek ad-
dressing the men who were in his employ while the "Stafordshire dressing the men who were in his employ while the "Staffordshire
works" were open, still referring to Mr. E. B. Thorneyeroft as his past and present partuer. Mr. Griffiths has been entertaining those
workmen this week with a p plentiful supply of good fare. His
election at the last election are just published. They amount to $£ 980$. The following is a copy of a circular which has been issued by
Mr. William Crawshay, announcing a dissolution in the partnership which formed the Cinderford Iron Company:-
II beg to inform you that the partnerships
IT beg to inform you that the partnerships heretofore subsisting
between my father, Mr. William Crawshay, and the late Mr. Wi. liam Allaway, and subsequently between my father and Mr. Stepher Allaway, and since between Mr. Stephen Allaway and myself, are
all now at an end, and that the business of the late Cinderford Iron Company will, for the future, be carried on by me alone, in the
name, or under the tite of 'The Cinderford Ironworks.'
The Birmingham general trades continue without noticeable
alteration.
an excepti
A Birmingham paper announces that some vessels have sailed from Liverpool with heavy goods- articlese regarded simply as and we understand that some members of Lloyd's have taken the capture, danger of the seas, that, after deducting reigh for remains a margin for profit which bears favourable contrast with that under the high pro-
tective duties of the North. Several special branches of Birmingham manufacture have profited by these transactions, and some surplus
stock has thus unexpectedly been got rid of. The experiment seems likely to be repeated as opportunity offer At one time great dissatisfaction was felt among the fine art
houses in Birmingham-such, for instance, as the manufacturers ewellery, chains, \&c. - with respect to the accommodation for those branches in the New Exhibition Building, and it was indeed pro-
bable that many firms would not be represented at all. There has owever, been an entire re-arrangement of the position assigne representative of a local firm writes from the Interational Ex-
hibition office:- " The whole affair is re-arranged. The Birmingham jewellery department is an entire square by itself-four
frontages ; and we shall do very nicely.". bly the Board of Trade returns just issued we find that the totar was small, amounting only to $£ 8,439,055$, but it it is rather more than
that of the exports of the corresponding month of last year ; and the the Midlands, the chief ey most of the important manufacturers onchinery, railway iron, and silk manufactures. These branches manner as to show in which of the numerous sub-divisions into which modern arrangements have cast them the increase or diminu-
tion has taken place, by which separation the utility of the returns is very much enhanced. Small arms appear in these accounts exported in that month, against 16,908 in the corresponding month of last year, and 10,381 in that of 1860 . Earthenware and porcelain are now separated, and we learn that the value of the exports of the
former was $£ 66,221$, and that of the latter $E 2,999$, against $£ 53,010$ or both, last year, and $£ 98,938$ in 1860. The increase upon last which from $£ 249$ in value in 1860 , and $£ 499$ last year, rose to
$£ 3,938$. Glass shows a decline from $£ 42,738$ in 1860 , and $£ 34,777$ last year, to $£ 33,310$, owing to a falling off in the exports of window ated, as they ought long ago to have been, and the exports of the the latter to $£ 17,107$; but the last amount represents only a portion of the goods formerly classed under this head, being limited to manu-
factures of steel, or of steel and iron combined (anvils, vices, saws, files, edge tools, cranks, slide-bars, \&c.), and tools or implements of
industry, otherwise than and iron or of steel. The value of the exports of all articles previously $£ 161,773$, against $t \in 230,973$ last t ear, and $£ 244,, 105$ ind 1860 . MManu-
facturers of leather are now entered so as to distinguish the value of racturers of leather are now entered so as to distinguish the value of
the boots and shoes exported, which amounted to $£ 120,710$, more as already mentioned, shows, on the whole, a decline, as though the value of the steam engines exported rose from $£ 44,081$ to $£ 53,962$, of other machines declined in value from $£ 170,436$ to $£ 144,920$. Sue increased production of steam engines for India and Brazin was pain, but such was not the case with regard to the increased proTowns, and Russia, as against the dimimisheded shipmentst, to India and
Australia. The improved classification of metals gives the following results :-

Montil Exded Jasuary 31st.

\qquad

Siup Hindiond Plate..

${ }^{1860}$	${ }^{1861 .}$	
${ }_{\text {cta }}^{43,379}$	${ }_{\text {c }}^{46,517}$	
100,400	${ }_{\text {183,299 }}$	107,
${ }^{20,771}$	${ }^{13,441}$	
${ }_{68,752}^{40,179}$		
103,269	138,969	148
${ }_{9}^{71,841} 9$	(5	
114,507	67,922	
19,801	14,253	
11,770	cinctio	21
${ }^{25,402}$	${ }^{20,311}$	
6,063	cois	

(includ, Nails, Yellow Plates Metal)
Wrought, other Sorts
nurought
ates
.$:$
an
The great increase in the exports of pig and puddled iron took
olace in the exports to France and Holland ; while that of the second description was general, except as regards the United States. There
was a diminution in the shipments of railway iron to India, Ausrralia, and the United States; but the exports to other railwaymaking countries show an increase, especially to France and Spain.
The increase in cast iron was general, except as regards the United
States andBrazil. In hool were the Hanse Towns, Australin , and the United plates the exceptions being greatest in the trade with Holland, Spain and India. The
falling off in unwrought copper was general, while the increase in Wrought copper and yellow metal extended to all countries except
Holland Italy, and Turkey. Australia was the only market which diminishedits demand for tin plates. The value of the plate, plated wares, jewellery, and watches exported was $£ 40,480$, againint \pm P44,327
in the corresponding period of last year. In the import account clocks and watches show a falling off, the former from 9,388 to 4,514 ,
and the latter from 6,867 to 5,030 . importation of copper, chieffy from Chili, and also of copper ore and ore is an item in the metallic imports which appears for the first time, the value imported being $£ 32,170$ against $£ 780$ in the corresponding nonth of last yea
Two cases of
Two cases of gross and serious negligence by engine-tenters at
colieries have come under our observation since last week. On Monday the magistrates at Willenhall sent an engine-tenter, who Ironmaster's Association, of South Staffordshire, to prison for six
weeks, and ordered the wages that were due to him to be confiscated, for his having drawn a askip over the pulley, and for being drunk
while he was at his work. On the same aiternoon eight men received serious personal injury, seven of them by being drawn over the pulley at a pit at Tividiale, two oniles from Dudleeg. The dogery of the pit
was on the bank when the men were nearing the top of the shaft. On perceiving that the engine was working faster than was compatible tenter was out of the engine-house, thrust the "wagon," or movable platiorm, over the pit's mouth. He had scarcely done so before the ship was over the phlley, and the men were out. Immediately that
he had performed the timely act, which saved at least a majority of
his fellow-workmen his fellow-workmen from certain death, he sustained very severe
injuries himself, for some of the men, and probably portions of the
skip and the massive weights which, It is further to be regretted that the son-in-law of this nam, who was one of the party in the skip, cannot survive. All the injured men are married and have children.
Mr. H. L. Fletcher, one of
and Fletcher, iron merchants, of Willenhall, and who ist firm of Pitt
day, charged before the magistrates at Wolverhampton with forgiug
the acceptance to, and then uttering a bill of exchange for, 880 , The acceptance to, and then uttering a bill of exchange for, $£ 80$. two months after the dissolution, and he wrote the name of "Jacob
Groves," of Willenhall, as the acceptor. The bill was discounted by Groves," of Willonhall, as the acceptor. The bill was wiscounted by a broker, and, when disavowed by Groves, tendered to the firm. Pitt Fiecher having, however, through the discovery of the defalcations
of the Rev. H. S. Fletcher, to go into the Birmingham Bankruptcy Court, an explantion of the payment had to bo made. Hence theso procedings. Flether was remanded for a week, nad the bench
refused to accopt bail. The affair gave rise to much conversation among the iroont trade in Birmingham yesterday (Thursday), and on Wolverhampton.

NOTES FROM THE NORTHERN AND EASTERN

 COUNTIES.Nonthens MAtrras: Depreasion on Tyneside: Trade of the North
East Ports: The Elswick Works: The Steam Collieries: Cleceland Iron Trade: River Tyme Commission: Miner's Relief Fund
Fatal Accinest on tik Bondr Union Ralway - Brakeniend
 Afessrs. Vernon and Son's Works-Instirutiox op Exauskens iv
 mbitron-Stats or Trank: Manchester: Shefield: Derbyshire-
W ε commencoc with the north. The state of commercial affairs on
Tyneside is still gloomy. In the exports of general merchandise from north-eastern ports there was last month a considerable falling
off, the decline in the shipments from Newcastle having been upwards of $£ 18,000$, from Sunderland upwards of $\ell 5,000$, and from the Hartlepools upwards of 40,000 . Most of the large establish-
ments in the northern district have rather circumscribed their ments in the northerr distrite have rather circumscribed their
operations, but the great Elswick Works aro an exception to the
rule purchased a short immo since to the east of their existing builingngs is
being covered with large workshops. It is stated that several of the largest steam collieries are working only four days to the fortnight; and only thoso collieries which have large contracts, and are, thero-
fore, but little affected by market fluctuations, are working eleven days, to the fortuight. The Cleveland diron trade eparticipates in the the
general depression, and in the Rosedile district there is oseme want general depression, and in the Rosedale district there is some want
of employment. The members of the Tynemouth Chamber of Commerce have a bone to piec witit the TYye Improvement Commissionscurce of complaint against the river conservators, who have now had a separate corporate existence of nearly twelve years, seemed to
lie in their postponement of the construction of the Low-Lights Dock, for which Parliamentary powers were obtained last year;
and petitions were adopted for presentation to both Houses of Pand petitions were adopted for presentation to both Housses of to amend and extend the present constitution of the commission. sanction from the Tyne Ferry Bill in the form in which it is proposed,
was likewise agreed to. The chamber seems to ignore the fact that great commerciial depression provails, and that the commissioners outlay in the present state of affairs. The miners of Northumberland and Durham propose to establish a permanent relief fund to include only fatal accidents and those by which miners may be permanently
disabled. It is recommended that all men should contribute 1 1d. weekly and boys $\frac{1 d}{}$ weekly towards the object in view. An inteto Me. Hugh Taylor, aappresident ot the coal trade, The subbect of
which the writer treats is the relief fund proposed to be estabished, and he subnits a plan of insurance, by which the object may be carried into effect, to the highest advantage of those whose intereste are of so frequent occurrence, and the miners in the comparatively new iron district in Cleveland he also intends to include in the scheme. Mr. Pease suggests that each year should provide a fund
equal to the cases arising in it, and the term of insurance he would limit to five years, a longer period being easily provided for by a
larger weekly payment. Care, he says, should be taken that the premium payment should be so regulated year by year, after th experiencec of a year or two, that the Hartley fund should not be be
infringed upon, save in the case of any cassaal circumstanco which nuringed apon, save in the case of any casual circumstanco which
might arise ; and he thinks that the surplus money might be of the coal whers, who subscribed to the insurance fund
Yesterday week a fatal accident occurred on the Border Union Rail way. Heavy rain caused an accumulation of waters at Flash
Burn, in Liddesdale, where the stream passes under a high embanknent of the railway, through a culvert 8t. in diameter. The bank ion of water, 20ft. deep, threatened to sweep away the embankment Mr. J. F. Tone, the engineer of the company, entered the tunnei
from the other end, accompanied by Mr. Thomas Ridey, the cousin from the other end, accompanied by Mr. Thomas Ridley, the cousin
of the contractor, and a alabourer. Mr. Tone took a shovel, intending to pierce the mass of clay and let through a small quantity of water clay gave way, and ail the three were swept by the water through the
tunnel. The labourer was washed on to dry land. Mr. Tone, though tunned and bruised, struggled to land, but Mr. Ridley was swep into the Liddell, swollen by the rain, and lost his life. The unfortucautions taken by Mr. Tone a much more serious loss of life might have taken place. The workmen expressed their readiness to go up
tho culvert, but Mr. Tono refused to allow them in the face of such mminent danger before he had examined the state of matters in the dertaken with sheety. yielding a gradually increasing revenue. Now steamers are about
to be provided in connection with the Woodside Ferry, and at the Mr. G. Harrison and Mr. J. Laird, M. P. as to theport was read from boats which could be selected. The reart a the description of steamers should not be less than 150 ft , or more than 160ft. long and not less than 27 ft. beam; draft of water, with 50 tons on board,
not to exceed 7 ft. ; the power not more than 100 horses, each wheel to bo worked by a pair of engines, say four engines in all, and the sugines to be capabie of working up to four times their nominal end; to be provided with separate accommodation for ladies and vessel safo in case of collision under all ordinary circumstances ; and the steamer's deck to belevel with the new Landing-stage at Woodnot bo less than 150 ft, or more than $180 f t$. longi not lugse-b that should more than 35 ft . beam ; and draft of water, with 100 tons dead weight on board, not to exceed 8ft. ; the horse-power of engines not to be
less than 120 , or more than 180 (nominal), and to be on the same powerful principle named for the passenger steamer ; the vessel to
The Mirob, ana bleffeld and L ends.
olicit ${ }^{\text {owers }}$ for establishing station in Railway Company nection with their gradually extendiug system. It is proposed to construct a railway 1 mile and 53 chains in length from a aunuction
with the authorised line of the Garston or Liverpool Railway at Egerton-street, Toxteth Park, to or near the junction of Lawton-street, aro to be completed, if authorised, in five years.
formation on the ironwork capabilitites of Liverpool. This week it
gossips very agreeably about the works of Mespre. Vernon and Son gossips very agreeably about the works of Messrs. Vernon and Son,
eminent local iron shipbuilders. Mr. Thomas Vernon, now deceased, Was the founder of the firm, and, as a practical operator in plates and the advantazes to be derived from the application of iron to shipbuilding. No less than 30 years since Mr. Vernon, under the ap--
proving superintendence of Mr. C. Wye Williams, so well and so honourably knowintendinence of ine steam shipping world, constructed some 30 iron barges for the Shannon navigation, many of them being
still in use. Between 1831 and 1844 Nr. Vernon built and launched still in uase. Betweon 1831 and 1844 Mr. Vernon buny on and launched
אome 37 ships almost Kome 37 ships almost entirely constructed of iron, several of them being steamships of considerablo power and tonnage, and he also de-
voted bis attention to many other kinds and branches of iron manufacture. At the commencement of 1844 Mr . Vernon was joined by Yacture. At the commencement of 1844 Mr. Vernon was joined by
his son Mr. John Vernon, who became a parture in the business:
and since that year the firm has kept a regular record of the ships which yet has buitt. It appears from this journal that from 1844 to the end of 1861 they built no fewer than 108 ships,
with an aggregate measured burden capacity of about 46,000 tons, wesides a very large extent of other important works, in the shape
 manipulative skill. Of the now celebrated iron-screw colliers trading
between the Tyne and London, and having double iron bottoms, the first were constructed by Messrs. Vernon and Son. They folly
solved the sroble on her voyage, and return in a seaworthy condition without the cost of loading ballast?" These vessels are made to a certain
extent with double bottoms, and with such hydrostatic apextent with double bottoms, and with such hydrostatic ap-
paratus that,
under
perfectly
regulated
arrangements, water caun be admitted to or excluded from the space between the two
bottoms or skins of the ship. Thus, when the vessel is loaded, and she requires no ballast, the water is excluded from the vacant space;
but when her cargo has an empty her cargo has been discharged, and she has to return with inner and outer skins of the ship till shel is sufficiently loaded with water-ballast, and is thus expeditiously and cheaply made ready for be me Besides the important improvement above referred to it may be mentioned that Mr. Vernon, sen., along with Mr. James Kennedy,
were the inventors of the buib deck beam iron, which is no universally employed in the construction of all iron ships. Other improvements have also been mado or sedulously worked out at thr
eetabishmment, till now the deck and juside ceiling are nearl iron-built ships. A continued increase of business led to a gradua extension of Messsrs. Vernon's premises, and the building yard and
its appurtenances are now of large dimensions. From south to its appurtenances are now of large dimensions. From south th
north the eard streches along the river margin 486 ft ; ; and from east t
are si are situated a range of writing and drawing offices; and contiguous
to these is the large dratting room in which the ribs and framing of the different vessels are drawn out of the full size. The souther margin of the building yard is occupied by the smiths shop-2 201
long by 4 ftt. wide, which is employed in making the general smith work
amply furnished ed
with ant and preparation of heavy ironwork, inalied tody the required in the the
and ruder-posts, and the carfing of keels, and rudder-posts, and the scarfing of keels, and has a steam
hammer of considerable dimeusions. Just beyond the shop rehammer of considerable demeusionss, Just beyond the shop re
ferred to, still more to the south, is the shop and yard for
bending the ribs ond bending the ribs and other portions of the framing of first-clas perforated iron floor, and there are with the rets requisite large rollers for
bend bending or flattening, rod or plate iron, besides punching, drilling,
and trimming machines. The building yard is conveniently situated and commands a good. tretch of rivy front with a well-regulated launching elevation. Since the commencement of the present year Messrs. Vernon have launched, or have now on hand, ment; all these are, sailing ships. Conspicuous in a complete list
of
of Meser the stupendous landing-stages on the shores of the Mersey. They constructed all the girders for the high-level railway at the north end of the town, and restored the screw-steamssip Greal
Britain, after she had been stranded in Dundrum Bay. They conBritain, after she had been stranded in Dundrum Bay. They con-
structed the two first of Mr. Bourne's steam-trains of barges for the aravigation of the Indus, each train being jooft. in length, and connected by yoints to accommodate it to the tortuous channeels of
the Indian rivers. They also constructed barges for the navigation of the Gavges and of the Danube, and built the iron steamer A ssam,
about twenty-five years ago, for navigatio about twenty-five years ago, or navigating the Ganges. This
vessel, after having worn out one pair of engines, is being, or has
beent vessel, alter having worn out one pair on engines, is being. or has
been, itited with new engines, her hull being still in perfectly good order. Last, not least, may be mentioned a caisson of very peculiar
construction, recently executed for the Government Dockyard at Malta. The floating principle of this caisson is an air-chamber, so placed in the tabric as to be completely submerged, the buoyancy a, and with the utmost nicety, by a very small weight of water intromeeting of the Institution of Engineers in Sco and discussions took place on papers "On the Expansive Working of Steam" "(read by Professor Rankine), and "On Surfaco Con-
densers" (read by Mr. Spencer). The meeting was presided over by In the Sheriff's Court at Glasgow Sir A. Alison has disposed of the case of "Mrirs. Sourt at Glasgow Sir A. Alison has harty and dhildren v. James Alexed onder,
calenderer, of Glasgow." The pursuer's husband the defent engine-keeper, was cilled by the fly-wheel of the engine. It was
held held by Sir A. Alison, reversing the judgment of the sheriff-substi-
tute, that the deferder was liable, as the ely-wheel was not boxed or tote, that the detender was iabee, as ine
railed in and the sum of $£ 50$ was ordered to bee paid to the pursuer
in respect of "damages and solatiom." Sir in respect of "damages and solatium." Sir Archibald Alison, in "The necessity for boxing typwheels shs been so strongly expe
rienced that, in some trades where young persons are generally emm pienced that, in some trades where young persons are generany em
ployed it is dod imperative by Act of Pariament specinly
made for that matter. The defender here is a calenderer, which is not one of the trades where it is by statute declared that boxing is
indispensable; but the reason of the thing applies to all factor indispensablo; but the reason of the ehing applies to all factories
where fly-wheels are in use. The deceased had been for fourteen years about engines, in one employment for four years and a half as him. The sheriff does not go so tar as to assert that anved against bound to guard his workmen against the consequences of any pro-
bable reckles uess on their to guard against the probable dangers of the employment at which out any extraordinary trouble. In the present case, the risk to the engine-keeper was obvious, and such as must have endangered the on in charge of the fly-wheel. io go round the engine in a little space of from 2ft. to $2 \ddagger \mathrm{ft}$ broad, danger? And although, in some cases, the danger might be renoved by stopping the engine when the same was being aced, yol it be done without stopping the engine, and thereby throwing all the
persons in the works dependent on its motions for a time out of their persons.
duties.'
Messrs. W. and A. MOnie, of Scotland-street, Glasgow, have will show at the International Exhibition. The steam ensine highly finished and of 30 -horse power nominal, the sugar mill being of corresponding size. The weight of the whole exceeds 70 tons. More sugar mill work is stated to be shipped from the Clyde than rom large orders on hand for Asia, Africa, and the West Indies.
now
Cop
the machinists and foundries of Manchester:-Of forty-seven
machinists, sixteen are working full time with all hands twenty one full time with a portion of their hands, nine are on short time, and oue has stopped altogether. Of twenty-four foundries, six are
working full time with all hands, fourteen are working full time with a portion of their hands, and four are on skort time. At engineers' and machinists' tool trado report that hey are in the the of good orders, while others state that they are not doing much. The coal and iron trades of Derbyshire are depressed.
an absurd attempt to obtain powers to establish liness od again in from the minor enstern ports to various points on the soteamens who project was strenuously opposed by the steam shipping interest, applied to whom the matter came, took a similar view of the mantte, and, in doing so, probarly saved the company itself from considerable loss.
The Bill for companies, will pass, in all probability, so that 650 miles will be
placed under one general management, and fused in one common phateres.

PRICES CURRENT OF METALS

LEAD in fair demand.

Copras in moderate request, at
 which is quoted $\mathcal{E} 118 \mathrm{~s}$.
TIX PLATME
in good demand.
March 13th, 1862. Moatt Asd Co., 65, old Broad-street, London,

SCOTCH PIG IRON REPORT.

The market, as regards speculation, is almssow, 1 , 1 th March, 1862 ,
dimg
demand is The home demand is slack both among malleable tiron make mprs and founders. These are not quite so busy as they were at this time last year.
Exports laut week were $9,9+2$ toss, agains 7,117 tons in the
,
Examelazd Tanlets.-The Patent Glass Enamel Company, of High Holborn, are producing great numbers of enamelled tablets, chiefly lettered signs, in which the letters are burnt on in the most sion, and is in no danger of cracking with ordinary care. 4 great improvement has been lately mado by the Glass Enamel Company
in fixing gold upon the enamelled surfaces, so that gitt letters may
be produced at win.
will exhibit five or six -Tre Grat Western and Vale of Neath?Railways wil exhibit five or six broad gauge locomotives in the approaching
Exhibition. Locomotives will soon arrive, also, from Prussin inended for exhibition. All these engines aro to be drawn throug the streets to South Kensington, by Bray's traction engines. $\boldsymbol{\Delta}$
block of Krupp's steel, weighing upwards of 30 tons, is lock of Krupp's steel, weighing upwards of 30 tons, is also to be
taken to South Kensington by the sime means. Among the heavy taken to South Konsington by the same means. Among the heavy
weights lately moved by one of these engines was a stam cylinder weighing nearly 21 tons, being one of a pair made by Messrs. Penn nent. During or 1,000 -horse engins one of Bray's enkines exerted a measured tractive force of $9,000 \mathrm{lb}$.,

[^0]: The Machinery Departigent at the Exhibition.-The annexe for machinery in motion is fast advancing. The steam and exhaust trough, along the top of the side walls of which is laid a tramway, by which all the heaviest machinery will be brought up the annexe to their stations. The engine-house and lofty chimney are
 nearly built. In the former will be six very large boilers, capable of nearly built. In the former will be six very large boilers, capable of
 supplying the machinery with from 60 lb . to 70 lb . of steam. The steam pipes are fitted at every length of 45 ft . with hollow dises or drums of wrought iron, to allow of contraction and expansion, and the whole length of piping is laid, in gradually diminishing diameters, at an inoline of 1 in 100 . A simple but very ingenious

