LITERATURE

Chemins de Fer. Memoire sur la Marche d Contre- Vapeur des Machines Leocomotives. Notice Historique. Par M. Le Chate.
Lies, Ingenieur en Chef des Mines. Paris: Paul Dupont, 1869.

Conte Fer. Supplement au Memoire sur la Marche Contre. Vapeur des Machines Locomotives. Par M. Le CeateLikn, mgenieur en Chef des Mines. Paris: E. Martinet, 1869, motive Engine as a Brake. By M. Le Chatrlier. Trans lated from the Author's Manuscript by Lewis D. B. Gordow,
F.R.S.E., \&c. Edinburgh: Edmonston and Douglas. 1869 , It is very very seldom indeed that we have to notice such interesting and important works as these three small volumes. Merely the author's name, so well and so long
nown to the public in connection with important investi known to the public in convection with important investigations into the counter-weighting of locomotive engines,
the working of blast furnaces, and the influence of the emperature of the cylinder on the steam, would rouse attention. The subject he now handles has indeed a con-
nection, possibly unconscious to M Le Chatelier himself, nection, possibly unconscious to M Le Chatelier himself,
with the last named of these investigations; but the present with the last named of these investigations; but the present
treatise is not of a theoretical character merely, as it treatise is not of a theoretical character merely, as it England, but already applied to nearly three thousand England, but already
It must have long been perceived that the locomotive night be made to develope within itself the means of retardation of a train to which it often contributes the greater part of the total mass in motion. The
obvious advantages of a practical employment of backpressure steam are that it would put a true steam brake nto the hands of the engine-driver, and, as a consequence, a more independent control over his engine, diminishing
the risk of collision and running past stations, and facilithe risk of collision and running past stations, and facili-
tating shunting. As it would diminish the number of tating shunting. As it would diminish the number
brakes required, bringing into use, for the purpose brakes required, bringing into use, for the purpose
retarding the train, mechanism already in existence, retarding the train, mechanism already in existence, it rakes besides means more or less undue wear of rails and wheel-tires, and often a waste of grease from the heat by
the friction conducted from the rim to the axle-box. In thesedirections, therefore, economy would alsobe effected. But the many drawbacks and injuries produced by reversing the gear with the engine running prevent drivers doing so
except in cases of imminent danger. The hot gases of he chimney are exhausted out of the smoke-box and forced into the boiler, heating the cylinders and shaking
the joints of the boiler. The piston rods get heated, the packings carbonise, the slide valves bite on the port faces, the njectors cease to act from the presence of incondensible gases in the steam, and, in some classes of engines, the
reversing handle is often dangerously thrown back. In fact, reversing the engine by the inverse admission of steam, necessarily attended with the admission of hot gases from the smoke-box, often renders the engine unfit for ser-
vice within less than five minutes. Even with imperfect forms of the plan to be here described, the same action takes place, though at a much slower rate. "Direct experiments made on the north of France line prove that by shutting
the blast pipe and drawing in external air, with the engine running at a speed of twenty miles per hour, the stufting boxes were carbonised after a run of one and a-half
niles ; and with an injection of steam alone there similar result after a run of two and a-half to three miles." Now M. Le Chatelier has proved that all these inconveniences may be remedied by simply leading a small tube from the boiler to the bottom of the exhaust pipe
near the cylinders. The eight to forty pounds of hot water near the cylinders. The eight to forty pounds of hot water
per minute thus delivered under the boiler's pressure are nstantaneously converted into a fine spray by contact with the hot metallic surfaces of the cylinders and pistons.
While cooling them, and absorbing the heat produced in the motion of the parts, the steam produced not merely acts as an elastic brake, but it may be made to cause a discharge from the blast pipe sufficient to keep out any gases
from the smoke-box. Theapparatus may, therefore, be said to from the smoke-box. The apparatus may, therefore, be said to diameter, and a common tap. If, therefore, this can be dignified with the term apparatus, it is as simple as the
principle itself. As shown in the accompanying cut, the

passage to the ports; one part enters directly at the
moment of induction, the other mixes with the discharged steam, returns in part to the cylinder, and goes off in part with it to the nozzle. Experience proves that, for equality of injection, much more water is projected by the funnel, of injection, much more water is projected by the funnel,
and falls in rain on the engine, in the first arrangement than in thesecond. This arises from the greaterquantity of steam generated in the firstarrangement; whereas in the second the water is held in suspension by a greater quantity of steam.' The process is found to act almost instantaneously, three o four seconds being ample after letting on the water jet, and without even opening the regulator, to make the change from full forward gear to full backward gear. Without it the put on the brakes - an have to signal to the brakesman t able cases, takes some time. As was neatly observed by Mr. Siemens, in his presidential address to the Mechanical Mr. Siemens, in his presidential address to the Mechanical
Section of the British Association, M. Le Chatelier's plan converts the engine "for the time being into a pump forcing converts the engine "for the time being into a pump forcing
steam and water into its own boiler." The spray reaching the cylinders is there converted into steam, and dried by the absorption of the heat generated by the cushioning and forcing back the steam at the return stroke of the piston The cylinders may be said to be temporarily turned into apparatus for evaporating the injected water by means of the
heat generated by the motion produced on the pistons by the work already accumulated, and, possibly further accumulating by gravity, in the moving train
Whatever might be at fint
Whatever might be at first thought there is no danger for the cylinder covers. The driver has only to inject water
in sufficient quantity to produce a white cloud out of the in sufficient quantity to produce a white cloud out of the
funnel ; even any considerable excess of water is not attended with danger, as the spray in excess cannot penetrate into the cylinders, and is simply thrown out at the funnel Aready several slight moditications have been made by
different engineers; for instance, M. Laurent, the engineer of the Chemin de fer du Midi, closes up the blast pipe, and or the Chemin de fer du Midi, closes up the blast pipe, and
injects the water into a closed space communicating with mects the water into a closed space communicating with
the cylinders. The resulting advantage is the prevention of all terrane safety valves whene the drivers are ordered to relieve the safety diminish the blowing-off pressure. By this means any undue rise of pressure, which might possibly cause a tube to burst, throwing the work of retarding the train on the of all the is
Of all the advantages resulting from the use of this plan the most important is clearly, as we have noticed, the prac-
tical independence of the engine-drivers of the ordinary tical independence of the engine-drivers of the ordinary
brakes and brakesmen. Incidentally the use of the plan brakes and brakesmen. Incidentally the use of the plan
must do away with a portion, at least, of that fearful shrieking of the steam whistle-such a nuisance on lines passing through towns. According to the author the ordinary brakes should only be regarded as incidentally furnishing additional resistance. At the least, the
counter-pressure steam should be used concurrently with the brakes for the current service; and this combination allows to stop with exactness and without hesitation at the stations. On single lines of railway, where it is very important for safety not to pass a station, its use is indispens-
able ; and the employment of the screw form of reversing able ; and the employment of the screw form of reversing handle and counter-pressure steam greatly facilitates shunting operations. With a sufficient injection of water, gradient any injury down at a regulated speed, and without fearing any injury to the engine. The diagrams before us show
that when the engine is working on this system of backpressure steam the resisting work can attain from 55 per pressure steam the resisting work can attain from 55 per
cent. to 60 per cent. of the work developed in the ordinary working. Amongst the practical results are such as these - On an incline of from thirty-five to thirty-six millimetres the service can be carried out in both directions without the use of brakes, with an eight-wheeled coupled engine running at the rate of fifteen to sixteen kilometres
per hour, and drawing six loaded goods wagons or from per hour, and drawing six loaded goods wagons or from
ten to eleven passenger carriages." On the incline at Lan nemezan on the Chemin de Fer du Midi, the inclination which is one in thirty-four for a lagth, the inclies and three-quarters, the rails for the descending line, but after a lengthened experi ment it was evident that the rails did not wear more rapidly on the descending than on the ascending line, and the costl Bessemer steel rails were employed on other parts of the
inch or so diameter tube communicates \ddagger between the boiler and the exhaust pipe, and is regulated by a tap. It must be ments. In the one the insertion is made on the branches of the exhaust tube, and the wet vapour has two distinct ways to traverse to reach the cylinders, viz., the part of the pipe near the cylinders, and the admission ports. This wet vapour does not get into the cylinders until after the steam, more or less dry, has been discharged from them at the end of the expansion, nor until that at the end of the water, it is projected through the blast pipe nozzle by the water, it is projected through the blast pipe nozzle by the
funnel. In the other arrangement the insertion is made under the slide valve itself in the side of the discharge port. In this case the wet vapour has only to traverse the
lines where there is a greater traffic Experience on the Chemin de Fer from Paris to Lyons and the Mediterranean has also proved that the constant use not in the least increased the cost of repairs and working of the engines, It therefore forms another and most important contribution to already existing means for safely working steep prassure steam is already used in the current service of the trains on the gradients of the Semmering and the Brenuer lines. No inconvenience has been found to occur on sharp curves from the resistance to motion being produced this direction being corrected by the
this direction being corrected by the

complete command

Incidentally, the plan is extremely interesting to the scientific engineer, as the energy of the train is mainly converted into the steam partly employed in retarding it, and important point about it has been theoretically investigated by M. Le Chatelier himself, M. Combes, and others. On first thoughts, it might seem necessary to provide for some means of getting rid of incrustation left by evaporating water inside the cylinders. It must, however, be remembered that only heated water, already boiled, and hence freed from sulphate and carbonate of lime, is taken, so that extensivelyce is scarcely felt, even if the plan be very extensively used. There can be no doubt that this system
must for the future be taken into account in designing locomotive work. Observing the excellent lubricating effect obtained by injecting water, the engineers of the Orleans railway are studying its effect in preventing the injury to the steam packing and other rubbing surfaces produced when a train runs down a gradient with a closed regulator. In this case there is admission of the smoke box gases during the lead of the exhaust, to be corrected by the water jet. It would, it seems to us, be of great service on the Metropolitan Railway, and we would strongly suggest its trial by Mr. Burnett, especially as the plan is unprotected by patent right in any country besides Spain. If drawback to its introduction, as it would require pushing but, being so simple and cheap, its use ought to spread almost with the rapidity locomotive superintendent on that locomotive superintendents own line. An important application of the system generally two-cylinder engines with reversing gear, and otherwise of the locomotive stamp. It would form a substitute for, and at the least an aid to, the heavy friction brake at present employed ; and many melancholy accidents from overwinding might be prevented. We may note that apparatus used by M. Marié, the locomotive superintenapparatus used by M. Marie, the locomotive superintenbeen sent to the London Institution of Civil Engineers and to the Institution of Engineers in Scotland.
Like all other mechanical inventions, however simple they may seem when once carried out, this one also has its history, and it was mainly to defend himself against what
seem to us to be unwarrantable claims as to priority of invention that we owe the early accounts of the plan published by the author. M. Beugniot, in France, first experimented on a plan for causing a vacuum behind the pistons and it is nearly twenty years ago that Mr. J. Zeh, of an engine intended for the trials on the Semmering incline. The question had dropped until Mr. A. De Bergue, an The question had dropped until Mr. A. De Bergue, an the beginning of 1864, brought out an ingenious form of applying back-pressure with air For short runs it gave good results, but not under prolonged working. il . Le of Mr. De Bergue's plan which led him to direct experiments to be made on what may now be termed his own plan. Its advantages and drawbacks led him first to recommend the mixture of stea w the air, then steam alone sufficient to prevent the inlet of air, and, lastly, water alone. The developmenced through five successive stages:-The mere motion advanced through five successive stages :- Terge mere motion
of the parts ; the use of air by Mr. De Bergue ; the ofe of and lastly, the injection of water alone from the boiler M . Le Chatelier himself notices, by the way, that there M . Le Chatelier himself notices, by the way, that there
is a slight analogy between his plan and the use by M . is a slight analogy between his plan and the use by
Hugon, in his gas engines, of a slight injection of water at the moment of the lighting of the inflammable mixture for lubricating and cooling down the surfaces. As the chie engineer, in Paris, of the spanish Northern Railway, he engineers of that line. One of these, M. Ricour, has put forward in the "A Anales des Mines" claims to priority of a part, at least of the invention. After a careful examination of the question itseemsto us that this gentleman has little right on ride, and seems to ave or the already in 1865 well poisted by Le Le Clatier, of using water rather than steam. The French engineers
Spain seem to have been afraid of using water, especially as good effects for short runs were obtained with steam as good effects for short runs were obtained with steam,
Already in 1866 a paper was read before the Society of Already in 1866 a paper was read before the Society of ments conducted in Spain, on the Northern Railway, for back-pressure steam in the descent of inclines. It was then stated by M. Flachat that ther was a considerable production of heat, almost corresponding less by obvious losses, with the mechanical work of gravity But it was only in January last (1869) that M. Le Chatelie was himself able to prove that the injection of water alone satisisies all the condrions of the problem. A great portion of M. Le Chation of his claims as to priority of invention. These question seldom possess much interest for the public, especially public like the English, to whom the contend ing parties are not personally known, Very properly
therefore, the object of Mr. Gordon's translation is to "explain the principles, the mode of applica tion, and the results obtained from M. Le Chatelier's ex periments ;" and he does not enter much into the question of the priority of the invention. M. Le Chatelier specially recast his two memoirs in order to adapt them to English readers. The translation is fairly enough executed, although it would be improved by more workmanlike style and technical idiom; and itcertainly givesall the practical informa tion required to apply the system. It is stated that one of the principal causes of the success of the counter pressure system in France has been the substitution of the screw motion for the ordinary lever as a reversing handle. W rather fancy that the use of the screw motion instead o the ordinary reversing lever, was first due to Mr. Rams bottom, of the London and North-Western, and not to Mr Kitson, of Leeds, as here stated by Mr. Gordon. Moder locomotive makers do not improve locomotives. For the most part they simply work to specifications.

The Hatchas Ironworks.-These works, well known as the property of Mr. George England, have just been taken on a lease
for fifty years by a company consisting of Mr. Robert Fairlie, Mr George England, jun., and Mr. John Simpson Frazer, late of the
Great Western Railway. Mr. George England has retired from il health. The works will be carried on with spirit and enterpris we have no doubt, the assistance of so able an engineer as M
Frazer being a matter of no small importance. The principa business doue will consist in the construction of the Fairlie double
bogie engine and light steam carriage, with which our reader must be familiar. The plant and machinery at the Hatcham Ironworks are very valuable and extensive, and the place possesse

CABLE TOWING ON RIVERS AND CANALS.

I-The Parsciple of Cabe Towive

IT is an undeniable fact that the movement on inland watercourses has not developed itself since the introduction of steam, in the proportion in which other branches of engineering and commerce have felt the influence of a new motive power Although on larger rivers the employment of tugs and freight
steamers has in many instances greatly facilitated, accelerated, or cheapened the regular traffic, steam could, up to the present day, not be employed with advantage on smaller rivers with greatly varying currents, nor is it anywhere on canals of ordinary
dimenions of material assistance as a tractive power. Thus railways have steadily absorbed the natural traffic of rivers and
canals, and these, once the only legitimate high roads for heayy
goods, are falling into insignificance and disuse by the side of goods, are falling into insignificance an
their younger and more energetic rivals.
The incongruity of this result is strikingly shown by a few comparative figures, based on the extensive system of canals and railways connecting Belgium with France, For moving 400 tons
of coal the Chemin de fer du Nord employs forty trucks and one engiue, which have a total weight of about 231 tons (engine return empty. The dead weight moved is therefore 462 tones for 400 tons of useful freight moved over the same distance. The same coal is shipped in two boats of 200 tons, weighing 30 tons consequently 120 tons, or one-fourth of that employed in rail ways. At a speed of $2 \frac{1}{2}$ miles per hour the traction on canals is gradients which ton moved; on rails, taking in accoumt the ton. The traction on canals requirese, therefore, for the speed mentioned one-seventh only of the power necessary for moving
the same weight by rail. The first cost of canals in France was on the average, $130,000 \mathrm{f}$. per kilometre ($£ 8320$ per mile), whilst per kilometre (s parallel wile) The for for $400,000 \mathrm{f}$. moving 400 tons of coal cost exactly ten times as much as the expense for maintenance of the permanent way and Finally, the the Ohemin de fer du Nord more than 1500f. per kilometre in one year, whilst, on the northern canals between Belgium and Paris, 275 f . per kilometre have covered all expenses for keeping the works in order. According to these data canal navigation requires one-fourth of the dead weight, one-seventh of the tractive power, one-third of the first cost of the line, one-tenth of the cost of trucks, and one-fifth of the maintenance of the permanent way, as compared with the movement on rails. And rail, locomotion on land not only competes with the movement ou water, but has superseded it in many cases, and is generally conIt is not our purpose nere to
have brought our purpose here to show the many causes which they may be all, almost without exंception, traced back to the one great defect of canal and river navigation-the apparent imsteam as the motive power of freight boats.
Screws and paddles, with their hundred varying shrfes and
arrangements, have all one arrangements, have all one great defect, which becomes simply fatal on the narrow channels usually at the disposal of inland navigation. The steam engine, for the purpose of propelling the
vessel, has to take its fulerum of resistance in the receding water through which the boat has to be pushed. On very large quiet rivers, and on the open sea, this reduces the effect of a
propeller to 55.50 per cent of the power applied to otit; but on rivers, where the varying currents place the paddle or screw
generally under a considerable disadvantage; or on canals, where in consequence of the small section of the watercourse, they produce currents around the ship which are scarcely felt on fact, to a minimum whe the effect sinks to 20 or 25 per cent.-in admissible. Of the various devices which have been tried to overcome this fundamental difficulty, partially by improved forms
of the ordinary propeller, partially by new principles altogetheras locomotives or traction engines on the tow-path (tried on the Raritan in the United States, and at Caen in France), wheels working against the bed of the river (tried on the lower Rhone),
poles pusling the ground (tried on the Erie poles pushing the ground (tried on the Erie and several other
American canals)- none, perhaps, promised so much of a final American canals)-none, perhaps, promised so much of a final
legitimate suceess as the system which we propose to describe in the following lines, and which is already in regular operation on several of the continental rivers and canals.
The employment of a loose iron wire rope laid on the bed of by a revolving clip drum on board of the vessel (Baron C. de
Mesmil and M Eytren and Mesnil and M. Eyth's system), is the principal feature of the uew system. The clip drum, placed either on an ordinary boat or on a special tug intended to move a number of other vessels, is
put in motion by a steam engine and suit bble put in motion by a steam engine and suitable gear, taking the
rope up from the bottom of the river and dropping it again into the water behind the machinery. Thus the boat is, by the re volving motion of the drum, moving along the cable, practically pulling at the weight of a wire rope, perhaps 100 miles in
length, which, of course, will offer a corresponding rexistance by its adhesion to the ground and the fixed end points. In fact, the wire rope is nothing but an uninterrupted flexible rail, along exactly in the same manner, and with the same effect, as the driving wheel of a locomotive along its rigid rails. Already a tween Liege and Namur, 70 kilometres (the Meuse and in active operation. On the Canal de Beveland
(Holland), the Canal de Carleroi, the Canal de la Campine (Holland), the Canal de Charleroi, the Canal de la Campine
(Liege, Antwerp), the Canal de Terneuse (Ghent, Antwerp), we find either the cable already placed or about to be laid down. This gives for the moment a total of nearly 100 miles-a quantity first practical working experiments, and the importance which one of the first people of well-known activity and experience in matters of inland people of wavation attributes to this new application of steam power on rivers and canals.
II.-Description of Machinery for Cable Towing. It is evident that the machinery for cable towing will b influenced to a great extent by the various local circumstances
to which it has to be adapted. Thus, on large open rivers it will to which it has to be adapted. Thus, on large open rivers it will and it may be advisable, where there are throughout rapid tugs with auxiliary screws, so that they tow only in one direction by means of the rope, whilst they return with their propeller, towing comparatively empty boats wth the full assistance of the currents. Under other circumstances, on tidal rivers, or where will be used in both directions, on which the tugs may work between stations, or cross each other by an arrangement here-
after to be described ; or two ropes may be placed, one for the up and one for the down trains.
On smaller rivers, especially if canalised and provided with ocks, the formation of large trains is forbidden by the long stoppages which the locking through of a train involves. The to tow three to five boats only, whilst on canals with many locks the employment of small fised or portable eugines containing the whole apparatus, and placed on the ordinary canal boats, is the best, in fact we believe the only possible, plan to be adopted They may be made, accorrung to poumstances, eller to tow even thind boat in tow, which is not provided with machinery In fictas suitable and most profitable size of boat trains and engines o tugs, and, in consequence, the whole arrangement and manage mentof an effective river or canal traffic, depends almost entirely upon the number, distance, and capacity of the locks which the boats have to traverse on their line
To give a clear idea of one method of cable towing, we shal describe now the first line put in active operation in Belgium between Liege and Namur, on the Meuse, already alluded to in these pages. The distance between these two towns,
measured in the axis of the river, is 42 s miles. The bed is partially muddy and sandy, but oecasionnlly also very rocky. The depth varies between 6 ft . and 20 tt , and there are, especially in the upper part, some very sharp curves. The
currents, originally very rapid, are greatly reduced by a complete and most perfect system of canalisation, and amount, on the average, to scarcely two or three miles an hour during the
greater per the movable weirs are opened, the currents are very violent, amounting occasionally to seven or eight miles an hour. There
are between Liege and Namur eleven locks of nine metres (29)ft.) are between
width and sixty-three metres (206sft.) length, which, in conse

By the accompanying sketch it will be seen how the openings dant as on the Meuse, one would naturally not make them longitudinal, as was done in this case. There are now four tugs of 14 -horse power and 20-horse power nominal in operation
on this line of which two were built by Messre. Fowler and Con Leeds; one by M. Beer, a Belgian engineer; and one by Cockerill, Seraing. The first boat, now working since the beginning of the year, has a total length of 66 itt , a width of 13 it ., depth of hold 7 ft . 4in., and draws 3 it .3 in . It is entirely of iron, flat bottomed, provided with a false keel and two large rudders, bow and stern
being exactly alike. The boiler, of the ordinary locomotive being exactly alke. longitudinally in the hind part of the tug. The machinery consists of a horizontal double-cylinder high-pressure engine, acting syatts on the principal clip drum slaft. This shaft turns in two bearings bolted to the side of the boat and projecting a few inches above the deck line, lying right across the ship. Keyed to it is a 6 ft. clip pulley, overhanging the side of the boat. On the guide pulleys also of 6 in . diameter. The grooves of these pulleys, so far as the rope touches them, are closed and protected by cast iron guards lined with wood, so that the rope if slack
cannot escape. Near the bow and stern of the vessel, in the cannot escape. Near the bow and stern of the vessel, in the
same vertical plan with clip drum and guide pulleys, we find the same "ertical plulleys;" pulleys of about 3 ft . diameter, suspended same "ertical plan with clip drum and gude pulleys, we ind the
the acc
two

It started to run regularly in July, 1868, and has been at work the rate of four or five miles up stream. Its coal-consume is about half a ton per day, and its crew consists of four men-an engine-driver or stoker, a pilot or captain, and two sailors, the
working expenses amounting to $545 f$. per month ($£ 22$, average mileage per day, although twice as great as that of
horse-towed boats on the same river, is comparatively horse-towed boats on the esame river, is comparatively very small, amounting, in fact, only to an average of 45 kilometres (27
miles) per day. This is owing to the long stoppages, which are navoidable in passing the eleven locks with trains of eight and twelve boats. The maximum amount of work done by the tug
was the towing of 1000 tons in fifteen boats, and 1200 tons in ten boats, towed at the rate of four miles against a current of one to three miles. The three new boats of this company are pro-
vided with an auxiliary screev, the the down journey independent of the rope by means of the
propeller. Two of them are, nevertheless, provided with arrangement which greatly facilitates the throwing off and replacing of the rope from the clip drum and the other pulleys, thus enabling the tugs to cross each other. It consists in simply making the centre studs of the two large guide pulleys movable in a slotted bracket, so that by means of a serew the
pulleys can be lifted up and removed from the clip drum. In doing so the rope lying originally tight in the groove becomes slack, and can be thrown overboard by hand. In replacing it, it is simply placed on the top of the clip drum, whereupon the
guide pulleys are screwed down, and press it again in its proper guide pu
position.
(To be continued.)
 Carter-lane, St. Paul's Churchyard, there will be found laid about
1000 supericial yards of a new species of street powid 1000 superficial yards of a new species of street paving, permitted
by the Commissioners of Sewers to be tested by the traffic, in order, if possible, to its superseding the slippery stones of the
London streets. This material is principally composed of broken
quence of the successful establishment of wire-rope towing, the
Belgian Government intend to rebuild, giving them four times heir present capacity
The traffic on the Meuse, not very considerable for the present, is visibly improving, and will, no doubt, in a few years assist ne of the most ively trades in coal, tores, hil do, and eneral merchandise of the Continent. The rope lad down on his line has an outside diameter ing a tarred hemp core. Its weight is $2: 25$ kilogrammes per metre ($1 \frac{1}{2} \mathrm{lb}$. per 1 ftt), and its cost, placed in the river, was 1 -4f. per metre, or $£ 90$ per
nile. It was manufactured by three firms-Messrs. Glass, Elliot, and Co.; Mr. Henley, London; and Messrs. Felten and thers, for the sake of experiment, were placed without galvanisz tion. The laying was done by simply paying it out from rollers, each containing one milein length, which wereplaced in an ordinary re leaving the boat the stream sy a small river steamer. Beprovided with a simple brake, so that it could be tightened or Slackened whenever required. In comparatively straight parts of the river it was by these means considerably stretched, whilst passing round bends some slack was allowed to drop into the water. The mile lengths were then spliced together in the
ordinary manner, so that now the whole length of 42 miles forms one uninterrupted length
In the locks the rope lies at the bottom of the water, just as verywhere else. For its passage through the gates there is the edge of each gate about 3 in. of wood, the height of the opening being about 1 fft . to 2 it . The rope passes through this pening when the gate is closed, whilst when the gates open it
ies perfectly free over the sill. The tug having passed, the losing gates sweep it again towards the centre of the lock into its old position.

by a vertical arm swinging from a simple universal joint. These pulleys, over which the rope passes before passing along the side
of the boat and entering the large guide pulleys, place themselves vertical, or more or less inclined, according to the slanting direction of the cable ahead of the tug, thus preventing it from jumping out of their grooves and leading it always correctly into cylinders of the engine is 7 \$inin; the stroke, 12 in .; ordinary pressure, 80 lb ; number of revolutions, 60 . By means of the intermediate gear three different speeds can be given to the clip rum, so that at sixty revolutions of the engines the boat makes gid kis., 5 kilos., and 10 kilos. per hour (one and a-quarter, three, nd six miless. Of these the twoquick speeds could bethrown in by tarting large trins by do which was considered essential for the quick speed gear for 10 kilometres, which was intended for the down trains, in great currents was unnecessary, as the engine Woud make umder these circumstances, easily, and with very
litte steam, 120 to 130 revolutions. The wheels are, therefore, at present taken off, and only the two slower speed gears used,
whilst the engine on an average makes seventy to eighty resolu. tions. Also the friction clutch, which is indispensable on singleyinder boat engines, was in this case found of no great practical value. The greatest trains could be started without its use with erifect ease and steadiness.
stone cemented together by a bituminous substance, said to be
of great durability and perfectly impervious to the action of water. In fact, the street is paved after the plan of Me Aceciam, with this
great difference, and we may say advantage tho the sreat difference, and we may say advantage, that the particles of
stone are connected together by cement; and all that no roadwey can oxcelther "sy cement; and all engineers agree
free from holes for the lised," if it could be kept iree from holes for the lodgment of water. This last point is gained by the McDonnell process, as the paving in Great Carterindent. In some of the cities on the continent of trom holes or indent. In some of the cities on the continent of Europe the
natural asphalte has given excellent result natral asphalte has given excellent results as a pavement, but in
the patent pavement now before us, and which we have seen in use, we see much creater advantages, the broken stone it contains being the real roadway, the asphalte being only used as a binder.
There are many points to be well considered in relation to There are many points to be well considered in relation to
this or any other description of street pavin this or any other description of street paving. Is the noise re-
duced by this new material, all mud and dust prevented? Are
thew the wear and tear on horses and vehicles in any way abated? Can
the public t save the last we say yes, butwhen we saw the paving ased a day or two since it was slippery, the water cart having been overitabouttwenty minutes previously, This point must be remedied if the paving is
to be a success. entering the material, we are convinced that with a propee water
mater of gutters and material, we are convinced that with a proper system away. The pavement, being laid in blocks of large size, can be easily taken up and re-laid when required for gas or water purposes,
and if the surface be worn a coating of the material can be readily and if the surface be worn a coating of the material can be readily
applied, which will be firmly bound within one hour. The cost of tpplied, which will be firmly bound within one hour. The cost of
thaving will it is stated, be at least 30 per cent. cheaper
than the McDonnell's process receive now in use, but we hope to see Mr. before its merits or demerits are decided on.
Steam between London and CoLoN.-London is at last to
have a direct line of steamers from Colon and the West Ind theve a direct line of steamers from Colon and the West Indies,
the West India and Pacific Steamship Company (Limited) arranged for a monthly line homewards, to commence in January next. By the new route produce will be brought from ports in
Central America, California, and in the South Pacific, Isthmus of Panama, to London,

RAILWAY MATTERS.

THe North London Railway Company own twelve miles of line,
which cost $£ 3,308,417$. THE rumours of an arrangement between the New York Central
nd the Great Western of Canada have been revived. THe Metropolitan Railway Company hold nine miles fifty-four
hains of lines of their own, and two miles seventy-seven chains partly owned by them, together twelve miles fiftt--ne chains. Durisg the year 1867 railway proprietors have paid an income-
ax of something more than threepence-halfpenny in the pound, or one and four-lifths per cent., to persons injured by collision, or
to their repreentatives $£ 19630,000$ has been paid as dividend The Midland Railway Company has now co
engine sied at Wellingborough, Northamptonshire, and sixteen wenty-foure. The phiced hanye ior repairs, the full number being
therecting thirty cottages near twenty-four. The company is now erecting thirty cottages near
the Finedor-road, Wellingborough, for the use of the workmen
emploged at the station and repgiring shops. employed at the station and repairing shops.
No offcial announcement has yet been mad or North British dividends. Both lines continue to show an improvement on last year's traffic, but the increase for the two past
weeks has been small, and the North British cannot now boast, as
we it did for a series of weeks after the separate publication was re-
sumed, than ititinarease is both relatively and actually larger than
that of the Caledonian. Ov Monday the Solway Junction Railway was opened for the carriago of goods and minerals. The line, however, has not yet
passed the Goovernment innpector, and it is istendedto to have some
experiece of it with heng trafic before carring pasengers.
The part where most difflculty has been experienced is Bowness Moss. This appears now to have become econsolidated, for it has
borne heavy trains with great firmness. Frox an account in the A mericanin Railroad Journal of the 21 st
ult. we gather that the Port Hudson and Chicago, which extends
 constructed in the most substantial and complete manner. It is is
expected that in connection with the Grand Trunk it will have a expected that in connection with the Grand Trunk it will have a
very large though trantic, and also a large loal traffic. The
authority quoted speaks of it and its prospects in the highest

tuthe | terms. |
| :--- |
| THE |

The traffic receipts on the Canadian lines have been seriously
affected by the low rates of freight charged upon the competing affected by the low rates of freight charged upon the competing
American roads; and it wil be sitisfactory to bond and share.
holders of the Great Western of Canada and the Grand Trunk railways to know that the mangacrs of the rival American lines
have met to consider the propriety of readjusting the rates, and
 beginning to affect the passenger as well as the freight charges.
We understand that a decision has been come to on the subject,
and that an advance will be made to more remuerative OUR Indian railway companies, while enforcing some of the
most obnoxious practices of their tutors at home, introduce most obnoxious practices of their tutors at home, introduce
variationsof their own. The last is a liberal supply of cofns at
every station, to be had at a moment's notice. It is shrewdly every station, to be had at a moments notice. It is shrewdly
hinted that these necersaries mighit bo dispensed wwith if, in a
burning elimate, there was a free supply of water at the stations
. and if at the ticket stations the passengers were not locked in or or
half an hour, and with the torrid atmosphere made more insufferabl an hour, and wition that orrid train is not nore made motion. It in in on ot
surpret
surising that the Indian Government is taking the railways in hand.
WE are informed that the agreement entered into between the
Great Luxembo Great Luxembourg and the Eastern of France, the particulars of
which will be fully explined at the next hall.-yearly meeting. is
of the nature of a working arrangement, and free from any stion of the nature of a working arrangement, and free from any stipu-
lutions ilkely to cause embarasmentent between France and Bel-
gium. The agreement has, in fact, been submitted to and approved gium. The agreement has, in fact, been submitted to and approved Great Luxembourg have secured more favourable terms for the
shareholders than they would have obtained under the agreement
which was recently set aside by the Belgian Government. The arrangements with respect to the through traffic are especially
favourable to the Great Luxembourg.

 ment had oecurred during the same period in the passenger traffic
of some of the suburban districts. The permanent way was in excellent working order, and the engines and other rolling stock
were in an effective condition. The reeipts for the past haif year,
wfe id after deducting the payment of interest on debentures and working
expenses, lefta b balance anailable for dividend of \&20,133, out oo
which was deduoted $£ 18,715$ for dividend at the rate of 7 per cent. per annum, leaving a balance of £1418. The oapital a acoout to
 e20, 133 as above.
THE East London Railway is making progress. At the date
 the south side of the Thames, the covered way on the north tide,
the eonstruction of the openings under the Greenwiol Viacuct,
the superstructure of the bridge over the renve the superstructure of the bridge over the Sirrey Canal, the
station buildings, and the permanent way. shave are nows, finished, with thene way. weption of the tempor orary
aooden station at Wapping, and of such works as may be require
able wooden station at Wapping, and of succ works as may be required
at the footpath or occupation roud alongside the Greenwich
viaduct. The woodwork of the station building at Wapping has been framed together, and will only take a vory short time to
erect. The signals and signal boxes with the neeesary fiting are
completed, excepting the signals at the junction with the South completed, excepting the signals at the junction with the South
London Railwy, whiel, as well as the points and crossings there are to be proviled by the Brighton Railway Company. The
requisite monthly notice has been given to to the Baard of Trade, who now await the ten days' notice before sending the Government
officer to inspect the works. officer to inspect the works.
AN extraordinary accident occurred to a train on the Preston and Lorn Company, on Saturday last. Fifteen wagons laden with
Western
stone, in charge of a breve stone, in clarge of a breaksman, who occupied a van in front of
the train, were running down the stepp grient from Longrige
to Preston, without an engine as usual, when immediately after to Preston, without an engine as usual, when immediately after
passing the Grimsargh station, about a third of the journey from
Longridge, the sixth wagon from the break-van leaped up from Longridge, the sixth wagon from the break-van leaped up from
the rine smpped the coupling-chains, and ran into the four-foot, the extraordinary features in the accident are, first, that the suc ceeding nine wagons all left the line, passed over and crushed to
atoms the wagon lying in the four-foot, and then took their Places in a line on the siding with as much order as if they had
been properly shunted thereon; and next, that one of they took
with it the wheels and axles of the wagon destroyed, and it an with re the wheels and axles of the wagon destroyed, and it ap-
peared on the siding to have double the usual number rpoperly
attached. Threo other wagon were granty damaged ; one
belonging to the Lancashire and Yorkshira and

London and North-Western Company, were broken ap beyond
repair. Narrly 100 yards of the metalis were torn up, and the
contents of the wagons were partially strewn over the line that
distance.

NOTES AND MEMORANDA.
An averago fibre of raw silk will sustain a weight of fifly A sEvestr-pous gun ship used to require about 1300 blocks of
200 different sizes. 200 direrent sizes.
Bror states that a difference of 5 deg . Fah, will produce a mirage ThE earth receives
The earth receives one out of 2300 million parts of light and heat
given off by the sum.
BRvecrse is a most delicate teest for nitric acid, being coloured tose
red by water containing only the 100,000 th part. A sEVEXTY-Your gun wooden ship consumed.
A szyestr-Pour gun wooden ship consumed in building 3000
loads of timber, the produce of a century's growth of 57 acres. Is America, Mr. Horsford has recently found that the element fluorine is generally present in the substance of the brain, and thint
its presence can be verifed by the usal chemical tests in the ash,
which results when the substance of the brain is calcined with pure which results when the substance of the brain is caloined with pure
lime or pure potash. The experiments appear to have been care
full
fully made
M. Lasdris, having denied that pure coralline (peonine), mueh
used as a dyo for stock ssea as a dye for stockings, kc., is poisonous, M. Tardien again
states that the dye, as used, certainly produces irritation and cruptions; and though he cannot pronounce any opinion as to the
chemical purity of tne coraline, he has assured himself that it does not contain arsenic, lead, or mercury-the first of which has been
found in some aniline reds. found in some aniline reds.
Mr. F. A. AbsL has communiented a long paper to the French
Academy on the properties of explosive compounds, which contains
 glycerine, \&c. He accounts for the difference remarked in the
nature of the explosion produced by various substances when they act upon matter of a difforent kind by supposing that the explosion
produces a certain kind of vibration that may or may not be synchronie with that produced in the body operated upon by the explosion.
Messrs. Lechartien and Bellamy, in France, have studied the nature of the gases given off by various kinds of ruit after being
plucked from the trees. They find that apples, cherries,
 produced is sometimes very considerable when the fruit is stored
up in a roon. For instance, five apples weighing altogether only up in a rooin. For instance, five apples weighing
3 l grammes yielded from the 19 Fto of Jonury
July last, e6A8 cubic centimetres of carbonic acid.
As interesting discovery has just been made in Russia, namely,
 Cathedral of Ouspenski by Catherine II,., is two inches in length
and of an oval form. The relief erperents a cross surmounted by a medallion bearing the effigy of the Saviour, hacompanied by two
figures of angels. An inserition in Greek charaeters contains Emperor Leontius, who reigned at Byzantium from 696
having usurped the throne after the death of Justinian II.
The exact altitude above sea-level is often required by engineer
and meteorologists. The following is the height above the level of the sea of tho ground on which the English cathedrals are built,

Dr. Axges Surrt has experimented on smoke of various degrees
of blackness and brownuess, and he shows that the difticulty of consuming smoke does not commonly arise from a deficiency of air in
the furnace, but from the fact that a rapid draught often fais to allow time for proper combustion. It is now certain that the black smoke prohibited by Act of Parliament contains carbonic
oxide, one of the most poisonous of gases. Carbonic oxide is only detected in smoke of the illegal density, and when we find that
this black smoke is really an expensive article to produce we seam to be furnished with every reason why such a nuisance should be prohibited.
Herr Huler has described a new and advantageous method of
inning copper and brass, which, he says, is decidedly more advantageous than the old process, by means of tin and cream of tartar, though this gives generally very satisfactory results. In the new
process fifteen parts of salt of tin are dissolved in 150 of water and to this is added a solution of thirty parts of caustic potash in
300 parts of water. The various objects to be tinned a sheet of tin, shaped like arious objects to to be tinned are and placed on
sierced with numerous
small holes. This is placed in another small holes. This is placed in another vessel containing the above
solution, and the whole is heated over a fre whilst the objects are
stivel covered with a thin layer of tin as white as silver.
Mr . Dascer has studied the character of the solid particles
contained in the fir of Nanchester. Samples of the pir contained in the fir of Manchester. Samples of the nit were
washed by Dr. Angus Smith, and the fluid was atterwards
microscopically examined by Mr. Dancer. A single drop of the water was computed to contain no less than a quarter of a million of fungoid spores. The fact was verified by examining a a ex-
tremely smal particle, and maltiplying the result. The bottle
of water having been kept fur thirty-six hours, the quantity of of water having been kept fur tirty-six hours, the quantity of
fungi, alteady so grent, "visiby incrensed," and on the third day
minute creatures were observed moving about in the fluid. Keep. minule creatures were observe forisg ab
ing, howeere, to our former figures we that 150 drops of
water would contain more than $37,000,000$ of the fungi, these 150 water would contain more than $37,000,000$ of the fungi, these 150
drops being the washings of 2455 litres of the air of Manchester,
which is about the quantity of air passing through the lungs of a man in ten hours!
THE Scientific Review says that an important chemical discovery
has been recently made by Professor Schutzenberger, namely, a has been recently made by Professor Schatzenberger, namely, a
new sulphur acid, having for its composition SO, HO ; it therefore contains one equivalent of oxygen less than sulphurous saide
and is formed when the tatter is phaced in contact with zinc. Its
anst remarkable property is that of possessing reducing most remarkable property is that of possessing reducing qualitites
equal to those of nascent hydrogen: it consequently bleaches
 a name which. evidently cannot be retained, by which he wishes
to express that tit to express that it always contains water (or hydrogen), Its proper
name would bo hyposumphurous acid, but unfortunately
is that term is aiready employed or anower acia, he composition of which has
given rise lately to some discussion. No doubt MI. Schutzenberger's acid is the true hyposulphurous acid, analogous to hypophosphorous
THE equipment of a musketeer, as late as 1689, was vety cum.
brous. He was provided with a heavy wooden fork, which he had brous. He was provided with a heary wooden fork, which he had
to stick into the ground with the prongs uppermost to serve as a
support for his matelliock, which he had to lood with his powderhorn and measure, keeping the ball meanwhile between his lips. The wadding he had to get from his hat. Novertheleses, the wheel-
lock, provided with pyrites instead of flint, had long beeninvented lock, provided with pyrites instead of flint, had long been invented,
but seems never to have come into general use in armies, but seems never to have come into general use in armies,
except for cavary pistols. The French Tock which preceded the
percussion system was invented as early as 1640 , though it of percussion system was invented as early as 1640 , though it, of
course, received succossive improvements. But even before that time Gustavus Adolphus had introduced a great improvement in
musketry, by reducing the weight of the piece to 101 , instead of 15 le This enabled ot the soldier to do pway with the fork, and
therefore inereased the rapidity of the fire The therefore increased the rapidity of the fire. The bullet weighed
an ounce. Another improvement of his was the paper cerrtidge,
which, however, at first only contained the powder, the bullets an ounce, Anor, ar
which however at
being kept in a bag.

MISCELLANEA.
Mr. Dunhar has completed the Leigh Hunt memorial, which The rains in Canada have recontly been very heavy, and soveral
railroad bridges in the vicinity of Nontreal have been washed away. Indian military stations, to be worked by soldiers, thereby effecting a considerable saving to the Government of Indiil.
Ove effect of the beginning of the new street from the Mrnsion House to the Embankment is to bring into view the weat side of
the Mansion House, which is seen from the Poultry wider a new the Man
ispect.
A sisisie cenotaph, to the memory of the Inte distinguiikhed astronomer, the Earl of Rosse has just iseen erected in the church
at Parsonistown (Ireland). It is said to be beautiful for its simplicity, yet not altogether unadorued.
A CoNsiderable number of diamonds and other precious stones has been hat hely foumd at Mud gee in New South Wales, and a com-
pany has been formed to work diamond mines. A new discovery
of rich coppor ore has been of rich coppor ore has been made at Bularat.
THE authorities of the Louvre have had fixed in the windows of
he rooms of Henri II., Henri IV., and of the Sauvageot Min the rooms of Henri II., Henri IV., and of the Sauvageot Museum,
109 pieces of stained glass of the sixteenth and sovententh con.
turies, Flemish, German, Swiss, and Frencli, of great beauty and in excellent preservation.
The French expedition to the North Pole, directed by M. Gus-
tave Lambert, is unable to set out. \boldsymbol{A} journal announces that about 180,000 , francs are still required to carry out the undertaking, intended to last four years, with
neighbourhood of the Pole itself.
The Empress Eugenie has founded an annual prize of ELAOO, to
be awarded by the Geographical Society of France to man for the discovery, work, or enterprise which shall be jubged to bo the most useful to progress, to the science of geography, or to the external commercial relations of France.
Sowe English miners in the Asturias have discovered at a ahort
distance from Rivadellesa, an immense natural grotto entirely filled with stalactite columns of
different directions extend for beauty, Pasagges part in
The statute of
THE statute of Goethe, at Munich, was uncovered on the 28th of thgust. Count Yotio opened the ceremony wita a specel, and representatives of the city. A large number of guests were
invited to dine at the royal residence, and the evening Goethe's "Torquato Tasso" was given at the theatre.
The authorities of Glasgow have granted permission to run,
experimentally, omnibuses drawn by patent road steamers with experimentally, omnibuses drawn. by patent Poad steamers with
india-rubber tires, built by Mr. R. W. Thomson, C.E. Edinburgh,
fit through the streets of their city. Before coming to this decision,
they sent an offcial over to Edinburgh, where he witnessed a trial they sent an offcial over to Edinburgh, where he witne
run of a road steamer with an omnibus attached to it.
Tus Fondaco dei Turchi, says the Arciatect, one of the oldest
palaces on the Canal Grande, Venice, has been restored at the expense of the tounicipality. It it a fone specimen, peraraps the finest,
of that peculian stylo of Venetian twelf th century architect of that pecelian style or enetian twelth century architecture in
which the Byzantine and Oriental elements were, so to speak,
bended, and was built by the once powerful fanily of the Peanros. THE Russian merchant, Ssidorow, who has several times visited the mouths of Petschora, is now engaged in exploring the new passage round Norway, through the Polar Ocean, to the mouths
of the Petschora, and then throvgh the Carian Sea to the Obi, and of the Petschora, and then throngh the Carian Sea to the Obi, and
if possible to the Yenesci. Ssidorow sails on board his own if possible to the Yenesei. Ssidoroww sails on board his own
sieamer, the Georg, commanded by Capt. Beck. It is said that the Russian Government have granted him the sole use for the next wenty years of any passage he may discover.
Or Tuesday morning the northern and southern ends of the wooden footway on the west side of the temporary bridge at Black-
friars wete closed to in removing the wooden framework and timbers to make a clear space for the roadway approaches to the new bridge, which it is intended to the whole length of the westen footwoy of the temporary bridge against the public in a few days.
Messrls. Hopkiss, Glekes, and Company, Middlesborough, have reeently completed the erection of the new bridge ancoross the gle glen
at Saltburn-by-the-Sea. The stucture is almost entirely composed firon, and the The railing is particularly neat, strong, and effective, being com-
posed of angle iron, so arranged that no projecting stays are re quired to give stability to the long length of rail on either side.
specimen length of the railing will be shown in the Excharge Midecesborough, next week.
A sERiEs of experiments have been carried on during the last
few days at the proof butt, Royal Arsenal, Woolwioh, with instruments invented by Captain Noble, late of the Royal Artillery, and now one of the eirm of sir
Elswick, to measure the evocoity of a shmot while on passange in
the bore of a gun when fired, and also to test the strenth the boro of a guas when fired, and also to test tho strength of gunbut it is anticipated that they will materially alter the data upon
which theoretical calculation
The St. Louis County Court has decided to cease further operaThe depth reached was 3443 wift, and the water obtained there was very salt. Some members of the court wished to continue the against this on account of the expenep, but a majority decided being gearly forty dollars a day, and the progress made in that
time about 5 in. The well is to be plugged up at a depth of about time enout 5in. The well is to be plugged up at a dep
1200ft., where pure water can be obtained dy pumping.
Duning the six months ending June 30th this year, the value
of the machinery exported was $£ 1,472,572$, of the machinery exported was $£ 1,42,65$, as compared with
$£ 1,269,756$ in the corresponding period of 1868 , and $£ 1,300,216$ in June irst six months of 1867. In these totals the shipments for June of igured for $£ 315,423$, against $£ 269,138$ in June, 1868 , and
$£ 299,78$ in June, 1866 . The increase observable in this year's Thus the value of the machinery exported to Russia in the first half of this year was $£ 189,533$, against $£ 118,464$ and $£ 151,845$
respeoctively;
and has also been some increase this year in the value of the exports to
Holland, Esypt, British India, \&c.; but, on the other hand, the demand for British machinery appears to have decreased as regards
 ceeded in forming a sosiety of gentlemen possessing astronomical
instruments, for securing concerted observation of interesting astronomical phenomena.s. Amongst the list of members are the
names of six fellows of the Royal Astronomical Society, including Mr. W. R. Birt, one of our leading authorities on lunar matters;
and Mr. A. Brothers, the author of a very excellent catalogue of and Mr. A. Brothers, the author of a very excellent catalogue of
binary stars, and numerousvaluable paperson celestial photography. binary stars, and numerousvaluable papers on celestial photography.
The aftairs of the society are managed by a president, treasurer,
and secretary, and a committee of and secretary, and a committee of dive members, The Rev. R. E.
Hooppell, My. .A. LL.D., F.R.A.S., of South Shilds, is the presi-
dent; Mr. William F. Denning, of Ashley-road, Bristol, is the

FORGING MACHINE, CONSTRUCTED BY MR. W. CLAY, BIRKENHEAD.

Mr. Willias Clay, of Birkenhead, has patented an invention which relates to that
class of forgings known in the trade as heavy class of forgings known in the trade as heavy
forgings, the object sought being to ensure sound forgings, which it is very difficult to obtain when manufacturing bulky articles,
the thickness of the metal in which lgreatly the thickness of the metal in which Igreatly and suddenly varies. In manufacturing, for example, marine engine shafts with disc
couplings the point of junction of the disc couplings the point of junction of the disc
with the shaft will generally be found, when cut into, to exhibit internal fissures which greatly detract from the strength of the
shaft. In order to avoid this defect, and to ensure solidity throughout the metal of large forgings, Mr. Clay proposes when forming
heads, collars, or flanges upon the ends of heads, collars, or flanges upon the ends of
shafts or rods to employ a horizontal hammer of peculiar construction, which is connected with and operated by a piston working in a horizontal steam cylinder, and thereby materially to reduce the sectional thickness of the
metal at the line of junction of the head, collar, or flange with the shaft.
In the accompanying engraving, Fig. 1
shows in side elevation the kind of steam hammer which Mr. Clay employs in manufacturing heavy forgings Fig. 2 is a partial longitudinal section of the same; Fig. 3 is a transverse section taken at the line 1, 2 of
Fig. 2, and looking in the direction of the taken in the same line, but looking in an opposite direction. A A is the bed of the
machine formed in one casting. To one end machine formed in one casting. To one end
of this bed the steam cylinder B is bolted, and to the other is secured a block \mathbf{C} for receiving on its face the anvil D. The face
of this anvil is shaped to correspond to the form the end of the shaft is intended to receive by its lateral expansion, and in order to allow of the anvil being changed to suit different sizes or kinds of work it is made to
fit into V 's formed on the face of the block fit into V 's formed on the face of the block
C . The anvil is U -shaped, as shown at Fig. 4, and the block has a corresponding

vertical hollow to enable it to receive the heated shaft that is intended to be brought under the action oflthe
hammer. To facilitate the turning of the shaft on the anvil the block C is fitted with antifriction rollers $c c c$ which support the cylinder B, fitted to a cylindrical trunk E, which piston of the other end the hammer block
Fitted centrally in the face of this block is a conical piece C^{\prime}, which forms the striking part of the hammer; its object is to form a cavity in the end of the shaft, and thus by reducing the thick ness of the metal at that
occurring in the forging.
H occurring in the forging. H is the slide valve, the rod h of which
extends through the opposite ends of the valve box. At its rev end this rod is formed into a link to receive a cam $h 1$, which i keyed to a cross shaft h^{2}. This shaft rocks in bearings on the top of the cylinder B , and it is fitted with a handle, by raising or depressing which the attendant is enabled to operate the valve, and
thus regulate the advancing and retrograde movements of the hammer at pleasure.
To prevent the risk of damage to the machinery from inattention the valve rod is jointed at its front end to the arm of a rock shaft h^{8} mounted in bracket bearings at the front of the cylinder B, and fitted with a pendant arm h^{4} carrying an antifriction bowl. In a
line with this bowl on the hammer head is fitted an adjustable sine with this bowl on the hammer head is fitted an adjustable
h^{5}, which as the piston is nearing its back stroke will strike the bowl of the arm h^{1} and rock the shaft h^{3}. The motion of the rock shaft will, by reason of its connection with the valve rod,

MR. W. H. BAILEY'S PATENT PYROMETER FOR HAYSTACKS.

 At the Royal Agricultural Show's meeting some attention was directed to the pyrometers J, Bailey and Co., of the Albion before casually alluded to. The annexed cutshows one use to which the pyrometer canbe applied, and we are informed that more were sold for this purpose than for the many other purposes for whichpyrometers are wanted. It will be seen that it is an instrument pointed at the end, which, on cates the temperature on the dial. From experiments recently made at shrewsbury the following
figures were obtained. Messrs Bailey consider a stack dangerou at 200 deg., and after that point it should be pulled to pieces:-

Day after
stacking.

cause the valve to advance and cut off the supply of steam to the cylinder, while at the same time it will stop the escape of the exhaust steam,

strike agains An incidental

An incidental advantage derivable from making the cylindrical will allow of but a small amount of steam being used in the return stroke of the piston, while a powerful propelling force may be used for its advance. The hammer head is fitted with a pair of V-grooved wheels I, which turn freely on a fixed axle that passes
through the hammer head. These wheels are intended to carry through the hammer head. Trese wheels are intended to carry
the weight and facilitate the traverse of the hammer, and for this purpose they run upon and between angular rails, K K , which
constitute also tie rods for connecting the cylinder B and blocks 0 together, and enabling the machine the better to resist the strain to which it is subjected. The lower rails K serve as track rails for assist in steadying the wheels on the track rails.
In order to form a head or enlargement on a shaft according to Mr. Clay's invention he first takes a shaft forged in any approved manner, and piles the end with pieces of wrought iron, after the manner indicated at Fig. 5, so as to approximate roughly to the
shape desired. The piled end of the shaft is next brought to a shape desired. The piled end of the shaft is next brought to a
welding heat in a furnace and the pieces reduced to a solid mass welding heat in a furnace and the pleces reduced to a solid mass
in the usual way, whereby a shaft head is obtained like that shown
at Fig. 6. Having thus prepared the shaft-forging, instead of
finishing it in the ordinary way it is submitted to the action of the forging machine we have described, previously reheating the shaft, if that is required, to enable the machine to act efficiently upon it.
The heated shaft is placed with its head opposite the hammer The heated shaft is placed with its head opposite the hammer
head, as shown at Fig. 2, in the block or rest C, furnished with head, as shown at Fig. 2, in the block or rest C, furnished with
antifriction rollers c c for facilitating the turning of the shaft when required. The head of the shaft overlies the anvil which forms the face of the block C, and the hammer, by reason of its shape, will, in delivering its blows, form a conical hollow in the head of the
shaft, and thereby to a considerable extent reduce the bulk and shaft, and thereby to a considerable extent reduce the bulk and
equalise the thickness of the metal at the centre or the junction of equaise we thickness of the metal at the shaft from time to time
the head with the shaft. By turning the shatill on its axis as the operation proceeds its head will be reduced under the blows of the hammer to a regular figure, requiring comparatively little turning to finish it. This mode of forging thick portions hollow also ensures a more equable contraction of the metal
when cooling than hitherto, and the formation of fissures in large when cooling than hitherto, and the formation of fissures in large
forgings of the character illustrated will be thereby avoided. To ensure the best practical effect the cooling of the metal (when the forging is completed) is commenced at the centre of the head by the application of a jet of water or other cooling medium. By
thus causing the metal to shrink towards the interior instead of thus causing the metal to shrink towards the interior instead of
the exterior the chief difficulty of obtaining sound forgings will the exterior the chief difficulty of obtaining sound forgings will be
removed. Mr. Clay is now erecting large works at Birkenhead removed. Mr. Clay is now erecting large works at Birkenhead
for the manufacture of heavy shafting, of which we shall shortly place a detailed account before our readers.
of nearly 25 deg. between the angles made by the upper and lower surfaces or the vein, respectively, with the circumference of of the true Poncelet system, is often referred to in connection with wheels of this class, but the present instance is believed to be the first example of its complete adoption in this country. The wheel race is constructed of large blocks of Dartmoor granite, accurately worked to templaté, joggled together, and bedded on a foundation of brickwork and hydraulic concrete.
The water-wheel is 14 ft . in diameter and 12 ft wide. On the shaft, which is of hammered iron, 10 in . diameter at the journals, are keyed four cast iron centres 3 ft . in diameter, recessed to carry six arms each, the least thickness of metal in the webs being lin. The arms are wrought iron flat bars $4 \mathrm{in} .+1 \mathrm{in}$., each accurately fitted and secured to the centres with three $\frac{7}{b} \mathrm{in}$. bolts.
The outer ends of the arms are widened into palms 6 in . broad and The outer ends of the arms are widened into palms 6 in . broad, and attached to the shrouds with two rows of 3 in . rivets, 3 in . pitch. All the rivet and bolt holes in centres and arms are drilled. The shrouds are of plate iron tin. thick, each ring being formed of six
plates jointed on the centre line of each arm. The floats are of plates jointed on the centre line of each arm. The floats are of
sheet iron !in. thick, carried by curved angle-pieces riveted to the sheet iron gin . thick, carried by curved angle-pieces riveted to the
shrouds with \sin. rivets, but attached to the floats by four snapheaded bolts in each, in order to facilitate repairs. The floats are stiffened by three rings of 3 in . stays and bolts, midway between the shrouds. The radial depth of the shrouding is 2 ft . 9 in., being equal to one-half the head, land the floats are thirtysix in number.
The sluice-gate is of the kind usually adapted to this class of wheel, but its novelty consists in its having a peculiar revolving motion, effected by the radius bars not being parallel to one another in each pair; and this arrangement possesses several advantages. The toe of the sluice in opening approaches close to the wheel, thus delivering the water with the least possible loss of velocity. The head of the sluice does not rise, but slides back almost horizontally, in consequence of which the centre of gravity of the whole sluice has only to be raised about one-half the height of the opening obtained; at the same time the point of appli-
cation of the lifting power describes a path sensibly coinciding with the direction of the pitch-line of the rack. The length and divergence of the radius bars are adjusted so that the whole apparatus is kept as nearly as possible in equilibrium with the resultant pressure of the water, without requiring any counterpoise whatever. So completely has this result been attained in the present design that the cast iron sluice 12 ft . by 9 ft ., and sustaining an average water preseure of about ten tons, can be raised or lowered by the pressure of a single finger. The facility afforded by this mode of construction for the employment of a sensitive governor and regulating apparatus will at once be

${ }^{2}$ pparent.

The body of the sluice works in a frame formed by two side jambs, bolted to a sill at bottom and to a pair of girders at the top. The cast iron sill is sunk flush into the granite masonry of is bolted to a back flange at the foot of each jamb. The side

PONCELET WATER WHEEL AT EXWICK MILLS, NEAR EXETER.

 Mr. E. W. BULLER, C.E., ENGINEER.

LETTERS TO THE EDITOR.

(We do not hold oursetces responsible for the opinions of our

notes on a leading article on patent right in the ENGINEER OF SEPTEMBER 3RD
SiR, =THE writer* characterises the anti-patent movement as if it aimed at depriving patentees of the rights they have legally already acquired. But that is by no means the case; it is directed
only against the concession to other patentees of more rights. We only against the concession to other patentees of more rights. We
differ in the history of the recognition, as he would call it, or the institution as I regard it of property in inventions. He says :-
"The law, 'Thou shalt not steal,' existed in the minds of men though it was not written, and we defy Mr. Macfie to prove that
the operation of this law is confined to any given object. It takes no cognisance of the value or kind of entity possessed, but simply
the right of possession in the entity, which is universally recog. nised as pertaining to the first legitimate own refors applies solely to things mater
\qquad ancient law of any property other than prove the recognition in he cannot do this, that he will adduce any historic reason for
believing that the conscience of mankind or respondod arnong Greeks, Romans, Jews, or Egyptians, or does
respond now in Cnina or any country not sophisticated by civilisation to the principle of conceding exclusive proprietorship in invention
To proceed:- "Mr. Macfie confuses knowledge with original but why? Simply bearae mot men havo acknom lededed that tho
 originated in any view that there morally is exclusive property in
inventions.
The writer says, "The opponents of patent law urge that in-
ventors have no right to recelve a reward based on the commercial

a monopoly no less in virtue of its affecting only articles or operations that were previously unknown; and to abolish patents is not would thereby merely leave every firs
his invention what he would or could.
The writer says, "Another may hit on the same idea and be will not pay him a farthing more than it is worth." In this that an original but not first inventor may be hindered and taxed py a prior patentee who has not adequately developed the idea
patented, and who has (as I contend) no, claim, except by the
patent, to get anything at all for what the "idea" is "worth" patent, to get anything at all for what the " idea" is ". "worth."
I thank the writer of the article for his Peninsular illustration : it is quite a propos - a service was wanted, was obtained, and was
rewarded well. Let the State by all means do what the officer he mentioned did, let it also pay for Moncrieff guns and perforations, singly, or, still better, in associations, do the same. This would be advocate state rewards, only these must be paid by the State in
money, not in monopoly.
R. A. MacFiE.

THE UTILISATION of sewage.

Sir, -In the letter I addiressod to you last week I ventured to
make the assertion that pouring sewage on the surface of land is it is to be feared, a very safe way of dealing with it in a sanitary point of view. We have plenty of cases of large crops of grass, gone into it is found that the same amount of ammonia applied in vegetation if applied as a dry concentrated manure. The danger, portion of the ammonia flies off to taint the air. A very important question then comes to be asked, What is the best wayy of absortracttrated form fit for manure? And it is here necessary to notice
that sewage may be looked upon as simply a solution of ammonia, stronger or weaker, as the case may be. The strength of it in the
sewage of large cities yeries grains per gallon. It is also to be noted here that before sewage comes to the state when it may be looked on as a solution of am-
monia it requires to be mixed with an alkali in order that the matter in suspension may be precipitated, and the ammonia
liberated from any acids it may be combined with. When sewage
is thus mixed with striking change takes place. After being well stirred, the solid matter begins to sopatate and gradually sinks to the bottom,
leaving the water above clear and transparent. This clear water, however, emits a distinct smell of ammonia, and if
allowed to flow into a river in this state would pollute the water aimost as much as if no precipitation had taken place.
It very evident that if some very cheap and abundant substanc
suchas lime, could be obtained, which, whenmixed with the sewase would precipitate the ammonia along with the other solid matters, the thang would be done, and the problem of converting sewage
into a portable and valuable manure would be solved. But this substauce never has been found. There are no doubt some sub-
stancen which partially precipitate ammonia. Some of the salts
of magnesia will do it, although not when the solution of magnesia will do it, although not when the solution
is so diluted as in sewage. Then there are mistures,
[Mr. Macfo forgots that the persomailty of contributors is morged in
such as those in use at Leamington, which evidently
do it to a cortain extent. But the drawback is their expenso so the materials Alood, alum, and clay-made use of at Leamington. If a statement given in a contemporary last week be a correct one, it takes 4 lb .
of a mixture made up of these materials to purify 1000 gallons of sewage. No statement is made as to the expense entailed in pro-
viding the requisite interils viding the requisite materials, nor of the proportion of the carried away in the water. Another process of somewhat the same kind has lately been put in operation at Bradford by Mr. Holden, but no details as to results are yet given.
When we consider the
that it he consider the nadinity for woten, that it is a gas, and that it has a powerful affinity for water, it is plain that when
small quantities of it are dissolved in large quantities of water, as smal quantities of it are dissolved in large quantities of water, a
in sewage, it is very improbable that any solid substance or subin sewage, it his very improbabe that any soin substance or sub
stances will have the power, when mingled in small quantities witl the sewage, of abstracting the ammonia from the waterand causing it to fall with the precipitate.
There is only one chemical agent I know of that can thoroughly and effectunlly separate ammonia from water, and that agent in
heat; and the question comes to be, Can heat, in such a case, b applied with economy and effect? At first sight the idea seems startling one. To heat and boil such enormous quantities of water seems the height of absurdity. But a little consideration
shows the thing to be reasonable and practicable if the sewage b shaoss the thing to be reasonabe and practicable it the sewase be excrementitious matter of citiee can be carried away from water-
closets, urinals, $\&$..to a place where it can be most conveniently dealt, with. The sewage of Glassow, for instance, where water is
so largely used, is diluted to such an extent that probably it is not much more than one-third part of the strength of London sewage that is, if wo estimate its strength by the number of grains of am-
monaia per gallon which it contains, the average strength of the Now it is not safe to nat exceed, I think, three grains per gallon ject an shis, but I do not think dit possible, ,y any system of irriga-
tion or precipitation yet dovised or likely to be devised, to utiliso tion or precipitation yet devised or likely to be devised, to utius
sowage protitaly when diluted to such ane estent. The neessity concentrating the sewage into a separate system of sowers is no
peculiartomy scheme, for diluted and mingled with so many foreig peogredients as it is at present, the attempt to utilise it in any way is
ingrean
certain to turn out a even when intended to be used for pupproses of irrigation, is now so
generally recognised that Lieutenant-Colonel Ewart, who was ap
 the right method of proceeding, in order to meet the difticultie which these towns experienced in dealing with their sewage.
Another very obvious recommendation of a separate system is that it is possible to ventilate such sewers at a moderate expense, and so
prevent foul gases poisoning the air. To ventilate the huge sewer In which the filth of our great cities is carried along, with their
 comparatively small dimensions, and with no openings except a
their connections with the water-closets. The temperature within a house is of course generally higher than out, and the conse quence at present is hat winever the valve of a closet is opened
the gases in the pipe have a tendency to rush up into the house,
and most certainly often do so. Beyond all question this is a drawback to the water-closet system, causing evil smells, and especially poisonous gases, to be present in small warm houses
Now there is nothing that I k kow could counteract this but state of things so contrived that whenever the closer vaine th
opened a downward current would be generated, carrying the gases along with it. In a "separate system" such an arrangement could be managed by simply connecting the sewers at proper
intervals with brick stalks, thus causing a constant suction to be
acting on them, and carrying the foul gases into the atmosphere acting on them, and carrying the foul gases into the atmosphere
at such a height that they would be innocuous. An improvement at such a height that they would be innocuous. An improvemend
on such a plan would be to carry the gases through a furnace and
burn In the matter of o " separate system " a question arises of course
as to the state of the sewers after the excremental matter has been taken out of them, and as to what would be
the effect of the remaining sewage if allowed to fow into
the rivers as before. There can be no doubi it would be desirable, in a sanitary point of view, to have no such
thing underground sewers with openings the secting the streets of large cities; but this is impossible end th next best arrangement is to keep the noxious and gas-generating
substance, viz, the excreta, by itself, allowing it to have no communication at any point with the atmosphere which is to be
breathed by human beings. What is then left in the has little or no tendency to generate gases of any description, or at least those which experience has shown to be prejudicial to with sewage. The washings from the surface of the streets, the
refuse from the refuse from public works, sc., carried down by the sewage into
the river, soon separate from the wwater, and fall as a harmless
and of matter in solution which does not fall, but mixes with the water and pollutes the river for miles. The only real difficulty in
the way of a "separate syty to get all the polluting matter of a city into a system of sewers by
itself? If so-and I see no reason why by proper management it itseif. If so-and I see no reason why by proper management
may not be done-then beyond all question it is one great step in
sanitary reform. It affords the possibility, as I have endeavoured to show, of preventing the contamination of the atmosphere, and
it affords the possibility also of utilising profitably the manure which
Thave already said that ammonia was by far the most valuable
of the manuring constituents, and that heat I believed most effectual and cheapest' agent in separating ammonia from
it To store up ammonia in large quantities for the purpose of using it as manure, it must be put in the form of a salt- that is, it must
be combined with an acid to fix it, to prevent it dissipating itself be combined with an acid to fix it, to prevent it dissipating itsel
in the atmosphere like any other gas, The simple and obvious way to obtain the ammonia from its solution is to bring the water in is then led by a pipe into a vessel containing an aid, geneall sulphuric acid. The acid retains the ammonia and the water passes off as steam. A concentrated solution of sul lphate of ammonia is
thus obtained, which can easily be evaporated down to the dry salt. In its natural state the ammonia is partly in the form of a salt. The sewage requires, as I have already said, to be treated with
lime in order to set the ammonia free The lime se is well know has the property of clarifying the sewage, the matter in suspension, as well as the principal portion of the phosphoric acid, boing pre
cipitated cipitated. The clear liquor in the top is then a solution
ammonia. Were it neutralised with sulphuric acid and evaporate sulphate of ammonia would be left. This, of course, in the case of
the sewage would be absurd. The ordinary the sewage woummonis from gas-liquor, \&c., is to foll practised
obtaining the ammone and bring its contents to ebullition. A A pipe from the boiler co veys the steam through acid as I have described. Only abouta afifth
of the liquor requires to be evaporated until the amonia is all of he liquor requires to be evaporated until the ammonia is all
driven out. Even this methou, however, would not suit in the The bulk of water is must be adopted where speed in the process and great economy of
 patience thatI must put off till another time some further remarks
I would like Io Glasgow, September 7th, 1868

THE WESTERN BOUNDARY FAULT OF THE SOUTH STAFFORD SHB,- Under the above heading an account
across the western fault, is given in your paper of the 30 drive The two diagrams which accompany it appear to have been pre-
pared with great care, and they give so much detail that possibly one who has not visited the underground workings may fairly offer an opinion upon the nature of the fault. The members of the Dudley and Midland Geological Society include so many that they are most competent to form an accurate judgment upo the evidence shown to them; and I should not have ventured to address this letter to you were it not that I am anxious to put the engineer upon his guard as to this fault being the result of
denudation, to which view the writer of the article evidently in clines. I believe there are few geologists holding th
This view has no doubt been encouraged lately by the discovery that the east boundary fault of Shropshire is the result of denudation, and so far as they have worked, even in the lowest coals,
the denudation is found to cut them off. Geologists eagerly seek or the opposite side of this valley. No proof having been as ye made in the intervening district, they pass into Staffordshire to
discover, if possible, from that side evidence of denudation which might lead them to suppose they had found the opposite side of the valley. Thus there is a predisposition to associate with this Upon the supposition of the Staffordshire western fault is
merely a cliff, against which the Permian was deposited, the writer of your article explains the rapid dip of the coal in Fig. 2
by the undermining of the lower clunches and sandstones by the waters of the Permian Sea; the superincumbent strata then sub
wat sided, and the consequence was that a sharp declination of the
strata occurred as far as the subsidence affected the strata. Thi may satisfactorily account for the dip of the coal strata westward
but how, upon such a theory, can you account for a sharp upward
inclination of the strata? Your article does not attempt to explain The Symon fault of Shropshire shows that the denudation that
this. caused it took place after the formation of the older coal mea-
sures and before the deposit of the younger, for the valley which was formed by it is filled up with deposits of the latter age. The
headway at Himley, Fig. ., shows the supposed valley of denu
dation to be occupied by Permian strata. We cannot, therefore I think, compare the symon fault of shropsaire with the wester result of denudation. Since, however, it is known that at the close of the carboniferous age there was another period of denu
dation, as evinced by the nonconformity of the Permian and coal measures over probably the greater part of the tract of country
between Shropshire and Stalfordshire, the denudation spoken of in your article may be referred to that period, the vacuity bein tradicted by the sharp angle at which the Permian strata dip from
the coal measures, as shown in Fig. 1 (about 55 deg.) Accord ing to the "water theory" we should require another washing o
the Permian substrata to account for this rapid dip. In Fig. 2 i
will be observed that the coal measures dip east and west, so tha we require an undermining of the strata on both sides to account
for it An examination of other portions of the western fault of
South Staffordshire tends to show that it is unmistakeably downthrow to the west-the main fault being sometimes ap-
proached by a succession of smaller faults. The direction of the edges of the strata being bent. When the fault is not cut off quite
so shortly the coal and strata "drag" at a slower rate. This accounts for the dipping of the strata westward as we approach the
fault, and as shown in Fig. 2, and it is not due to the washing out fault, and as shov
of strata beneath
The upturning of the coal in Fig. 1 is due to lateral pressure-
lateral pressure is also traced in the curvature of the strata in diagram 2 .
It not unfrequently happens that the coals along the side of an
important fault are bent like the letter S, and this occurs along the western fault of South Staffordshire, I believe not far fron question in my mind that the fault is a dislocation, and not the result of deundation. If it were an old coast line the course
would be irregular, indented by creeks and bogs, but we find that it rather keeps a fixed point
The recent organisation of two institutions of mining engineer in South stafordshire. has very much stimulated geological re
search in that district. It is, therefore, highly desirable that correct views should be formed for the sake of those to whom geo-
logy is a new study, and I should much like to know whether the
deductions recorded in your deductions recorded in your paper of July 30 represent the con-
clusions at which the Dudley and Midland Geological Society, as a body of scientific men, have arrived at. If so, it will upset the
accepted view that the western fault of South Staffordshire is "clean cut" fault or dislocation, and no pains should be spared
to have the question cleared up, as it closely affects the question o have the question cleared up, as it closely affects the question
of the extension of the coal-field between Stafiordshire and Shrop
shire.
F. G. S. Fhire.
[Whe shall be glad to have the opinions of other correspondent
on this interesting subject.-ED. E.] STEAM GAUGES.
Sir,-Being en voyage, I have not till this moment seen your
valued journal of the 27 th August. I thank you for the courtesy in inserting my last letter. 1 should have liked that it had pro-
duced from Mr. Rockner, or some other correspondent, something more defiant in favour of English gauges. It ake my data entirely
from your journal when I say that our gauges are almost in use in your country. I do not consider it makes any difference that the gauge is made in Birmingham, the principle being invented
here. I regret I have not your journal of the 26th July for reference, but it cannot affect the truth of my assertion that there
is no English gauge known here of any merit, and that our gauges My object in writing this is to bring to the surface anything
that has more of merit than what is generally known. In Saxony, from where I write, the State adopts the gauge which they find a serious matter to be constantly near a boiler with pressure up to five atmospheres, which may be put higher from error in gauge;
but as we have not many accidents, perhaps our boilers are better
than yours, as one of your correspondents asserts.

The latitude without angular instruments,
(a Urse Minoris), and the star Alioth in the Great Bear (f Ursa
Majoris), passes very near the Pole. Hence, in the northern hemisphere, a meridian line may be fixed approximately by observing,
by the aid of a plumb line, the instant when those two stars appear
in the same vertical plane, as shown in the figure
This vertical plane is approximately the plane of the meridian, and as Polaris appears in it that star is near its upper or lower cul mination. In this instance it is near the upper culmination.
The latitude of a point on the earth's surfec is the altitu the elevated pole at that point. As the polar distance of Polaris
is known if the altitude of that star is known if the altitude of that star at one end of its culminations
can be obtained, then by ndding or subtracting the polar distance to or from this quantity the altitude of the pole is found, which is the latitude of the place of observation. One method I propose
for finding the latitude without angular instruments is as follows: apen the star is at one of its culminations make it coincide by
approaching or receding with some more or less elevated point
is to be, measured with as much accuracy as available. The dis-
tance from the observer's eye to a perpendicular, let fall from the tance from the observer's eye to a perpendicula

Height of point

> $p=$ point selected
$\mathrm{H}=$ height $\mathrm{D}=$ herizht above level of eye. Hence $\frac{\mathrm{H}}{\mathrm{D}}=\tan$. alt. of polaris.

Next, having found the angle of altitude from tangent, add or
subtract the star's polar distance. In this case the star being supsubtract the star's polar distance. In this case, the star being supposed at its upper culmination, subtract the polar distanee, which
81 deg. 23 min . 46 sec . I do not think the latitude obtained in this

way, when carefully managed under favourable conditions, will be the most perfect instruments, and the method would apply in unex-
plored or partially explored portions of North America, Asis, and Africa, and the northern hemisphere generally, if Alioth were only
visible above the horizon at the critical moments. But this is not visible above the horizon at the critical moments. But this is not
always the case, and, therefore, the nethod can unfortunately only
be employed at certain times of the year. If though the meridian be employed at certain times of the year. If, though the meridian
can be obtained by any other means, the culminations of Polaris can
be observed, and the latitude, as I have before stated, found with be observed, and the latitude, as I have before stated, found with
considerable accuracy when the explorer's quadrant or theodolite is lost or destroyed.
wrote relative to the somertaining of heights without angularinstrumete relative to the ascertaining of heights without angularinstru-
ments, the latitude being known. The latitude and o other elements
are necessary in this calculation of height. Hence, if the height and the other elements excepting latitude are given, the latitude can be found.
The reader, on reference to this letter published July 30th,
will, I have little doubt, perceive how, the height of p being known,
the latitude can be found without anglar instrum any reference to the direction of the meridian at any instant that Polaris is visible-and of course Polaris is always visible in the
northern hemisphere at night unless obscured by clouds. I found the latitude of a station near Brighton, by this deducible means, to be 50 deg . 48 min . 13 sec ., by the Ordnance Survey, 50 deg .50 min. ,
and by a sidereal observation, with one of Troughton and Simms theodolites, 50 deg. 49 min . 4 , sec .
The objection I made to the me
the point of observation is at or near the equator, does not apply to the method for obtaining the latitudes.

It will be evident, on reference to Fig. 2, that as the tangent is the necessary measurements, a capstan bar would do as well as a in an unknown locality whose instruments have been destroyed. I may also remark that as Polaris apparently moves round the greater or less than the latitude by more than this quantity. There-
fore if the altitude be obtained when the star is in an unknown fore if the altitude be obtained when the star is in an unknown
position in its diurnal course quite irrespective of the meridian, its
difference from the true latitude, will be between the limits 0 deg. 0 min . Osec. and 1 deg. 23 min , 46 sec ., and the doctrine of
chances, I think, would indicate less than a degree as the probable chances, I think, would indicate less than a degree as the probable
error; but on referring to Fig. 1, it will appear that, by noting
roughly with the eye the angular position of Alioth, or other roughly with the eye the angular position of Alioth, or other
stars with a vertical, passing through Polaris, the position of
Polaris in its diurnal path can be concluded without any great error. The error in the diurnal path of one degree would represent an error of altitude of less than one minute. Hence the angular
distance above or below the pole can be deduced approximately, distance above or below the pole can be deduced approximately,
and the error of latitude reduced to a small quantity. This last
method is the least accurate of the three, but it is at the same time the most independent.

LOW of gases.
SIR,-Mr. Baldwin, in designating a certain formula for the flow of a gas through an orifice as "Rankine's formula,' gives me more credit than I deserve. The formula is not specially mine, but writers on thermodynamies, and to which every one must
necessarily be led who investigates the problem of the flow of gases from orifices agreeably to the principles of the mechanical action of heat. It was first publi-hed, so far as I know, by Weisbach, in
his "Ingenieur und Maschinenmechanik," third edition (vol. i., p. 821). In 1856 the same author compared it with an extensive other results, that when the outlet was a shont conoidal tube of
the form of the contracted vein, the actual weight discharged in a given time was only from one to three per cent. less than that given by the formula (see "Der Civilingenieur" for 1857). The
same formula was independently investigated by Thomson and air (see the "Proceedings" of the Royal Society for May, 1856). The formula may be applied to any gas or vapour whose pressure to a certain power of the density, and such is the manner in which it is applied to saturated steam loth inst. For another mode of mathematical treatment in Zeuner, published in 1864 (see "Der Civilingenieur," vol paperby

Glaggow, 14th September, 1869.

Sir, - I read your excellent leading article of last week on the proposed widening of London Bridge with much interest, more
tember, 1869, pp. 180, 18
partioularly becauso the plan suggested by Mr. Fulton is similar
to that Ideesged and carricd out for widening Newroort Bridge, to that 1 designed and carried out for widening Newport Brigge,
Monumouthshire, in the year 1866. Newport Bridge, although a Monwouthshire, in the year 1866. Newport Bridge, although a
fine stone structure, 400 ft . long, and five spans, had become a nuisance, and dangerous, by reason of the large increase of traffic.
The total available width between parapets before the alteration was only $21 \mathrm{ft} . ;$ it is now 36 ft ., and might have been 46 ft . if funds had permitted; and, as regards appearance, the general opinion seems
to be that the bridge is by no means disfigured by the alteration. The to be that the bridge is by no means disfigured by the alteration. The
cantilevers, 7 ft . apart, are bolted together in pairs by strong tie-rods cantilevers, 7 ft . apart, are bolted together in pairs by strong tie-rods
running right across the bridge, under the roadway. The parapets consist of strong wrought iron girders resting on ornamental cast iron supports fixed on each cut-water; these girders are sufficiently
strong to support the footways, even were the cantilevers struck away. The entire width of masonry is now utilised as carriage way;
the footways are floored with Mallet's buckled plates covered with the footways are floored with Mallet's buckled plates covered with
asphalte. The work was completed without scaffolding and withsuthinte. The work was completed without scaffolding and with-
out traffic one single day. My own impression is
that London Bridge may be treated in a similar manner with that London Bridge may be treated in a similar manner with
marked success, and that the vastly increased accommodation
thereby acquired would far more than compensate for any possible thereby acquired would far more than compensate for any possible
disfigurement of that really splendid work by such "ironmonger
style of architecture," as a Times correspondent describes Mr.
Nr. style or architecture, as a
Fulton's proposal. I enclose carte photograph of Newport Bridge,
which will enable you to judge of its present appearance. its present appearance.
DYNE STFEL, M. INST. C.E.
VERY NEAT INDEED.
Sis,- Allow me to draw your attention to an advertisement which has lately appeared in the newspapers of a competition for a bridge at Leeds, and which sppears to me to be worthy of special
notice. The premium offered for the best design is 100 guineas, and that for the nexi best is fifty guineas. The remarkable part of the advertisement is that competitors are told that before they
can be furnished with the block plan and conditions to enable
them to compete they must pay one guinea to Mr. C. A. Curwood them to compete they must pay one guinea to Mr. C. A. Curwood,
the town clerk of Leeds. Thus, if livo competitors (no unusual
number in these days, apply, they will between them pay the two premiums; and, as the corporation expressly guard themselves
from undertaking to employ the recipient of the first premium in
the execution of the work, the competition resolves itself into the execution of the work, the competition resolves itself into a sweepstake, where the entrance money is one guinea, and the first
and second prizes 100 guineas and fifty guineas respectively. It in a good sweepstake on next year's Derby as spend a guinea in acformer case their guinea would have an equally good. chance of
being returned with ninety-nine more guineas, and they would save themselves the trouble and expense of preparing the competition designs. If the guinea were demanded as caution money, it
should be returned to those who send io designs ; but as the case should be returned to those who send in designs; but as the case
now stands it is an ingenious deviee for making the competitors
pay all or part of the premiums, and does credit even to a Yorkshireman's acuteness.
Westminster, Sept. 15, 1869.

PROTECTING SHIPS' HULLS
Sir,
Sir, -Mr. Grey thinks that "simply riveting" to the iron
must be less "expensive" than first sheathing an iron ship with
wood ("teak") and then shenthing the perhaps it might be-at any rate, the sheathing of "teak" in addi tion to the zinc would be not only "expensive" but quite super-
fluous, and would effectually prevent the accomplivhment of the
end in view. I never suggested such a plan, but it appears to that such is Mr. Grey's interpretation of my referenee to Mr. that such is Mr. Grey's interpretation of my reference to Mr.
Daft's system, regarding which your correspondent is, in that case,
somewhat " at sea," and I would again recommend a perusal of somewhat "at sea," and I would again recommend a perusal of
Mr. Young's interesting and instructive book, which, besides
describing Mr. Daft's method, likewise gives a history of what has describing Mr. Daft's method, likewise gives a history of what has
been done The amalgamating of the zinc plates as your correspondent pro-
poses would be a very expensive affair, and although the amalgamated plate, by presenting a cleaner surface for the water to act
upon, might give more electricity, yet I doubt whether Mr. Grey is upon, might give more electricity, yet I doubt whether Mr. Grey is
correct in assuming that it would be more efficacious as an anti
fouler, because the amalgamation would render the surface of the zinc less oxidisable; and it appears to me that it is the exfoliation adhesion of foreign matters.
I am informed it has been practically ascertained that the zin I am informed it has been practically ascertained that the zin
will last as long as copper, and of course it will cost much less. Mr. Grey's plan, moreover, appears to have been anticipated by
Mr. Monckton, who took out a patent in 1867, and from whose Mir. Monckton, who took out a patent in 1867, and from whose
specification I take the following extracts, which may prove in-
teresting to your correspondent :- "I apply zinc by a novel metho teresting to your correspondent :- "I apply zinc by a novel method
to iron vessels. . . I effect this by forming holes into the pre viously well-cleaned iron of the hull, and either enlarge these
holes inside, or else I make a female serew in them; the zinc is then placed on the ship and zinc plugs with heads to them are driven the force of the blow the plugs expand in the hole in the iron and fill up either the enlarged space or the screw indentations within zinc plates for this purpose, whether applied, as above or other-
wise.
Chandos-chambers, Adelphi, W.C., Sept. 9, 1869. Engineers. triple effect and vacuum pan v. tache and others. SIB,-On reading your concluding remarks on Knagg's Process
of Cane Sugar Making," in your last issue I cannot resist th temptation of submitting for your consideration and that of your
readers some practical data and remarks in favour of the readers some practical data and remarks in favour of the
"plaintiffs" in the trial for superiority for some years going on in plaintifis" in the trial for superiority for some years going on exceptional opportunities of practically comparing the results of
both. When in Spain I had the good fortune to be intimate with a most successful planter and sugar maker there, who initiated me
in every practical result of the operations as then carried on by him by the old or Tache system, obtaining thus most reliable information, as he was acknowledged to be a most careful observant sugar making by the Tache, and
additional price in the market.
Although he was thoroughly acquainted with the " new system,"
and was, in fact, a large shareholderin a mostextensive sugar house the machinery of which is all by Messrs. Cail, he nevertheless was distrustful of adopting it, believing it might not be adaptabl
to his comparatively small plantation, and also disliking to subm to his comparatively small plantation, and also disliking to submit
for a while to foreign engineers, sugar boilers, \&c., until he should be able practically to grapple all the details of manipulation which a change of system would incur. However, after some time of
intimate intercourse with him, he intrusted to me the making of plans, erection, \&c., for a new sugar house, in which were in-
troduced all the moder improvements; and this gave rise to my being engaged to erect not only large sugar houses with triple systems into now ones, and thus I have practically seen the
superiority of this last. I mention all these details to show that I have had practical experience of both systems, and it has always
been a matter of regret to me that the English colonies resist so been a matter of regret to me that the English colonies resist so
pertinaciously the vacuum pan, \&c., and will make their molasses profit which they might to a great extent add to their own, and, in fact, make thus "payable" some of those estates almost abandoned as unremunerative. And I attribute as a partial reason for this
apathy-and as an Englishman it pains me to confess it-that whereas the French engineers, such as Cail, \&c., have done everything possible, and given every assistance to their colonists and to
Cuba to introduce their machinery and improvements, we and our
colonists have been content to make little or no advance, and kept
to the Tache, \&c., burning sugar and attributing all unsuccess to to the Tache, dec,, burning sugar and attributing all unsuccess to
the want of slave labour in our colonies and Customs restrictions at home.
I will now give some practical data, observing that in Spanish sugar houses the standard of weight for comparison, statistics, \&c.,
is the aroba (25 lb . weight), and market value of sugar, \&c., in reals (two and a-half pence English).
By the old system my friend had found that on an average of
years and of localities 100 arobas of cane gave twelve arobns of years and of localities 100 arobas of cane gave twelve arobas of
saccharine matter, and these when bleached by the wet clay system in the moulds gave 40 per cent. sugar of from No. 15 to No. 20 , and 60 per cent. treacle highly charged with saccharine matter, but "commercially" uncrystallisable by the "Tache "having burnt
it, and was sold at an average price of three times that produced it, and was sold at
by the new system
by the new system.
By the triple effect and vacuum pan, \&c., and charcoal filters, the centrifugal, reboiling and refiltering 10 , 60 per cent sugar of from No. 19 to No. 20,18 per cent. sugar of from No. 16 to No. $18,7 \frac{1}{2}$ per cent. sugar of from No. 12 to No. 15,11 per cent.
syrups, $3 \frac{1}{2}$ per cent. waste. syrups, 31 per cent. waste
Commercially the
Commercially, the advantage by the new system is thus :-
Old system : 12 arobas of sacharine matter give $4: 80$ arobas (40 per cent.) sugar No. 15 to No. 20 , at 45 reals, average 216 reals; $7 \cdot 20$ arobas (60 per cent.) treacle, at 20 reals, average 144 reals. Expenses : 100 arobas cane, 200 reals; manufacturing expenses,
\&c. 106 reals ; showing a profit of 54 reals-equal to 054 reals, or \&c., 106 reals; showing a profit of o4 reals
little above half a real per aroba of cane.
(60 per cent.) sugar, No. 19 to No. 20 , at matter give 47 reals, average $338 \cdot 40$ reals; $2 \cdot 16$ anobas (18 per cent.) sugar, No. 16 to No. 18 , at 43 reals,
average $92 \cdot 88$ reals ; 0.90 arobas ($7 \frac{1}{2}$ per cent.) sugar, No. 12 to No 15 at 38 reals, average $34 \cdot 20$ reals ; 1.32 arobas (11 per cent.)
syrup 7 reals, average 9.24 reals; 0.42 arobas ($3 \frac{1}{2}$ per cent.) loss. Expenses : 100 arobas canes, 200 reals; manufacturing expenses, or 13 reals per aroba of
By comparison we have 100 anobas of cane, new system, 137.72
reals ; 100 arobas of cane, old system, $5 厶$. reais ; difference in This of new system, 83.72 reals.
This great additional profit was necessarily inducement enough
even in land of high interest for loans (10 and 12 per cent.), con sequent on searcity of capital, to induce several old sugar maker except one who insists in spending his life and money in trying all their means for converting their Taches crystallisers) to use and charcoal filters, at least as few could at once reach so far as a of that country had not put a severe check to all improvements the conversion of old and erection of new works would have been considerable. I hope that the above data, founded on practical experience of work done, may be taken into some consideration by
our colonial planters, and give thereby fresh impulse to that branch of their industry, and not longer allow Cuba the lead it has, often, to their "slave labour" and "Customs restrictions at Sept. 13th, 1869.

CABLE-TOWING
Sis, - Your correspondent "M. E." asks some of your readers to
prove the correctness of one of either of the proofs given by him by demonstrating the errors of the opposing one. I cannot exactly
comply with his illogical request, but, with your permission, will comply with his illogical request to demonstrate the falsity of both proofs, and to supply done it, in his second proof, statically. Adopting the notation uscd by "M. E.," except that P is always clips the rope. It is to be observed, with regard to proof No. 1, that "M. E." simply begs the question by assuming that P is the
power exerted by the engine at the drum; the equation ought to be $l \mathrm{Q}=l \mathrm{P}=l \mathrm{M}+l p h$. .
the value of the element, $l \mathrm{M}$, is the bone of contention.
In proof No. 2 the equation
is not true; the ratio $\stackrel{d L: p L}{P}$ is constant, and therefore, if the equation were true, it would prove that the rope in tension hangs
in a straight line. Further on the equation is integrated as if L were variable.
If we suppose that the tow boat, instead of moving, is simply
held stationary by the tow rope in a steady held stationary by the tow rope in a steady current of given velo-
city, we shall have a statical problem, the solution of which will contribute something towards setting the question at rest. If we neglect the pressure of the current against the rope, which is, I immersion," the rope in teosion will hang in a catenary curve, and a well-known property of this curve gives the equation-
Where c is a length of the rope whose weight is equal to the tension at the lowest point; comparing equation (2) with equation or the force exerted by the engine on the drum is equal to the horizontal tension on the tow rope at the lowest point. This, the two parts of the rope are in motion, and we shall have to con sider both the relative weights and the relative motions of the two parts of the chain-a problem which I must leave to some mathematician more learned than myself, if to solve it be worth
his while.
Contractor's Engrnerr. his while.
September 8th, 1869.
Sib, - I am unable to HYGROMETERS,
Sis, -I am unable to inform you when the Mexican or South
American hygrometer, claimed by M. Bonville, and referred to in one of your recent impressions, was invented; but, several years ago, I perceived the notice of that instrument in the cheap publication called the fomily freald, in which the process of manufacture was fully described, ald so simply till Formy have constructed each, of course, according to his skin. For my part I have had tor of damp merely; but I have an instrument to denote thunder or the electric condition of the atmosphere, to which, as an invention, I think I can lay claim. If your numerous correspondents are unable to make out what my invention may be, perhaps they will describe what each one, in his capacity, may be able to sup I think I have an invention worthy of the attention of the patent law wranglers. I am a member or fellow of some scientific societies, and thus have the pleasure of setting your correspondent right with regard to the claius of M. Bonville with respect to th hygrometrical machine or instrument he has claimed.
Larchwood, near Amersham, Euckingham- J. S. EIFFE.
shire, 6th September, 1869 .
shire, 6th September, 1869.
A NEW Brasch of Industry has been successfully introduced into the Middlesborough district. It has been previously announced that Messrs. Hill and ward were erecting works at Newport for order for some little time, but the mill in question was not formally opened until last week The wire works are situated near to the iron works of Messrs. Fox, Head, and Co., and between the North Eastern Railway and the river. The firm intend to manufacture wire for telegraphic, fencing, rope-making, and other purposes.
The machinery has been supplied by Messrs. Claridge, North, and Co., Bilston, and is of the most approved description. It is pro po., Biston, and is of the most approved description.

PONCELET WATER WHEELAT EXWICK MILLS, NEAR EXETER. mr. e. w. buller, c.e., engineer.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.
PARIS.-MM. Xavier and Boyveav, Rue de la Banque.
BERLIN.- Messrs. A. Asher and Co., Il, Unter den Linden.
BERLIN.-Messrs. A. Asher and Co., Ho, Unter de
VIENNA. - Messs. GERoLD and Coi, Booksellers.
LEIPSIC.-ALPHONS DüRr, Bookseler. ST. PETERSBURG. - M B B When
MADRID.-D. Jose ALcover, Wdit, Bookseller.
PUBLISHER'S NOTIOE.
There is reason to believe that the weekly sale of THE ENGINEER is actualy more than double that of the remaining engineering journals
combined. 0 ti the intuential character, or QuNLTTY of its circula-
tion, advertisers themselves possess conclusive and satisfactar combined. advertisers themselves possess conclusive and satisfactory
evidence.

* With this number of The Evgineer we issue as a Supplement a Table for Proportioning the TNecth of Whe weels, preparared by the late late
Mr.R. Adcock, C.E. Each number, as issued by the Publisher, will contain the Supplement, and nubuscribers are re thequested to noblisher, will
the fact at our oftice should they not receive it.

TO OORRESPONDENTS.

* We cannot undertake to return dravings or manus
must therefore request our correspondents to keep copies.
 ing questions, nust ee accompanied by the name and address of
the writer, not necesarivil for publication, but as a proof of
good faith. No notice whatever will be taken of anonymous

 Half-yearly (including double number) Yearly (including too double numbers)

THE ENGINEER.

FRIDA Y, SEPTEMBER 17, 1869.

mr. macfie on patent right.

Mr. Macfie may, we have reason to think, be regarded as the most able debater in the ranks of the anti-patent favour of the general adoption of the faith which he has favour of the general adoption of the faith which he has
embraced, no one can. Mr. Macfie has every possible embrace, no one can. Mr. Mactie has every possibe
incentive to speak strongly and well on this subject. He has lost large sums of money on patents taken out by other
people, which did not succeed. He is a thoroughly earnest reformer. He has, as a public man, a duty to perform, and he is heartily convinced that this duty can only be fulfilled by the destruction of what he regards as the last
relic of monopolies. He is as honest as the sun. He does relic of monopolies. He is as honest as the sun. He does
not lack ingenuity; nor is he deficient in the power of expressing his opinions, either vive voce or on paper; and,
lastly, he enjoys that blind, child-like faith in the accuracy of his own views which is essential to the character of a good "arguer"-we use the word advisedly; nothing else will answer our purpose. Mr. Macfie is not and never can be a great debater, for the simple reason that he lacks
the power of mentally putting himself in his opponent's the power of mentally putting himself in his opponent's
place; but he is a great "arguer," and as such his opinions deserve some attention; in a word we wish our readers to
fully understand that Mr. Macfie is really-if he will pardon us for the familiarity - one of the great guns of the anti-patent party. We reprint in another place two highly characteristic communications from his pen. It is quite
possible that some people might fall into the error of possible that some people might fall into the error of
thinking that the fallacies, and weaknesses, andfrivolities, in these letters were due to the writer, not to the cause which he defends. On this point we beg to set everyone right. Mr. Macfie has done very fairly indeed. We cannot call
to mind the name of any individual whohas said more against patent law, or said it better, than Mr. Macfie. If the arguments he uses break down, the world may still rest content; it is the arguments, not the man, who are to blame. The anti-patent party may bear their champion off the field;
they may wrap their standard round him; their best and bravest may carry him on their shields with pride, tempered by sorrow, and accord him every honour ever paid to a
valiant man; it is the cause, not the individual, which is answerable for the defeat.
And now at the risk of wearying our readers, we propose to consider Mr. Macfie's letters at length, and, if pos-
sible to convince the waveress-we have no hope of consible to convince the waverers-we have no hope of con-
vincing Mr. Macfie-that the arguments contained in the letters in question are of no value whatever. Nothing,
indeed, but the respect which we entertain for Mr. Macfie as indeed, but the respect which we entertain for Mr. Mactie as a conscientious but self-deluding gentleman, would have
induced us to deal with the feeble things at all. They represent the best that the best man can do, and we are glad that such is the fact. Their refutation, the exposure are the production not of the small, jealous, snarlers at patent right, but of Mr. Macfie.
Mr. Macfie's somewhat eccentric communication to ourselves begins:
The writer characterises the anti-patent movement as advocating
robbery. It would be stigmatised as such deservedly if it aimed at deppiving patentees of the rights they have legally already
acquired. But that is by no means the case; it is directed only Our distinct charge is that Mr. Mas rights. Our distinct charge is that Mr. Macfie, in proposing to
refuse patent rights to inventors, proposes also to rob the refuse patent rights to inventors, proposes also to rob them of the money which they could obtain if, possessing patent
rights, they went into the open market and sold their rights, they went into the open market and sold their
invention to the highest bidder. Mr. Macfie is a respecter of the law, and we never supposed for a moment that he wished to introduce a retrospective reform (?) in patent law, any more than we conceived it possible he shoad contemplate picking pockets, or breaking open Compton House ; Mr.
Macfie, beyond a doubt, draws the line somewhere. We have defined very clearly what we meant by the word " robbery," and we repeat the assertion that the anti-patent right party, with Mr. Macfie at their head, contemplate what we, in common with the great mass of mankind, call
robbery. Mr. Macfie must prove that granting permission to what he calls the "State," to obtain for nothing what this same "State" would pay for rather than go without, is
not robbery. If Mr. Mactie imported a cargo of sugar from Jamaica into thi country, he would not be par ticularly pleased, we fancy, if every one who wanted sugar went and took as much as he wished in the name of the "State." He would not be slow to denounce this as rob-
bery; yet if an individual imports an invention from the realms of imagination, the "State," according to Mr. Macfie, should have a right to seize it at once. Will no one explain this, to us, great inconsistency ? Does the nature of an article modify the action of the law? Would it be less robbery to take a cargo consisting of Bessemer steel than one
of sugar, and if less, how much less? Does the port of deof sugar, and if less, how much less? Does the port of de-
parture affect the action of legislation? Would it be a sin to take sugar without paying for it which came from Jamaica, but a less sin to take it if it had come from Ostend, and if less, how much less? In what way does the introduction of a new machine or a new process into this
country, which did not exist in it before, differ from the country, which did not exist in it before, differ from the
introduction of a cargo of sugar or Bessemer steel ? Mr. Macfie will not find it easy to answer these questions. The task is difficult, so difficult that neither our correspondent nor any of his party have tried to grapple with it.
Indeed, Mr. Macfie, more far-seeing, or more honest, than his Indeed, Mr. Macfie, more far-seeing, or more honest, than his
fellows, has sought a way out of the difficulty, and instead fellows, has sought a way out of the difficulty, and instead of robbing the inventor completely, proposes that the
"State" shall give him a reward. Mr. Macfie, having imported a cargo of sugar, has it seized before his eyes and taken away for the good of the "State." The "State," over-
flowing with gratitude, gives Mr. Macfie a gold medal and promises to give him another medal for another cargo. Cannot our readers picture to themselves Mr. Macfie going for the second cargo ?
Mr. Macfie next quotes the passage: "The law, Thou shalt not steal, existed in the minds of men," \&c., and comments on it thus :-
It being not easy to prove a negative, I reply by a counter
demand, viz, that my adversary will prove the recognition in ancient law of any property other than in things material ; or, if he cannot do this, that he will adduce any historic reason for
believing that the conscience of mankind oo of rulers ever esponded among Greeks, Romats, Jows, or Egyptians, or does respond now in China or any country not sophisticated by European
civilisation of the principle of conceding pxelusive proprietorship
in inventions to any owner, whether first or not, and however in invent
legitimate
If Mr. Macfie had never written anything more sensible or shall we say less imbecile-than this, we should not
have noticed him at all. Mr. Dircks so ably refutes in a paper already published in our columns, the lurking argument subtly hidden in the query-such as itis-that we need scarcely notice it. The ancients did not recognise patent
law, because - in the modern sense-they had no invenlaw, because-in the modern sense-they had no inveninventions. Invention and patent law depend for existence required the "sophisticated civilisation of the nineteenth century" to recognise the right which Mr. Macfie disputes. Abolish this recognition, and we at once return to the condition of the ancient "Greeks, Romans, Jdvanced nor receded for centuries in the art of construction, is an admirable illustration of the advantages which follow on the non-recognition of right of property in ideas! Was Mr. Macfie in sober earnest when histicated by European civilisation ?" It must be his fun, and very funny it is. Mais revenons à nos moutons. Mr. Macfie goes

The writer says, "The opponents of patent law urge that invalue of their invention ; principally, it seems, on the ground that the rewards which some inventors receive are out of all proportion to the value of the invention. Let me explain. We deny that
there is any right to rewards, and we allege that the rewards now given are objectionable for, inter alia, the reason stated above. brings in or saves. If there were no patent, this benefit acerues to the inventor only so long as he alone knows the secret or uses it, and to anybody else who may in process of time do so.
The commercial value of a patented invention is greater than that of an unpatented invention, Grant that people who have used
Mr. Bessemerers or M. Golay's invention have paid no more than it
negotiators they may have paid a great deal more than was fair, and perhaps more than they could afford, because the State left hem no alternative, but compelied them to pay excessive royalties or suffer. is . The licencees were in the position of the
to whom is adressed the demand, "Your purse or your life.
No passage could be written which would show more conclusively how completely Mr. Macfie and his friends fail to comprehend the true nature of the question with which they have presumed to deal. It accually assumes hat the state compels a manufacturerfo pay pol invention than it is worth, Mr. Macfie completely losing
sight of the fact that no man is compelled to buy. If a sight of the fact that no man is compelled to buy. In
steel maker or a miller thinks that it will be to his advansteel maker or a miller thinks that it will be on histions he
tage to use Mr. Bessemer's or M. Golay's invent tage to use Mr. Bessemers or M. Golay's inventions he
will do so; but in estimating the advantage which will arise, neither the steel maker nor the miller will forget to nclude as a working expense the royalty which must be paid to the inventor. If a miller finds that he will make better flour for less money by paying for the use of Golay's dressing apparatus, than he can make whout it, then he will have it, not otherwise. Every invention which is worth anything, first pays a profit to the user, and this profit is divided between the user and the patentee. If the user thinks his share too smal he says so, and leaves the thing alone. If the patentee thinks his profit (royalty) too little, he refuses to hicense the invention-just on the same principle that a tenant will not give more or a
landlord take, less rent than a house is worth. The landiord take, less rent than a house is worth. The would have kept Mr. Macfie from committing the absurd lunder contained in the foregoing extract. The statement that licencees are ever in the position of the man to whom is addressed the demand, Your purse or your life," is absolutely untrue. If Mr. Bessemer's process with the royalty added was good for nothing, why on earth did any nanufacturer touch it? The truth is that Mr. Bessemer s patent was worked at a large pront. Steel was made more cheaply by its aid, including the royalty, than it could be aade in any other way, royalty or no royally. What of the footpad was there about Mr. Bessemer ? He did not He did say "if you ny process, whether you like it or not use "i you want to make cheap steel you must ise;" nd the same holds me part of the protits you will realise, essful inventor. No good of M. Golay, and of every suce can make a profit out of it, after he has paid the rovalty and this Mr. Macfie should understand perfectly well; and de doubtless does understand it, because in his letter to the Liverpool Courier he says: "Look at the Mersey Steel and Iron Company, shutting up the ste:l department of heir works till the Bessemer royalties cease to be due." No better illustration of the truth of our argument that an invention just brings what it is worth, and no more, could be afforded. The company referred to say that they cannot make Bessemer steel at a profit and pay Mr. Bessemer. They eason, consequently, that the invention is not worth to them hat Mr. Bessemer asks, and they decline to avail themseves of it. Cannot Mr. Machesee thatif all thesteel makers ound out the same thing, Mr. Bessemer's royalties would ot be and he would have to re-adjust them, whin howeve written with a sublime disregard of facts. The Mersey company closed their Bessemer works because, owing to mismanagement, they could not make them pay. The experience of Messrs. John Brown and Co., The Ebbw Vale Company, and many others is totally different. It would be most unfair to cut down Mr. Bessemer's reward to suit the results brought about by the incompetent management of any single concern; but this is one of the things Mr. Macfie will not

Denuded of the sophistries with which the subject has been surrounded, thearguments of the anti-patentright party stand thus :-"Inventors now get morefor their inventions than the inventions are worth. We propose to take from them the surplus." We reply that inventors, upon the whole, never get more for their inventions than the nation, as represented by those using the invention, considers them to
be vorth, and that to compel them to take less would be simply to rob the inventor in order that the manufacturer might augment his profits. This argument we consider to be irrefutable, and it has never been really touched by anti-patent right debaters. Until it is overset we must advocate the robbery of the individual by the "State," which "State" we more than suspect means in Mr. Macfie's vocabulary, the capitalists of Great Britain.

government aid to science.

Two or three years ago several thousands of pounds per annum were placed by the late Government at the
disposal of the Royal Society, to be expended in the establishment of meteorological observatories in different parts of the United Kingdom, in order to supply accurate
daily weather reports to the Board of Trade. This step daily weather reports to the Board of Trade. This step
was not without its moral influence upon the scientific was not without its moral influence upon the scientific
world, for at the British Association at Norwich last year it was suddenly discovered that the scientific world generally was very badly off, and most decidedly in want of money aid from the Government. Lieutenant-Colonel Strange read a paper at Norwich on the subject. He acknowledged that Government aid would be certain to give rise to "jobbing" and jealousies, but urged that the good done would outweigh the evil. The opposite side of the question was then taken up by Professor Huxley, who said, with much reason, that the present free and easy way of pushing on scientific research was the best for the nation and best for philosophers. Nothing would so chill and deaden the energies of the scientific world as the transformation of any large portion of it into a Norwich was department. The result of the conference at philosophers to inquire whether adequate means exist for the vigorous prosecution of scientific research ; and if not, what remedy should be provided.
So far everything went on swimmingly, but then a philosophers. A new Chancellor of the Exchequer the
into power，who has said＂No！＂many times and oft to demands made by individuals and corporations for aid from the national coffers．He not only refused a modest demand for cash made by a Scotch scientific society，but expressed doubts whether the grant made formeteorological made．The Government he stated，ought to do nothing which the people are likely to do for themselves if left which the people are hikely to do for themselves if left
free to act．With the prospect looming in the future of facing a gentleman of this description，the British Association Committee，of course，could not very well Association Committee，of course，could not very well for a Government grant，which everybody a year ago
thought would be the result of their deliberations．But they have unanimously decided that scientific bodies want more funds；and what corporation of human beings does more funds；and what corporation of human beings does
not？A direct onslaught on the national resources being not A direct onslaught on the national resources being
manifestly injudicious，they then recommended that application should be made for the appointment of a royal commission to inquire into the subject．Lieutenant－Colonel
Strange read this report of the committee a few days ago Strange read this report of the committee a few days ago
at the Exeter meeting of the British Association，and he prefaced it with a doleful introduction of his own，read with the countenance of a mute at a funeral．He
evidently was hoping against hope，and he reviewed the evidently was hoping against hope，and he reviewed the
bright visions of the past with a tone implying his belief bright
that

＂Those days are gone，Floranthe！＂

Many will doubtless think that a scientific journal is bound to support scientific men in all and every rush at the public purse．Apart from the selfishness of such a line of action，and its neglect of the general interests of
the nation，in this case it is no use doing so．Very recently the nation，in this case it is no use doing so．Very recently an application of a very influential character was made to the Chancellor of the Exchequer to appoint a royal commission to inquire into the working of the Bank Charter
Act of 1844 ．This Act is believed by the political economists to be the source of many commercial panics and of a vast amount of pauperism，while any banker can
bear witness that it has indirectly been cause of the ruin bear witness that it has indirectly been cause of the ruin
and bankruptcy of many honestly managed banks．Yet his application，of more importance than the one proposed to be made by the British Association，was refused on the ground of the expense of the commission，and because the action of the law upon the public is perfectly under－ stood already by those educated in the science of political economy．Of course，once let the proposed commission on
scientific needs be appointed，the result of the large amount of talk which would follow would not certainly be a recommendation of increased national expenditure． Instead of trying to obtain a few thousands of pounds annually in this way，with the certainty of failure，why do not the committee take steps to get a few tens of thousands ubject of national education must soon come to the surface， and if the British Association then urged the necessity for general teaching of elementary science in schools，and the desirability of making grants to encourage this branch of education，all the members of the British Association would the camp，mond very many hold the views of Professor Huxley．If science were generally taught in schools we should soon have a population willing to subscribe largely to push on scientific research without aid from the Govern－ ment．The Wesleyans have shown what enormous sums can be raised annually by private subscriptions，where particular line of action．Those numbers may or may not be one in twenty of the total population，but is it hopeless to attempt to train up a similarly large number of people to have an interest in science？If the British Association and its president of next year were to make a dead set at the Government，insisting that the teaching of science in legislation，they will fucceed to a large extent，for they would carry national opinion with them．The present plan will fail，and even the intention mentioned by the President of Section A，of getting up a
discussion upon it before the sittings of the British Association came to a close at Exeter，was abandoned．

South Kensington Museum．－Visitors during the week ending rom 10 a．mer， $1869:-$ On Monday，Tuesday，and Saturday，free galleries， 2348 ；on W．Whessday，Thursday，and Friday（admission 6d．），from 10 a．m．till 6 p．m．，Museum， 1606 ；Meyrick and other galleries， 148 ；total， 18,849 ；average of corresponding week in
fcrmer years， 12,064 ；total from the opening of the Museum， A BRIDGE across the Clyde forms the most important and difficult constructed upon the lattice girder principle，and notwithstanding its great strength it is light and graceful in appearance．From abutment to abutment the bridge is about 600 ft ．in length，a dis－ tance attained by seven spans，which are supported at their junction by octagonal piers．The piers rest upon iron tubes which the river，until solid rock is reached．
DANGerous Illness of the Master of THe Mint．－Weare con－ recovery of Professor Graham，F．R．S．，Master of the Mint，are entertained by the friends of that gentleman．Some ten days since Mr．Grafmenchant cold，and this induced an attack of complaint，but exhaustion at present constitutes the main element of danger．From inquiries made last evening at Mr．Graham＇s
residence，in Gordon－square，we ascertained that the patient was residence，in Gordon－square，we ascertained that the patient was
then considered to be rapidly sinking． AN agreement has been arranged between the Earl of Warwick and the Leamington Local Board for the latter to pump the town
sewage on to his lordship＇s estate for thirty years at £450 The rise is about 100 ft ．and the distance about two miles．It is estimated that the necessary works will cost the board $£ 12,000$ ， and that the annual expenses will be $£ 700$ ，so that a large sum of money will be sunk by the town in order to get rid of the sewage
dificulty，the Earl taking all responsibility as to injunctions．The dificulty，the Earl taking all responsibility as to injunctions．The
Warwick Local Board Sewage Farm pays its expenses，and that at Banbury will，in thirty years，have paid for its works and all ex－
penses，by a yearly loss of $£ 100$ ，in all probability，unless a farm can be made more productive．The A B C process of Mess
Sillar and Wigner is in operation at Leamington for this year．

ON THE DETERMINATION OF THE REAL AMOUNT OF EVAPORATION FROM THE SURFACE OF WATER．＊

By Mr．Rogers Field，B．A．and Mr．G．J．Symons． THE determination of the amount of evaporation from a water it is really by no means such is shown by the extremely discordant results arrived at hitherto by the highest authorities．To take two instances－Mr．Fletcher，M．P．，F．R．S．，of Tarn Bank，who is too well known as a careful observer to require that more than his name should be mentioned，and Mr．Proctor，of Barry，whom Mr． Buchan describes as one of the ablest observers of the Scottish generally in the ratio of three to one ；e．g．，in 1864，Tarn Bank， 44.23 in．；Barry， 11.09 in ．；and in 1865, ，Tarn Bank， 47.86 in ．；and Barry， $28 \cdot 65 \mathrm{in}$ ．The high values returned by Mr．Fletcher do not
result from any oversight，because a year or two since he concluded result from any oversight，because a year or two since he concluded
a note on evaporators in the following words ：－＂The mean evapo－ a note on evaporators in the following words ：－＂The mean evapo－
ration is 47in．，a quantity vastly in excess of the amount arrived ration Ms．Hin．，a quantity vastly in excess of the amount arrived
at by Mr．Howard（20in．）and Dr．Miller（30in．），but I believe it to be more correct than either．
Some difference might be expected in the results arrived at，in
consequence of the difference of locality；but such startling differ－ consequence of the difference of locality；but such startling differ－
ences can，we believe，only be explained by the very faulty nature ences can，we believe，only be expl
the evaporators in common use．
Professor Daniell，in his＂Meteorological Essays，＂refers to the ordinary evaporators in the following terms ：－ ＂The notion that these afford the absolute measure of the quantity of water raised into the air is absurd，for the instru－
ment can only give the amount of evaporation from the shallow body of water in the place where it has been fixed． The conditions which modify the process vary almost they vary in the sunshine and in the shade，they vary as the land is more or less clothed with vegetation，or as the water is more or
less deep．The evaporating gauge，so far from representing the less deep．The evaporating gauge，so far from representing the
circumstances of those bodies which yield the great body of vapour circumstances of those bodies which yield the great body of vapour
on the earth＇s surface，probably does not correspond in all essential particulars with a dozen puddles in the course of the year，and the pains which are often taken to make the results tally with those Similar condemnation has been passed by other authorities．
accurately the quantity of water abstracted，the process usually consisting in measuring the whole volume with a graduated glass；
and this is also probably one reason for the small capacity of many and this is also probably one reason for the small capacity of mat
of the evaporators，some holding only one inch deep of water． of the evaporators，some holding only one inch deep of water．
This difficulty has been entirely obviated in our experimen the use of a small instrument called a＂hook gauge，＂designed some time since by Mr．Field as a portable instrument for purposes of hydraulic observations．The principle is borrowed from an
elaborate fixed arrangement described in Francis＇s＂Lowell Hydraulic Experiments．＂All other known methods of observing the height of the surface of still water are interfered with by the effects of capillary attraction，whereas this instrument owes its
great precision to that phenomenon．If，the point of the hook is great precision to that phenomenon．If，the point of the hook is
ever so slightly raised above the water surface it raises a small cone of water with it，which is at once rendered visible by the cone of water with it，which is at once rendered visible by the
distortion of the reflection．If，on the other hand，the point is depressed below the water，it carries the water down with it，and forms a depression，which also causes distortion of the reflection．
It is，therefore，only necessary to adjust the hook so that there It is，therefore，only necessary to adjust the hook so that there
shall be no distortion，and the point will then be precisely level shall be no distortion，and the point will then be precisely level
with the surface of the water．A vernier on the slide enables the depth to be read to one－hundredth of an inch with undeviating and resting it on the top of the evaporator，the zero thereof can be placed in any convenient position，without the neeessity of
having a fixed point for the zero at the bottom of the vessel having a fixed point for the zero at the bottom of the vessel．
The arrangements we have adopted are shown on the
The arrangements we have adopted are shown on the diagram．
Fig． 1 represents，perhaps，one of the best forms of ordinary evaporators，many of those used even by the highest authorities
（such as Luke Howard）being much more objectionable．It will be seen that it consists of a copper vessel containing about a quart of water exposed to direct and reflected heat on every side，and
even on the bottom，so that if it were required to obtain the even on the bottom，so that if it were required to obtain the
maximum temperature to which that volume of water could be raised by the solar beams，the arrangements could hardly be im－

Fig． 2 represents an arrangement designed by Mr ．Symons sonic
months months since wherein the vessel，still of metal，is sunk almost
wholly into the ground，so as to obviate as far as possible artificial Fig． 3 is a modification of the plan adopted by Major Phillips St．Helena，and already referred to．In this the water to be
measured is contained in a glass cylinder，which is placed in the

Professor Daniell proposes，as a substitute，two methods of calculating the amount of evaporation from observations of his observer＇s estimate of the force of the wind．We do not under
ond stand why the evaporation from the moistened surface of the hygrometer bulb does not proceed，pari passu，with that from a
water surface；but，assuming it to be so，there is little probability water surface，but，assuming it to be so，there is little probability
that the force at the time of observation would be exactly the that the force at the time of observation would be exactly the
average of the day，or that it would be accurately estimated．Even average of the day，or that it would be accurately estimated．Even
Professor Daniel admits that the amount deduced by this method may exceed or fall short of the tabulated quantity to the extent of one－fourth．We venture，therefore，to consider this plan so in－
occurat as to be practically useless． accurate as to be practically useless．
In this interim note we
In this interim note we do not purpose discussing the variou methods hitherto proposed，but not one of which has been gene
rally adopted；even the best pattern of evaporato t ，to rally adopted；even the best pattern of evaporator，to which we
shall hereafter refer as the ordinary evaporator，is not used by one observer in twenty．
The great objection to nearly all evaporators hitherto used has
been their diminutive size，and the consequent fact that the pint been their diminutive size，and the consequent fact that the pint
or two of water they contain or two of water they contain has become unduly heated，and
therefore the recorded evaporation has been largely in excess o therefore the recorded evaporation has been largely in excess o
what it would have been had this artificial elevation of tempera ture not been produced．
The only published experiments with evaporators of large size， of which we are aware，are those made some years since at Dijon
and other places on the and other places on the Burgundy Canal，recorded in the＂Annakes des Ponts et Chauses．＂The evaporators used in these experiments
consisted of square masonry tanks about 8 ft ．on each side，and 1 ft ． 4in．deep．They were lined with zinc so as to be perfectly witer tight，and sunk in the ground．The amount of evaporation from
these tanks these tanks was found to be less than half what was generally
adopted by the best adopted by the best authorities as the evaporation in that district．
Experiments were also made during one year with Expeniments were also made during one year with an evaporator
1ft．square by the side of the large ones，and the evaporation in
then fft．square by the side of the large ones，and the evaporation in
this case was found to be some 50 per cent．greater in the smalle than in the larger tank．
Professor Haughton of Trinity College，Dublin，bas published
in the Proceedings of the Royal Irish Academy some in the Proceedings of the Royal Irish Academy some observation on evaporation at St．Helena，by Major Phillips and Lieutenant
Haughton，which，then Haughton，which，though on a smaller scale，have an important
bearing on the question．These experiments were made with different kinds of evaporators placed near each other，（1）A glas cylinder 9in．high，and $9 \cdot 85$ in．in diameter fully exposed，and（2） a similar glass cylinder placed in a large tub of water so as to have
the water inside the cylinder always surrounded by water nearly the water inside the cylinder always surrounded by water nearly
the same level．In these experiments，carried on for two years， the same level．In these experiments，carried on for two years，
the evaporation from the exposed cylinder was found to be nearly
50 50 per cent greater than that from the cylinder surrounded by water
In both the gave an excessive amount of evaporation were better and less liable to become unduly heated than those ordinarily in use，which may
therefore be reasonably assumed to give still more erroneous therefore
results．
There can be no question that the most accurate method of on large tanks，as at Dijon；but we cannot hope that apparatus of this kind will be used save in exceptional cases，and it therefore becomes important to devise some simple arrangement which should give approximately correct results．Our own experiments having only recently been commenced；we by no means consider
that we have overcome all the difficulties of the subject；but we desire to place upon record a few facts which we hope may act a incentives to further and more complete researches on this very important subject．
One fact，which partly explains the comparative neglect into
which this subject has fallen，is the difficulty of measuring
centre of a much larger vessel of water，the whole being buried in he earth up to the brim of the large vessel．
The following table gives the detailed results of our observations Evaporation during part of July and August，1869．（Camden－
squarc，London，111ft．above Sea Level．

	${ }_{\substack{\text { Evaporation in } \\ \text { hours stated．}}}^{\substack{\text { a }}}$			Evaporation in 24 hours．				Temperature of water．	
Date of Reading		$\begin{aligned} & \text { 㥐 } \\ & \text { 息 } \end{aligned}$	总		首				㟧
22， 2 p．m．	$\begin{array}{\|c\|} \hline \text { in. } \\ 24 \\ \hline \end{array}$	$\begin{gathered} 2 \mathrm{in}, \\ 16 \\ 108 \\ 0 \end{gathered}$	$\begin{gathered} \sin \\ \text { in } \\ 0.04 \end{gathered}$	$\begin{gathered} \operatorname{lin}_{10}^{10} \end{gathered}$	8	$\sin _{13}$	$\begin{aligned} & \mathrm{in}_{17} \end{aligned}$		（ $\begin{aligned} & \text { Deg } \\ & 78.0 \\ & 82.1\end{aligned}$
－${ }_{24,}^{23,9 \mathrm{am} . \mathrm{m} . \mathrm{m} .2} 1$		${ }^{17}$	${ }^{14}$	${ }^{.37}$		${ }^{18}$	$\stackrel{3}{30}$	9.4	
${ }_{25,}^{25,9 \mathrm{pm} . \mathrm{m} .12}$	${ }_{2}^{4}{ }_{-2}{ }^{32}$	${ }_{11}^{25}$	－${ }_{-14}$	：32	25	${ }^{20}$	18		
26， 9 a．m． 1	${ }^{12}$ ． 05	${ }^{08}$	${ }_{0}^{14}$	${ }^{25}$	$\cdot 17$	${ }^{17}$	22		
＂，26，6p．m．			${ }_{04}^{0.5}$						
${ }^{27,9 a m} 15$		．06	S	－29	20	17	17		
28，9．．m． 19	${ }_{19}{ }^{16}$	${ }^{05}$	${ }^{06}$	27	14	19	10		
	${ }_{4}^{4}{ }^{\text {P4 }}$	${ }_{.}^{12}$	－03	－09					
		${ }^{12}$	${ }^{12}$	24	$\cdot 15$	${ }^{14}$	15		
si，9am		${ }_{04}$	${ }^{03}$	16	10	09	16		
Aug． $1,9 \mathrm{am}$ ．	48 4 12 12	${ }^{12}$	${ }^{11}$	12	12	11	12		
2，9a．m． 1	15.07	${ }^{07}$	${ }^{\circ 8}$	24	－19	14	14		
＂，${ }^{2,98, \mathrm{~m} . \mathrm{m} .1}$		－1							
＂，4，9a．m．${ }^{\text {a }}$	${ }^{4}$－ 98	${ }^{\circ 6}$	${ }^{100}$	${ }^{68}$		－00			
＂，${ }^{\text {b，2p．m．}}$	${ }^{5}$ ． 07	${ }^{0} 9$							
＂，6，9amm．	${ }_{9}^{19} \cdot 10$	． 10	${ }^{12}$	${ }^{17}$	${ }^{15}$	14	21		
＂ 7 ，9a．m． 18		． 04		13	10	． 08	21		
8， 9 am .10	${ }_{16}^{8} \cdot 18$	${ }_{0}^{11}$	． 07	19			11		
${ }^{9} 9,9 \mathrm{am.m}$.	－${ }^{24}$	$+$	＋．01	－ 04		＋．01			
＂，11，${ }^{\text {a a．m．} 24}$	4.27	${ }^{21}$	${ }_{13}$	27		${ }^{13}$	${ }_{18} 18$		
＂12， 9 a．m． 24	24.15	10	－09	15	10	09	14		
崖tal ．．．．	437	3.13	$2 \cdot 46$	437	313	2.46	3．39		
to ．．．．				1.78	127	100	1：38		

It would be quite premature to draw definite conclusions from
the short period of observation hitherto elapsed，but we may point out a few remarkable results，
（1．）During the three weeks ending August 12th the total （1．）During the three weeks ending August 12 th the total Fig． 3,246 ． 4 in．，numbers which are to each other in the ratio of 1778 ，
1.27 and 1.00 ．
Fig． 1 therefore lost 78 per cent．more water by evaporation than Fig．
（2．）During the dayti
（2．）During the daytime the sunshine heats Figs． 1 and 2 to such 100 （3） 10 nater to Fig 3 from condensed vapour． （4．）It will be seen that the evaporation as computed from the hygrometer bears no regular relation to any of the others，being sometimes greater than any of them and sometimes less．
We have already pointed out that we coniter the an evapave already pointed out that we consider the accuracy of
that of large volumes of water, such as reservoirs, rivers, and ponds. Hitherto we have not been able to institute regular comvessels with that of the surface of large bodies of water. Surface temperature alone is concerned, because therefrom alone can evaporation take place. On the few instances when we have done
so we have found that the water in the water-surrounded glass so we have found that the water in the water-surrounded glass
cylinder (Phillips, Fig. 3) has been nearly identical with that of a rather shallow reservoir one acre in extent. We do not, however, consider our observations sufficiently numerous to prove this.
They, however, abundantly prove the faulty nature of all ordinary evaporators, for we find the average temperature at about $2 \mathrm{p} . \mathrm{m}$. to have been in Fig. $180{ }^{\circ} 7$ deg. ; Fig. 2, $75 \cdot 8$ deg. ; Fig. 3 , $73 \cdot 8$;
showing an average excess of 7 deg. in the temperature of Fig. at times the metal becomes so hot as to scorch the hand. Before leaving the subject of temperature we may
mention a singular and suggestive fact. The average excess of the mention a singular and suggestive fact. The average excess of the
temperature in the three vessels above 65 deg. is respectively $15^{\circ} 7 \mathrm{deg}$., $10^{\circ} 8$ deg., and $8 \cdot 8$ deg.; and these values are to one
another in the ratio of $1 \cdot 78,1 \cdot 23$, and $1^{\circ} 00$, or nearly identical with another in the ratio of $1 \cdot 78,1 \cdot 23$, and $1 \cdot 00$, or nearly identical with
the ratios of the amount of evaporation, viz. $1 \cdot 78,1 \cdot 27$, and $1 \cdot 00$. We commenced this paper by placing in juxtaposition the values assigned by two high authorities in our own country, of which one
was thrice the other. We can hardly more strongly advocate the was thrice the other. We can hardly more strongly advocate the
claims of this question to investigation than by quoting, in con claims of this question to investigation than by quoting, in con-
clusion, M. Valles, the French engineer, who first called to the great discrepancy between the observations on the canal of Burgundy and the data generally adopted in France by scientific men. M. Vallès says:- We do not understand how in a country
like ours, and with reference to one of the most important of hydraulic data, we can rest content with only knowing that the numerical value to be attributed to this datum, so essential for a large number of engineerin
which is double the other !

BIRMINGHAM PATENT FILE COMPANY (LIMITED).
(Concluded from page 158.)
(Concluded from page 158.)
We have now to record the end of the six days' auction at the
above works, the sale being brought to a close on Monday, August 16th. The important part of the machinery was sold on Wednesday and Thursday; the result, with accompanying notes,
will be found hereafter. It will be seen that the more useful machinery fetched a fair auction price; while some of the other,
such as the grinding machinery, erected at a cost of nearly $£ 3000$, such as sold for $£ 140$, was, we may say, almost given away. How it understand; but we suppose it is attributable to the fact that they expended far too much capital to start with, and were not able to pay a sufficient percentage upon it. Like a great many
other companies that have met the same fate, they launched out into an enormous expenditure before they had any idea of what
they were going to realise. In these cases we are afraid that too they were going to realise. In these cases we are afraid that too
often the directors, not being interested as much as a private proprietor would be, and also being easily led astray by the misrepre-
sentations of managers, do not bestow as much care on affairs as they should do. Managers and directors are mostly chosen from or by those who have the greatest number of shares, and these are genethey cannot take the interest in it that many a man would who perhaps has staked the whole of his capital and is far more com-左

Third Day's Sale, Wednesday, August 11th, 1869. Foreman's Office.
Lot
433. Four sets of stocks, forty-two taps, and nine pairs of dies for gas fitting, $£ 510$ s.
434 . A set of three st
from $\frac{1 \mathrm{in}}{}$. to 1 inin., twenty four taps and sairs wrenches, $£ 610 \mathrm{~s}$.
435 . Serew plate, eight taps, and three ratchet braces
435. Screw plate, eight taps, and three ratchet braces, $£ 1$.
. Eleven rimers and two drill braces, 18 s .
Thirty-four chasing tools, £1.
Small hand vice and ten leathe
A patent spring gas-pipe spanner, 11 s .
Two patent screw spanners, 16 s .
Two American sliding gauges, $£ 111 \mathrm{~s}$.
Three sliding ganges and straight edge, 16 s .
A 4 ft . spirit level, 13 s .
Drill brace, painter's knife, two awls, and gimlet, 6s. 6 d .
Lot of letter and punch stamps, 13 s .
Brace, saw, pair of callipers, and six saw blades, 18 s .
Cotterill's patent climax detecter lock and two cupboard
449. Glass gauge, 68 .
449. Glass gauge, 6 s .
450. Five sets of letter and figure punches, $£ 1$.
 11

Fixtures.
464. Two deal panelled cupboards and six drawers, 10 ft . 2 in . by 465. Deal drawing table, 10 ft . by 2 ft . 11 in ., on trestles, 6 s .
466. Shelf and racks for stocks and dies, 1s, 6 d .

Fitting Shop.

467. A vertical drilling machine, by J. S. Hulse, Manchester, with 12 in . bed plate and 10 in . face plate, on strong frame, with verhead motion ; consisting of cone pulley, fast and loose pulleys, fetched a fair price.,]
468. Steel tools for ditto, $16 \mathrm{lb}, 14$
469. One 7 in . back geared with $14 i n$. face plate, rest and T, and the overhead driving gear ;
consisting of small cone pulley, fast and loose pulleys, and disengaging gear, £12. [A fair price.]
470. Tools to lathe, $131 \mathrm{~b}, 6 \mathrm{~s}$.
471. A 12 in . slide and screw-cutting gap lathe, by Shepherd and Co., Leeds ; nineteen change wheels, compound sidenting same to 24 ft , one 7 in . chuck plates, one 24 in . chuck, two face plates, 40 in . and slin., a slide rest for cutting teeth of racks, and extra plate for
slide rest, 30in. by 20 in . ; also the overhead motion, consisting of five-speed cone pulley, two pairs of fast and loose pulleys, with
was engaging gear, hanging carriages, \&c., complete, £140. [This 472. Two carriages for lathe, 2 cwt .10 lb ., 10 s .
472. Steel turning and boring tools,
turning and boring tools, 20 lb ., $\{1$.
473. Two cramps, $7 \mathrm{~s}, 6 \mathrm{~d}$.
474. Five large drivers, 15 s .
475. Fourteen large spanners, 1 ewt., $£ 11 \mathrm{~s}$.
476. Twenty-six smaller ditto, 48 lb ., $£ 111 \mathrm{~s}$.
477. Nine key vrenches, 6s.
478. Thirteen hand hammers, 18 s .
479. Fifteen files, 38 .

Twelve packing plates for lathe, 2 cwt .2 qrs. 14 lb ., 10 s . 44. Smail emery.ectates, 10in. by 112 in in. 16 s .
on frame, sce., complete, $£ 110 \mathrm{~s}$.
486. A very powerful drilling and boring machine by Collie and Co., with powiversal action, sliding table 2 ft . 6in. by fft . 5 tim with double cone pulley, fast and loose pulleys, sc., complete also an under foundation table, 5ft. 4in., by 3 ft . lin., and a boring bar, steady and block, $£ 55$. [A fair price.]
487. Steel boring tools and
488. Three large bright steel boring bars, 23 ib . and 8 in . diameter, cot., 18 s . per cwt.
449. Eight small ditto, various sizes, 2 cwt ., 19 s . per cwt .
490.
490. Wrought iron oil cistern, 2 ft . 10 inn . by 2 ft ., with woo
49. A planed face plate, 30 in . by $25 \mathrm{in} ., 2$ ewt., 7 ,
492. Muris' patent double grinding stone, with din
492. Muris' patent double grinding stone, with driving pulleys
and cistern, on strong stand,
E4.
493. A Parnacott's patent emery-grinding wheel, 12 in . diameter 4in. on face, with screw spindle, iron carriages, cistern, brasses, \&c.
complete, $E 315 \mathrm{~s}$. ${ }^{\text {complete, }}$ 49 15 s .
Leeds, with six loose tubes, 1 , 14 . press, by Greenwood and Batley, Leeds, with six loose tubes, $\{14$.
495. A very powerful
planed bed, by Hulse, Manchester, with two sliding tables, 2 on square each, with screw vice, pair of cramps for slitting screw
heads, \&c., complete, with back overhead gear, withe, with back gearing cone pulley; also the disengaging gear, brackets, carringes, zce., complete, $£ 80$. [A fair isenganing gear,
auction price.
496.
497. A very powerfulto ditto, 76 lb ., 5 ss .6 d . machine, on very massive bed, calculated for turning and grooving rolls of any required form, together with change wheels, and a
great variety of valuable fittings connected therevith; great variety, of valuable fittings connected therewith; also the overhead gear, consisting of a pair of 30 in . fast and loose pulleys,
two small pulleys, spindles, hanging brackets, brasses, \&c.,
[Very cheap, almost new, and cost nearly £200.]
498. Thirty large planed, bored, and keyed cams to the above 499. Sixty-five per smaller ditto and five chucks, about 37 cwt., 2s. 9 d . per cwt.
500 . Steel tools, for turning chilled rolls, 1 ewt. 3 qrs. 7 lb .
$£ 217 \mathrm{~s}, 6 \mathrm{~d}$.
May. A very massive and powerful roll-turning lathe, by Walter
May and with 28 in. centre, slide rest, on 12 ft , May and Co., with 28 in . centre, slide rest, on 12 ft . planed bed,
sliding edge stocks, five-speed cone pulley, change wheels, chuck, cc., also the overhead motion; comprising, a five-speed cone pulley,
pair of 30 in . fast and loose pulleys, with spindle, carriacs, pair of 30 in . fast and loose pulleys, with spindle, carriages, brasses,
hanging brackets, \&c., complete, E65. [This was also cheap, being nearly new.] 502 . 7 in. back geared screw-cutting lathe, on 9 ft . bed, with compound slide rest, ten change wheels, one chuck, and 12 in . face plate ; also the overhead gear, comprising a four-speed con pulley, two sets of fast and loose pulleys, disengaging gear, \&o.,
complete ; also boards for change wheels and table, 210 .
[This was cheap, it being a very good lathe.]
500 S . Steel tools for lathe, 3 qrs. 10 lb ., $£ 1 \mathrm{~s}$.
504. Twelve spanners, 281 b ., $£ 1$. table, 7 ft . by 1 ft . 9 in ., on 9 ft . 6 in . bed, on strong supports, with
fast and loose pulleys, complete; also additiong fast and loose pulleys, complete; also additional apparatus fo
planing curved surfaces, cam, \&ce., £80. [A fair price.] laning curved surfaces, cam, \&e., £80. [A fair price.]
506. Twelve angle plates for planing machine, 3 cwt.
507. Eight packing blocks for ditto, 1 ewt. 1 qr.
507. Eight packing blocks for ditto, 1 ewt. 1 qr.
508 . Wrought iron cramps and washer plates for ditto, 1 cwt.
qrs. 7 lb ., 4s. 6 d .
qrs. $7 \mathrm{lb} ., 4 \mathrm{~s} .6 \mathrm{~d}$.
509 . Wrought iron ditto, 1 ewt., $4 \mathrm{~s}, 6 \mathrm{~d}$.
511. Cramps, bolts, and nuts, 1 cwt . $\mathrm{ps}, 2$ qrs., $\} 8$
511. Cramps, bolts, and nuts, 1 cwt.
512 . Steel planing tools, $1041 \mathrm{lb} ., 5 \frac{1}{2} \mathrm{~d}$, per lb.
513. Sundry steel chisels, gauges, and punche
513. Sundry steel chisels, gauges, and punches, 42 lb ditt, 3 d . per lb .
514. Ditto
515 . Der.
515. Twenty-seven mandrils, 7 cwt. 3 qrs., 5 s .
51.
5our round cast iron gavges, 1 cwt., 13 s .

Leeds, A valuable file cutting machine, by Greenwood and Batley,
costly experimental apparatus. [Passed.]
518.22 ft . of 3 in . bright turned shaftim
blocks and brasses, and one turned shafting, with three plummer one 5ft. 3in. turned pulley, 8in. on face, one $4 f \mathrm{t}$. ditto brackets, 10 in ,
face, one 15 in on face, $\mathbf{~} 9$. 519. 22 ftt . of 21 in . bright turned shafting, two plummer blocks and brasses, one hanging bracket, three 10 in . pulleys, 9 ijin . on face,
one 24 in. ditto, 8 in . on face, one 20 in . ditto, 7 in . on face, two 18 in . ditto, 12 in . on face, one 12 in . ditto, 9 in . on face, and 48 in . driving pulley, 56.
520.5 ft . of 1 i in. bright turned shafting, with two plummer
blocks and brasses, two hanging brackets, and three 16 in . pulleys, \&1.
521 . Pair of 8 in . single-flanged pulleys, with spindles, brackets, $\& \mathrm{c} .6 \mathrm{6}$. An excellent 12 -horse power horizontal high-pressure steam engine, with expanding valve, by Walter May and Co., with fly
wheel, driving pulley, \&c., complete, $£ 90$. [Cheap, it being nearly new.]
The rest of the lots up to 635 consisted principally of cast iron pulleys., turned, bored, and keyed, which averaged about 8s. 6d. per cwt., and fitters' vices, which averaged $2 d \downarrow$. per lb.

Fourth Day's Sale, Thursday, August 12 th, 1869.

File Forve Shop.

 plate, water bosh and tuyere. blast plate, \&c., by the Northmoor 637. Ditto ditto, £4.
639. The wrought iron ohimney to the above hearth, 11s.
640. A smiths' single hearth, by the Northmoor Foundry Co., with chimney, \&c., complete as before described, £4.
641. Ditto ditto, $\mathcal{L 4}$.
642. File forge, anvil, swage blook, tanging tool, and gauge, on
massive stone block, 10s.
643. Ditto
643. Ditto
644. Ditto
644.
645.
646.
647
648.
649
shop
649. Two
shop, 21 1s.
650. A very powerful stamping machine, by Walter May and
Co., on very massive bed and standards, with 6 ft . fly wheel, 6 i in . on face ; a 3ft. driving wheel and pinion, and pair of fast and loose
 cost ± 140.
651. Tools to ditto, 2 qrs., 6s.

Yorkshire, with ift. driving wheel and pinion. Berry and Sons, $\left.\begin{array}{l}\text { Yorkshire, with 4ft. driving wheel and pinion. } \\ 653.3 \mathrm{ft} .6 \mathrm{in} \text {. fly wheel and pair of 18in. fast and loose }\end{array}\right\} £ 17$ pulleys, 4 in . on face.
[Cost $£ 55$, but there was a flaw in the casting.]
654. 22 ft . of 3 in . wrought iron turned shafting, with two plummer blocks and brasses, two strong carriages, with pulley, 3 ft , diameter and 9 jin . on face.
6.55 .6 in , of $2 \operatorname{in}$. shaftig. invention is worth. But a far more important consideration remains behind, one generally by inventors' so-called friends left
out of sight, viz., the effect on British and Irish national interests, out of sight, viz, the effect on British and rish national interests.
What a patent brings in to its possessor and his licensees is one thing, what its effect on commerce and manufacture another and very different thing. To illustrate : I ask if the loss of orders to
ve the extent of 5100 tons of steel rails, mentioned in the last the extent of 5100 tons of steel rails, mentioned in the last Iron-
monger, is not attributable to these royalties. That periodical, formerly supplied the great part of the steel rails required for the orders likewise for 'considerable quantities to other companies.
R. A. MACFIE,"
655.6 in . of 21 in . shafting, with two plummer blocks and brasses, two carriages, wall plates, nuts and bolts,
and pair of 18 in . fast and loose pulleys, 4in. on face. 655 . 47 ft . of ditto, with four plummer blocks and one coupling, one 12 in . pulley, 8 in . on face, and one 15 in . ditto, 1 lin. on face.
657 . Smiths
657 . Smiths' hearth, with bonnet and chimney, blast pipe to 658. Strong anvil, 3 cwt. 25 lb ., $£ 22 \mathrm{~s}$.
659. Grindstone, with strong frame, and trough, 7 s .
660. Nine shovels, 1s. 6d. each.
661. Lot of buckets, \&c., 6s. 6 d .
662. Stone block, 1 s
663. A double annealing furnace, 10 it . by $4 \mathrm{ft} .6 \mathrm{in} .$, and 6 ft high, with strong cast iron plates, fire-doors and bars, tie rod 664 . One single annealing furnace, 6ft. by fft . 6 in ,, and 6 ft . 3 in high, with cast-iron plates and buckstaves, tie rods, fire-door and grates, fire-brick lining, brick casing, and chimney, $£ 5$.
664. Lot of boiler and furnace tools, 1 cwt, 5 s .6 d .
667. A pair of 1 ft . 9 in . rolls, $7 \frac{7}{2} \mathrm{in}$. diameter, for rolling 18 in files, with their massive frames, coupling box, pinions, table, \&c.,
as fixed on cast iron sills ; also a pair of driving wheels, 10 ft . and as fixed on cast iron sills ; also a pair of driving wheels, 10 ft . and
3 ft . diameter, 8 in . on face, and 3 हin. pitch on 7 in . shaft, two massive 3 ft . diameter, 8 in . on face, and 3 jin . pitch on 7 in . shaft, two massive
carriages, plummer blocks and brasses, $£ 35$. [Very cheap, almost given away it being nearly new
668. Two turned driving pulleys, one 1 ft .6 in . diam., and 12 in . on face, and one 4 ft . 10 in . ditto, 10 in . on face, $£ 1$.
669 . Two pairs of 20 in . rolls and frames, as before described, fo 669. Two pairs of 20 in . rolls and frames, as before described, for
rolling 15 in , and 16 in . files, with pinions, driving wheels, and couplings ; also the pair of main driving wheels, 7 ft . and 6 ft . diam. C42. [V face, 3 in. phen.]
670 . Two pairs of 20 in . rolls and frames, as before described, for straightening and rolling 9 in . and 10 in . files, with their tables, pinions, driving wheels, and coupling; also pair of driving wheels,
7 ft . and 6 ft . diameter, 8 in on face, and 3in. pitch, $£ 38$.
[Very cheap.] 671. Pair of 20 in . breaking down rolls, with their frames, pinions, and coupling, as before described; also pair of driving wheels, 7 ft .
and 6 ft . diameter, Sin. on face, 3 in . pitch, $£ 27$. [Very cheap.] 671^{*}. The whole of the $5 \frac{1}{2} \mathrm{in}$, shafting driving the roll machinery
c 60 . $6 \overline{2} 2$. A very powerful and costly tanging, shearing, and straighten with apparatus complete, worked by an eccentric shaft ; also the
5 in. main driving shaft, 5 in. diameter, 7 ft . 6 in . long, £16 [Oheap.] $\left.\begin{array}{l}\text { 673. Ditto ditto ditto } \\ \text { 674. Ditto ditto ditto } \\ \text { 675. Ditto ditto ditto }\end{array}\right\} £ 16$ each. [Cheap.]
676. The 5in. main shaft driving the above blocks ma 13 ft . 8 m . long, with holding-down pins, \&c., and 5 ft . wheel, 6in. on face. Three driving wheels, two 4 ft . Gin. dia
677 . meter, 6
$3 i n . ~ d i t t o$, 678. Pair of mitre wheels, 4 ft .2 in . diameter, 5in. on face, and 2in. pitch.
679. Pair of
680. Pair of ditto, one $3 \mathrm{ft} .6 \mathrm{in} ., 6 \mathrm{in}$. on face,
and 2 j in . pitch, and one 2 ft . 6 in . ditto, 6 in . and 21 in . pitch, and one 2 ft . 6 in . ditto, 6 in . on
681. A 5 5in. driving shaft, 14ft. long, with
two plummer blocks and two plummer blocks and brasses,
holding-down pins, and couplings.
About 50 tons of rolls to the above were sold for $6 s$. per owt.
Nothing else of importance was sold this day with the Nothing eise of importance was sold this day with the exception of
the following. 761. A valuable grinding apparatus, consisting of an emery and iron bonnet, brasses, pair of 4ft. fast, and loose pulleys 8 in on frer and dis engaging gear ; one 21 in . pulley, 53 in . on face ; one 24 in . flanged pulley, with brake and screw arrangement at end ; the whole on grinding the cast iron sills, with holding-down pins, \&ce., also the blocks, brasses, \&c., as fixed, £42. [This machinery, as before
stated, cost nearly intended, and, although new, was bought to break up.
chiefly office fixtures, \&c, and fetched a fair auction price.] were chielly oitice fixtures, sc., and fetched a fair auction price.]
765 . Ditto ditto ditto, $£ 45$. [On the last day of sale. Monday, were sold about 5000 dozens of files, which went rather cheap.]
Application of Leichtenberg's Experininnt to tag MineraLOGICAL ANALYSIS oF Rooks.-M. S. Meunier proposes to make
use of the well-known experiment of Leichtenberg's electric figures to separate from each other the divers mineralogical constituents
of some kinds of rock. We briefly remind our readers that the to separate from each other the divers mineralogical constituents
of some kinds of rock. We briefly remind our readers that the experiment alluded to consists in charging with electricity a cake
of resin or sealing wax, by means of a previously-charged Leyden
jar ; it is thus possible to charge certain portions of the cake with experiment alluded to consists in charging with electricity a cake
of resin or sealing wax, by means of a previously-charged Leyden
jar ; it is thus possible to charge certain portions of the cake with positive, others with negative electricity. In order to exhibit this positive, others with negative electricity. In order to exhibit this to the cake of the resin, a mixture of very finely powdered red lead
and sulphur; the friction, on leaving the nozzle, causes the to the cake of the resin, a mixture of very finely powdered red lead
and sulphur; the friction, on leaving the nozzle, causes the powders to become electrified, and the sulphur being negatively
electric is attracted by the curved figures positively electric on the cake, while the red lead follows the opposite course. M. Meunier has tried thus to separate sulphur bearing trachite into its mineral constituents, and succeeded perfectly in getting the sulphide and constituents, and succeeded perfectly in getting the sulphide and ceeded Patent Laws.-The following letter has been addressed to
The THE Patent Laws.-The following letter has been addressed to
the Editor of the Liverpool Daily Courier:- "Sir, - You have transto me by the editor of THe Engineer in his last number.- 'Does to me by the editor of The Engineer in his last number.- 'Does
Mr. Macfie,' he asks, after telling the reader that Mr. Bessemer enjoyed enormous royalties for a series of years, 'scriously believe
that the steel-masters of great Britain paid Mr. Bessemer a single farthing more for his invention than it was worth? My readiest reply is, Look at the Mersey steel and Iron Company's (Limited)
procedure in shutting up the steel department of their wor zs (with procedure in shutting up the steel department of their worss (with
published approval of trade periodicals), until these royalties cease to be due.' Surely this is evidence that the royalties exacted are, in this company's experience or belief, higher than the use of the
$£ 21$
£11. [Cheap.]
\qquad
N
\qquad
\qquad
\qquad
 farthing more for his invention than it was worth?' My readiest -I am, sir, your faithful servant,
"Ashfield Hall, 9th September, 1869."

THE IRON AND STEEL INSTITUTE.
The Iron and Steel Institute will hold a meeting on September 22nd and $23 \mathrm{rd}, 1869$ at Middlesborough. The proceedings will prove exceedingly interesting, to judge from the following programme of arrangements,
by the secretary, Mr. J. Jones.
The Royal Exchange (near the railway station) will be made available for members from Tuesday to Friday, as a general reception-room, post-office, telegraph office, \&c. In the same hall arrangements have been made for the exhibition of models, specimens, diagrams, and other objects of interest to the iron
and steel trades. The quarterly meeting of the North of England and steel trades. The quarterly meeting of the North of England
iron and allied trades has been fixed for Tuesday, 2list September, iron and allied trades has been fixed for Tuessay, 21st September,
to suit the convenience of gentlemen attending the Institute
meting It will be held in one oclock on that day. As regards lodgings, accommodation for visitors can be obtained at Saltburn-by-the-Sea, at Redcar, alaso by
the sea, or at the hotels in Middlesborough. Members can secure lodgings through the secretary, previous to the time of meeting,
and are requested to make early application. A list will also be and are requested to make early application. A list will also be
kept in the reception-room, and may be there consulted. kep in the reception-room, and may be there consulted. On
Wednesday morning a general meeting will be held in the Odd
Fello Fellows' Hall, near the railway station, commencing at ten o'clock,
and lasting about two hours and a-half. The election of members will first take place, after which several of the papers mentioned below will be read and discussed. On Thursday morning a general
meeting will be held, at the same time and place, for the reading
and and
an be taken during the time allotted for the meeting. Each
for member can obtain two visitors' tickets on application to the secre-
tary. These will admit to the meetings and excursions. The tary. These will admit to the meetings and excursions. The
various railway companies have declined to grant any special arrangements. , Members from a distance are therefore advised to
obtain tourists' tickets to Sultburn, which will be avilable for obtain tourists tickets to Saltburn, which will be availabo for a
month from the day of issue. It is proposed to read the following $\stackrel{\text { papers : - }}{\mathrm{On}} \mathrm{O}$ the Development of Heat and its Appropriation in Blast Furnaces of Different Dimensions," by Mr. Ssaac Lowthian Bell, "Oonstle, Vice-President.
"On Siemens' Regenerative Furnace, and its application to Re-
heating Furnaces connected with Rolling Mills," by Mr. Josiah "On the Mrowfacture of Rails," by Mr. Edward Williams, Middlesborough, Member of Counceil.
"On Iron as a Material for
On Iron as a Material for Shipbuilding, and its consequent
nfluence on the Armament and Commerce of Nations," by Mr. C. M. Palmer, Newcastle.

Ir. R. Howson, Middlesboroug Mr. Rescription, of a Hesot-blast Fire-brick Stove," by Mr. T.
Whitwell Stockton. Whitwell, Stockton.
"On the Production and Application of Combustible Gases under Pressure," by Mr. G. H. Benson, Staleybridge.
"On a New Process of Refining Iron," by Mr. J. Palmer Budd, Ystalyfera.
After the murning sitting on Wednesday, the remainder of the
day will be available for visiting the iron and other works in the neighbourhood of Middlesbrough and Stockton. The following is
list of the works that will be open to visitors on presenting their lasts of the works tha.
cards of membership.
Hopkins, Gilkesh: Tees Side Iron and Tees Engine Works mills, engine and bridge bompandiny, Limited), blast furnaces, rolling Ironworks (Bolckow, Vaughan, and Company, Limited), blast
furnaces, rolling mills, foundries : Cleveland Boit and Nund Cleveland Bolt and Nut Compans) Cleveland Boit and Nut Works Cleveland Boit and Nut Company); Cleveland Ship Yard (Back-
house and Dixon, iron shipbuilding; Tees Ironworks (Gilkes,
Wilson, Pease, and Company), blast furnaces ; Ormesby Found Cochrane, Grove, and Company), foundries and engine works ; Ormesby Ironworks (Cochrane and Company), blast furnaces ; Normanby Ironworks (Jones, Dunning, and Company), blast fur-
naces ; Cargo Fleet ((wan , Coates, and Company), blast furnaces ; Ackharpe Ironwworks (Stevenson, Jacques, and and Company), blast
furnaces; Newport fornaces; Nowport I Ironworks (B. Samuelson and Company), blast
furnaces; Clarence Ironworks (Bell Brothers), blast furnaces. -Cross river by ferry. (Stockton Rail Mill Company), rolling mills; Malleable Ironworks (Stockton Malleable Iron Company),
olling mills ; Thornaby Ironworks (W Whitwell and Comper blast furnaces and rolling mills; Teeesdale Ironworks (Head, Wrightson, and Company), engine works and foundries, North
Yorkshire Ironworks (North Yorkshire Iron Company), rolling
mills, After the conclusion of the general meeting on Thursday it is proposed to visit the mines and ironworks at Eston and the neigh-
bourhood.
The following will be available, but detailed programmes will be issued at the time of meeting, and will be found
Eston : Southom.
Eston: Southbank Ironworks (Southbank Iron Company),
blast furnaces ; Olay Lane Ironworks (Clay Lan blast furnaces; Clay Lane Ironworks (Clay Lane Iron Company),
bast furnaces; CCeveland Ironworks (Bolekow, Vaughan, and Company), blast furnaces ; Eston Mines (Bolckow, Vaughan, and Company, by private rail way from Eston Junction; Norranhy
Mines (Bell Brothers), by railway from Cargo Fleet; Upleatham Mines (J. and J. W. Pease), by rail to Marske
Ate sir oclock on Thurrsday, 23rd inst., the North of England
Iron Trade will entertain the members at dinner, at the Zetland
Hotel, Saltburn (morning dress) train will be provided to convey visitors back to Middlesborough, Stackson, sco. Tickets will be addressed ouc all members who have
intimated their intention of being present other members are intimated their intention of being present; other membersa are
requested to apply to the secretary. A limited number of tickets requested to apply to the secretary. A limited number of tickets
will be sold to non-members, price 21 s. Early application should be made to the secretary.

Friday the works at Darlington, Consett, Ferry Hill, Hartlepool, Grosmont, \&c., will be available for the members to visit.
The following is a list:-Darlington Ironworks (Darlington Iron Wompany), rolling mills ; Shildon Works, Darlington (Shildon Darlington (Pease, Hutchinson and Company), rolling mills ; Rise mills ; Darlington Forge (Darlington Forge Company) ; Grosmont Ironworks, Whitby (C., and T. Bagnall), blast furnanaces'; Glaisdante
Ironworks (Glaisdale Iron Company), blast furnaces; Consett Ironworks
Ironworks (Claissale Iron Company), blast furnaces; Consett
rill mills; Ferry Hill Ironworks (Rosedale and Ferry Hill Iron Company, , blast furnaces; West Hartlepool Ironworks (and Sons), rolling mills, engine works, and foundries.
Members wishing to visit any of the abouve works on Friday,
vill have to give in their names in the reception-room on Thursday.

The ST. Leger, 1869.-Time as taken by "Benson's Chrono-

 graph :-Start, 3 h .49 min . 30 sec.; arrival, 3 h . 52 min . $51 \frac{11}{2 s e c}$. respondent.)-This company provides its shareholders with a
dividend for the year ending May 31, , 1868 , at the rate of 10 per cent. per annum. The total length of the lines owned and leased
by the company is 1156 miles. The length of the different divisions is as follows :- Wisconsin division, 314t miles ; Gallena
division, 261 miles; division, 261 miles; Iowa division, 354 miles; Madison division,
67 t. niles; Peninsula division, 73 , miles; Milwankee division, 85
miles.

THE PATENT JOURNAL.

 Condensed from the Journal of the Commissioners of Patents.Grants and Dates of Provisional Protection for Six Months 2240. Henky Pinkus, Camden-road, Camden Town, London, "Improve 2240. HENRY PINKKS, Camden-road, Camden Town, London, "Improve
ments in funceenn other heating apparatus, and in tho methods of
applying and using therewith certain elements of combustion, and in

 lead." 445 . Henki Adrien Bonseville, Sackvillestreet, Piccadilly, London, "Improvements in the process, of charging gind discharging fuel ind ing ,
retorts or other gas distilling apparatus." $-A$ comminication from

 "improvements in spinning flax, hempro fute, and tow, and in ma

 provements in penholders." -A communication from Louis Dezarnaud,
Paris.-17th A pugut, 186.9 .

 24ichines.
2478. At

 Fiolds, London, Certain improvements in the manuracturo of
luminous hand heating gas from hydrocarboncouss fluids, , and in the
methods of using and applying such gas for illuminating and heating

in the construction of fancy, circular boxer.

 23. IsRALL EDWWRD Woolv, New Bond, -street, London, "Improvements
in casters for furniture

1869.
182. Ronre Marvand, Whittlesford, Cambriageshire, "An improve-
ment in portabile chaff-cutting machines"
 Antrim, Ireland," Improvements in cops for wefting and wapping pur-
poses,
same.,
and in mathinery for making and in shutles for contaning the

 improved mode of and machinery for, obtaining ampanire, applyng, motive
power, more especilly designed for the transmission of the same to
pong distances
 France, "A novel process of manufacturing yeast or artifcial
forment."
f32. Whima Brows, St. Mary-street Portamouth 253. Wimunx Brows, St. Mary-strect, Portamouth, Southampton, "Im-
provement int ithe mode of somstructing and disposing ghips cabins to
provent seassickness, the said improvements being also applicable to
 London, "Improvements in the means and apparatus, for separating or
dividing the eanded flecee into slivers in carding machines for all kinds
of fluments"

 provements in treating cast iron for the production of wrought ifon
and steel therefrom, and in upparatus employed for that purpoun,
 ture of iron and steel, and in furnaces and converting crucibles used in
connection therewwith
 travelled by vehicles."
252. Fansus
Josprise, Cockspur-street, Westminster, " Im-
 appliances for rendering the same useful for fumingating, roffrgerating,
sffting, winnowing, churning, cutting, and other purposes where such
 Bernard, Paris.
Sovr, Serle-street, Lincoln's-dnn, London, " Improve-
menta ments in machinery of apparatus for hulling, cleansing, and polishbing
or preparing coffee rice and other
 25ach. Jneets, TEECREENNE, Rue Pregon House, Small Heath, near Birming.
him, "Improvements in or additions to springs for mattresses, sofas,

tallow, and other fatty and oleaginous matter."- Λ communication
from Charies James Everett, Highwood Park, Now Jersey, U.S. 2549. SAXUEL CUNLIFEE Lister Bradford, Yorkshire, "Improvements in
1ooms for weaving pile and other fabrics, and in yarns for pile fabrics,
 "Improvements in railway water cranes,"
2551. JoHN RITchit, Stonefeeld streot, Barn
2551. Johiv Rirchir, stonefield dstreot, Barnsbury, London, "Improve.
ments in the construction of tents and sunshades or weather protectors

 2554. Jancs Butterworth and Joseph Ainsworth, Bury, Lancashire,

 the machinery or apparatus employed therein."
 Improvements in salaty y apparatus for steam boilers, in in apparatus to
provide for and regulate the admesision of ant to to seom boiler and other
furnaces, and in apparatus to provide for the escape of water from steam pipes," CArdwzil Robissow, Avenham.terrace, Preston, Lanca
 2562. Robert Prisstuky, London-wall, London, "Improvements in
 toy watches, personal ormaments, , purses, pocket-books, walking-sticks,
and certain other portable articles." 2504. Robrer J Jeky. Westrev, Camden-road, Camden Town, Loudon,
"mproved mmethods of constructing, converting, and using billiard
and other tables." and other taberticl, Strand, London, "An improved method of trent.

 applicablo e ot lifts lor warehousus, hotels, and for other places."- soth
Aupust, 1869 . 2572. Fredrriok Wuluay Portrr. Barbican, London, "A new or im-
proved construetion of wire-work, applicable for sioves, screens, and

 ments in the construuthon of the running wheeis of carriages and
other vehicles mounted on wheels, and wheels and riggers used in machinery"" .

 2599. HRERY BRRDogwatre, Watford, Herfordshire, "Improvements in
railway chairs, and in the means of securing bridge and flanged rails to their slepers., ${ }^{2601}$ ILEXXNDR 000 , Kynaston-street, Oakley-street, Lambeth, Surroy,

Invention Protected for Six Months on the Deposit of Complete Specifcation.

 2597. THoxas SLarte, Euston-road, st. Pancras, London, "Improvements in the construction of olectro-magnetic machines as motora, and
 September, 1860 .
Patents on which the Stamp Duty of $\mathcal{2} 50$ has been Paid

Patents on which the Stamp Duty of $\mathbf{8 1 0 0}$ has been Paild

 2509. Thom, Mounskux, John Dalton-street, Manchester, "Pianofortactlons."-11th Seppember, 1862 .
 "Printing typos." 24 .th September, 1862, "Waper or linen spool tubes.

Notices of Intention to Proceed with Patents. ments in hand pumps or syry inges, and to to otherer, Lumps ponu "Improve
 8pinning frames," "1st May, 1869
and means for delilivering sheetata of paper to the feding apparatus of a

2250. Tinorry WivTER, Wiveliscombe, Somernotahire, "Improvements in
machinery for combing reedd."-26id
 1869. JAMEs LEwTs, Fenwick-street, Liverpool, "Improvementa in ex-
2425.
tracting copper from its ores,
 Auquit, 1869 .
243. Join Git

LLLEsMore Dale and Edwand Mungr, Warrington, Lanca-;
improved method of producing whito pigments from lead."

 2507. Thosas Writerrian, Holbeck, Leeds, Yorkshire, "An improved
shacklo, and roller end for hardening machines for felting."
Aupust, 1869 .
 1869.
2537. WiLLus Roser
provements in me, Southampton-buildings, London, " Im -
 2544. BRIGTow HOST

 All porsons having an interest in opening any ono of such applications
should teoveo particulars in writing of their objections to such application should leavo particulars in writing of their objections to such applicatiton
at the oftico of the Commissioners of Patents, within fourteen days of its
datto.
List of Speciflcations published during the Week ending
11th
September, 1889 .

 -

ABSTRAOTS OF SPECIFIOATIONS

 Class 1.-PRIME MOVERS. 481. J. B. and R. Wood, Sowerby 1 Bridge "Stent ang, de. This ruary, 1 In . the . application of a separate small steam cylinder and
piston with ordinary silde valve; the piston rod thereof is connected with another rod in communication with and giving motion to to the spindide of
the cut--f valv.. The valve rod is provided with two collars or shoulders
betw between which are two cams mounted upon a hollow spindle, within
whhch works alidign roo conneneceded to the governor by a bell- crank lever
and connecting rod
 tivoly, so that when the siling rod is moved in either direction in tho
hollow spindlo the projecting studs or pins' will move the cams thereno
 varying, action of the governor causing the steanm to bo cut oft oonere or
later and the action of the governor being quick the cut off is quickly
offected.
490. H. ALsed, Surrey, "Rotary blowing fans"-Dated 18 hh February,

 the body of tho piston, which valvos are poned and closed by the work-
ing pressuro (of whatever kind, whother of nair, team, water, or gas, or
of other fluds or liguldel

 513. J. Loxpre, Find "ury, "Steam peneratore"-Dated 19th Fobruary, 1860 .
The invontor leads the steam pipor tube through the main body of tho
witor in the steam generator or boiler. 516. J. DNvEv, Wibbech, "Motive pover enginea."-Dated 19th Fetruary,
189.
 519. H. T. and T. JEsvixas, S ,
 allowed to escapo from the ends of the cylinder by means of a slide valve
workod by an ocoentric sas herotofore, the inventor also forms another
opening at each end of the cylinder, which opening or passago is only

 not only will the ordinary oxhaust pasango be open to allow stenm to
escapo from that end of the cylinder, but in addition thero will be a second

325. J. D. GAvuDII and T. A. M.
Dated 20th February, 1869 .

It is proposed to use high prossuro stoam in cylinders of comparatively
small size, and working at at aomparatively quick rate with valve gear
which can be varied or adjusted by means of a governor wo as to keep the which can bo variod or adjustod by means of a governor wo as to keop tho
ongrino at an nearry uniform rate, uotwithstanding considerablo variations
in the lond. - Not proceded woith. 537. R Fostra, Buston, Northampton, "Boilers."-Dated 20th February,
186. Upon brickwork is a number of fro-bars, and upon this brickwork are
necured a number of metal bearers upon which stand three separate

a reservoir for the cosl. This reservoir is filled from the tender through
atube The reservir is closed at the top by a conical cover to provent
to toin a tube. The reservoir is closed at the top by a conical cover to provent
the failing in of the ashes from the grate-bars; the ashes fall upon the
cover, and from the 551 . W. \mathbf{E} from the cover pass to the ast-pit.

This consists, Frrst, in constructing the hole through the aldidu Or the shank to pass through sufficiently large to admint of the jaw jeing
readily disengaged from the screw

 operator and as circumstances require- - Not proceded with.
557. T. T. GazR and J. HyMes, Brith, Kent, "Grate-bara."-Dated 23 rd The invery, 1889.
 558. A. Jossov, Darlington, "Cole ovecn" "-Dated 23 rd Prbruary, 1869 .
The coke ovens are built on pillars of firo-brick or stone in suck a manner as to allow of space beneath them for the application of an improved
zyantem of unloading or discharging them, and no door is formed in front of the oven. The bottom, instend of being constructed in the ordinary
manner, is formed either wholly or principally of a movable bottom or
 being ono piece of plate, secured to the surrounding angleo iron in sumat
manner as to bind tho whole securely togother, and to exclude the air far as practicable. On the plate iron aro supported fire-clay quarries, of
suitable thickness, bedded in tround fre-clay to protect the iron from the action of the fire, and to maintain the lower part of the coke oven as hot
as possible. To still further provent the radiation of heat a stratum of any non-conducting substanco may, be interposed
quarries and the bottom iron plate. 560. J. Jousson and W. G
Dated 23 23d F Fobruary, 1
 within the cylinder, at the top of which the inlet and exhaust pipes aro

 steam inducing a powerful current which draws the air and water from
tho otoona y ylinder and procucces the desired vacuum theroin. - Not pro-
ceded woith

Class 2.-TRANSPORT.
Including Railuays and Plant, Road-Making, Steam Vessels, Ma chinery and Fittings, Sailing Vessels, Boats, Carriages, Carts,
Harness, dc. Harness,
486. F. H. Col
It ition, well known that railr rad ruils have sometimes been made
double or reversible, so that in the ovent of the upper or bearing surfaces double or reversible, so that in the ovent of the uper or bearing surfaces
of tho rail beocoung worn and unsafo the rath could bo turred over and a
new bearing surface
 of rail, which, while avoiding all the obvious
T rail, yot posessesses all its vilunble properties.
408. R. Pver Well
 Upon the bottom end of the carringe door is affixed a stirrup or sus-
pender, turning freely with the door. Attached to this is a step of wood or

This consists in producing a series of flat independent bearing surfaces,
each attuched at its centre to the periphery of the traction wheel. These fict bearing surfaces are provided pith checeks embrracing the rim of the
wheel in the manner of a skid brake, and form horizontal surfaces bearing

522. M. MacLeswan, Liverpool, "Permanent way."-Dated 19th February,

This consists, First, in making the joint sloopers on which the ruils are
fixed of iron secured at the joints by " monkey plates, and fautened by by boits and nuts is in a similhir mannuer to the fifhe-plates onow in general use.
The ralls and sleepers thus become united os one piece th
 means of bolts, washerss, and nute sunfocient provision being mado for ox-
pansion und contraction of the rail, and also in so forming the allepers Panson and contraction of the rani, and al
529. J. Eneranid. Tolmersquarc, Hampstead-road, "Propelling atipa"

This consists in obtrining the requisito buoyance in a velocipede for navigating the water by means of the propeling wheols and rudder.
For tisp 545. G. 1. Ful Hoboken "Propellin.

Thie object is to avoid the friction of a vessel sliding endwise through
the water. This is accomplifhed by making the buognt power
 the water and ssustain a flat form betweons foar or
theose floats may be arranged one behind the other.

periphery of the wheol, and in this opening is an annularcrib, on each side of which a flange of a driving whoe fits suyly, but so as to move freely
the peripheries only of the two flanges of the driving wheols bearing

 end or tho saddlo having a spring carrying a flanged roller adapted to
the circular rib of the main wheel. - Not proceded with.
553. R. MELDRES,

This consista in making communication from the steam boiler, air, gas,
or water chamber, directly to or about that part of the cylinder whence or water chamber, irectuy to or about that part of the cyilinder whence
tho stean ail, gas or water escapes anter having done its work in the
cylinder. - Not proceceid weith. 564 A. - . New

dampers, so that the air will pass over the firo-pan or ash-pan, and feed
the fir from the four sides of tho furnace, and and a convenient distance
 pooter withan frie--box having a closo or solid bottom, wheroby tho fuel is

made to slide down and pross together in close contact as it is being con| sumed |
| :--- |
| 556. |

S56. R. Whlunss, Grat Gcorge-stret, S.W., "Railway crosea and In contrusucting railway crossing, 1 where two lines cross ache other, the
inventor forms one of the roxesing Ines of to
 come warelel wiets the the continuous rail) is bent round at an and and is securely fixed thereto. The bent round
coll end of the rail which comes up to the imner side of the contin
 crosing then the bent end of the other rail is notched out
608.
nas, sparroa, "Rai
Inside, and dongitudinally with the ceiling of each carriage, the inventor
uses cord, rope, or chinn connectod wwith a serew and nut, or hook and
oye in each compartment eye in each compartment, so ns to torman a continuous line capable of bein
disconnected rope, or chade at will in tasch division of the carringe. One ond of this corr,
is conside to one ond of the carriage, and the the
is connecte

 connected thereto': the undorside of the cranked part
sharply off to form a stoep incline. - Not proceded vith.

Class 3.-FABRICS

Including Machinery and Mechanical Preparing, Manufacturing, Dyeing, Printing, and Dressing 497. C. Brook, L. Banker, and M. Thompson, Halijax, "Looms."-Dated
 or roller of the woven fabric as produced and so that when occasion reo
quires. either by the rrackago of the wett or when it is used up, such
takin. taking-up may cease at the proper placo or the beam turn back to it,
and ot any time the turning back of the beam or roller may readly boe
offocted For this purpose the inventors apply a short shaft gearing at
one venient, wy
at the either the crank shaft or the tappet shaft as most conat the other end gearing by means of worm aud wheel with the ordinary
taking ξ up gear wheels or a new arrangement of similar wheels, and so
that

 pins, to enter into slots in tho saddles, as described in the above-
mentioned speeifiction tho iventor forms tho support with wo
maralle cheeks between which the centre portion of the sidde is recived.
 of thme euport, consequuntly the choeks mav be formed to fot an anst the
sides of the sadde for any dosired portion of its length, whilst tho central portion of the saddio in which the siot is made, and which fitid between
tho cheeks, may also be made of sufficient depth to give stendiness. By
By thus constructing the suddlos, and their brackets or supporta, a large
bearing surface is obtained to provent any lateral motion of tho saddle, and in addition, as tho sides neither of the saddle nor the orrackets save
any projections from them, they may be fitted by brinding or fling at a
very small coost. 509. T. TusstiLl and J. Doparon, Burnaley, "Looms." - Dated 19th The inventors employ ordtnary friction pulleys and chains, belts, or
corrs to each ond of the beam, and nalso an ordinary "vilirator" or shatt
with

 spectively. The other ends of the levera projecting towards each other
are connected
 ond of tuis hever being connected by a chain, belt, or cord to a pulloy or
lever fixed on the vibrator shatt, so that the puli or streteh of the warp
will will always ifit the weighted lever. and releaso or remove the prossure
frountho warp beam an thereby let off the proper quantity of warp re-
quircd.-Not procelded with.
647. J. and T. Leach and J. Goodyear, "Wool winding."-Dated 22nd

In puidesat at the uppor part of two silde frames the inventors pince slidess
carrying disces forming the flanges of the bobbin, there being a central
 bobbin. In one of tho esildes is ormed a seating of the same cradius os the
bobbin, and central with it, and in the other silide there is a contral hole
 rovolve, and a pinion for giving motion, by means of the goaring, to a
wheel placed at an anglo for working the triversing lever. O tho shaft

 completed, and to provent the catch gearing with the ratchot wheol.
Unt1 required, the arm of the catch is heid back by a finger on the front
silde
515. T. Smirn, Manchater, "Treating woollen cloth."-Dated 190h February,

 wiso provided with fine perforationis Beyond thess aro steam cyllinera,
such as are ordinarily ued for drying woven fabrics, and there aro tonsion
 substance, having been reducod to o powder, is placed in the first--named
cylinders, and the goods are caused by tho tonsion rollers to pass in contact with the surfaces of the gauzo cylinders, and subsequently in con-
tact with the steam or second named cylinders, after which they aro Wound upon the rollor hast named, "Wool-combing machinery."-Dated 20th
530. H. W. Wurrhens, Holbeck,
 ties, and this is done by causing the teeth of an inverted circular comb
(which may be called a noil intersecting comb) to work between the inner and
 hand or by a revolving rollior or rollers or other apparatus, into one end of
a revolving cylinder, and at the enme time feed into the the
 water or other solutions pass though in the other, the two boing altor-
nately beaten and ont obbo together and squeczed aport during their
pasage by the action of rollera and strainers, or of either of them.
543. J. W. REvid, Baynotater, "Paper pulp apparatus."-Dated 22nd Thisc ocsisist chiefly in aubjecting the wood or other vegetable fibres to
he action of heat and alkali, and at the same time protecting them during the wholo process by keeping them covered by the liquor from tho delete-
tho what rious action of the steam necessarily generated by the heat
573. B. HUNT, Sorle-strect, , Bo

The object of this invention is to remedy this defect by rendering auto-
matic the displacement of the small friction cords above mentioned, which

Class 4.-AGRICULTURE.

Including Agricultural Engines, Windlasses, Implements, Flour
Mills, dcc.
492. J. DARLIscrov, Moor

This consists in a peceuliar combination and application of certain known effective the action and comentequenwaras sore applified to the drenderil used more of a screw or of a rod having spiral slots in connection with certain wheel Eearing, the whole being so arranged and combined that ii rotary motion
be given to the screwa simultaneous and similir motion is communicated

be given to the scr to the drilling bar

The opposite arms are made extending from the extreme end of one
suil to the extreme end of the other and opposite sail, therely having the right angless to ench other, and the arm is held ine iwch a a mannor on on the
axis that it can partly revolve, and the siils move with it, so that when
 the eails at a point a little alove the eentro of gravity and dsops are pro-
videids provent the arlo turning eore than required for fouthering tho
saids, which ane under the control of a governor worked by the wind.Not proceeded will.

 Wheel or screw, or a contrivance consisting of blades, vanes, or plates,
phaced in any dosirible position with respect to the ohatt For instace,
in one arraugement this wheel or far may consist of segments, sections,

 552. J. B. Russer8oor, Bury St. Edmunds, "Sheep-fold hurcles"-Dated This consists in constructing an iron hurdio with two openings capable
of being disted wide or narower at will to suit the sizzof the lambs
ond shea that have to and sheep that have to pass through them. Another feature of novelty
consists in providing tho to nad sides of sucho penings with ronlers,
prevent injury to the lambs and also to enable them to pass freely
 each side of the pen or fold, and to connect wooden hurdes of the ordi-
nary kind with the metal hurdes above mentioned in the construction of
the fold. - Not phocecel

 This consists in making the enife-bar in the form of a clip by folding a
long trip of malleable eron or steel or other suitable metal along a longiless on one side of the centre line, so that one edgo mag project boyond
the other. The folding of the strip of motal may be effected in any convetient manner, obit it is proterred to osirst bend or partially fold it angular piece, which bears upon the longitudina centre line of the strip
or bar, whist the olower die is in the ofrm of a groove with inclined sides.
The strip or bur bein
 If flat faced dies, which compress the two edges of tho strwip ton a pair
The faces of the esecond

7. J. T. Gnify

The finger beam and cutters are connected to bars or supports, which
pass throgh oone of the main driving wheels, which is supported upon to the frame. The driving-wheels are each made with an in internal rixe or
tion The insides of ther rimeor upow or areasainst the rib of one of the wheels.

 mounted is furnished with two clutches, the forks of which are connected
to one hand lever, so that both can be thrown into and out of gear
simultanously 518. E. Hewert,
 co ase tand provided vertical pivot. The top of this tube may either be
smoke,
smor it may be of curved forme, like on one side for the exit of the
 the diameter option oowl, , mounted on the top of the chimney, and passing
about half way up the cowl. 528. A. Jacos, Bromley, "Sorer veatiating""-Dated 200h F Forvary, 1869. the ground, and by faciltatitig the disposal and romovan of charcoal or
other materni having the property of destrovigg the injurious effects of
sewer gases on health by means of manhole covers. 548. B. J. B. Mitis, Southampton-burildings, "Artincial stone."- A com-

 engage with a wheel on the driving shaft carrying a pulley and belt,
through which the combination is operated.

Class 5.-BUILDING

certain length only, the after part forming a solid shank or bar, which
passes ing a o correspondingly formel hole in the sockeno or holdor, and by
which it is held therein.
 quisite shape, or of chilled or forged compoumds or alloys of iron or steel.
The tools constructed under the second modification are to be made of 499. J. A. Wane
1869.1 J. Cherry, Hornsa, "Bruck press."-Dated 18 th A suitable frame, mounted on wheelsorotherwise, carries the fised die or
mould (for forming the sides of the brick, tile, or other article) to which

 lever keved at one end thereof. The hinged upper die or lid whing a closed
is held down is held down by a catcoh but when released by a cam on the the
or a a pin on the lever is thrown back by meanso of a spring.
493. A. BAR9. ATHoLomew, Glasgow, "Sliding windooss."-Dated 18th February

Class 6.-FIRE-ARMS.

Including Guns, Swords, Cannon, Shots, Shells, Gunpowder, Im511. A. Hexsvr, Edinhurgh, "Breech-loaders,"-Dated 19th February, 1869.
 charge, and the spent cartridge case extracted. Thesese actions are effected
 projects downwards behind the breech cavity, and in an opening in the
stock which the sididing breech piecece is ocomedected thepressing beech being thererey
lowered, its underside comes into contact with the projectine end to the lever before referred to, which is therefore depressed whilst its outer en
is ele 1s elevated, and in being so elevated it comes into contact with a pro-
joction attached to the tumbler, which is therefore also raised until it ic
throw into "flo the thrown int "full-cocked" or "half-cocked" position, in which it is re
trined by a pall falling into notcces or catches mede in the lower edge of
the tumbler piece.

Class 7.-FURNITURE AND CLOTHING.

Including Cooking Utensils, Upholstery, Ornaments, Musical Instru452. E. T. Hvorrss, Chancery-lane, "Wasting machines."-A communicaThe machine is composed of a frame supporting the vessel in which
the process of fulling or washing takes place, and which consists of a case resting on the ribs of the frame. The vesce, at the bottom of which are
the heating tubes and the discharge oritice , st ined layer of marble, hard slate, or other stone or porcelain, and the beaters
pivoting on the axlo aro also coovered with a layer of such material, so changeable surfaces The point in whtich the with perresfoctly clean and un oscillate is pluced between the said beaters and the crank or ecentrics
working in close proximity to the beaters, as usual in the present tim For single-action washing machines, whero the crank is placed laterally
this would not be
 ciency, of lubr stains caused either by drops of oil or (in case of insuffi-

inevitable | inevtable |
| :--- |
| 483. $\mathrm{J} . \mathrm{A}$ |

This consists in improvements in munfacturing the heed or ends of metallic bedsteads and other anticles of metallic furniture.
The head and foot rails sre nsually made of rods joined the or other junctions, or of panels inserted in a framing of tubes. In making
the head nud foot rails according to this in a framing of a reectangsuarcoramgrare thy this invent of of that inventor construct
may be divided into smaller rectay The rectangular spaces thus formed aro filed bons straight strips of dheet
metal, arranged either diagonally or parallel with the sides of the framing, or the strips may be interlaced Where the strips cross each other
and where they join the flat bars of the framing, he connects them to
and ther by plain or ormanental rivets or otherwise. Any required ornaments may be attached either at the crossings of the strips or in the open spaces.
The flat bars and strips described may be ornamented witb surface or 459. H. D. Bowver, , iployey, and J. L. Noitos, Belle Saurageyard, E.C., This consions in subbecting wheat to the the action of stean or moisture, to
such an extent that it takes up sufficient moisture to permate the or bran, after which the wheot is dried in order to cause a contraction of
 machine to dry it. After the wheat has been dried it is then crushed by
being passed through rollers of metal or other material, either fluted
 rollers. dust and small seeds before it enters or passes into the crushing 491. F. I. Ksewstus, Westminstor, "Writing cases."-Dated 18th February, The inventor constructs the leaves or partitions separately and dis-
tinctly from a despateh box, and he applies them or the case containing them to cases, boxes, drawers, or receptacles of any description; the
leaves or the cuse with the leaves may be made in such a manner that

 tray. M, MAsov, Norrcood, "Corkscreto and waxx receptacle"-Dated $20 t h$
527. J. Matruary, 1869. This consists in the employment of a lever for lifting the stem or shank
of a corkscrew after the ordinary spiral has been tinserted into the This lever is hinged to the top of a barrel passed over the bottle neck ;one
arm of the lever is a curved loop, which embraces the stem, and the other
arm forms a handle.
532. J. Moll, Cambridge, "Hain-cutting machines."-Dated 20th Fetruary,

 The proportions in this compound are as follows:--Starch in solution
about twenty five parts: satin in solution, about twenty-five parts; siz Ind α.half parts. The ingredients, after being reduced to a liquid condi-
and
tion ton by the addition of a sutficient amount of hot water, are mixed
together, ,nd in this condition appied in any suitable maner on the
material to be glazed or finished. 555. H. F. Frevtal, Kinglend-road, "Hats and caps""-Dated 22 nd
Petruary, 1869 .
 Wh solution of cauoutchoue, gutta-perchan, shellace, or orther suitabile adheans
Whe solution, or any combination of the same. - Not procecded wit

The body of the tap is made in two halves or parts, joined together by
flanges, the boyd having intornally the general fligure of a hollow

diameter as the body, and works closely but freely therein. The upper
end or stem of the plug passes out at the top of the tap, and is provided enith a handle or with a lever for giving a rotary motion to the plug,
The lower end of the plug bears upon the upper side of tho eather
diantrame and has a hole in it similar in size, shape, and position to that in the diaphragm
563. J. Nenson and J. Manshall, Glasgoow, "Metalic capsules." -Dated
3rd Fecruarz 1869 . $\xrightarrow{\text { srd Februarra, } 1889 .}$ with varnish or resin; in in tressing thereon ppaper of thich hat hatalic capsule the trade the capsule, in wasting away on the on there and and in tinally protecting tho
trade mark, name, or device which remains on the capsule with a thin coating of glue or varnish.
561. B. W. Farev, Bermondsey, "Gâs valve facings."-Dated 23 rl

 readily understood that should the sentings or faces of the valve not be
tight, a leakage of water, oil, or other fluid will take place, thus effectualy
 method. . W. C. Monkie, Southampton-rov, "Pianofortes." - Dated 23rd
562. This ruary 1 side
ordis addition of one or more strings to the scale of the
orimar pianoforte now in use, when by means of any convenient me. ordinary pianoforte now in use, when by means of any convemiont me-
chanical arrangement the phayer can at twill alter the pitcc from that in
ordinary use to a lower one, or, if he should desire it to a higher one. ordimary use to a
Not proceceded voilh.

Class 8.-CHEMICAL

1ncluding Special Chemical and Pharmuceutical Preparations, Fuc Brewing, Tanning, Bleaching, Duting and Preservation of Food Glass, Pottery, Cement, Paint, Manures, dc."
510.
E. Donser, London-street, B.C., "Furnacs."-Dated 19th February, This consists in the employment of liquid hy drocarbons for the purpose
of producing an intense heat in furnaces, ehambers, or kilns used forheating, smelting, or working metals sand other substances In In carrying out
the invention tho inventor first evaroprates and distributes in the
en

 hydrocarbon vapour thus mixed with air (or in some cases with steam of other gases) enterers the chambeber or frurnace throughon opening or openings
formed therein wherever it may be found most convenient, such openings being provided with doors or other means of regulating the quantity of
air or gas as required to feed the flame, or to modify its action upon the metal placed in the furnaco to be heated melted converted, as the case may be. Grexs, Aberystwith, "Buddes for separating ores, dc."-Dated 20 th
Fibruaury, S6e The improved apparatus comprises a stationary conical table with its
centre depressed and its outer circular rim in a horizontal plane. A ver-
 mixed with some watec, by a central duct in connection with the shaft, hielivers them from its outer end round near the outer edge, and upon the
hihher part of the conical table. The shaft also carries a water pipe
which is furished ing cock, the eseries of branches boing disposed in the form of a spiral, the
outer eno of which is a ilittle belind the end of the arm that dilivers the
ore.- Not proceded wiith
539. J. and W. Werss, Johnstone, Renfrea, "Malting, heating, and drying This consists in having a series of discs or floors arranged one above the
other, and passing through the cente of theose foors is an upright
revolving shaft, with radial arms, on which are fixed directing blades or
 on to the top floor at the centre, is distributed over it in layers by th
directing bades, atd descending on to the next floo at the outer open
ings, pases fros the ings, passes from thence to the centre, and falling throngh the contral
openimb, and so on, untili, by the action of the blades, all the floors aro
covered. 54. T. S. BLar, Pittsburgh, U.S., "Iron and steel""-Dated 22nd This relates to a previous patent, dated the 23 rd November, 186 ,
No, 3555 , Thinventor now employs manganese, and takes any of the
various oxides of that metal

 mixed through the ore, it will be found desirable to have the two mate-
rials of about an equal degree of fineness. - Not procedded with.

 it wituin a sutable vessel, to which steam or air is admitted, and the
temperature thereot being raised, the sulphur is dotached from the iron
and may be recovered for the manufacture of sulphuric acid or other 566. H. Brssemer, Queen-strect-place, Cannon-street, "Making cast from
pig iron."-Daled 23rv Fetruary, 1869 . The inventor prefers to place two ror more converting vessels in such
position with refene to each other that their respective axes are in
striight line with the axes, being at a distace of thre to the general hluor ievel. Beneath each vessel a smance pit is formed, and
an arched passage passes from one pit to the other in the line of the
and a line of rails laid in the passage the ashes or or hor thor tharit of the operas tion may ye readily removed on trucks moving on throe rails. An incline
or a lift may be mployed to raise the trucks up to the general ground
lovel.

 56. C. Reses, Hollovay, "Designing on glass, dc."-Dated 24th. Fecruary, The object is to produce ormaments or devices by vitrifying pounded
glass upoct glass and glazed ware, or by cementing to ogether fragments of
ooloured llass or glazed ware

Class 9.-ELECTRICITY.

Including Electric, Magnetic, Electro-Magmetic Apparatus,
Electrical Apparatus, and Galranic Batteries.
501. D. G. Fitz-Grrald, Battersea, "Telegraph voltaic batteries."-Dated

 from the ordinary mode of or from " "ielectrie" insulation.
531. In. GRir, Highury-hill, "Electrical conductors."-Dated 20th Feb-
ruury, 1969.

Class 10.-Miscellaneous.

 matter or mixture, may be introdineed, for the purposes of cooling, and
hat water or ar warming matter, for the purpose of warming any fluid

 temperature is longer preserved. "W. .E NEwros, Chancerry-(anes "Stamps."-A communication,-Dated
485.

 oy mere distillition the benzole and its homoologues may be separately
obtained from thor solution therein, and the solvent rendered again fit
or renewed application 495. A. Garrisos, Birmingham, "Pendant string holder."-Dated 18 th

 D6. J. D. Nichoo and J. Eckerslex, Edinburgh, "Paper apparatus."-

 504. Fr. W. Malestr, Neohaven, U.S., "Needle machine."-Dated 18 th The wires or blanks being cot to the ensired length for two needles are
throvw into hopper which has in oconection with the same e feeding
device. This device conveys one blank ata time to the first set of a series

 506. Fe. Deumen, The inventor proposes to make ese of a locomotive engine suited to run
on common todas for the purposoo of conveging any oconvenient number
of waggons to the spot at which they are to boloaded with sewage or other
 form, for example, of a barrel would be well
madapter in
aliquid sted for corrying sewage

508. W. W. Cocurane, Surbiton, "Water veseselse"-Dated 19th Felmuary,
This. consists in the use of bottle or vessel of glass, glazed pottery,
or other suitable material (but by preference of ebonite), protected by a

 1is contronted thy mechanism, operar
leve in the closed vessel or heater.
s21

internally with sheet meta, well soldered at the corners, to prevent any
communication with the ononoconductitg bed.

The inventor places over a gas burner a vessel or gonerator of a double
(up-like form, which he sometimes surrounds by a chimney. Petroleum

 On the ordinary siliding shaft, which carries the right and left-handed
outs, the inventor places an arm extending to the top of the machino

BIRMINGHAM AT WORK.

Wirt the earlier history of Soho-the cradle of the steam ngine-everybody is more or less familiar, but comparatively little Gamed laboratory of Boulton and Watt. By the courtesy of Mr. Gilbert Hamiton, the grand-nephew of Watt, and one of the
present proprietors of the works, I was enabled the other day to take a complete survey of Soho, and jotted down in my note-book The Soho Works are carried on in the name of James Watt and Co., but the actual proprietors are Mr. H. W. Blake (London), Mr. Gilbert Hamilton (Leamington), Mr. Charles Barclay (London),
and Mr. James Brown (Birmingham). The establishmen an area of t tenty aces, and it struck me as a peculisity of Soho that all the workshops are on the ground floor. Branches of the London and North.Western Railway and of the Birmingham anal intersect the works. The establishment is divided into
two leading portions-the Mint, and the engineering departments, two leading portions-the Mint, and the engineering departments,
which combined are capable of affording employment to some 1200 work-people.
Accompanied by Mr. Hamilton, I first visited the Mint, so
renowned amongst the coining establishments of the world copper store is the first spot of interest. A large wnderground cellar dimly lit by torches, and securely fortitied against possible
invasion, is used for this purpose. On either side are piles of invasion, is used for this purpose. On either side are piles of
copper igots in five-ton stacks, the total stock semetimes anount"mixing shop" wherewith the utmost nicety the materials forming the brozze for coinage are apportioned. The English bronze coin
is composed as follows - Coppr
95 is 4 per eent. The bronze coins made for Italy slightly differ ;
tin,
in this respect, the in this respect, the zine being left out and one part of coppe
substituted. Mr. Hamilton tells me that bronze has entivel superseded copper for coins, the last of copper being for India ; but nothing in that way has been done at Soho for nearly seven years The casting shop was next visited. In this shop are thirty pot
furnaces and three air furnaces. The furnaces difter from those in ordinary brass casting shops by being level with the floor, instead crucibles are used, each holding 120 lb . The total produce of these furnaces is about twelve tons per day. When sufficiently melted, the metal is cast into slahs or strips about two teet
long by four inches wide and one inch thick. This is performed in the usual manner by horizantal iron moun. The process of called, or pressed out sufficiently to enable them to pass easily through the four pairs of rolls by which they are gradually reduced to the required gauge. All these rolls are accurately adjusted, especialy the last, or fiaishing rols, which are made thousandth part of an inch. Every strip regulated to the ten this roll is accurately gauged. During the process of rolling the strips have to be annealed two or three times in adjacent finished the metal strips present a beautifully bright and polished surface, and they are at once transerred to the cutting out
room. There are eight steam presses busily at vork cutting producing withks of metal at an astonisy as 450 to 500 blank per minute. The blanks are then taken to the millirg machines of which there are fourteen, where by a simple and very rapid then placed in iron pots hermeticaly seales and placed in an The pots, which contain 28 lb. each, resemble loaves in the furnace, which latter reminds one exactly of a huge baker's
oven. They are again "pickled" and washed, and afterward shaken in a steam-propelled barrel until they are perfectly bright. The picking or assorting is the last process in the
manufacture of blanks. The pioking machine has a revolving rapidly along some half dozen quick-sighted girls detect and piek out any coin that may prove defeotive either in form or
colour. The blanks are then packed in half-hundred weight baggs. ten of which are placed in strong casks, and they are then ready for shipment. The blanks are marked abroad by the Government the English Government wor widertake the resinea, unites superintending the operation and guaranteeing its efficiency and correctness. This the Government will not do, and it is unreasonable to expect it. In Belgium, however, "they manage thing
better." There the executive will undertake the duty superintending the production of coins for other nations, and consequence or this paternal Government polioy it happeus that
large order for coins on account of South America are only being produced in blank at Soho, the marking having to be done in Belgium. The cost of transit to and from the latter country will be a serious item in the estimate. The Home Government bas sufficient confidence in Soho to entrust it with the production of the bronze coin in its hinishedire coining is done the colonim succeeding the completion of the blank is that of preparing the dies. The pair of dies is engraved, technioally called "matrices." From these two impressions are taken, which course are the reverse of those on the matrices," and from these the working dies are made. The English Government supplies its own dies, and those produced here for foreign powers have to be sent with the coins on the completion of the oontract. The dies are of course
of finest steel forged, turned, and annealed, and are ared in an
ordinary medal press. The " coining room" at Soho is 120 ft .
ing boft. wide, and down the centre aro ranged tweive
century. Each of these presses will mark eighty to one hundred and fifty coins par minute. As many as two hundred small coins
have been marked in that time. The extent of Soho NMint will
find world, London, eight ; Caleutta, twenty-four ; Bombay, sixteen ; Madras fourteen ; Brazil, four ; Russia, eight ; Hong Kong, four ; Portugal and sent a may from Soiono in a single day. The first contract for the bronze coinage of our own country was entrusted to Messra 48 to 1 lb ., he specification was as follows:- -720 tons of pence of farthings, 160 to 1 lb . It will be noticed that the number of pence Government gave no explanation of this difference, although oy course they got an extra "pull" to the extent of 8 lb . in evere
48 lb . in consequence. The coins made at Soho include, as may be coins m, not a few curiosities. Amongst the smallest bronz about the size is the "baui" of the new kingdom of Roumania, made for Honduras (8 ps .) on which is stamped the tree of libert and other emblems of the kingdom, among which the pyramids and Turkish characters setting forth the glories of the Sultan. The Chinese "cash," made very extensively in Birmingham for the Celestial Government, are beneath the quality Soho produce.
These coins have a square hole in the centre and a few Chinese characters around it. This "cash" " is the commonest coin made being composed chiefly of the refuse metal discarded by the the producers so much in price that this deficiency in quality is the natural result, and the "cash" of the Celestiais made here is
almost as much a byword in the trade as the tinsel "Brummagem almost as much a byword I have not space this week to do justice to the engineering in progress, and therefore reserve my notes on that subject for another paper.

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

SLightir better trade in iron : More time being run-Kivds IN DEMAND : Shects : Plates (jor India): Hoops: Rounds; Bare tron : They keep lono-PIG Iron : Steculy of sale : Th: varieties in use : Remarks on mixtures--The movement fois a hise of
 rade-Colliers' movenent for a rise : Remarls upon it-The Mread meenting or ibon and steul mis it here-Hardwares HE iron tre of this district is in a sighty better condition than it was a week ago. Hardly any one department displays a conspicuous improvement; but, taken attogether, the advance is per-
ceptible it is seen in some works beginning operations slightly earlier in the week than has been the practice recently, and here again into gear.
Sheets are most in request; and the makers of singles are
senerally well employed where they do not stickle for too high prices. The iron is to be used chiefly by the galvanisers alike a home and in Scotland, but intended
very thin gauges sell actively. Plates are in fair request where makers have been successful in obtaining contracts in competition with other districts. The be t
export market just now for such iron is India. The buyers are the export market just now for such iron is India. The buyers are the Government; the quality is good throughout, but the sizes vary
Great care is taken that they shall not oxidise on their way out. Hoops are not less in demand.
Three-eighth rounds are being made in large total quantities,
but in small individual lots, the number of works capale of ducing this denomination being many
Bars, of what is
Bars, of what is termed the fancy class, are well to do where mancing. Pla good of the las he district win the makers o encing. Plain bars, of the class which tetlls most in our export
returns, are not proportionately busy; for the North Staffordshire ironmasters can roll these at a cheaper rate than their confriieres in they have to be shipped to our chief customers.
Firms who have stood aloof from the rail trade during what may be termed the current excitement in this branch, are nibbling In a few instauces they have taken dabs embracing two or three
score tons of kinds much leas valuable than those which, in the early history of the rail trade, were made at the same works.
Prices keep low, but with perhaps a tendency to strengthen Without there being a positive rise. The makers of rounds, of the
gauge mentioneed above, complain that though they ought to be to sell them at 10s. under list bars. Excepting in a very fee first, class instances, there is no
is being got for any kind.
Pigs are steady of sale, with a little more doing at prices
slightly less in favour of buyers, Considerable variation is seen in the descriptions now purchased at mills and forges
where, not long ago, the transactions were confined to
 selling in fresh quarters. The transanctions indicate the posssession
by the buyers of orders for the finisired article from consumer
who will have nothing but the fame of South Staffordshire was built up. Then, Westbury and Wellingborough iron is finding favour with people who have pre-
viously used some of the cheaver Cleveland samples, together with are at this time leaving the finished irouworks of South Staffordshistory of the district. The soarcity of orders has led makers of for qualities much under that with which they have hitherto had most to do. But whilst selling the goods at as low a figure as is
accepted by manufacturers of less note, they, as a rule, are produring a superior qualit,
istrict in now much iron going out of the country from this ncrease ; and even when the rail trade of the season is over it is believed that there will be a gradually improving inquiry on ac count of our leading colonies.
During the week
During the week many masters have been served-for that is the best term to use-with the memorials determined upon at a meeting
of ironworkers who solicit an increase in their wages to the extent of 10 per cent. What they will do with them remains to exten We have our own views of the course which will be taken, but we don't care to express them at this juncture. It is pretty certain that the masters are unable to give the rise, so long as they
can get only the present prices. A maker expressed his conviction to us only yesterday that there are very few ironmaster now in Soun make two ends meet. How then, they ask, can they
more than make give an advance? If they should be forced to do what the men a course which, it it is believed, would prove disastrous alike to priees
ncrease their means of production, and have a similar effect upo
he proprietors of mills and forges in the United States. Th nemorial has not been universally presented, but even in instance has come when they ought to have more money. This the time urn of that unesciness upon the question of wase which was manifested just a twelvemonth ago. It would be gratifying if the men should, as at that time, be open to the conviction that, neither in its present nor in its prospective state, will the
trade warrant any alteration. If assured of this truth, the men should be content to allow the present slight improvement to goo prove to be within their reach in a few months' time. It is try hey ask for arbitration if the masters will not give them the dvance. And rather than put up prices, we hope that if the pplicants should persist in this request that it will be conceded he Cleveland district showed that the most of the masters, in might perhaps be given, so those of the masters here would eumonstrate be accorded
The coal trade keeps steady and prices unaltered. Mr Frederick Smith, on behalf of the Earl of Dudley has sent out ircular intimating that after the current quarter all coals will be boats, in railway wagons, or in carts, and that the ton will be th of 2240 lb ,, which, it will be remembered, is short weight Com mencing with the 1st of October, the prices will, therefore, be, for thick coal into boats, railway trucks, or carts, forworks' purposes, oal, 6 s ; ; screenings, 4 s . 8 d .; black screenings, 3 s . 10 d . 8 and ; black ack, 3 s . Heathen coal will be, large, 11s. 6d.; lumps, 6s. 8d. The coal weighed into carts for household use will be charged for on a higher scale. The advance will range from 1s. 6 d , to 6 d . It噱 will be a reduction in price relatively of of 2640 lb . to the ton, masters who use this coal exclusively assert that the alteration will run up their costs nearly 5 s, upon every ton of iron which hey send out of their mills. It remains to be seen to what extent he example set by the Earl of Dudley will be followed. It is true that the thick coal is in only a few hands, and that his lordship is
the chief holder. Eventually the alteration will be adopted, but the change may not come about immediately
It would be a happy thing for the iron trade if there were no impediment to the universal adoption throughout the district of this standard of weight ; and the looseness of the practice which
has hitherto prevailed has no doubt tended to check a rigidness of economy at the ironworks and the collieries, which has worked evil for the district. Now, however, that the competition else where is so severe, every arrangement which goes to increase the ronmaster's expenses is to him a serious matter
understood to have reference mainly to other than the thin coal men, who, it is understood, were at the last drop reduced in a ion is being displayed in some quarters to the levy of contributions Thards the payment of agents to continue the agitation.
The great meeting of iron and steel masters, to begin at Middlesrict as a matter of great importance to the best men in this dis its scientific aspect. Out of the 200 members of the Iron trade in nstitute who will then assemble there will be a few from this part of the world, but not so many as those who wish most good to the
istrict could desire. The occasion will be eminently an eduen tional one. Consequent upon the fact that the next quarterly neeting of the North of England iron trade begins onthe Tuesday
hat meeting will be of more than universal interest exercise a commensurate amount of influence upon the immediat condition of the iron interest of the country generally
he general manufacturing industries are in scarcely an townships han steady. As has been the case for some weeks parcely more ing done in heavy goods; but in the miscellaneous kinds ther The Southern States of United America are forwarding better specifications, accompanied with advices of an increasingly cheering
character in reference to the probabilities of the future. There is ctivity with Brazil in the probabilies of the future. There in country before the beginning of next year, at which time into that and advanced tariff comes into operation. The River Plate trade is quiet just now, but it is believed that it will soon be active again now that certain disturbers of the peace thereabouts have like cheering in cannot reasonably be described as unsatisfactory in the number of orders enclosed. Altogether the prospects of the home and foreig trade are not, the the near approach of winter, so depressin

WALES AND THE ADJOINING COUNTIES.

 The Iron Trade : Reports favourable as iotrade: Hands busily engaged in completing contracts for the
United States and Rusian United States and Russian Empire: Fears entertained by some of inquiry for rails remarkably good : Probability of the demand
being sufficient to keep the works fully employed. exports during the past month: Contracts still on the books for
moll several thousand tons for Russia and the United States: Pro Several home contracts for rails in the market.: Gradual season:
in the home demand confidently looked forvard to trade-The tin-plate trade-Steam and house coal trade The Cheltenham and Swansea Railway Carriage Works
 Trade of the South Wales Ports.
LATEST reports from the principal iron making establishments
characterise the trade as continuing in a favourable state of activity, and the hands employed at the rail mills are now busily empire. Fears are entertained by some few makers and Russian close of the Baltic shipping season a reaction will set in, but it is satisfactory to find that the foreign inquiry for railway iron keeps remarkably good, and it is becoming pretty evident that when keep the works well employed. Last month the total tons, being an increase of from this district reached 5078 , 177 month of last year, being satisfactory the corresponding proof that the trade is recovering from the depression which so shortly taking place. There ant a till路 tons for Russia and the United States, and it now pretty generally believed that the whole of the Russian conRussia reached 12,602 tons, being an increase of 915 tons over the provious montt, when the exports reached 11,687 tons. Several market, and a gradual increase in the home demand is confidently spring. Within the past few days exporters are purchasing bars There is a better demand for pig iron, and prices are stiffening.

Tin plate makers report a slight falling off in the demand during the past week, and several orders expected from foreign markets have not yet arrived.
The improvement referred to in previous reports as having set in in the steaun coal trade is now fully corroborated by the return local ports. The improvement set in after the exoth hall the what advanced, otherwise the returns would have been still more favourable. Large quantities were sent to the mail packet stations, and the purchases of French houses were considerable. The arrival of vessels at the local ports has been somewhat checked by the in all probability will be of short duration, and it is generally looked for a permanent increase in the demand may any degree of vitality, the shipments coastwise being about the average.
The arrangements in progress for placing the affairs of the Denare making gind are making good progress, and undir cotors there is a probability of the company being shortly extricated from its chief difficulties, The net receipts are now it appears more than sufficient to cove the rent charges and the debentures, so that there is a prospect of
the preferences coming in for something by and by. For the ordinary capital there is no hope, at least for many years to come The opening of the Mold and Denbigh and othy
expected, bring additional traffic on the railway
The directors of the Cheltenham and Swansea Railway Carriage Works (better known as Shackleford, Ford, and Co.), in their ing, regret that the amount of business obtainable during the ing, regret deatession in the carriage and wagon building trade being quite inadequate to meet the expenses of two large establishments, there has been a loss on the workings for the year and that, in consequence, they will at the meeting have to
recommend the shareholders to forthwith close either the Cheltenham or the Swansea Works, with a view to the disposal thereof account for the loss by a want of orders for new there was only sufficient business to keep one of the works par tially employed, and even this, unfortunately, had to be executed the petition of Mr. Johnson for winding up the company, which, although dismissed, had had a most damaging effect upon the
On Wednesday the half-yearly meeting of the shareholders the Monmouthshire Railway and Canal Company was held at the company's offices, Newport, Lord Tredegar in the chair. The
chairman moved "That the statements of the capital and revenue accounts for the half-year ending June 30th, 1869, as circulated mong the proprietors, be pass dividend, Cartwright propose cent., as recommended by the directors, should be $4 \frac{1}{2}$ per cent.,
and that $£ 4000$ should be transferred to the relaying acconnt instead of $£ 6000$. He contended that the half-year's account fully warficient a distribution of $4 \frac{1}{2}$ per cent., and the 0 division took place, and the Mr. Cartwright demanded a poll, the result of which has not yet
The followiown
been made known
The following a
ports for the month of August and the corresponding month of

of patent fuel exported 28,511 tons of iron and 5018 tons of patent fuel; Swansea exported 1567 tons of iron and
8872 tons of patent fuel; and Newport exported 20,009 tons of iron. Of the iron sent from Cardiff, Cronstadt took
5424 tons ; New York, 10,337 tons . Mobile, 1550 tons; Now Orleans, 1000 tons ; Galatz, 1000 tons ; Stettin, 1133 tons; ; New 519 tons ; Vordingborg, 905 tons ; Kijoge, 892 tons ; Praca, 519
tons; and the remainder was principally bars sent to the conti aental markets. Of the iron sent from 900 tons ; Boston, 1312 tons ; Baltimore, 1000 tons ; Genor 1830 ons ; Galatz, 900 tons; Malaga, 875 tons. New Orleans, 1000 tons Riga, 385 tons; Brest, 61 tons; and Rio de Janeiro, 644 tons, Messina, Nantes, and Palermo

NOTES FROM THE NORTHERN AND EASTERN COUNTIES

Laungh at Liverpool-Derbyshire coal at Hull-State of Trade at Sheffield-North-Eastern topics : Tyme Improve
ment Commission : Sanitary matters at Hexham: Death of Mr L. Potter: Crusade against smoke at Gateshead-The Clevetrade in South Yorkshire - Coal in Nottinghamshire.
tessbs. Bowdler, Chaffer, and Co., launched on Saturday from their yard at Seacombe an iron sailing vessel of 1100 tons register intended for the W. J. Myers, Son, and Co., of Liverpool, and was named the Van Dican and san Francisco trade. The ship Messrs. Myers by Messrs. Bowdler and Chaffer during the current

A good deal of coal has been sent to Hull from Derbyshire, via New Holland, from which place it is lightered across the water. The old staple trades of Sheffield fail at present to show any hitherto. An average trade is being done in iron, and the demand for almost all descriptions of railway materiel is active. The fil trade is languid, but the saw and edge tool trades have experienced increased demand from Australia and some other colonies. this year shows the slight increase of $£ 250$ Commission to June 30 th orresponding six months of 1868 . It is proposed to reduce the cars to $£ 60,000$ per annum. Of this annual sum the next two lone absorb $£ 40,000$, The following official report has been wil with regard to the Tyne piers:-"The breach in the sea wall,
originally 200 ft . at the bottom, and 410 ft at the top of the wall, where closed from the foundation up to the level of high water, raised from the top of the divers' work. ides. In the upper part of the rebuilt work a length of 83 ft . of the masonry has been raised from $2 \frac{1}{2} \mathrm{ft}$. to 20 ft . above high water
spring tides. For the protection of the rebuilt and uninjured spring tides. For the protection of the rebuilt and uninjured
portions of the sea-wall fifteen of the large foreshore blocks weighing thirty-six tons, have been placed in front of the foot of the wall." A visit has been paid to Hexham by Mr. Hewlett,
principal officer of health for the city of Bombay, who has been
commissioned by the Duke of Arcyle
to inspect several towns in England, and examine their sanitary best methods of providing Bomply, with the view of applying the Mr. Hientific and successful schemes of drainage to that city. Mr. Hewlett inspected Hexham, in company with Mr. Rubb, Hexham was sewered and water supplied some years since under the superintendence of one of Mr. Rawlinson's pupils. The northern coal trade has lost a rather prominent member by the
death of Mr. E. Potter. A large number of convictions for nonFriday The smoke took pla of the parties summoned thaurt on consume his smoke he had better teat minutes of the Mining Institute of Newcastle for 1858, in which were details of experiments made in that year by sir W. Armstrong, Mr. J. A. Longridge, and Dr. Richardson, which proved
that by the system of Mr. C. W. Williams (which consisted of admitting air in small streams at the fire-door or at the bridge, northern counties without making any smoke at all; and that the northern coal could be used to greater advantage than the Welsh anthracite coal, for which the Admiralty had shown so decided a preference, to the great injustice of the northern coal. The North way Crn Railway Company an the Raties summon but Rail considered that they were doing all in their power to abate the nuisances complained of, the hearing of the cases against them was adjourned for a month. It was stated on behalf of the North-
Eastern Railway Company that they had spent The Cleveland iron trade still pined of
quantities of iron having been shipped to the Continity, large the last few days. The returns which have been made up for past month show that the production of pig in the Olevelan group, although very considerable, is still unequal to the demand che stocks in makers hands and in the warrant stores at Middle borough still showing a tendency to decline. There is still a great
inquiry for rails, and other branches of the manufactured iron trade show great activity orders, and the mechanical works are well employed. Shipbuild ing prospects are, perhaps, scarcely so good, but at present the A fair business has continued to be done at most of the Sout Yood request. Thworks, rails, plates, and sheets being in tolerably late in South Yorkshire. There has been rather more doing in steam coal to Grimsby, shippers sending off in anticipation of the closing of the Baltic.
A coal seam has been struck at Clifton, near Nottingham, on
the estate of the late Sir R. J. Clifton. The seam was struck at depth of about 70 f
The screw steamship Essex, recently launched by Messr Humphreys and Pearson, of Hull, for Messrs Bailey and Leetham
has made a favourable trial trip. The Essex attained a speed of 1000 tont knots per hour, although she had on board near deave Hull for the Baltic, having been built specially for the St. Baltic tradenging to Messrs. Bailey and Leetham has been increased to twenty-six vessels of an average registered
burthen of about 800 tons. The Essex is 240 ft . long, 32 ft . beam 17 ft . in depth, and her bur The Essex is 240 ft . long, 32 ft . beam ment. Her engines are of 120 horse-power.

PRICES CURRENT OF METALS AND OILS

