THE NEW 12-POUNDER FIELD GUNS.
Rather more than two years ago a brief description ppeared in the columns of The Enoineer of an 8.8 in . gun on the muzzle-loading principle, which had been manufactured about that time at the works of Sir William Armstrong and Co., at Elswick, and which had been forwarded to the School of Gunnery at Shoeburyness for experimental trial. It was of peculiar construction, as although a "muzzle-loader," it was, notwithstanding polygrooved, and so contrived as to require no "studs" shell or shot, lead-coated, to take the rifling, the base of these, which was coned slightly, was surrounded by a ring of soft copper, that was driven tightly into the windage space-between the projectile and the inner surfoce of the powder gas, upon the shock of discharge. The more per by a copper band some 2 in broad encircling it. The ammunition, which consisted of common and chilled shells, presented the following appearance :-The irregular iucisions made radially along the coned portion of the base caused the ring of copper to grip the projectile tightly, and as the former absolutely fitted the grooves by the "set up" consequent on discharge, rotation during flight marked "B" in the accompanying sketch, had a twist increasing from 0 at the breech to 1 in 35 calibres at the muzzle. The results obtained during practice with this gun were very remarkable, windage being completely interrupted, and the effectual rotation of the projectile on its axis being satisfactorily accomplished. The initia velocity was, moreover, considerable. The 100 -ton guns completed in June last, are on this principle. A trifling difference exists in the nature of the rifling, however, that of the lou-ton guns for the Italian war vessels Duilio an Dandolo having a twist increasing uniformly from 0 at the breech to 1 turn in 50 calibres at the muzzle
During the two years which have elapsed since the introduction of Sir William Armstrongs $8.8 i n$. gun ness with shells fitted with copper "gas checks," on plans bv Major Maitland, R A, Assistant-Superintendent of the bv Major Maitland, R.A., Assistant-Superintendent of the Royal Gun Factories. These gas checks were simple discs of copper screwed on to the base of the projectile, and in some cases attached to it by undercut projections in order
to prevent its spinning off by the centrifugal force brought into play. They were of varying thickness for the different nature of guns, ranging between $\frac{1}{2}$ in. and lin. But Major
Maitland's gas check was so contrived with the undercut Maitland's gas check was so contrived wion the undercut projections alluded to and corresponding orifices in the fit the the shell, also with "feathers" or projections to fit the grooves, that the grip of the gas check upon the
projectile being rigid, and the set up of its soft metal into the grooves upon the shock of discharge being complete rotation was consequently so very greatly assisted that the studs of the projectiles were found to be hardly injured at all by pressing against the "driving edges" of the grooves.
In point of fact, during a subsequent trial with a 16 -pounder, the shell, which was fitted with a copper gas check thus constructed, took the rifling so effectually that the studs proved to be unnecessary. Hence the application of gas checks, which was only intended to prevent powder powder gas, opened up a new question as to studs and
rifling. And as a marked superiority had been obtained in initial velocity by the employment of these gas check owing to the improvement in centreing in the absence of windage, \&c., it was determined to rifle a field gun in a
manner suited to the application of a soft metal gas check, and to rid the projectiles for this experimental gun of the encumbrance caused by the projecting studs altogether. The form of rifling obviously suitable for this purpose was that of a polygrooved character. An certain comparisons between English and German field guns, which were drawn in autumn last year by a clearsubmitted by him to the Royal Artillery Institution. The accompanying table compiled by him speaks for itself as to the superiority of the German to the English weapon, both in regard to the armament of the horse artillery and to that of the field batteries.

Woight of gun	6 owt.	8 cwt .	7.080wt.	12 cost .	
Prope	lb .	1 lb .		10 lb .	
Number of aro			24		
cigt	2057	2320	196	295	
arr	175 lb .	175	2\%5	31 lb	$3 \cdot 31$
ith	1301ft	13815	1522	135	
mmon shol	9.17 l	${ }^{9} 1$	112	162	15.4
urst					
	981 lb .	9.81 lb .	$12 \cdot 2$	16.4	
1			122	119	
		40		18	
cight behind gun team ..	37\%	4051	3936	47681 b	

The German field-battery gun is 3 cwt . lighter than our 16 -pounder. Yet it consumes a far heavier charge of powder, fires a more effective shrapnel, and has a superiority of 100 ft . per second in initial velocity. Again, the German horse artillery weapon is slightly heavier than
our own, but the total weight behind the gun-team is less our own, but the total weight behind the gun-team is less
than in our equipment; furthermore this 8 -centimetres German gun consumes 1 ib . more powder than ours, fires a shrapnel $2 \frac{1}{5} \mathrm{lb}$. heavier, and gives no less than 130 ft . per
second additional initial velocity! The German guns are of cast steel, strengthened at the breech by a wrought ron jacket. The grooves are V-shaped, twenty-four in number, and diminish in size towards the muzzle.* The breech is closed by a soft metal gas-check tightened up by cylino ro-prismatic gas-check. It is needless to say that sensation of profound chagrin was aroused in the minds British artillerists by the publication of this report, and Colonel Younghusband, R.A., was instructed to manufacture an experimental weapon intended to eclipse that of the German artillery. A 9-pounder muzzle-loading rifled ge was converted by adding about muzzle-loaaing riffed
 powder chamber was made slightly larger in diameter than the calibre of the bore, that is to say, the gun was "chambered," to the extent of $3^{\prime} 6 \mathrm{in}$. in diameter, with a length bered, to the extent of 3.6 m . in diameter, with a length
of 10 in ., in order to consume a greater charge of powder. The nature of rifling was polygrooved, the old Woolwich orm being adhered to, to a great extent; only the grooves were very shallow and but ten in number. "heir appear twist was an increasing one, from 0 at the chamber to 1 in 30 at the muzzle, thus differing from the ordinary 9 -pounder of 8 cwt ., which has a uniform twist of 1 in 30 - plibres. The charge of powder was 3 lb ., and the shell weighed 12.75 lb . The weight of the gun was 8 cwt . The
 most suicidal policy. Artillery, in these days, takes a certainly be a weak point in our "lines of defence" if the Royal Artillery had guns of smaller powers of range, and throwing less effective projectiles, than those of nations with whom we might be at war to-morrow.
We propose to give subsequently a brief report upon the results obtained with each of the experimental 12 -pounders now under trial at Shoeburyness.

LITERATURE.

The Cry or National IIarbours, and its conncetion with our defective system of Public Harbour Legislation. By Captain
E. K. Calver, R.N., F.R.S., \&c. London : P. S. King. 1876. The intrinsic importance to England of the welfare of her sea-going community, the affection which the nation in general manifests for its sailors, and the universal desire that everything possible should be done to lessen he many perils of their calling, as well as the conviction hat the war supremacy of Great Britain the be, as it ever has been, principany maritime, have all conduced to the national admission that harbours of refuge are necessary and of great importance; and although the estimates cor such harbours have frequently shown that they would involve the expenditure of such very large sums of money as to preclude the possibility of any but remotely indirect return, that consideration has been outweighed by the importance otherwise attached to their acquisition.
Nothing can be said but in praise of the skill and ability Nothing can be said but in praise of the skill and ability with which most of these works have been carried out; but it must be remembered that while orders to proceed with their construction have been based upon the reliability of the estimates of their probable cost, these estimates have in many instances afforded no indication whatever of what has in the end turned out to be their actual price. Notwithstanding this, however, probably little dissatisfaction would be expressed were the promised results attained as the return for a large expenditure; but experience is proving that, though the designs for some of the more important harbour works have been carried out in a manner that leaves nothing to be desired, the designs themselves are more or less faulty, and have been prepared bastily or without sufficient local examination, observation, or condideration of the circunstances in general, which may conribute to, or render less probable, the success of the proposed work, and indicate the correctness or otherwise of the selection of its site. Had a reliable estimate accompanied the designs of some of the existing harbours, it does not seem likely that they would have been carried into effect; and the postponement which would have been consequent upon the rejection of those designs would have given time for the reconsideration of the projects, and the elaboration of more economical plans, based upon extended examination of the relative advantages of different sites, and consideration of the natural conditions involved. It cannot be doubted that, though sufficient data exist to enable designs and estimates to be correctly prepared for efficient harbours, these have been, in some flagrant instances, either ignored or used with much less wisdom than usually characterises the work of our foremost engineers. The brochure before us, written by Captain E. K the Surveying Service of the Navy, is directed principally against the proposed extension of Dover Harbour. The subject of the pamphlet is considered under three heads, namely, "Our Failures," "The Cause," and "The Remedy." Under the first head the author commences by placing before his readers a string of facts which justify
its title, and which refer to the Alderney and othe harbours. The works at Braye Bay were commenced in 1847 , their estimated cost being $£ 400,000$, but this expenditure, owing to alterations and extension of the designs, gradually rose "to $£ 1,300,000$ " at the time of the practical completion of the work in 1864. No less than $4,360,000$ tons of stone had been used in its formation which includes over three thousand yards in length of masoury breakwater, the head of the work being built " in the extraordinary depth of 130 ft . below the level of low water spring tides." In consequence of the exposed situation of the breakwater, its bistory during and after its completion is one of disaster; "in 1870 it was breached completely through in two places," and in reporting upon this Captain Evans writes, " all the conditions favourable to a port, so constructed, are wanting-the shores ar ocky and jagged-the water in which the breakwater is built is deeper than in any similar work in the world, the ides in the neighbournood ton with in usual velocity, whilst its position is exposed to very heavy seas, and to the "in the strict sense of "in the strict sense of a harbour of refuge, Alderney must be considered as wanting nearly all the essentials-che bottom enclosed, is rocky, wind." In 1871, after ove spots of good anchoring ground. alone, and the abandon $£ 44,000 \mathrm{had}$ been paid for damage alone, and the abandonment of the outer part of the breakwater had been proposed, the vote for its maintenance was struck out of the Government estimates, and the breakwater left to its fate Competent authorities agree that the place is useless as a refuge, and of no value for keeping Cherbourg in check," for which it was buit. Since 1872, during which year the Lords Committee entertained the idea of blow ing up the breakwater, dispersing the foundations, and filling up the harbour as the proper solution of the question," disaster has followed disaster, and tremendous breaches have been made by the sea, which would probably increase the cost of repairing to $£ 25,000$ or $£ 30,000$, with the prospect of a similar expenditure "at uncertain intervals; and, "like Sinbad with the old man upon his shoulders Alderney Harbour and fortifications" only "to prevent their falling into the hands of a hostile power." The bistory of the works at Braye Bay, says Captain Calver, is "more or less typical of what has taken place elsewhere." He then notices St. Catherine's Harbour, Jersey, the first estimate for which was $£ 700,000$, and which was abau
toned as useless when it had cost $£ 234,000$ ．Holyhead Harbour，the original estimate for which was $£ 628,063$ ， has cost $£ 1,285,000$ ，and the author concludes his remarks upon this harbour by saying，＂It is humbling to observe， upon a study of the site，that a breaikwater of a different flexure，and 900 ft．shorter than the existing one，would have covered in sixty－eight acres of additional deep water space，and，at the same time，have rendered the harbour far more accessible for purposes of refuge．Dover Harbour， the last example brought forward，is of present importance as having bsen lately－as it will probably be again in a few months－brought prominently before the public．At this port there is an area of about thirty acres covered by ancient defensive works and modern fortifications．In 1844 a Royal Commission recommended a harbour to be formed at Dover of not less than 520 acres of area outside low water－mark，and the present Admiralty Pier，begun was completed in accordance with the recommendation of committee sent to Dover in 1865，to decide the extent to which the pier should be carried out．Here the matter rested until 1874，when it was announced that the Govern－ ment intended to construct a national harbour at Dover， and apparently upon such designs that it seemed，says Captain Calver，＂that all the experience we had gained about such matters since 1844 appeared to have been com－ claimed for this national harbour，viz，，that it would serve the purpose of international communication，that ironclads could coal in it，and that troops intended for continental operations could embark from it．But，adds Captain how that these things could be done at Dover，but that to avoid the chance of needless expenditure the very first stage of the inquiry should have been to prove that it was impossible to effect these several purposes in its was meighbourhood；but it occasioned surprise when it its near that this crucial point was not effectively inquired into．＂ The proposed harbour provides for this in the worst possible form，＂as it has the radical defect of confining the track for large steamers to a comparatively narrow and frequented entrance which would have a rapid tideway rumning across it，and the vessels keeping up the communication，especially after dusk，would be continually exposed to risk，detention， which would supply all requirements under this liead with－ out interference with the public pier for purposes of war out interference with the public pier for purposes of war，
consists＂in a modification and extension of the existing inner harbour，with a workable and sheltered entrance and inner harbour，with a workable and sheltered entrance and
passenger mole near to the heel of the Admiralty Pier．＂ passenger mole near to the heel of the Admiralty Pier．＂
It is also suggested that international communication，as far as Dover is concerned，will become a matter of small far as Dover is concerned，will become a matter of small
import if it is found possible to carry out the Chaninel Tunnel．

As to coaling，it is said that all that can be required is be found in the inner Downs，where there is ample depth，room，and security in all states of the tide and weather，for sixteen swinging berths for ironclads，and here small coasters ride out the heaviest gales in safety． A fleet stationed here，being removed from the highway
of the Downs，would cause no interference with its navi－ gation，and it could slip，on an emergency，and proceed on gation，and it could slip，on an emergency，and proceed on
service by day or by night，and at times under circum－ tances when in a close harbour at Dover it would be locked up in a trap without the power of moving．The ronclads would be supplied with coal by screw collier rom the Welsh or North－Eastern coal ports，or from float－ ing depots－supplied by railway－to be at their moorings Dover，Ramsgate，or other places of security whesent and at Dover，Ramsgate，or other places of security，when it was
absent．As small colliers years ago had to pass half loaded absent．As small colliers years ago had to pass half loaded
over the shallow bars of their several harbours and fill up over the shallow bars of their several harbours and fill up
their cargoes in the roadsteads outside exposed to every casualty，and did it，it would not be very flattering to the esources of the naval officer of the present day to say that mand her movements，sheltered by a stone mole to enable her to go through the same operation．＂
With regard to the embarkation of troops，＂we have，at the present moment，connected with the military centres of Canterbury，Maidstone，Chatham，Sheerness，Woolwich， London，and Colchester，invaluable embarking places with from 18 fft to 50 ft ．at low water，at Sheerness，Gillingham，
and Chatham on the Medway，at Southend，Thames Haven， and Chatham on the Medway，at Southend，Thames Haven，
Gravesend，Greenhithe，Erith，and Woolwich on the Gravesend，Greenhithe，Erith，and Woolwich on the
Thames，and at Harwich in Essex，＂where all that is Thames，and at Harwich in Essex，＂where all that is
needed to make them fully and at any time available might be supplied in a few days in the form of short tramways and pontoons formed of the flat－bottomed barges always to be found at all these places．But a harbour at Dover，packed with vessels conveying an expeditionary army，would supply an enterprising enemy with a chance that he would not let pass by
The silting up of the proposed Dover Harbour is dwelt upon at considerable length，and on this part of his subject the author makes one of his most important points．After instancing，amongst others，Ramsgate Harbour，originally as deep as Dover Bay is now，but which has long enclosed nearly a dry waste of sand and mud，and Holyhead Harbour，which in 1857 had been reduced by 15 in．to 18 in ．in depth，the author gives the results of some experi－ ments carried out at Dover and elsewhere，from which he estimates that the amount of accretion within the proposed
harbour would not be less than 9in．per annum；but to be within the mark he takes it，in estimating the annual cost of keeping the harbour open，at 6in．，and this would cost $£ 14,000$ per annum，exclusive of plant，to remove As che cause of the failures，the author points to the direct result matters to be decided by persons who have a personal stake in the proposals，and who，from circumstances，are unable to deal with them，＂and who are thus placed in a position unfair to themselves and to the public．As usually referred，the author says，＂We all know that the selection of a proper site for a national harbour，with it
projection，is a complex question，embracing as it does military，naval，strategical，nautical，and physical con siderations of the highest importance，all of which ough to be thoroughly sifted and weighed in the light of experience before a decision is arrived at．Such is the problem to be solved，and it is contended that no
engineer，be he civil or military，is fitted to deal with it engineer，be he civil or military，is fitted to deal with it single－handed；it is not his province，and experience conclusively proves that it is not within his power．＂In prisal know legislation，the public interested in the pro measures the public are not in court，for they are decided substantially by the Government authorities and their advisers，over whom there is an entire absence of proper control＂except that which may haply be supplied Houses of Parliament，＂And whatever may be the desire of the authorities to know the truth about the schemes pressing for their support，there being no board cognate authority possessing the necessary theoretical and practical information to which the case may be referred they can only employ for the purpose the defective machinery which custom has established．
As to＂the remedy，＂our author says that＂improvised committees and commissions ought at once to be given up．

When the members of such bodies are selected for this duty not because of their fitness for grappling successfully with the questions submitted to them，but
only for their accidents of place and name，need we wonder that crude schemes are promoted at times with only a bare chance of successful challenge．＂The subject is of public importance，and as it embraces all the conditions above of these branches of professional knowledge outht to have wo or more representatives in a permanent body to be termed the＂Referees for Government Works，＂to be called together，and to be paid only at such times as it might be necessary to subnit questions for their considera－ tion．＂This，Capt．Calver says，would not be a lucrative appointment，but would be regarded as an honourable position and an acknowledgment of professional standing． The Dover scheme is characterised as worthless，and one befor would probably sink a million and a－half sterling bemands was completed，any harbours，while it would be vastly better for the nation were such a sum as the above＂advanced at low interest to supplement local efforts for the improvement of our small，but numerous， harbours，especially as it is becoming increasingly apparent shall（by preference）eventually depend as stations for effective means of national defence，＂
We have thus touched upon some of the more important points，and in many instances given the author＇s concise entences，from this pamphlet，which covers fifty－one pages upon a subject of national interest．

NEW ROLLING STOCK．
Shatement of the Now Rolling Stock Charged to Capital by the Principal Railvay Companies in the Half．year ending
3oth June， 1876 （compiled from official sources）

	Locomotive．			Coaching．			Merchandise．				$\begin{aligned} & \text { Total } \\ & \text { charge to } \\ & \text { capital. } \end{aligned}$
		部薄 4 4	Amount．	宮		Amount．	告		Amount．	$\begin{aligned} & \text { 品家 } \\ & \text { 关 } \end{aligned}$	
Belfast and Northern Counties Caledonian（tank engines）	${ }_{3}$	1250	$\overline{3}_{3,750}$	20	$\frac{\varepsilon}{163}$	3，259	${ }_{43}^{33}$	¢ 145 60	$\begin{gathered} \varepsilon \\ \substack{4,778 \\ 127,798} \end{gathered}$	£	$\begin{gathered} \varepsilon \\ 4,778 \\ 134,807 \end{gathered}$
Furness ．．．．．．．．．．．．．．．．．．．．	1	29	2，729		－	$\left\{\begin{array}{l} \text { Open ... } \\ \text { Covered. } \end{array}\right.$	238	98 118	35，124		37，853
Great Eastern ．．．．．．．．．．．．．．．．．．	20	2630	52，600	111	341	37，888	207	130	26，926	4，079	121，493
$\begin{array}{ll}\text { Great Northern（1）．．．} & \text { ．．．} \\ \text { Great } & \text { ．．．} \\ \text { ar }\end{array}$	33	2230	73，582	15	599	8，995	377	82	30，770	5，277	118，622
	20	${ }_{2281}^{1608}$	32,157 6,844	71	${ }_{236}^{364}$	$\begin{array}{r}25,809 \\ \hline 942\end{array}$	125	80 96	10,068 34,517		68,034 44,473
London，Brighton，and South Coast ．．．．	8	2800	22，400	36	－		454	－		＋1，658	89，944
London，Chatham，and Dover．．．											26，205
London and North－Western ．．．．．．．．．	13	1103	14，338	70	359	25，130	291	77	22，222		61，690
London and South－Western				17							21，404
Manchester，Sheffield，and Lincoln ．．．	14	${ }^{2163}$	30，280	16	472	7，550	253	115	29，132		66，962
Midland ．．．．．．．．．．．．．．．．．．．．．	65	2529	164，290	217	415	90，162	117	74	8，642	26，476	289，570
Midland Great Western ．．．．．．．．．	6	2777	16，662	－	－	$\{$ Covered	${ }_{6}^{100}$	125	13，718	－	30，380
North British（2）．．．．．				13	226	${ }_{2,932}$	1049	74	77，700	10	80，742
North－Eastern ．．．．．．	33	2324	76，701	78	255	19，848	1198	118	141，292		238，541
	${ }_{5}$	2778	13，890	二	－	Cattle．	25	125	3，125	800	3，125
Rhymney ．．．．．．．．．．．．．．	\bigcirc	27	10，0，0	15	235	$\overline{3,530}$	二	－	－	1，362	4，892
South－Eastern ．．．．．．．．．．．．．．．．．．	3	2282	6，845	22	557	12，254				383	19，482
Waterford and Limerick．．．	4	2764	11，055				100	117	11，691	$\ddagger 484$	23，233
Total number Average（mean）value Gross value（partly established）	$\overline{243}$	$\stackrel{-}{2320}$	$\underset{563,000}{\bar{Z}}$	$\sqrt{705}$	$\overline{380}$	$\underset{268,000}{\square}$	$\overline{7310}$	－ 8	629，827	$42, \overline{799}$	$\overline{\overline{\text { 二 }}}$

Not distinguished．

1）Great Northern．－Merchandise ：Average cost－Open，$£ 82$ ；brake，$£ 132$ ；and ballast，$£ 74$ per wagon．

$\begin{array}{llll}\text { Do．} & \text { Do．} & \text { Do．} & \text { Mineral } \\ \text { Do．} & \text { Do．} & \text { Do．} & \text { Brake vans } \\ \text { Do．}\end{array}$

Her Majestr＇s Ship Dreadnougat．－The new twin screw Louble－turret ship Dreadnought，built at Pembroke，arnved a hydraulic gun gear fitted and to be generally completed for sea．She eft Pembroke at about half－past turec on Saturday afternoon，and had good weather all the way until near her destination，when she
encountered a heavy wind，which put her seaworthiness to vith very gratifying results．Though escorted by the Volorous， Captain Jones，she made the voyage entirely by means of her own machinery，which is by Messrs．Humphreys and Tennant，and was ound to work in a very satisfactory manner．The engines are onstructed on the inverted direct－acting plan，each having three cylinders，the high pressures having a diameter of 60 in ．，and tube plates of the boilers are 3 in．thick，the shells being of the same thickness，and the back plates jin．The contract price of
the engines is $£ 70,000$ ，while the boilers will cost over $\& 30,000$ more．During Sunday the engines were tested with a pressure of 301b．to the square inch，or one－half the full pressure at which
the boilers are intended to be worked． A maximum of 54 revolu－ tions was obtained，the horse－power developed being 4900 ，or con－ siderably over one half the contract power．The greatest speed
realised was close upon 13 knots．A splendid vacuum was reached， the gauses indicating 28 lb ．and 29 lb ．in the condensers，This vessel was originally named the Fury．
mb．Jugeins upon the Nut and Bolt Trade．－Mr．Juggins a great man amongst the operative nut and bolt makers．He is he general secretary of their Union，and exeroises immense in Huence over the men．His viows are，therefore，of no little
interest，and they relate to the industry of which he professes to know ，om much．Speaking at a meeting of his craft，held at Dar－ laston a few days ago，Mr．Juggins，whilst he admitted that there
was some ground for alarm at the cry as to foreign competition， was some ground for alarm at the cry as to foreign competition，
contended that it was due in no way to the alleged immoderate ontended that it was due in no way to the alleged immoderate emands of the operatives，but rather to the large profits that the
masters were alone satisfied with．Referring to Belgium，he said masters were alone satistied with．Referring to Belgium，he said
that while operatives there were content with lower wages than English operatives，Belgian masters were satisfied with smaller
proits．He denounced the nse of machinery in the making of nuts and bolts，saying it took employment from the workmen，who were bound to，be well paid for the comparatively smon
they did．The machine－made articles were not nearly so good as
the hand－made，and to that inferiority were due destructive and atal accidents．It was often attempted by the firms who made hess nuts and b
places，and they had spent between $£ 200$ and $£ 300$ in supporting the men who were out．It was the interest of the trade to do so，
and keep those disputes at a distance，away from the places where the bulk of the trade was．
New Steas Excavator．－Messrs．Alex．Chaplin and Co．，of the
Cranstonhill Engine Works，Glasgow，heve just pawerful＂＂teane Works，Glasgow，have just constructed a very exhibiting under steam in their premises during the past week． The frame is entirely of malleable iron，with angle irons welded at the corners，plated with rit plates，and weighs $4 \frac{1}{2}$ tons，Under
neath the frame are two steel axles，each having four wheels，the outside ones double flanged for the and the inside ones single flanged，so as to go on a 4 ft ． 8 in in．rail－
way gauge way gauge．The front part of the machine is supplemented by two
wings，one on either side having screws so as to wings，one on either side，having screws so as to give lateral stability to it．The motive power consists of a pair of Sin．cylinders of the inverted type，with pinion and crank shaft，working into a larger
wheel in the barrel，which is grooved to receive the chain Near the fre barrel，which is grooved to receive the chain． round which the jiio，which is of malleable iron，is made to revolve for one half of a circle．Two men are required to work the machine one having entire charge of the engine for hoisting and slewing，and
the other out and in motions of the digger．This latter，by the use of a
friction friction clutch and friction brake，has the entire control pushing the digger o

Simultan bucket or

 bucket or spoon is drawn by pitch or chain wheels，and it scrapesup the face of the up the face of the bank，taking a cubic yard of material at every
lift．Alongside the machine there must be accommodation rails for the wagons to come and receive the soil；and as soon as the bucket is filled，it is slewed round by the attendant at the engine， either to the one side or to the other，right over the empty wagons，
and a trigger being drawn，the contents of the bucket fall into
the the wagon．While the bucket is returning to the working place， it shuts automatically at the bottom，and so is prepared to rake up by having placed on one end of it the boiler and engines，and at the
other the jib．gear and bucket，the whole machine present the appearance of being admirably balanced，and certain to sit like
rock with an immense strain upon it．The machine is size that it will carry a cutting down to a depth of twenty feet
while it is stationed in one level，and it is calculated that by its use the labour of eighty men will be superseded．The one exhibited
last week has been built for a limestone quarry near Edinburgh，
where it will be employed in tirring off the strata overlying the
limestone．

RALLWAY MATTERS．
The Baldwin Locomotive Works have just completed the first locomotive for street cars made by them，in which the boiler and
machinery are separate from the car．A trial trip will soon be made on the Market－street railway，Philadelphia，and wo have
little doubt that we shall be able to record it a complete success． The new passenger station at Alexandria，built on the site of the
former one，which was destroyed by fire in September， 1875 ，is now nearly completed．On the up line there are a commodious booking office，general waiting－room， 38 ft ，by 16 ft ．，ladies＇and gentlemen＇s
first－class waiting－rooms，porters＇room，and private office for the
station agent．On the down line a general waiting－room only，with attached，has been put up．Tho platforms are with glass．The platforms have been elevated and
thened，and the rad leading to the main station is to be
to widened to admit of carriages driving up to the booking－office door
－a thing that has not been the case hitherto．We understand
that about $2 \downharpoonleft$ acres of ground in a contiguons field have been taken off for the formation of additional sidings，for additional accomme－ dation for goods traffic．
Latest advices from China state that the firat fatal accident
has happened on the Woosung Railway．The general opinion among the natives is that no blame attaches to the company spondent，writing to the Times，says that the railway continues
to work quietly and without interference，but he considers that He line is by no means altogether safe from official hostility
He says ：－The Viceroy of Nankia is said to view it with greai dislike and to regard its inauguration as a slur upon his govern
ment．He has， 1 am told，sent two mandarins to make a carefo survey of the line and to find out accurately what can be said
against it．It is reported that the Taotai wants to resort to the old device of inciting the people to tear up the rails，and that
the object of a visit he has lately paid to Nankin was to obtain
the consent of the Viceroy to the scheme．My informant does not know what view the latter took of the proposal，but it is
of opinion that some measures will be taken before long of decided The Midland station at Bedford has just left the hands of the
contractor．For some time it has been manifest that the growing importance of Bedford as a centre of traffic would speedily neces－ sitate the enlargement of the station，and accordingly in the
autumn of last year the directors ordered the down platform to be autumn of last year the directors ordered the down platform to be corated．The contractors selected were the well－known firm of
Messrs．T．and H．Skevington，of Derwent－street，Derby，and of the works，the covered portion of the station has been largely increased，and the whole building，including waiting－rooms，\＆c．
has been finished off in a style worthy the firm engaged and
the increasingly the increasingly important town of Bedford，It is worthy of
note that though during the four months in which the contract been at one time or another under repair，the work has been so
ably conducted that the convenience of the travelling public has not been in the slightest degree interrupted．The work was com－
pleted on Friday morning，and the station now presents a light and most pleasing appearance．－Bedford Mercury．
THE Maenclochog Railway was opened on Tuesday，the 19th Great Western Railway，and passes through a most interesting dis－
trict in Pembrokeshire The length of line from its commence－ trict in Pembrokeshire．The length of line from its commence－
ment to Rosebush is about eight miles and five furlongs，and its
construction－which bas occupied nearly three years－has called construction－which has occupied nearly three years－has called
into exercise considerable engineering skill．The line of country
between Prescelly and Clynderwen is very steep，and its ascent between Prescelly and Clynderwen is very steep，and its ascent
over，in some instances，very treacherous ground．The line was
chiefly designed for the conveyance of the slates and slabs obtained at the quarries of Rosebush，the supply of which was restricted
because of the want of communication．The line of railway runs directly to the quarries，and there is no doubt that their pro－
duce will now find its way in greatly increased quantities to
various parts of the kingdom．It is intended to run fast coaches from Rosebush to Fishguard－a distance of nine miles－by which the gradients of the line on account of the nature of the country
are heavy，but the line will be worked with engines of great power，and the carriages are provi． who have devoted great attention to the work，the whole of which，
even to the most minute detail，has been well and carefully done． even to the most minute detail，has been well and carefully done．
ONE of the extensions of the North－Eastern Railway is the branch now completiog which traverses Wensleydale from the
western terminus of the Bedale and Leyburn branch，and forms a juncticn at Hawes with the branch diverging for that purpose from
the Settle and Carlisle line of the Midland．The Wensleydale oranch was commenced about the beginning of 1874，and its
estimated cost，accomplished and expectant，is $\mathrm{K} 211,570$ ．Avoiding the little town of Leyburn by a long outting through the limestone rock between it and the river Yore，it crosses the main road up the
dale before reaching the ancient village of Wensley，from which the dale derives its name，passes on nearer the foot of the natural
terrace called Leyburn Shawl by the lead mines and smelting mill at Keld Heads－the first station on the branch accommodating the mining village as well as the village of Wensley．It leaves the
grand hall of Bolton to the south；after another limestone cutting． passes the ruins of Bolton Castle，the second station at Redmire
serving that village as well as Bolton．Running south－west
towards Carperby，the third station isclose to thebeautiful if broken waterfall at Aysgarth．Higher up the valley at Askrigg，is the last station on the branch for that place and the ancient little
town of Bainbridge，and crossing the river Yo town of Bainbridge，and crossing the river Yore by an iron girder
bridge，it reaches the junction station at Hawes．The country in it seems to have passed its meridian，for the whole output of the dale appears not to exceed five hundred tons，the chief mine being may revive the industry．Wool－combing，flax－dressing，and other
allied trades carried on some yeara ago in the dale，seem to have allied trades carried on some years ago in the dale，seem to have
died out，except at Hawes；but the agricultural wealth of
Wensleydale has of late years been greatly developed Wensleydale has of late years been greatly developed，and its herds
are notable．The district，also，is rich in natural advantages－in beautiful scenery，in many magnificent views，and in romantic more advantage from the passenger and cattle traffic than from
goods or minerals，and whilst they will be probably a fair through traffic between the eastern and western railway systems of the North，of which it forms a connecting link，it is probable that one
of the chief sources of traffic will be that drawn to it by the desire to
see its natural beauties．The length of the line，it may be stated is close upon seventeen miles．The four stations are neat and
commodious ones，built of local greystone，and tolerably con－ veniently placed for a population not dense．The engineering obstacles have not been very numerous．The bridges are，as might
have been expected from the nature of the county，very numerous， crossing the river，to which reference has been made．Two of the
che cuttings through limestone rock and boulder clay aro of some
extent，the first causing the excavation of some fifty thousand yards of rock，and the second， 22 ft ．deep，extending for half a
mile，and demanding the excavation of between fifty and sixty
thousand yards． thousand yards．A long retaining wall has also been necessary Messrs．Gibbs and Son，and the engineers，Mr．Bevan and Mr．
Riddell．The line is single，but the bridges nnd other works have been constructed to allow of after duplication，if necessary．The opening of the line is anticipated this year．

NOTES AND MEMORANDA
The bath usually employed for imparting the colour of fine gold common salt，to which is added some acid sulphate，like alum，or
ferric oxide，so that a dilute aqua regin is produced．R．Wagner ttempted to substituto dilute aqua regia，but without success． He accomplished his object，however，by using a solution of one thirty grammes potassic bromide－in one litre of water．The作解 in the bath three to five minutes，then removed rinsed with a solution of sodic hyposulphite．
The following details are given of the utilisation of raw lignite
in the blast furnaces in Styria：－In 1874 the furnaces of the Styrian Eisenindustrie Company were daily producing 800 cwt ．dark gray
Bossemer pig，from ores containing 46 to 50 per cent．iron．Per Bossemer pig，from ores containing 46 to 50 per cent．iron．Per
cwt．of iroa the consumption of coke was 150 lb ．，and of limestone
30 lb ．，the temperature of blast about 400 deg ．Cent．The coke burden was 30 cwt．，carrying 40 to 42 cwt ．ore．The furnace possasseut 211 lb ，In April， 1875 ，the manager hid been able to
wasplace 50 per cent．of the coke by raw lignite．He considers as
rep replace 50 per cent，of the coke by raw ligresed pressure of blast，
essential to the success of this chargeanincreased and noteased te
The following extract from a Nevada newspaper appears in the New York Army and Navy Journal：－＂While in this（Virginia and mining engineer．In the course of the conversation Lieut．
Wheeler referred to a certain section of Lower California in which Mr．James made surveys in 1873 for a certain purpose．In making Wheeler had one of James＇maps with him while in that region this summer．On the map was marked a large lake－a lake one
hundred and fifty square miles in extent．All that Lieut．Wheeler found of this lake was a small pond．The indications are that in rapidly becoming extinct is situated between Signal Mountain Cocopah range，and the Coast Range Mountains，Mr．James found the lake very shallow about the shores，it being not more than a foot in depth one hundred feet from the shore．Mr．James filled a canteen with water from the lake and brought it home with him．
He found it to be a saturated solution of salt．In drying up，the Waters of the lake have left a large deposit of salt．
THE following note on the cause of discrepancies
ion of silver in pig lead，by Dr．Paul Schweitzer is in the estima I had occasion，he says，some years since，to determine the silver two samples for this purpose from a kettle which contained abou ounces of silver，inclusive of 0.36 ounces of gold， lead，while other parties who assayed it at the same time，but took their samples from one or more slabs cut out of the middle of the pigs，reported somewhat less．Thinking it not at all unlikely tha from different parts of the pig，I cupelled seventeen samples，each eighty－five pounds in weight，under as nearly uniform condition clearly prove the exist the outside than in the interior of the upper than on the lower side，and in fact more in all those
parts which solidify before the rest of the metal，which contain parts which sondiny before
them correspondingly less．
More than nine－tenths in value of the exports in the year 187 From London went merchandise of the value of $£ 57,923,927$ ；from Liverpool，$£ 79,460,771$ ；from Hull，$£ 23,273,231$ ；from Grimsby
$£ 10,149,580$ ；from Glasgow，$£ 9,128,372$ ；from Southamptom， from Cardiff，$£ 2,837,747$ ；from Harwich，$£ 2,806,149$ ；from Hartle pog，$£ 2,484,64$ ；$£ 207,000,000$ of the $£ 223,465,953$ ，which is the total value of the British and Irish produce exported in the year．
Liverpool takes the lead in its vast exports of cotton，linen，and woollen goods，and the exports of coal materially raise the total at Newcastle and Cardiff．The twelve principal ports of entry for same as the chief ports of departure above named．The import into the port of London in 1875 reached the value of $£ 135,102,452$
Liverpool，$£ 105,095,188$ ；Hull，$£ 18,456,334$ ；Follest Southampton， $19,236,460$ ；Glasgow，$£ 8,987,005$ ；Leith，$£ 8,084,081$
Bristol，$£ 6,911,963$ ．Newhaven Dover，$£ 5,409,042$ ；Newcastle，$£ 5,151,115$ ．The sumstogetherexcee the total value of the imports of merchandise ine $£ 373,939,577$ Kingdom in the year．That total was never before equalled in any never exceeded or equalled，except in the three years next pre ceding 1875．The imports of the year comprised articles of the facture；articles partially manufactured，of the in value
£28，568， 206 ；articles wholly manufactured，of the value £39，552，176；articles of food，of the value of $£ 162,274,950$ ，or ten
millions more than in the preceding year ；and other miscellancous articles，$£ 4,496,697$ ．
by Mr．H D．experiments have been made with petroleum oi a recent meeting of the American Chemical Society．A report of these experiments the following conclusions may be drawn：－ 1．The naphthas distilled were comparatively heavy， 59 deg ．t
64 deg．B，technically known as benzines． 2 ．The removal about 10 per cent．of these naphthas from an average unsafe
raised the flashing point 2.27 deg．，and the burning point 1.6 deg ． for each per cent．removed；the addition of the same proportio
of naphtha of equal specific gravity very nearly the same ratio．3．A paying amount of a light
naphtha，above 70 deg．B．，could not be added to even a very high
grade oil without making it conspicuously bad，while as much grade oil without making it conspicuously bad，while as much as
10 per cent．of a heavier naphtha－benzine－of 65 deg．B．could be added to an oil of little above 100 deg．F．flashing test，an
make it no worse than much of the oil now in the market 4．When a small amount of naphtha of above 70 deg．B．is added
to a good oil the flashing point is lowered much more rapidly the the burning point；if the oil is of very high grade and the naphth
moderately heavy， 65 deg．B．，the burning point of the oil lowered almost as rapidly as the flashing point，；while the addition
of a naphtha of 65 deg．B．to a moderately good oil，flashing at 104 deg．F．，lowers the flashing point 35 to 40 per cent．mo
rapidly than the burning point．5．The burning point is not
reliable test of the safety of an oil，since oils，when spilled，will reliable test of the safety of an oil，since oils，when spilled，will
ignite instantly on the approach of a flame，when heated a degree
or two above their flashing point，even although the burning point or two above their flashing point，even although the burning point
is 10 deg．or 20 deg．F．higher．This fact has been so often shown Chemist，that it seems scarcely necessary to repeat it．6．Experi－ ments show that an oil flashing at to repeat it．6．Experi－
107 deg．F．，can be made to flash at 100 deg．F．by removing at
6 or 7 per cent．by distillation．This corresponds nearly with the
estimate furnished to Mr．Cornwall by Mr．H．N．Rogers（Charles Pratt and Co．，refiners），that average petroleum yielding 75 per
cent．of 110 deg．F．＂fire test＂－burning ，test－oil，would pro－
 removed to make a 100 deg．＂flash＂＂oil．The average flashing
point of eight oils given in Dr，Chandler＇s report as burning at
110 deg．F．was 89 deg．

Tue death is anno MISCELLANEA． spector of Machinery at Chatham Dookyard．He died at his inth year．Mr：Baker was made a Companion of the Bath in ogion of Honour，and of the 5th class of the Turkish order of the Tux 11 1866 Tge Brazilian ironclad Independenzia was to have been floated
at of dock at Woolwich on Saturday afternoon，but the tile did筬 ot prove so favourable as was expected，and the attempt was lockyard under repair for a yoar and nine months，and she is now
oated to be trioroughly sound，and none the worse for the strain he underwent during her long detention on the launching waya at THE shareholders of the Eistern Telegraph Company met on
Ionday under the presidency of Mr．Pender，M．P．，and，after a ong discussion，passed almost unanimously a resolution sanction－
a convontion with tho French Government to lay a cable eetween France and Algeria，and also a wire through France from 100，000，and that the net traffic receipts will amount to $£ 8000$ a A TRIAL trip has been made over the new Australian line，the Deniligan and Moama Railrond，at a speed of thirty miles per hour．
Mr．Green，C．E．，of the Victorian Government Railways，who recently inspected the line，came to the conclusion that sixty miles per hour could be run over it with safety．The length of the line
in forty－five miles，and its coat thus far has been something under 120，000，that amount including stations，officers＇dwellings，a
temporary bridge over the Murray，rolling stock，\＆o．Additional olling stock and some more station buildings are expected， however，to carry the cap
of the first year＇s traffic．
The Lords of the Admiralty have granted a boon to the men mployed in the royal dockyard and victunlling departments which
has created the greatest satisfaction．Their lordships have ordered hat upon the death of any man employed in the naval establish－ ments after twenty years service and upwards his full pay for the orphans．Should his death have．been the result of an accident in the service，and in case he received half－pay while incapacitated， receive it．Hitharto the widow and orphans have received

The Dublin papers report a serious burst in the Vartry pipe，
bout a half a mile from Enniskerry．The pipe passes under the
and about a half a mile from Enniskerry．The pipe passes under the
river which flows between Eniskerry and Bray，and the burst has to get at by reason of the swollen condition of the river．Large reat volumes，considerably adding to the size of the stream．On alf the Enniskerry road was cut across．Great energy is being displayed to grapple with this，per． is the largest stream under which the Vartry pipe passes on its
way to Dublin from Roundwood．If heavy floods come，there is Acrive preparations are now in progress for the construction of
the Hudson river tunnel on the Jersey shore．The entrance to he excavation will be carried in a north－easterly direstreet，and
 miles in length，and it is calculated the cars will pass through it in
three minutes．The road bed will be 23ft．in width．The shaft at the foot of Fifteenth－strect，Jersey City，is 100 ft ．in circumference，
and the brick wall is 3 ft ．4in．thick．The shaft has been sunk to The depth of 20 ft ．，and will be further excanted the the depth of The machinery for the work is now in position，and the excavation
of the shaft is nearly completed．The eastern grade of the tunnel is 2 ft ．in 100 ft ．，descending from Jersey City，then ascending
on the New York side 2 ft ．in 100 ft ．As soon as the shaft is sunk when an iron cylinder with hinged doors will be inserted so that the labourers can proceed with the work．Compressed air will be forced from the surface into the cavity．Very little blast will be
necessary，the first vein of rock being 1100ft．from the New York side，and the rock is soft．The depth of earth over the masonry
will not be less in any part than 35 ft ．，so that no injury can occur will not be less in any part than 35 ft．，so that no injury can occur
from the anchorage of vessels．The cost of this stupendous enter－ already subscribed．
Sars the Springfield，Mass，Republican：It is rather－remarkable
that the prize of 100,000 dols．offered by the State of New York or the application of steam to canals，has utterly failed to bring out a practicable device，while the Belgian cable－towing system，
which was specially excluded from competition for the prize，is in the Baxter system，but the canal．The which awarded 50,000 dols．to that system has become bankrupt，and its effects have been sold under the hammer．The failure was inevitable，from the fact that it costs more to apply the system to a canal barge than it would to
build a new boat，thus doubling the first cost of the craft．On cessful operation between Aiddleport and Buffalo，forty－two miles， for several weeks．Since the middle of June，two tow－boats have each，against a strong current，without injury to the canal and boats，with 1500 tons of coal，were towed against a three mile double the usual animal power．One boat consumes a ton of coal
in twenty－four hours，and can be operated for that time．The charge to boatmen is the expense of 25 dols． power，but the speed is two or three times as great．Altogether， we do not ree why this system does not achieve all that can
THE destruction of oil by lightning this year，says Stowell＇s
Petroleum Keporter，has been remarkable，amounting to 242,412 Petroleum keporter，has been remarkable，amounting to 242,412
bbl，from January 1st to July 31st of this year，or rather
from April to August；there were no fires from this cause May，foury，in June，and five in July．It is in Apracely necessary to
Mary，or Marh，two in Apne in
inform our readers that the oil destroyed is in closed－top iron tanks， and the lightning striking these，explodes the gas that collects in
the space above the oil，scatters the oil，and sets it vicinity．The theory most commonly received in the immediate the cause of such frequent lightning＂strikes＂is that the
which，it is well known，is these tanks，rises to some distance above the tanks，acts as a con ductor，attracts the lightning and the damage is done．One pecu－ been able to learn，no iron－top tank has been struck，but in every
ber point，with the uniform result given．So far，attempts to protect number of rods，supposed to be ample protection，were placed about the tanks，but they were no protection against this summer＇
bolts．It may be interesting to those not acquaintel business to state that in case of losses occurring in this way all the oil in the pipe line to which the tanks belong is assessed pro rata
for the loss；that is，the law of＂general average，so well known
in marine law，is applied in this case．

VERTICAL ENGINE AND BOILER. messrs. E. R. AND F. TURNER, ENGINEERS, IPSWIOH.

Is theaccompanying engraving we illustrate a very handsome combined vertical engine and boiler, constructed by Messrs E. R. and F. Turner, of Ipswich An engine almost precisely iden tical, and the first one made by ham last July, when we com mented upon it in favourable terms. The engraving is practi cally fully explanatory, so that little description is requisite The dimensions of the engine are about the same as those adopted for portable engines of the same nominal power. One of the most noteworthy features abou the engine is the extremely neat arrangement of the governor which is completely enclosed in a polished cast iron ball, shown in section in our engraving. engine have been carefully engine have been carefully
studied, and the diagram will, as a whole, repay inspection. It is hardly necessary to add tha the finish of the machine is everything that can be desired. We believe we are correct in stating that this is the first vertical engine and boiler com bined made by Messrs. Turner as a speciality, and the circum stance that so influential a firm should adopt this system afford growing popularity.
It is a remarkable fact in mechanical engineeringthat very few years have elapsed since vertical engines and boilers com bined were regarded as the most imperfect combination of ma chinery in the market, whereas at the present moment the sale of such engines is enormous and on the Continent they appear to be specially appre-
ciated. No engines or boiler luve reccived pore attention lave received more attention of is that in finisl, safety, economy of fuel, and moderate price, they compare favourably with any other form of steam machinery, while the vertical system pos sesses above all others, the great advantage that it occupies less room than its rivals. The importance of this consideration is gradually forcing itself on the power in our manfacturing power in our manufacturing sometimes spent in obtaining land on which to put up engines and boilers of the usual type as would pay for the entire machinery if the vertical system were adopted. And we find manufacturers driven to their wit's end for power because they think they lack room for another boiler, who have all the vertical boiler of 40 or 50 horse power could be placed withous power could be placed without
the least difficulty. The effort of such firms as Messrs. Turner will do much to dispel the pre judice which has hitherto existed against a system which mend it.

THE STRENGTH OF CAST IRON FITTING BLOCKS
CAsT iron fitting blocks are used freely by boiler makera compensate fression that such blocks while of small diameter compensate for the weakness caused by the hole which the block
goes over. There is, however, reis力n to believe that thi

impression is erroneous, and Mr. Fletcher, of the Mancheste Steam Users' Association, deprecates the use of such blocks very In march 24th, 1876, we referred at considerable length to the experiments carried out by Mr. Fletcher with a boiler specially constructed for experimental purposes by Mr. Beeley, of Manchester, and we illustrated the boiler in question. In all eleven bursting tests were applied up to last March in order to ascertain the weakest portions.

In the accompanying engraring we illustrato from a photohe bee fracture of a cast iron mouthpiece or fitting block at nd soue of a 6 in . steam stop valve. The casting was very good lates of. The pressure was 275 lb , on the square inch. The and are the 10 , boiler shell were double riveted, hat the cast iron fitting piece did not It is evident from thin trength in the plate caused by cutting a 6 in point worth notice in cutting holes in boiler shells has never received the attention which it deserves, These holes are very frequently left ragged at the edge, and if closely examined, it will be found that minute cracks radiate from them into the plate. The weakening influence of such cracks, however small and short, is well understood. In all cases the edges of holes in boilers should be cut off clean and sharp, and the general use of some modification of the rose cutter which would smooth off holes up to 6 in . in diameter would be a very good thing.

ADAMS' SAFETY VALVES

Axong all the various safety valves that bave been produced within recent years none perhaps has attained so much popuAnt and the Bee, West Gorton, Manchester. Much of the favour which the valve enjoys is due no doubt to the of the favour MacFarlane Gray, of the Board of Trade, is always willing to pass it when fitted to marine boilers. The consequence of this adoption by the Board of Trade is that it has now been fitted to the boilers of the Peninsular and Oriental Company's boats. The Cunard, the Guion line, and the Royal Mail Company have also adopted it for almost all their steamers. Private firms have followed suit, and, thanks to the favour of the Board of Trade officials and the inherent excellence of the valve, it is probable that in a little time all steamships carrying passengers will be fitted with it.
We show the valve in its original form, Fig. 1, and its latest
form, Fig. 2. In Fig. 1 A B is the seating bolted to the boiler; P form, Fig. 2. In Fig. 14 B is the seating bolted to the boiler; P is
a species of ormamental hood secured by the pins on top; thes pins can be locked to prevent access to the valve; C^{1} is a casing inclosing C, a second casing in which is fixed the spring loading the valve, which bears on the collar W

Fio. 1.

half sectional plan throuch valve
The peculiarity of the valve consists in the grooved seat V made in the valve, and the effect of this is that the area of the valve is practically augmented at the moment the valve lifts

The result is that the valve will blow off to its maximum capacity with an increase of but 2 lb . or 3 lb . pressure in the boiler, of pounds below that to which the valve is loaded falls a couple

The above illustration is taken from a photograph of a new elass of engines for the Indian States Railways, of which twenty have been built
by the Vulcan Foundry Company, Limited, Newton-le-Willows, The principal dimensions of these engines are as follows, viz, --Gaugo
of railway, 3 ft .3 j in, or what is generally known under the designation of railway, 3 ft .3 3 in , or what is generally known under the designation
of metre gauge ; diameter of cylinders, $11 \frac{11}{2}$ io. by 17 in. stroke ; whee of metre gauge ; diameter of cylinders, 11 ivio. by 17 inin . stroke; ; wheel
base of engines, 11 ft . 3in. ; ditto of tender, fit. 6 in.; ; extreme wheel

 surface of $444 \cdot 25$ square feet; area of fire-grate, $6 \cdot 9$ square feet; dis-
tance between frames, 2ft. 95in.; diameter of leading and driving wheels, 3 ft ; ; diameter of trailing and tender wheels, 2 ft . 1 gin.; ; capacity
of tender tank, 800 gallons $;$ fuel space, equal to 64 cubic feet. of tender tank, 800 gallon8; fuel space, equal to 64 cubic feet.
The principal points of interest in connection with the specified details are as follows :- All the valves throughout, and cocks are fitted with
stuffing boxes and glands for ordinary packing ; the axle boxes are of cast stuffing boxes and glands for ordinary packing, the axle boxes are of cast
iron in two parts, the evan-metal bearing being c circular fanged bush.
The boiler is supplied by two injectors, Friedmann's patent, No. 6 size. The cylinders were tested by hydraulic pressure to 250 lb . per square
inch ; the tender tanks to 3 lb . per square inch ; the boiler teste, hydraulic 200 lb , and steam to 140 lb . The awning cab hass been made as commodious and airy as possible,
and on either side is a duor, the upper part of which is glazed witl thick plate glass.
With the view of facilitating the replacement of details, the principle
of duplicates has been carried out to the fullest estenteven the cylinder are so arranged that they are adapted for either right or left hand-side.

These engines, which we understand are intended for British Burmab are designed in accordance with specification supplied by Mr. A. M.
Rendel, C.E., of 8 , Great Georgestreet, Westminster, consulting Rendel, C.E., of 8, Great George-st
engineer to the Indian State Railways.

LETTERS TO THE EDITOR

(W

condensation and the
Sir I stall be steam cylinders.
Sir,- -1 shal be glad to make a few more remarks on this subject
and briefly to reply to the more pertinent suggestions of dents. As the point in question has been somemewhat of lost sight of in the the
discussion, it is necessary here to repeat it. As by oll ent discussion, it is necessary here torepeeat it. As by all engines the quantity
of stam consumed is much in excess of that thooreticaly required. ma
not this loss be due in part at not this loss be due, in in part at at eesst, to to the refrigereation a atendant upo
expansion, when the range is large ; and may not this refrigeration b expansion, when the range is large, and may not this refrigeration be
similar qualitatively, but not quantitatively than with air under simila
ranges of expansion? dir under expansion loses heat per unit of of volume

to a greater extent than is represented by the ratio of expansion. Ma
not this obtain with steam, moreor less? though theory, based upon presen
knowledge of the action of steam under expansion, hsows that the knowledge of the action of stear under expansion, shows that the loss
of heat per unit of volume is very naerly expresed oy the ratio of eppan
ofion.
It is impossible to say whether this excess of refrigeration does or of heat per unit of volume is very neariy expressed by the ratio or expan
sion it impossibe to say whether this excess of refrigertion does o
does not take place with steam; but as there is a lar ce loss of steam does not take place with steam; but as there is a larse loss of steam
unaccounted for, there seems. in the absence of proof to the contrary,
some reason to consider it probabie that it does.
some reason to consider it probable that it does.
Referring now to what one have advanced in former lettors, and
first as to terminal pressure. It is evident that this cannot be as
as great as $\frac{P}{R}, P$ being initial pressure and R the range of expansion,
because this dees not take into consideration the difference in the total
heat of the steam at the higher and lower pressures, nor the difference in may be tive specitic volumes at the respective ressesures, The scount either be bendition the total hean tand weigst per unit of
molume

 of satrate salues under the different heads for any one pressure, but I will
different ver use that in the "Encyclopredia Britannica" as beeng a mean of all. Refer
ring now to the maximum economical range of expansion. (1) It will be ronceded that the range of expansion must not be breater than that which
conill incerase the initial volume to that ocresponding to toeam of the
will
lowest admissible terninal pressure. (2) That the range of expansion Mowest admissibe terminal pressure. (2) That the range of expansion
must not be greater than that which will reduee the total heat per unit
of volume to that of steam at the lowest effective pressure. (3) The of volume to that of steam at the lowest effective pressure. (3) The
admissible ranse of expansion is therofore muah larger for condensing
than for non condensing engines, as the increment of specifio volume and than for non condensing engines, as the increment of specific volume and
the decemento of total heat are relatively greater per pound of reduction
in pressure, at pressures below the atmosphere, than they are per pound
 ficable terminal pressure will be determined by that necessary to vorecome
ficition of all kinds and back presure, it will vary with the siza and
other conditions of the engines. But we may assume it to be as other conditions of the engines.
3 lut above the may assume it to be as low as
the
 at the lower pressure as is due to that pressure, and that can be supported
at that pressure by the heat in the initial volume. If then the total
heat of steam at higher pressure, $h=$ total heat of steam at lower pres.
$\stackrel{\text { sure, }}{\mathrm{W}}=$ weight of one volume -1 cubic foot-at higher pressure, $20=$ weight of one volume -1 cubic foot $=$ at lower pressure,
$\mathrm{S}=$ speciic volume at higher pressure, $s=$ specific volume at
lower pressure, $\mathrm{R}=$ maximum economic range of expansion, then $\mathrm{R}=\frac{\mathrm{H}^{2}}{}$ or ${ }^{\mathrm{H}}{ }^{8}$. Taking the above limits for initial and terminal pressures, we have $\mathrm{H}=1207-2, h=1181 \cdot 2, \mathrm{~W}=0.1759, v=0.0459$ $\mathrm{R}=\frac{1207 \cdot 2 \times \cdot 1759}{1181 \cdot 2 \times \cdot 0459}=3.918$ or $\frac{1207.2 \times 1357}{11812 \times 353}=3.9$ If now we take an initial pressure common in locomotives, viz., say
120 bu, the e terminal pressure being as before, we shall have $\mathrm{K}=6.192$
 such high pressures as are carried by the loomotive the limit is reached
when steam is expanded about six times. The above ranges would, by
the the usual method of calculation, be respectively $4 \cdot 17$ and 666 , showing a
difference of from $6 \frac{1}{2}$ to 8 per cent when the above quantities are taken infterence of from
into consideration.
Turning now to the condensing engine, here the terminal pressure
givin in pratics the best results is about 10 lb. Proceeding as before, and
taking the initial preser
 condensing engines using a presure much higher than is yet in use at
sea, a maximume economic range of rather more than 6 . Even if the
loss due to imperfect vacuum and friction be tht
 naximum range cannot be more than $8 * 48$. But if we put the initian
pressure at thlib absoute, as in common use in the navy. and taking
the lowest practicable terminal pressure as before at 8 b., A then equals 52 , or abouta tive fold expanssion is the maximum economic ren eque for
such high presure an are at present most common at sea. With the
ordinary methou of

long question, it may be remarked that ranges of expansion
very little larger than those here referred to (8 25 for instance) give an approach to a terminal temperature very little in excess of
the temperature that might bo obtained by condensing in the steam cylinder, as was done prior to the days of separate condensers.
But the fact is that in practice, whatever the pange of expansion
 or
that a very much larger quantity of steam onterest he the cylinder during
admission than is represented by the capacity of the cylinder up to the point of cut off, this fact is impossible of explanation. at leant as low as that of the steam at t the termination of the pre-
vious stroke, and until the cylinder and piston are heated up to the vious stroke, and until the cylinder and piston are heated up to the
temperature of the new steam, steam is condensed, and as the temperature of the water so formed is nacarly thatatod thine now steam
by the time cut off is effected, sufficient of it is re-evaporated as the by the time cat off is effected, sufficieint of the the the which pre-
pressure falls during expansion, to presurs efalls during expansion, to give riso to the stam which presents ilself at the texplamation. The quantity of steam thus condensed
wholly
at the commencement of the stroke will be greater or less as the range of expansion is so, and will be self-correcting until the amount
of heat supplicd by excess of steam is equal to the heat lost by refrigeration due to expansion. As steam is not and never can bee
used in non-conducting cylinders, there is a point beyond which the gain attending the application of its expansive force is counter-
acted by the loss of heat necessary to restore the cylinder to the temperature of the initial steam after it has been reduced in the previous stroke to that of the terminal steam. In what prece-es 1
have given the maximum range of expansion between two pressures that de used with a non-conducting cylinder, but it remain yet to be ascertained what is the maximum economic range con-
sidered with reference to fall of temperature in a cylinder of ordinary material, or to what extent this limit will reduce that of the range of expansion as previously given. With an initial
pressure of 7 Flb . and a terminal pressure of 101 b. , the new steam at each stroke enters a cylinder 14 deg. below its own temperature,
even if it is assumed that the condenser has no cooling effect on the cylinder, so that it is a quasation whether the loss of the steam
required to restore this 114 deg. to the cylinder does not greatly nuquify the gain supposed to attend such ranges of expansion.
Tho experiments with the machinery of the U.S. steamship Galla-

 reduced to 446 , the consumption of steam was reduced to $24.3 \tilde{\mathrm{l}} \mathrm{lb}$.
Thus the gain which should attend the use of the higher pressure steam was more than nullified by the harge range of expansion
adopted. The relation between gain by expansion and loss by efrigeration which attends it, requires experiment to determine couche from the cylinder and piston surfaces cannot be estimated
except by rude approximations. Afow words appow in repiy to the correapondence since my last
Aexcep to that of Mr. Longrige. There
letter, and first with reference to thate are only one or two points, besides those already touched upon
in the foregoing, that call for any remark: First, with reference to
the water mechanically suspended in and carried by the steam to the water mechanicanty susponded in and carried by the stwam to
the ongine, this is a point of much importance, nd und oubtedy
the loss from this cause is often very considerable. But althought the loss from this cause is often very considerable. But although
M. E. Cornut, chief engineor of the association referred to ty Nr.
Longridge found in the experiments quoted that the los under
this head was as much ms 12.1 per cent., it has been found in some

 with any one boiler as the quanitity of steam drawn from it is
greater, and will be greatest in boilers soo mall for their work, or
which have limited sitem spaces. With referenco to loss by clear ance spaces, when this has been fully allowed for, the waste by
the engine has not been very much reduced, and as a ratio oo expansion of 10 is very uncommon, clearance epace amounting
to as much as 1 per cont. of the cap. city sldom entails a hoss of
 fectly steam.tight, the lot bo by pistons not so made, or by badly
bered olinders must not bo considered
With reference to Mr. Northcott's letter, a reader might be led to With reference to Mr. Northcott s letter, a reader might be led to
imatine that the subject of fteam engine ecoonomy wasa thoroughly
settled one, and indeed that the reuirement of theory were con
tinually realised in in pructice No indicator diagram affords a true tinuany reaised in pructice, No indieator diagram affords a true
measure of the stamm supplied by the boiler to the engine from
which the card is taken ; it only in reality gives us the pressure and its fluctuations throughout a stroke, from which may be
deduceel, though not with exactness, several other quantities
Thuo digram whil show how much steam, if any, has been produced by re-evaporation, but it tells nothing as to the quantity of steam
that has really been admitted up to the point of cut.off, and
therefore, nothing as to the quantity not reevvporated of that

 calculated quantity." Although the two quautities may be practi
call identical, they never are and with reference to the expan
sion curve," it must be remembered that it is only obtained by the consumption of a quantity of steam much in oexcess of, and " not
identical with the calculated quantity" When taken in oconnection
with the world ""whte with the words, "whatever the ratio of expansion," this state-
ment is less admisibibe, for, generally speaking, the higher the
ratio of expanion the greater is the ditferece betwen the
quantities actually and throcetically required ; and in his calcula quantities actually and theoretically required, and in his calcula
tion at the later part of his letter, Mr, Northcott has put (with
75 lb steam and a four-fold expansion) the latter quantity as $75 \mathrm{lb}$. steam and a four-fold expansion) the hatter quantity
$15.17 \mathrm{lb}, \mathrm{while}$ he further states that he should expect an un
jacketed engine to use 24 lb ., so that he expects a difference of 5 . per cent. between practice and his own calculation. In
stated that " a . inal pressure less than that given by Boyle's law is seldom met with in practice," this is true for reasons herein
already given. It is sugested too that I have "lost sigbt of the
fact that heat abstracted by the metal of the cylinder for fact that heat abstracted by the metal of the cylinder from tho
entering steam
expansion and exh.ais., wholly returned to the steam during
 to understand that the fact has been "lost sight of." Tho
remainder of this pargaraph is simply in confirmation of what I
have expresed, excopt that,
 consumed in the performanee of work isadded to that theoretically
required per capacity of cylinder, making the latter appear muxh
greater, because I have separated the two quantities in the usual manner, afterwards crediting the engine with both, thus placing
the several items so that they may be read off at a glance (col. 3 ,

experiment and the formula in conmnon uspe, viz. :
Log. $T_{2}=(\log , R \times 408)+\log . T_{1}$
R being the ratio of expansion or compression (or $\left.\begin{array}{ll}\mathrm{Vt} \\ \mathrm{V}_{2}\end{array}\right)$, four
volumes of air at 60 deg. compressed into one volume will have a
final temperature of $45 \circ$ deg, and if the pressure at this tempera final temperature of 456 deg , and if the presure at this tempera-
ture and volume be 1031 lb . per square inch, and the one volume be
allowed to re-expand to allowed to re-expand to atmospheric pressure, the temperature
will fall again to 60 deg., or through a range of 396 deg. What
Mr. West means when he says that one volume of
Mr. West means when he says that one volume of air at a pressure
of 105 lb . per square inch will not expand at all, can only be known
to himself. I have omitted "the condition that the temperature
must remain unaltered," because, under the conditions, the temperature changes, and as the volume of air was increased fourfold,
I must neglect to observe the condition that the "volume must be kept constant.
I must remark, howevcr, that further dincussion on the relations of P, T, and V of air will not help to arrive at an explanation of
the difference between the actual consumption of steam by engines and their calculated requirements. It has only been alluded to as
an illustration of what may take place in the cylinder of a steam $\begin{aligned} & \text { angine, though in a less degree than with nir expanding through } \\ & \text { engime } \\ & \text { W. Worby Beatsont. }\end{aligned}$ $\underset{\text { Westminster, Oct. } 7 \text { th. }}{\text { similar ranges. }}$
A NEW FoRM or AIR PUMP.
with water flowing through reported in ThR ENGINERR of th June and 16th June last, a useful
application of the principle involved has occurred to me in obtaining a vacuum up to 29 Gin . of mercury for assisting
filtration flitration, for pneumatic experiments,
and other kindred purposes in laboratory or lecture room. In Mr. Brownlees experiments he used a metal length, at which point a small tube communicating with a vacuum gauge
entered it, and water at various pressures was forced through the contracted tube. With the results detailed in this paper,
one of which was that when water of pressure due to a head of 6.5 fft . flowed
through cury was shown to exist at the point
of entry of the vacuum tube. The requisite head of water is therefore
always attainable from thie tank supplying any laboratory, and the air pump
is easily constructed from glas tubing in the following manner :-A piece of glass quill tubing about 8in. long is
drawn out until its internal diameter is about 1 in. and and through at its
narrowest part. A wide tube about 4in. long is taken and corks fitted to
each end, and the two nozzles formed on the quill tubing passed through the site to each other in the larger tube; a second piece of quill tubing is passed
through one of the corks to bring the One tube is theu connected with a water tap, when the water rushes through the
 splashing ; the corks are then sealed over and made air-tight. This application may not be new, but I am at prosent only aware of air
being pumped by witer the which the column of water below the point of entry of the air that produces the vacuum, and not the fast moving water in the
diverging nozzle.
J. M. SEARROKE.
Rugby, October 2nd.

the thunderer.

Srb, - Now that the jury have given their verdict on the explo-
sion of the boiler on board the Thunderer, I hope you will give me space to make a few remarks on the ardourned inquest commenced
on August 21 st. Since I arrived here I have read and studied the and been amused if sharp work- then at 11 a.m. Mr. Manding opened the Gin. stop
valve on one of the boilers to work the capstan engine, for the fire valve on one of the boilers to work the capstan engine, for the fire
was just lighted in the ruxiliary boiler; the anchor was up about
twelve ocelock, and Mr. Weeks, nor any one else, tells us when twelve cack, and Mr. iWeeks, nor any one else, tells us when
the steam was up in the auxiliary boiler, but orders were viven before the ship went on the measured mile that the auxiliary valve on the main boiler was to be shut to keep the whole of the
steam from the main boilers for the main engines; the auxiliary engines were to be worked off the auxiliary boiler. I believe the person that got this order shut the main stop valve on the boiler
that exploded, instead of the Gin. stop valve on the opposite boiler. Secondly, Wells tells us the steam gauge did not act at all, never thing when the others showed 5 wh. I have seen no evidence that it went round, but that it never started or moved at al until the
glass was broken. Again, at 1.4 p.m. be tells us the engines were making forty revolutions per minute; the smoke box and fire doors
shut, and all the stokers doing their duty, with best Welsh coal ; if so the stop valve must have been shut after one occlock, or the boiler would have burst before 1.13 p.m.
Further, Wells tell us there was no unnecessary stoker on watch Ocean steamers about the same horse-power and number of
furnaces as the Thunderer, in the engie department muster from fifty to fifty-five, engineers included. Now a full crow fo
the Thunderer should not exceed sixty for the three whtches, eight firemen to each watch, and six conl trimmers, two oilers and
three engineers, one for the stokeholes, and one for each pair of three engioeers, one
engines, total $19 \times 3=57+1$ store keeper, one deck engineer or brakeman, and the chief engineer makes sixty men, and more men
are so many unnecessarily exposed in are so many unnecessarily exposed in casse of accident. If the
Thunderer's engines and boiler were in an ocean steamer running 360 miles a day, burning over 100 tons of Welsh coal per diem, more men would not add to the safety or speed of the ship.
Next comes Mr. Bramwell's report. Now why should he lecture to the sisteen tradesmen of Gosport about how the boiler and engines were made, when the scientific jury had all agreed that the con-
straction of the engines and boiler had nothing to do with the matter, except the safety valves were sct fast, which caused all the them with such information as, "In it.- the boiler-hinder end 1 placed what is called the combustion, sc. " The fires being made
upon the fire-bars !" What has that to do with the safety valves sticking? He also tells them screws or screwed stays ar
round." Then remembering he is speaking to some men who roun Then remembering he is speaking to some men who
are tailors and drapers, he tells them the weights were threaded on the valve spindles, sco.; and summing up says, the
boiler hurst ""because there was a large excess of pressure in the boiler immediately preceding the explosion." Why not make it
simple, and say the boiler burst because there was toy simple, and say the borer tars because there was too much pressur
inside at the time? He tells them one of the valves did not blow off at 60 lb . pressure although twice tried, but when the cap wa
the the end of the valve spindee shaken ted valo rose your safety valves so that the spindles can be shaken when getting
up steam, and the valves lifted and turned around in their seats up steam, and the valves tirted and turned around ben a merchant
You are no doubt aware that had the Thunderer been ship the Board of Trade would not have passed the boilers to carry
more than 20 lb. pressure. He tells them that there was no risk if the safety valves had been free. I don't say that there would be an explosion, but there would be a danger of straining the boiler
which straining, if often repeated, might eventually cause rupture.
celebrated English boiler engineer, on a visit to America, took a passage on board a river steamer that had a ay lindrical high-pressure boiler carrying solb. steam; ho looked at the steam gauge, the dia
meter of the boiler, thickness of the plates, \&c., and found that our board. Fearing an explosion, he walked forward to the stem of the
ship; looking up at ope of the ber
the wood, "In God we trust."
stoke-holds of our war ships.
Further, Mr. Bramwell 5 . "Pr the safety valves when the ship is stopped suddenly-all boing safety valves should be designed so that with everything closed
but the safety valves the maximum amount of steam may be gene but the safety valves the maximum sould be made so, why are they not? Or will the small valve remedy the evils so, why are they
no could not
cll when the stop valve was dosed but he might he tell when the stop valve was olosed, but he might have ascertained within a fow minutes according to the evidence. I am surprised that it was a novelty to all who witnessed the experiments that
safety valves should stick, when no sea-- oing engineer of any safety valves should stick, when no sea, going engineer of any
experience trusts to the safety valves, but eases them every time he slows or stops the engines if the pressure rises to the point they
are loaded to. Why have so many engineers in the merchant service experimented and improved ongety valverves? Because they
had proof that the old style was defective. It was stated the the safety valves had not been out of their place for three years. Why so, when Circular No. 39 says, "prior to all trials, sce., each safety sc. Thave tried to find out if there is such a thing as a boiler not the man for the new work, and the engineer afloat for the
old, who is responsible? Next comes Mr. Phillips and his
contraction theory. Now it is of no importance whether the valves expanded or the seats contracted; for either complaint there is but one remedy, i.e, make the valve smaller. I have seen
new valves jam when heated, not because the seats crept in, but by the difference of expansion, the seating becoming slightly, oval
while heated. I will not dispute either theory, as we never measure less than $\frac{1}{7}$ in marine engineering practice. I am afraid I have reached the limit of a letter; if you will allow me space another
time I will give you an account of a "common visitor's s inspection of the Thunderer's boiler, also a supplement to the six recommendations of the jury. I see you advocate making experiments on
screwed stayed surfaces at the expense of the Government. The American Government made extensive experiments on this and boiler engineering in
where. Wencral I exminined a new set of boilers last month made for one of their war ships from drawings sent from Washington four
and a-half months and a-harf months ago they are four 4.furnaced boilers ike the
Thunderer, but with dry bottoms, and no serewed stays used rivet bolts instead, with a ferule between the plates. Thus they
have by experience and experiments found this style safer and better.
Liverpool, Oct. 10th.

lead mining.

$\mathrm{Srs},-\mathrm{In}$ the midst of the frequent variations in price to which
other minerals are subiect, lead alone continues in steady demand, other the price of it, thoogh subject to some slight fluctuations, is
alwas remunerative; therefore lead mining ought, if properly conducted, to present of capital. principal lead-bearing districts of England are Wales,
The
Cornwall, and the North of England, and the Islo of Man, the two former being mostly in the killas or clay-slate formation, and tho
latter in limestone. Of these Walce probably is the oldest, am there are very strong evidences of minerals being sought for even
before the Roman cra. The latter lave left undoubted traces of beforo the Roman era, The latter lave left undoubted traces of
their mining enterprive in the counties of Carnarvon, Flint, Montgomery, and Cardigan.
In less remote times we have trustworthy records of immense fortunes amassed by the prosecution of mining in these counties,
even when all the requisite appliances were of the crudest descrip: tion, and when it was impossible to go to any great depth, becauso In the year 1563 letters patent were granted to .Daniel Haughselter and Thomas Thurland, granting them a al " mines
royal " in Wales, nad parts of England In 1567 a corporation was formed under the auspices of lords Leicester, Pembroke, and
Mountijy, and calted "The Society for Working tho Mines Royal. This company opened up many mines, but finally leased them to Sir Hugh Myddleton, who, by judicious management
soon reaped enormous profit ; from one mine alone, called
"Con ciwmsymlog,
mee obtained a clear yearly profit of oests. $£ 25,000$ for
Subsequently an Act was passed destroying the monopoly by vesting all minerals in the proprietors of the soil.
In later years the Van mine has gained a well-earned celebrity. yielding from $£ 8000$ to $£ 9000$ per month in mineral, anil a net of failing. The success of this mine has led to the establishment of many others in the vicinity, but so far nore have been so In hilly countries like Waleslodes can easily be found cropping out at surface, and prospective mining is rendered easy and inexpensive
by driving adit levels, either to cross cut the lode or on the course it ; but, as a rule, it is not until the lodes have been worked
below the settled ground or valleys that a really permanently pro. ductive mine can be expected. At the same time, when a good course of ore has once been properly laid open the money comes back very, fast.
It is to be regretted that many of the persons engaged in mining
matters, either as agents or brokers, are not only reckless but unnatters, either as agents or brokers, are not only reckless but un-
trustworthy, and ready to foist any scheme on the public. One of the sources of disappointment arises from the system of getting hold of old and worked-out mines, or mines which were failures. These are re-christened, astonishing reports are published, and extraordinary courses of ore are stated to have been left standing
in the - fathom level. At the present moment there are mines being eorked in Wales which no the public by advertisements and circulars, and which under different names have been during the last ten years or so floated, liquidated, and re-named half a dozen times, and are
in the mioing papers.
There are again a class of men who make a living by buying up song, and, having several mining captains in their pay (or worse, their debt), the most flourishing of reports can be manufactured It were better for the public to venture their money in an entirely new place than have anything to do with such concerns. Another mine which is more or less in the vicinity. Now, nothing is so capricious as the metalliferous deposits, and Nature seems very chary of putting more than one egg in a basket, and it is very rare that two great mines are found (in Wales, at least) adjoining each
other, and this is where the investing public are led astray and ther, and this is where the investing public are led astray and
risk their money in mining ventures whose only clnim is that they are situate east, west, north, or south of the "Great So and So
Mine." At the same time, it is not to be denied that mineral lode do continue their course, and can be traced for miles, but they are not continuously productive-in fact, productiveness is the excep-
tion, and most frequently due to some interruptions in the lode, such as other lodes or joints crossing, or change in the stratum of the ground; and practical miners will prefer a mine situated on a
parallel lode to a great mine, to mines on the course of the same loralle lode to a great mine, to mines on the course of the same
lod the present price of lead, which is rather under an average, and with a fairly productive mine and good machinery industries or speculations can promise a return like this. At th same time, taking into consideration the great uncertainty of mining, no mine ought to pe valued at more than ten years purmany cases ten years' purchase of the probable profits if successful is asked and obtained. Lead mining, if judiciously and honertly
conducted, is undoubtedly the most secure and most remunerative
of all min of all mining adventures. Mining must always be a speculation,
but, taking into consideration the small amount of capital required
to develope a good mine, the steady demand for the mineral, when
found, at a remunerative price, and that there is always the chance Cound, at a remunerative price, and that there is always the chance
of a great success, by which the original capital will be returned over and over ragain in a few years, whilst the chances of totarn loss can be reduced to a minimum, lead mining may me considered a
fair and promising field for the investment of capital, and one which, now that so many other sources have failed, is likely ere
long to engage the attention of the public.
Oot. 4th.
Oct. 4th.

STICKING of SAyETY VALVES.

SIR,- - A number of theories have been started to account for the
sticking of dead weight safety valves to their seats, all of which sticking of dead weight safety valves to their seats, all of whioh
are considered to be more or less unsatisfactory. I Ihould therefore be glad if you will permit me the use of your columns to draw
nttention to one other theory, particularly as it appears to me attention to one other theory, particularly as it appear
to have been up to the opresent time entirely overlooked. not entirely, directed to a consideration of the condition and not entirely, directed to a consideration of the condition and
action of dead wwight safety valves whilst subject to the variations of heat and pressure existing in boilers when in full work
Such inquiry has doubtless brought out more distinctly a number of weak points, and suggested several improvements, but it has not shown conclusively why such valves stick, or what should be
done in future to prevent them sticking. I am, however, of pinion that the true solution of the problem will be found by an
nvestigation of the condition and action of such valves when the boilers are not in full use, or when they are out of use altogether. As an illustration of my meaning I will take the valves of the
exploded boiler of the Thunderer, which were of the disc class guided by feathers on their under sides and loaded with dead veights or some seven hundred pounds each. Now it is perfectly
clear that when a boiler is cold and there is no pressure of steam hese weights must be resisted entirely by the seatings of such valves, and it requires but a glance at them to show most clearly
how little adapted their narrow and delicate surfaces are to resist how little adapted their narrow and delicate surfaces are to resist
such immense weights without receiving injury. The grinding and pounding effect of such masses upon these seatings, when a vessel fires banked up or out altogether, must be something very considerable, as it must also be even in the case of a vessel under steam
when plunging about in a heavy storm. Need it be wondered then "grip the feathers of the valivgs, are found to "creep," "distort," "grip the feathers of the valves," and so on. It seems to me quite direction in which it and burnished tuve most easily, so as in time to diminish sensibly the diameter of the opening, and make it possible for the That such sticking is not of constant occurrence is due mainly and so long as the valves are not interfered with, to the fact that the same forces which operate to press the inner surfaces of the seatings in upon the feathers sojas togs orip them, at the same time
drive the feathers against such inner surfaces with sufficient force to bed them in them, and so destroy the grip that would otherwise be set up. When sticking does, however, occur, it arises probably
from one of two caukes- eithert the sidewway motion of the valve
has not been sufficiently powerful to counteract the creeping inward motion of the seating, and so destroy the grip, or the valve has freed itself from such grip, but has been in some way or other turned round in its seating so as to bring the feathers into some new
position where they have not previously freed or loosened themposition where they have not previously freed or loosened them-
selves, and where they must neeossarily be raipped,
How well this theory applies to the case of the valves of the Thunderer in at once eseen, when the is case of the valves of that for some
three years her boilers had been out of use, and that during that long period her too tightly fitted safety valves, witht thair loads of
seven hundred pounds each, waving backwards and forwards sith eeven hundred pounds each, swaying backwards and forwards with
every motion of tho vessel, had been slowly but surely burnishing or grinding against the delicate edges of their seatings, till at last thry either seized fast together, or a grip came upon the feathers
from which they could not free themselves, and sticking became certainty.
Brook Green, October 10th.

preliminary examination of patents.

 SIR,-The objection to preliminary examination that I nowtend to notice is one of paramount importance ; indeed, I think intend to notice is one of paramount importanee ; indeed, I think
it is enough in itself to condemn the system contained in the Lord
Chancellor's late bills. I refer to the delay that would inevitoly be caused to valuable patents for the sake of inquiring into those
applications for patents which would eventually be voluntarily applications for patents which would eventually be voluntarily
abandoned. In otber words, the consideration of the valuable would be postponed to that of the unnecessary. In illustration of
this inherent objection I will refer to the figures contained in the theport of the Commissioners of Patents for Invention for last year
peresented to Parliament The presented to Parliament. The number of applications for leters
patent was 4561 , and the number of patents eventuall completed and in force was only 3049, thereby showing that 11512 were either stopped by the law officers or abandoned. But it is well
known that out of these only an insignificant number arestopped, so that it may be taken that in round numbers about 1500 were Now what would these figures signify on the supposition of the
Now the
existence of such a preliminary examination as was proposed ? They would signify threliminary examination as was proposed? through the office would be hindered by the inquiry by the
examiners into 1500 applications, which, if left alone, would be examiners into 1500 applications, which, if left alone, would be
voluntarily abandoned. Such an amount of unnecessary inquiry
would prove a serious burden on the shoulders of two examiners and four assistant examiners, as proposed to be "appointed by the
Lord Chancellor." and would consequently involve serions delay Lord Chancellor,", and would consequently involve serions delay
in the work of the office. These 1500 applications would have to be inquired into under tour heads- (1) subject, matter, ; (2) suffi-
ciency of specification; (3) novelty of invention, and (4) frivolity. And it must not be supposed that because these 1500 applications were eventually abandoned, they were all, or a large proportion
of them, obviously inferior to those which were completed, or that they would have been necessarily rejected after examination. Such considerations show us, that even assuming an adequate
staff of competent eximiners, much unneecsasy delay in the
whole work of the office must mesult whole work of the office must result, and that many valuable
patents must be greatly prejudiced by the delay. It it to be remembered, however, that anl the security for the competency of
the examiners was to consist in their appointment by the Lord Chancellor, and that the extent and due remuneration of the staff was to be limited by "the consent of the Treasury." Appoint-
ments by Lord Chancellors have generally been understood to ments by Lord Chancellors have generally been understood
mean appointments of barristers of a conventional length standing. not otherwise over much employed; and the Treasury
have hitherto shown but little disposition to provide for the adequate working of the existing law. Taking into account these well-known facts, it is evident that under such a system of
preliminary examination as that proposed, conduoted by such an preliminary examination as that proposed, conducted by such an
agency as would be likely to be employed for the purpose, , much
vexations delay to valuable patents there be any secourity as to the legitimacy of the distinctions between
rejected.
Patentees of experience may be appealed to in evidence of the annoyance felt by them when the progress of a valuable patent has official duties unconnected with patents. Our recent experiences also of the practice under "The Trade Marks Registration Act, official delays in the Patent--ffice, where they would be of so much
objectionable features involved in such a preliminary examination as that adverted to, but I trust that sufficient has been said to show
the weightiness of the objection, and to sug the weightiness of the objection, and to suggest to patentees the
great interest they have in maintaining the existing law, in preference to that which has been proposed in substitution for it, in this matter of preliminary examination. \quad WhLIAM SPENCE,
8, Quality-court, Chancery-lane, October 10th.

ON A NEW VOLTAIC BATTERY BY MESSRS.
FITZ-GERALD AND MOLLOY.* By Mr. C. H. W. Biggs.
Huving used the battery about to be described in a variety of ways, and always finding it effective and economical, I
thought a short account might prove interesting. The battery thaught a short account might prove interesting. The battery
has been made in various forms, and in one of its shapes
especially it especially it differs considerably from those in ordinary use.
As will be seen, depolarisation takes place by mean secondary current, and as this currest vara by directly as the the
polarisation, and does not interfere with the primary or working current, we, get a good constant bottery. One form consists of a
cylindrical glazed earthenware jar, made of various sizes, the
 or ten carbon plates in. or lin. wide are fastened by an alloy of
lead and antimony to a perforated iron ring fitting the top of the jar, and these form the positive pole of the batere. A porous
earthenware diaphragm is placed in the contre of the large jar and earthenware diaphragm is placed in the contre of the large jar and
contains a piece of zino which forms the negative pole. The
int internal resistance of this cell is only about $\frac{1}{2}$ or 3 多 of an ohm,
whilst the electromotive force is somewhat over 2 volts. The form, however, adapted for general purposes is rectangular in shape
The coll is divided in two of perforated carbon The perforations are $\$$ inp. or tin. in diameter into which are tightly glued plugs of porous earthen ware. Th be as numerous as possible. The carbor forms the positive pole of the cell. The negative pole is a plate of amal gamated zinc, place in one of the divisions of the cell, about two.thirds of the height,
and a little narrower than the cell. It is held in its place by mean of a screw clamp, which also enables connections to be made. A
binding screw is fastened to the carbon plate, and the cell is com plete. The battery is charged by filling up the zinc compartments
 good oxidising agent. The best oxidant for this purpose is calcic
dihydro chromate $\left(\mathrm{H}_{2} \mathrm{Ca} 2 \mathrm{CrO}_{4}\right)$ with sufficient $\mathrm{H}_{\mathrm{S}} \mathrm{SO}_{3}$ to con bine with the oxide of calcium and with the sesquioxide of
chromium produced when the calcic salt is deoxidised, formin chromium produced when the calcic salt is deoxidised, forming
sulphate of chromium. It is very easily prepared by mixing in the proportions ${ }^{54}$ oz. of chromate of lime with $4 \frac{4}{2}$ fluid oz.
concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. It is found best to mix the calcic chromate in the cell itself, thus:--Partially fill the cell with
water, add the calcic chromate, then the H_{2} SO gradually, in water, add the calcicic chromate, then the Hy SO. gradually, in
order to avoid the ill effects which otherwise would be produced by order to avoid the dile effects which otherwise would be produced
the to sudden develpment of a large quantity of heat. proportions given are to be used for every 24 oz. or 3 oz, of $\mathrm{H}_{2} \mathrm{SO}$ use of acid the oxidising fluid should be obtained ready mixed. The quantities to be used may be obtained from the following equation The three atoms of oxygen oxidise three molecules of hydrogen produced by the reaction of Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}$. Thus the eatery
equation is: $-3 \mathrm{Zn}+\mathrm{H}_{2} \mathrm{Ca}_{2} \mathrm{Cr}_{4}+7 \mathrm{H}_{2} \mathrm{SO}_{4}=3 \mathrm{Zn} \mathrm{Zn}_{4}+$ calcic dinydro chromate, besides its cheapness when produced in large quantities, is the non-crystallisable nature of the sulphate formed by the action of the battery. By the use of chromate of
lime as mentioned, there is absolutely no effect from the generation of gas, mentetioneus, there is absolutely no effect from the generatio
prefersel preferable to that of nitric acid $\left(\mathrm{HNO}_{3}\right)$. An intense current
generated by this form of battery. There is no porous diaphragn
to in to increase internal resistance-the plugs not being traversed by the primary current-and the poles are very near to each other
The depolarising or secondary current may thus be explained taking each compartment in turn:-First, in that containing th oxidant, any hydrogen given off by the carbon plate is at once oxidise
and rendered harmless; carbon alone is exposed. Secondly, in th zino com
on the
potential
plate, potential to be established between the two sides of the carbon
plate phate, anda current commences, the cirouit teing completed through
the porous plugs and through the plate itself. By this current the hydrogen, bon plate, whish is sthus wholly kept free from the surface of the car then, we obtain the maximum electromotive force of carbon and zinc which, so far as I am acquainted, is obtained in no other cell except
be the chromic acid cell, and further there is no consumption of z in be the chromic acid cell, and further there is no consumption of zin
when the cell is not working. Absolute perfection, however, unattainable, and although under ordinary conditions the curren ance, if, however, it is short circuited, there is a gradual but sligh
diminution of current at first, after which it remains constant till the battery is exhausted. By increasing the number and diminishing the thickness of the porous plugs, and so decreasing the resist
ance of the secondary circuit to a minimum, the difference oan b reduced to any required extent. One of the morst interestin
features of this battery is perhaps the valne of the resid ef et th exhaustion of working powers. The soluble residual matter should consist, as we have seen, of sulphate of zinc and sulphate of
chromium, thus: $3 Z$ So + Cre 3 SO nand a quantity of water. The separation of these sulphates has not yet been effected. However, by treatment in a variety of ways n series of pigments can b
obtained which ought to be of great value in the arts. common salt to the residue we get on boiling chlorides of zinc an curomium and sulphate of soda; on cooling the latter crystallise
out. If to the remainder be added four envivalents of Pb
for. for each one of NaCl - salt - we get oxides of ehromium an
zinc, and oxychoride of lead; which gives pigment, No. N shown If carbonate of baryta is added to the crude residue, as shown by $+6 \mathrm{CO}_{9}$, a very pale green is obtained, chalk may be cautiously added good green may be obtained by this means without the use arsenic, and this is on all sides admitted to be a desideratum. large number of experiments extending over a long period have
been made; and as the investigation is not yet finished, I wil reserve detailed results for another opportunity.

PAPER Collarss.-Among other curious machines now exhibited mane Great Hall of Machines " at Philadelphia is one for the
manuacture of paper collars, an enormous business in the Unite States, producing no fewer than $200,000,000$ collars a year. From
a roll of thick calendered paper faced with cloth the machine cuts the collars in a pair of outting-dies, after stamping the stitch
pattern and number upon them entirely of paper are now manufactured, the cotton faced kind having driven them from the market. It is estimated that the saving in washing from the use of these collars amounts to 6,000,000
dols. a year. The company which exhibit these machines shows in a glass case a collection of all the styles of collars in use for
 thing in collars" had, it is stated, an enormous sale in 1861.- Pall
Mall Gazett.

Heauth and Skiwage of Towns.-A meeting of the Executive Committee of the Society of Arts in connection with this subject,
has been suummoned for 12 o'lock on Tuesday, the 24 th inst. ; and an invitation has been addressed to the surveyors and medical and confer with them on the house drainage of the metropolis. CENTRLL AsLIN CoTTON. - A correspondent sends us the follow-
ing abstract of a report by M. Brodofsky, which appeared in the improvement of the cotton received from Central Asia. Of the only 10,000 owt. are received from Central Asia and Persia, the rest coming through Liverpool from America ($23,300 \mathrm{cwt}$.), and rom India (16,700 cwt.) Central Asia produces now more than 50,000 owt., and this production could easily be doubled in a shorl
time ; but the Asiatic cotton is little used, as it is imperfectly time ; but the Asiatic cotton is little used, as it is imperfectly
cleaned, and has short fibres. Cleaned in Russia there is a loss o 25 per cent. of weight, and (taking into account the high cost
the transport) of about 11 rouble on the price of a pood (38 1b)
The The imperfect cleaning of the cotton is due, of course, to the the fibres, M. Brodofsky, who was sent to America with the special purpose of studying the subject, supposes that it is not due ex
clusively, as asserted until now, to climatic conditions, but mainly o the circumstance that the cotton tree cultivated in Asia Gossypum herraceum, G. indicum) is a botanical species different
from those cultivated in America (G. Barbodense, which gives the
best upland's best upland's kinds of cotion, as Mobile, New Orieans, cc., and
G. arboreum, which gives the Sea Island kind). As to the last species, which produces the most highly-prized cotton, experiment thread received being long and silky, but too feeble. It appears however, highly probable, from the comparison of the climates of
the central parts of Texas and of Turkistan, that the G. Barbadense can be profitably cultivated in Central Asia, if certain measure are taken to ameliorate the culture. The Society of Friends of
Natural Science in Moscow had, therefore, elaborated a plan of an exemplary form, for the culture, united with a station for the
cleaning of the Solkhara was much patronised by General Kaufmann. But work having
been postponed owing to a want of funds, a private society has been been postponed owing to a want of funds, a private society has been
founded, with a capital of 300,000 roubles, for the encouragement of the cotton trade in Turkistan on a large scale. The society has 6880 acres of artificially-watered land for its farm. The cleaning engines, which have already proven during preliminary essays to
be the most useful for the Asiatic cotton, will be received from America during this autumn, together with seeds of the G.
Barbadense.-Times. The NEw York and Broooklyn BridaE.-The first permanent
wire of the Brooklyn Brige, over the East River, comnecting New
York and Brooklyn, was thrown across on the The travellers are wire ropes of three-fourths of an inch, while the carrier, thrown across to day, is a cable of one and three-fourths in
diameeter and weighs $21,000 \mathrm{lb}$. Nearly seven years ago-that is,
in October 1 倍 anchorages, and approaches of this great work ; and that being he connection of the one million City of New York with the
450,000 City of Brooklyn is a matter former and of very great importance to the latter, let us take a
glance at what the proposed bridge is to be, what it is to cost, and how it came to be buit. A Agranite e tower rises on each bank of
he river, and behind eachthe nver, and betind each-farther up town on both sides-is an
anchorage, from which an approach levels the track down to the
city grades. The following biures are feet measurements of the city g
bridg

 Bllow:-
Below high water
From high water to
Above roddway
The width of the road height of towers with its $\ddot{\|}$ five tracks is made up as

From the City of Brooklyn...
From tho City or Aow Iork
For rents, intorest, and valuables sold
 ary as to the amount yet necessary to complete the bridgg; but
it appears that, deducting the sarng that will come of utilising
the lands purchased, the future expense of the trustees ant told
will not exceed $4,500,000$ dols., which makes the round cost, from irst to anst, about eleven and a a quarter millions, and that will not
be much over twice as much as the original estimate, which was
noon, 000 dols. The saving that will result from used for other purposes of the paterinl now on may be and of portions upon which the buildings or parts of them may
remain in use as they are,-Standard.

MORTISINGAND TENONING MACHINE.
mr. richard carter, engineer, holat top works, bradford.
(For deacription sec paje 201.)

HIND'S COUNTER GEAR FOR LATHES AND OTHER MACHINES. (For description sce page 261.)

gorigig agents for the sale of the engineer.

TO OORRESPONDENTS

In order to avoud trouble and confusion, we find it necessary to inform correspondents that letters of inquiry addressed to th
public, and intended for insertion in this column, must, in a
cases, be accompanied by a large envelope legibly directed by the
writer to himself, but tearing a 2d. postage stamp, in order the
ansicers received by us may be jorvarded to their destination. N N
notice vill be taken of communications which do not comply wit
these instructions. These instructions.
We cannot undertake to return drawings or mats therefore request correspondents to keep copies, All letters intended for insertion in The EnaINEER, or contain-
ing questions, must be accompanied by the name and address of
the woriter, not necessarily tor publication, but as a proof of
good faith. No notice whatever will be taken of anonymous

 fotconi seripti thin ratea. rat

 ADVERTISEMENTS.

DEATHS.

On the Sth inst, at his residenco, 170, Lowisham High-road, Now Cross
Thomas PaLIER BAKER, C.B, Inpector of Machinery, R. N., and late of
H.M. Dockyard, Chatham, aged 68 .

THE ENGINEER

PRIDAY, OOTOBER 13, 1876.

ONE of the most remarkable phases of modern warfare is the employment of mechanical powers to transport explosives to the precise locality where they can prove most
mischievous to an enemy. In the days of Nelson ships fought with carronades, stumpy guns of considerable calibre, which pounded the wooden walls of a ship to atoms by a hundred blows. The duty performed by the Victory's
artillery was identical with that performed by a Roman battering ram. In the field, again, Napoleon relied on the round shot, which, as we are graphically told by the historians of the time, mowed lanes through the columns of an advancing foe. Grape was used at sea, or on land, only
at close quarters. It was practically useless in naval warfare, save in resisting boat attacks, or covering the persion greatly limited the scope of its powers when it was used in land battles. To the American general Paixhans is, we believe, due the credit of first employing shells in naval warfare. In saying this we do not forget the labours that "bomb ketches," as they were termed, existed and were used from a comparatively early period. But to General Paixhans belongs the credit of using guns which threw shells directly into a vessel without going through the ceremony of first letting them rise high in the air, and then fall, if chance so directed, on the deck or down the hatch-
way of a ship. The process of development has gone on way of a ship. The process of development has gone on
steadily for very many years, and modern naval artillery relies principally on the effect of shell fire for its efficiency.

The 80-ton gun, for example, would be comparatively a very useless weapon if it could project against our enemies ships only solid shot., A mass of iron weighing and clear of engines and boilers, would do but little injury, and clear of enpines and boilens, cessful rounds would have to be fired from the great gun cessful rounds would have to be fired from the great gun
before even a wooden ship to which the weapon was opposed need succumb. But in point of fact the chilled opposed need succumb. But in point of fact des chillod
shell proper contributes only indirectly to the destruction shel proper contributes onty indirectly to the destruction
which a heavy gun can accomplish. The object and purpose of modern naval artillery is to transport from the decks of one of our own ships to the decks of an enemy a heavy charge of powder, which is ignited at the moment
of its arrival. If the shell explodes outside the ship, of its arrival. If the shell explodes outside the ship,
although in contact with her, half its efficiency is gone. A shell, after all, is but a transport wagon carryugg a charge of powder; and that shell and that gun are
the best which place the transmitted charge of powder just where it can be exploded with the most effect. It just where i can be exploded with therefore, that we have here a total change in the purpose of artillery; and it follows that if the explosive could as well be put on board an enemy's ship by any other means as by the use of a gun, then guns would
be comparatively useless. The shell is the great engine of modern warfare. In olden times the gun took the place The modern gun is, however, merely an energy transmitter, and in so far it occupies a secondary position.
A little reflection suffices to show that we are not
confined to guns as the only means of transporting confined to guns as the only means of transporting
explosive charges to an enemy's decks. Various other plans have been suggested. The late Lord Dundonald proposed during the Crimean war that about a gallon of chloride of nitrogen should be carried up over Sebastopol in a balloon
and then suffered to fall into that town. The resulting explosion would, no doubt, have cleared Sebastopol, fortitications, and its fleet, off the face of the earth. The scheme was wild to the last degree. The explosion of a
single drop of chloride of nitrogen has been known to single drop of chloride of nitrogen has been known a
completely ruin a large laboratory; and it is tolerably certain that more than a few drops of the most terrific compound that has ever existed have never been made The use of balloons for dropping shells into an enemy's camp has often been proposed, however, and not many
years since a somewhat eminent authority suggested the years since a somewhat eminent authority suggested the
use of an improved form of the old Roman catapult for flinging grenades and small shells into an enemy's trenches. Powder wagons provided with a slow burning fuse have
been purposely suffered to fall into the been purposely suffered to fall into the hands of an enemy, who, removing the wagon to his own lines in
triumph, has subsequently suffered severely for his rashness. Such a practice would hardly, we may say for the credit of humanity, be recognised as legitimate in
modern warfare, although there is reason to believe that modern warfare, although there is reason to believe that
infernal machines assuming the form of blocks of coal have not only been suggested, but actually manufactured. The diabolical scheme of Thomas, which must be fresh in the memory of our readers, supplies another method of placing explosives on board a ship or in some
other locality where they are intended to effect destruction. All such schemes, however, have hitherto possessed but a tifth-rate importance as compared with the gun,
which above and beyond all other agencies puts in the hands of the sailor or the soldier the means of lodging his shell just where he pleases. There is reason to believe however, that the gon will not retain this absolute and that in the immediate future means will be provided of
ture effecting all that the heaviest gun could accomplish in this way and a little more. We allude, of course, to the
locomotive torpedo-a weapon with probably a great future before it.
So long as the torpedo was an anchored submerged buoy
its utility was limited. The ship which it was intended its utility was limited. The ship which it was intended
to destroy had to go to it, and so long as it was left alone it would do no one nyy harm. The Harvey torpedo and the steam torpedo boat both enormously increased the power of the weapon; they each conferred on us the power
of transmission ; it became possible to take Mahomet to the mountain, as the mountain would not go to Mahomet. But it is obvious that very grave objections exist to both systems of attack. The torpedo launch can only be manned by volunteers who go on a forlorn hope. Not only
can they expect no mercy from foes whom they must, in can they expect no mercy from foes whom they must, in
the nature of things, attack insidiously, but they run the risk at the best of times, when they are most successful, of sharing destruction with their enemies. The vessel towing a Harvey torpedo is again in much the same plight, and it is probably true that if several ships were operating together, the use of a Harvey torpedo by one
ship might severely hamper the movements of her consorts, who would be compelled to give her a tolerably wide berth. The so-called fish torpedo promises to fulfil every condition that an engine of the kind can be called upon to perform. It is truly a locomotive torpedo, and is the most recent embodiment of the system of carrying o distance the explosive charge which is to work her destruc tion. We say this with a perfect cognisance of the imperfec tions of the Whitehead torpedo. But we are, at the same time in possession of facts which tend to show that it is suscepgreat deal of money has been expended by the British havdament on the invention since it came into their hands; and although a very commendable spirit of reticence restrains the official pen, enough is known to enable us to say that the range of the weapon has been so enormously gun, instead of being limited to a mile or so, while the difficulties which have been encountered in gaiding it appear to be oue by one disappearing in the hands of the Whitent officers who have charge of the invention. The torpedo, is now really a submarine boat, some 25 ft . long, capable of running a distance as great as from Portsmouth to the Isle of Wight, the direction of its motion in still water being practically a right line. It is evident, there-
fore, that for harbour attack it can probably be used with tremendous effect under certain circumstances. Thus an ironclad, by taking up a position at the mouth of a large harbour, and at such a distance that she would be practically safe from the guns of land forts, might, by sending in fish torpedoes, completely destroy a fleet taking refuge under the gans of the forts. The weapon might also be employed for clearing ground torpedoes out of a channel. In such a case it would assume a far simpler and cheaper form than that given to it when used to carry an explosive charge. The great difficulty to be overcome is to give it the power of always moving straight forward exactly been partly been partly accomplished by very the inertis of
depending for its operation on the depending for its operation on the inertia of a
suspended mass, It would be quite possible to use a syroscope for the required purpose, but the difficulty would gyroscope for the fin the in remain an the dovialill ase a prow line of molt secondary deviating new ine of we are not aware force as strongly as it resisted the first. We are yaw whether pringle if not it ought to be adopted in steeri.g so tried, as it promises well. It does not seem co us, indeed, that any impassible fish exich shat poses a fish torpedo or submerged boat, which shall possess automatic steering power sufficient to preserve a line
sufficiently straight to ensure that the sufficiently straight to ensure that the weapon shall strike that can be sail certainly on such a subject, howover, is that the locomotive torpedo becomes day by day more manageable; and it is not impossible that naval omicers thei soon be placed in possess. their guidance when using the torpedo in a current. These tables would show, for example, if a ship to be attacked lay north of another at a range of say two miles,
how many points to the west the head of the torpedo must be laid to provide for the effects of a current flowing at a given velocity in an easterly direction.
tie science department and the special committee
A Bluz-book is extremely delightful reading for a student of human nature and human failings. When that Blue-book is the report of a special committee the interest is insensi-
fed. Men, however, accustomed to the paths of lied. Men, however, accustomed to the pal hs of everyday ine, look on these booss with abhorrence. Manufacturers prontably wielding the united labours of many workmen cannot be oblivious to, nor help feeling annoyed at, the ncompetence shown in so many of the Government epartments. The revelations contained in the report on the telegraph system are, as we have shown in our article of September 22nd, too grave to be passed over lightly. Here incompetence seens to be a rub which there is no exception. Every division, every subdivion is show to be wanting. In one branch we find men with high salaries and no duties, then others with low salaries doing work not their own; here a town wherein little is done costing thousands of pounds more than a town overwhelmed with business. But the worst aspect is, that no one seems to learn by experience. Ignorance reigns supreme. The highest officials are ignorant of aught that concerns the practical working of a telegraphic system, and these men have to decide upon the suggestions made by their xuperiors in pay, position, and knowledge. If such is the management of the higher branches, what is that of the lower? This is readily answered-there is no management whatever. One would naturally suppose that every telegraph manipulator would be able to say what was the fault, and where it existed, whenever derangement of his circuit occurred. But such is not the which to train the men employed, yet their only object is to turn out mamipulators with the greatest speed. The instruction given in these schools is of a merely empirical elementary nature is imparted; and the clerks may, and ordinarily nature is imparted; and the clerks may, and galvanic battery, the nature of circuit or possessed of che most ordinary notions of what produces the motion of their needles. Such methods of instruction as are now and cannot efficiently scientific training, without which clerks posed to be assigned to them. Various suggestions, of course, are made to remedy this state of affairs, but one and all seem to us alike objectionable. The committee knowing the benefits arising from superior knowledge, as seen in the case of India, advocate travelling instructors to go from office to office to impart that elementary scientific instruction which has hitherto been so much neglected in the training schools. A worse plan could hardly be devised, for probably when the instructor arrived the of duty. The time at the disposal of the instructor would not be sufficient to do any plan is to give bonuses, prizes, and gratuities, to promote rom lower to higher grades those who possess the quired technical knowledge. Certainly promotion should take place in this manner, but we object to the principle of giving prizes. The prize is future advancement.
It is singular that the committee seem to have known absolutely nothing of another department which professes hope this Blue-book will lead men to look more into the working of this second department, which we believe to be wholly unsound. We refer to the Science Department located at South Kensington. As we desire especially to call attention in this article to the practical utility of the Science Department, we may be allowed to glance casuall at the history of science teaching. Not till the commencement of the present century was any effort made to give scientific education to the masses, Political economy was not understood, nay, is not understood; and although we make feeble jokes about "knowledge low that there exists a small minority of energetic workers,
we should have to wait a long time for "better days." step up the ladder. In the year 1800 Dr. Birkbeck comstep up the ladder. In the year 1800 Dr. Birkbeck com-
menced his classes at Glasgow. Success attended his efforts, but twenty years elapsed before the idea was
followed up. A few gentlemen at Edinburgh, in 1821, followed up. A few gentlemen at Edinburgh, in 1821,
who felt disposed to encourage the experiment, circulated who felt disposed to encourage the experiment, circulated
a prospectus among the mechanics, announcing courses of lectures on mechanics and chemistry, and the opening of a library of books on these subjects. Dr. Forbes and Mr Gappreciated that classes on architecture, farriery, also appreciated that classes on architecture, farriery, also
architectural and mechanical drawing, were held during the summer recess. In 1822, mainly through the advocacy of the Mechanics' Magazine, mechanics institutes were formed in the metropolis and elsewhere. We owe, then,
to Glasgow the credit of having made the first step. It o Glasgow the credit of having made the first step. It
is characteristic of Scotsmen to be ready ω receive new truth whensoever it comes. The philosophy of Newton
was taught in Scottish universities long before it was was taught in Scottish universities long before it was
substituted for the Cartesian hypothesis at Cambridge. When, however, the light began to dawn in the South, the mass of thinking men was permeated as by an electric I was soon seen that mechanics' institutes and scientific lectures were worse than useless unless those who joined
the one or heard the other could read and write. Then arose the wail for elementary education. Church and chapel bestirred themselves, and the awakening of England commenced. We are not quite wide awake even yet, but
steadily approaching that enviable condition. Then came a lull in the formation of institutes and the giving of
lectures, which lasted till the year 1851. The first great Exhibition created a revolution in the world's history; it gave an enormous impetus to primary education; it drew
attention anew to scientific training. From 1800 to attention anew to scientific training. From 1800 to 1851
progress had been slow. The labours of Watt, Harrison, Hargreaves, Arkwright, Wyatt, Cartwright, Stevenson, Smeaton, \&c., had cleft inertia and prejudice asunder. men had to wage, but prejudice gave way with the increase of knowledge, and knowledge increased by more
general education. The resalts achieved are best seen in the increase of population in the districts most benefited
by their labours. In 1801 the population of Lancashire by their labours. In 1801 the population of Lancashire
was about 672,000 , in 1851 it was $2,031,000$; in 1801 the population of Yorkshire was about 818,0000 , in 1851 it was
$1,886,000$; in 1801 the population of Lanarkshire was about 147,000 , in 1851 it was 530,000 , an increase varying from 109 to 258 per cent. in fifty years. The Exhibition
of 1851 impressed two great truths upon the minds of of 1851 impressed two great truths upon the minds of
men. There was beauty, here was solidity; and the cry
arose, Why not combine the two ? To obtain the beautiful it is necessary to live in and among the beautiful, ;our
artisans lived in and among the solid. Nature to them artisans lived in and among the solid. Nature to them
was a sealed book. We decided to cultivate art, and then science. The Science Department has now issued some twenty-three reports of its work. It has gorgeous palaces
at South Kensington, but with these we will not deal Schools have been established throughout the country in connection with it, and every May it holds examinations, Now, the Science Department was established specially to men in their work. We dare not in this article attempt to compare results with money spent, but will restrict our-
gelves to a milder form of criticism. The department examines in some twenty-three or twenty-four different
subjects ; one of these is "Magnetism and Electricity," Suppose on an average 1000 students attended the classes held every year, we ought to have at least some 5000 or
6000 men scientifically trained in this subject. When however, we state that during the past few years the 10,000 annually, it will at once be acknowledged that there ought to be no lack of scientific electricians. We do papers, but will it be believed that taking six or seven years at random, not one question of a practical nature as applied to telegraphy has been asked? We find plenty
about the direction in which iron filings place themselves under magnetic influence, but not a word about a teleoccurs in the examination papers, nor can we find "relay." There is no question as to battery powers required under or any of thoss insurtint brath, patial earth, condensers, telegraphy. The syllabus of the department is in a view to pass the examination-to course, is given with a possible, and thus enable the master to make a large experience that, putting aside the boys, there are long half a dozen science teachers in the kingdom who can describe an ordinary deep sea cable-the phenomena of its
working and the instruments used. And this is the sta of things after more than twenty years of existence. The country in its ignorance grants enormous sums every year grant made by Parliament is put to such a bad use as that whouth Kensington. It is high time reforn was made lack of any useful scientific training of thousands of Government employés when for over twenty years the Science Department has pretended to supply the need. It
is extremely difficult to trace the influence of the depart ment in many of its subjects, but here we have little or no difficulty, and the result of its labours as applied to
practical operations is absolutely nothing. Yet under practical operations is absolutely nothing. Yet under
proper management this department could and would are ready and willing to do their share of the work. They of "practical telegraphy," and attempt to impart the results obtained to the pupils. We would suggest, then,
that the Science Department should at once adopt a new syllabus for this examination. The classes are only just
commencing, and some progress might be made during the
forthcoming winter. The Government could easily influence the telegraph employés to attend these classes as far as their time permitted. The chance of promotion would prove a sufficient inducement in the majority of cases. Government, without any increased expense, has the power, if it possesses the will, to enable its employés to get continual supply of the trained material. Our readers must not think that we desire to hinder the work of the Science Department, but we would so reform it that its work should be useful, and not useless. It will be impossible to turn all the men now employed into scientifi workers, but it is possible to fill up vacancies with none but competent men. It is well known that such men Glasgow, Edinburgh, and King's College. Such men require a higher salary than the incompetents at present employed, but the saving arising from a reorganisation of
the Telegraph Department would more than supply the necessary funds.

ramsbotton's water-troughs

Mr. Rassbotrox, of Crewe, when he patented in June, 1860, his extremely ingenious system of filling tenders with water while a train was running at speed, granted an ex-
clusive licence to the London and North-Western Railway Company, and as a consequence other companies were precluded from using a device the practical value of which was not fully recognised for some time. By the aid of Mr. Railway Cos invention the London and North-Werest distances withouny were enabled to run trains far greater templated; and to this circumstance was due in great measure the acceleration of the mails between this country by no means confined to the Irish mail, and express train were run without a stop between London and Rugby, and thence to Stafford, Chester, and the North. The advantage thus possessed by the London and North-Western by long continuouy considerable. Tye benents conferrell appreciated, and rival companies were compelled to follow suit. But to do this it became essential to carry encrmous quantities of water. Tenders grew rapidly in weight and which they formerly weighed, the dead or unparing transported soon equalled or even exceeded three-fourths of that of a powerful locomotive. Thus we have now something like 28 tons, and holding as much is 250 gallons of water, weighing alone over 11 tons. If to this we add four tons of coal, it will be seen that we have left tainly nots for the net weight of the tender, which is cer structure is subjected. A reasonably heavy passenger weigh about 150 with engine, tender, and brake vans, wil represent 60 tons. The weight of the paying load-using If one-half the weight of the tender could be suppresse the advantage gained would be almost equivalent to that these coaches would weigh together coaches. It is true but tenders run more heavily than passenger coaches because the wheels, having additional weight to carry cause greater deflection in the rails, and the journals are larger in proportion to the diameter of the wheels. A saving of large reduction train in express work would represent weather, and the resulting economy might be very well worth havin
first instance
Now, it is clear that if the Rombottom water-tre system be applied extensively enough, tenders can easil Taking 4 tons for coal-which is a large allowance-we 10 han 10 tons left for the tender proper and for water. is not too much, therefore, to suppose that 4 tons of coal and 4 tons of water can be carried by a vehicle weighing empty but 6 tons. The proportion of tare would in such 10 ton waco. But if we thesum be seen, than it is in a carried, which But we assume that but 3 tons of coal are representing as it does a run of at least 200 miles, then our weights will stand thus: Coal, 3 tons; water, 4 tons tender, 7 tons-total, 14 tons. Assuming that 400 lb . of water are used per train mile-which is an excessive a little over twenty of water would suffice for a run of that first-rate twenty miles; and it may be assumed that first-rate express service could be worked with
tenders carrying but 900 gallons of water, provided Ramsbottom troughs were laid down at intervals of twent miles apart. Whether the interest on the cost of such a system of troughs would or would not represent a much smaller sum than that saved by running trains with light specially for every particular case. It will to be solved specially for every particular case. It will depend on the levels can be obtaind the ease with which hali-mile We venture to think that in a very large number of instances the game will be found worth the candle ; in
other words, it will pay to put down the troughs. The reduction in the first cost of tenders would, of course, help o pay for them; but, in any case, a very simple calcuthe the data before him, will suffice to settle the point.
There is, however, another advantage connected with the Ramsbottom system which must not be overlooked. between certain companies for Scotch pessengers, and to attract them the service between London and Glasgow
and Edinburgh bas been much accelerated. It is known that the passengers by such trains going North
who do not cross the border are very few indeed, were possible to run trains which would only stop, say, at

York and Newcastle on the road to Edinburgh, it would be possible to reduce the time of transit to something not much exceeding eight hours. The run to York-in round minutes, the fifteen minutes being absorbed in stoppages. minutes, the fifteen minutes being absorbed in stoppages.
It would be quite practicable to build engines which would run for 200 miles without a stop with great ease and certainty. A few modifications would be required, but only in matters of detail connected with the construction of the grates and tubes, and the arrangements for lubriing Edinburgh or Glasgow in eight and a-half hours, not any time exceeding a cigh and a-hil hours, and not at any time exceeding a speed of sixty miles an hourthe average velocity beng something over fifty mileswould enjoy very great popularity, but such a result can
only be accomplished with the aid of Mr. Ramsbottom's invention.
Thich is is yet another argument in favour of long runs, that is the experience of our friends at the other side of the Atlantic. For some years past the American railway companies have adopted the Ramsbottom trough exten-
sively, and now runs of 130 and 140 miles without a stop are made in regular daily work on certain main lines radiating from New York. We have in this country nothing of the kind. The longest continuous run ever attempted in conducting ordinary traffic was that from London to Leicester, on the Midland, but it was abandoned, we believe, because, notwithstanding the enormous quantity of water carried by the tenders, a stop had frequently to be made in bad weather to take in more. The Irish mail still makes the longest runs accomplished in England-that is to say, it gets over the distance between train going over the same distance. Until rantly it was of small use to speculate on the value of the Rams botton system, because of the peculiar relations in which the London and North-Western Company stood with regard to it. But the patent expired two years ago, and any other companies in Great Britain will have the courage to avail themselves of the advantages which it indisputably confers.
trades union despotism.
Last week we male ance glass bottle makers at Kilnhurst, Yorkshire, in which case the trades union officials had ordered the men to cease work when they had made working out the whole of the metal contained in the melting pots. At the first hearing of the case the trades union officials admitted they had taken this course in order to cause the基 house elsewhere. The case again came before the Rotherham bench on Monday, and it is with a sense of considerable gratification that we place on record their decision. The magistrates heard the case very patiently and at full length, and finally decised in favour of the employers. The chairman, in giving
this intimation, said they had come to this decision principally in which "y did not think it reasonable that five or six hoursin which "the number" can be made - should constitute a day's
work. The evidence had been rather conflicting on some points and the magistrates had to bring common sense to clear it up and they saw it was not right or reasonable that the master should acquiesce in a custom by which the men could cause of thems, and which was, in addition, opposed to nominal damages for leaving the decision the men have to pay It would be well for the interests of the manufacturing community at large if all employers would, under similar circumstances, take measures to vindicate their own interests.

Some years have elapsed, and the pewer of the gun has enorplating should be dispose ingur between. We can perfectly well remember that the propace was at the time pronounced absurd by men who found sufficient riginat condemn the proposition in the fact that it had not advocated the system, and urged upon the Government the expediency of trying whether our views were sound or not. We are happy airly the accuracy of our theories was o conclusively in system of armour-plating ships cannot well be postponed. The Heavy Gun Commiteo determined to test the powers of the 38 ton gun. A target was provided for the purpose at Shoe-
bury, consisting of three rolled iron plates each $6 \frac{1}{2}$ in. thick, which wero pled two ness, the whole supported by piles of 14 in . by 15 in , bolted togewhich has been riddled with shot. A single round was farget, this target at a range of 70 yards, with a charge of 180 lb at powder, and a Palliser shell weighing aoout 800 lb or 130 lb . of nation it was found that the Palliser chilled shell had cut completely through the target, and had broken up within a couple of yards of the further side. The gas check, which was one of Lieutenant Goold Adams', lodged in the hole, and the friction was so great that it set fire to the teak backing. Portions of the base of the shell also remained, but the greater part of it was although well shored up, was driven back seven inches, and the piles in rear were cut through. The 10in. target which was behind was scored all over with fragments of the shell, and
pieces of the target itself were hurled fully 200 yards away
from its base. The striking velocity The wound made by the shell was exactly 1212 in . by 13 in ., and the depth to which the gas check sank in it was 22 in. The com mittee expressed themselves exceedingly pleased with the strength was completely shivered away by the shot. From this it will be seen that the 38 -ton gun sent shell through no less than 1912 in . of iron and 10 in . of teak, when these plates were disposed in the was fired, a a preliminary shot was discharged at an old 10 in .
target, behind which, at a distance of 6 ft , stood target, behind which, at a distance of 6ift., stood a 4 in . plate
with a 13 in . teak backing; an 800 lb . shot was fired against
these with 130 lb . of powder. The result was that the shot
the plates being close together, cannot resist the 38 .ton gun at may be made to afford complete protection. The importance of this experiment requires no further comment at our hands. It is use air space armour was made by a young officer, whose name has not reached us, at the United Service Institution. Our suggestions put forward, not long afterwards, were made in ignor been broached. The question of priority of claim had already ever, of no importance to us; we willingly concede all that can
be asked of us in this direction, but it is a matter of considerable mportance to us to find that the system we have so long advo cated now promises to be a complete succes.

foreign tariffs.

Subjeors hardly less significant to British traders than those relating to the treatment by Turkey of her Christian subjecte
require to be pressed upon the attention of the British Government. The person who has recently suggested that because the United States Government impose duties on imported British
steel which make it to the advantage of a Sheffield steel firm to stee which make it to the advantage of a serffield steel firm tak
manufacture in America, the British Government should take steps with a view to bring about a heavy duty upon United in politicical economy. Few people in this country will regret
that the reply to his communication from Lord Carnarvon should have been that the proposal was one "which her Majesty" Government could not entertain." Of a very different kind
however, is the communication which the Chamber of Commerce of Glasgow have resolved to send to the Foreign-office. That ffect that in the event of his lordship being unable to induce the French Government to adopt Free Trade with Great Britain
then that he will press them in renewing the Treaty of Commercely benefited more liberal fiscal policy. Since France has so argely benefited by the commercial measures which we have
ourselves adopted, it would be only reasonable to look, on the principle of reciprocity, for such a result as is here desired; bu we fear on grounds which shall not seem immediately favourable enlightened views are held by too many people now in authority the last Treaty of Commerce with France is almost wholly owing. We have a better opinion of the German Govern-
ment. Still it must not be forgotten how severe is the pressure which is being put upon them to uphold subsisting
duties. There is now but little doubt that of the thirty-six
German Chambers of Commerce who in their reports to the German Chambers of Commerce who in their reports to the
Ministry of Commerce have dealt with the iron question, twenty-five have declared themselves decidedly in favour of the maintenance of the duty on imports, and only eleven for its
abolition. The present duty on British finished iron imported into Germany is 208 . per ton. If the majority of the German of the Germans two or three yearastanding that the undertaking should be entirely removed. Nor would our competitors in the German iron trade confine themsolves to keeping us out of the
finished iron market. The understanding of which we speak was come to when the duty on pig iron entering Germany was
swept away. The effect of the removal was to greatly advantage the pig makers of Cleveland in particular. That advantage
now seriously imperilled; for the application of the German now seriously imperiled; for the application of the German
ironmasters is that a duty of 5 s a ton shall be imposed upon pig iron. No efforts should be spared by English ironmasteri
to press upon our Foreign-office the great importance of these questions to all our iron-producing centres.

MORTISING AND TENONING MACHINE

In the engraving, page 258 , we illustrate a combined mor tising and tenoning machine, which appears to include several
excellent features. It performs a multiplicity of operations, mortising, tenoning, housing staircase strings, sticking moulding suitable for dours, small architraves, and other work. The set out by a skilled man. It can be used for dowelling purposes, chairs, \&c., for cabinet makers, and it will cut with ease ornamental open work of any pattern, however irregular, for the eaves of houses. The machine consists of a stout iron pillar,
bolted to an iron base. Projecting from the pillar are three iron arms which support the cutting machinery, and at the back is an iron bracket, bolted to the pillar, to carry the wheels for
pulleys. In front of the machine is an iron table and framework bolted on to the base. The table travels, and can be raised or depressed according to the thickness of the material operated on, are in motion. In a minute a door can be mortised ready for
ock, an operation which at a building would take a workman an hour. The chisel for moulding and rebating circular-headed springs keeping the moulding in proper position. In tenoning shoulders clean. There is no snipping, and the joints fit to a and screw for the required size of a tenon, and they move side ways for long and short shoulders, and for solid, moulded, or beaded traming.
Figa. 1 and 2 are respectively side and front elevations of the machine ready for mortising ; Figs. 3 and 4 show the arrange
ment for mortising ; 5, 6, and 7 show chisels ; Figs. 8 and show one side and front elevation of the machine as a moulder,
with chisel in position; Fig. 10 is a side view as atenoning machine and Fig. 11 is a front elevation of the same. On a foundation plate Λ is fitted a pillar B, having brackets C formed or fitted on
it; these brackets carry the bearers D of the revolving spindle over the pulleys G, H, and I; the spindle E is regulated and raised or lowered by the spur gear J, which actuates a nut on a screw formed on the spittom part K of the pillar B is turned true, and on
bit. the pillar a bracket L , so arranged that it can be swung round door locks. The bracket L can be raised or lowered by means
of the worm gear M , which actuates the pinion N , gearing into the rack O , allowing the different heights for mortising to be
obtained. The bracket L can be swung round the pillar B , and t can be fixed in any required position by the screws P ; on the bracket L are fitted ordinary longitudinal and transverse slides
Q, and on the top slide is fitted a table R make to slide thereon. Underneath and on the side of the table R is fitted a rack
actuated by a pinion T, and worked by the hand wheel U ; this fixed to the required position and not required for mortising
 W. The wood to be fixed for mortising is held against the fence V, and held by the cramping piece X, actuated by the serew Y working through the bearer Z ; this bearer is fitted with screws, and can be removed when not required.
On the part K of the pillar B is fitted a ring A^{1}, made so that it can be raised or lowered, and fitted with a screw B^{1} for fixing it to any required position ; the ring A^{1} is formed with a projecting piece C^{1}, to which is bolted a guide D^{\prime} made with ol ${ }^{\text {ening }}$
E^{1}, in which works a guide lever F^{\prime} fitted on the fence V . The E^{1}, in which works a guide lever $\mathrm{F}^{\prime \prime}$ fitted on the fence V. The lever FI^{1} travels with the table R, and on and in the opening
which is made equal in travel to the length of the mortise hole o be cut. On the table R , and bolted to the fence V , is a wooden guide frame $\mathrm{G}^{\mathbf{1}}$, on which is placed the wood to be operated on, and on the under side of the frame G^{1} are fitted springs H^{1} having trame G1, and enter the ortise holes which bave fint bo acting as guides for cutting the other mortise holes and doing way with the present system of setting out all the holes to be mortised, and in addition making each piece of wood mortised mathematically true.
On the side of the table R is fitted a bracket J, in which Works the end of a screw K^{1}, which works through a swivel lug
L^{\prime} fitted underneath an independent table M^{1}; this table is fitted N^{1} the top of the table R . Underneath the independent table in the table R ; on the top of the independent table M^{1} is fitted guide plate or fence Pl for guiding the wood operated on. The aable M^{1} is used for the purpose of cutting away the wood of the reads Q^{1} and rises R^{1} of staircase strings. When the indepenstraight on one side by means of the bit 7^{1}, but by turning the handle S^{\prime}, which actuates the screw K^{\prime}, the independent table M^{1} is made to work sideways, giving the required angle to cut away the wood of the treads, Q^{1} and rises R^{1}, cutting the wood at an angle giving the required width at the end, as shown in the drawing, for the
The mortise bits are made of steel, and formed with three our, or more distinct cutters of a spiral curved shape, cut round and lengthways of the boring bit, and sharpened on the edges. When boring-for first passing through the article to be
mortised-all the cutters are acting, but only one or two cutter is or are on the cut when the bit or wood is made to travel sideways or horizontally, that is to say "slotting," the other
cutters being formed equally in a circle steady the bit preventing it working sideways, and producing an evenly cut made with two cutters and two small wings, which left the bit loose in the hole until the cutters came in contact with the wood, causing t
The mortising machine is shown fitted with moulding bit and apparatus for keeping the wood in position during the operation of cutting the mouldings. On the table R are fitted plates C^{2}
having jaws D^{2} in which work spring levers E^{2} having friction having jaws D^{2}, in which work spring levers E^{2} having friction
pulleys F^{2} fitted in the ends ; these friction pulleys are kept H^{2}, giving the required pressure, and prevated on by the screw H^{2}, giving the required pressure, and preventing the wood work
ing sideways during the operation of cutting the mouldings. In ing sideways during the operation of cutting the mouldings. In
the spindle E is fitted a moulding bit or tool 1^{2}, this tool ${ }^{\text {i }}$ ng tool can be made of any pattern to suit the required mould ings ; on the bottom part of the bit is formed a stud K^{2}, which fits in a hole formed in the top table R , and the top L is made taper to fit the spindle E.
pparatus for cutting shoulders and tenons, On the table R i apparatus for cutting shoulders and tenons. On the table R is
bolted a frame S^{2} having slides T^{T}, in which are fitted the bearers U^{2} of the saw spindless V^{2}; these slides or bearers are
raised or lowered to suit the thickness of the wood to be cut, and are actuated by screws W^{2}, worked by the handle Y^{2}, which is made to fit the heads of the screws W^{2}. On the ends of the spindles V^{2}
fitted small circular saws X^{2}, which are actuated by a rope belting Y^{3} working over pulleys Z^{2}; the circular saws X^{2} cut th sequently bad workmanship. On the end of the spindle E the mortising machine is cut a screw, on which is screwed The spaces C^{0} are for the purpose of clearing the cutters from the chips or sawdust. A simiar disc D^{3} is fitted underneath
the disc A^{3}, having similar cutters ; the top disc cuts the top of the tenou, and the bottom one the under side
of the tenon. Between the disc is fitted a wooden
waser washer E^{3}, and this washer varies in thickness according
to the thickness of the tenons to be cut. A set screw F^{3} is passed through the bottom disc and washer, and screwed in the boss G^{2} of the top dise. The wood operated on is made
on a top aliding frame H^{3} working on tottom frames Is
and a brake are employed to kee the wod and a brake are employed to keep the wood firmly fixed on the sliding frame H^{3}, and to regulate the length of the tenons being
cut ; the sliding frame H^{3} brings the wood first through the cut; the sliding frame H^{3} brings the wood first through the
circular saws W^{2}, cutting the shoulders, and afterwards through the discs cutting the tenons.
For planing wood a long wooden or iron table is fitted on the table for planing is actuated by gear fitted on the table R and bracket L

COUNTER GEAR FOR LATHES.

The engraving at page 258° shows a new driving gear for athes, sce, now being introduced by Messrs. Hind, of Notting ham. The drawings practically explain themselves. Friction
wheels are used. That marked B can be wedged out between or withdrawn from the other two by a screw on the axis of A This latter wheel can be moved by the endless chain C C.

THE CENTENNIAL EXHIBITION

 (From our own Correspondent.)Ir the attention is directed to the workmanship at the Cen temnial there will be found much to instruct, much to surprise and something to regret. The foreign exhibits are so limited that there is really insufficient wherefrom to form a comparison,
The Belgian engine is, taken altogether, an excellent specimen of workmanship, and one experiences a feeling of regret that set screw on one connecting rod should at the crosshead end and an linch farther than does the one on the fin. larger than the size of the ryk shaft, and the wheel trued by the fit of the four large keys. The edges, top and bottom of the connecting-rod jibs are left sharp, and not chamfibs in the whole Exhibition-and the consequence is that if on the corner, as it is very apt to do, the engine may bave to be moved so that one can get at the burr
file it off. This is apparently a small matter, but it is not so in practice, because one is not apt to find the burr until its cutting in the key-way gives notice of its existence; then a file is not always at hand, nor are filings the most desirable things to hav ing about a key-way, and a journal and bearings. The scra) executed, which is more than can be justly said for the greate part of the scraping in the exhibition. The crosshead is of that ugly octagonal shape that offends the mechanical eye on so many of the engine exhibits.
On the English engine and sugar mill we find substantial, if not highly-finished
addition to the set

upon the working parts are provided with nuts and check-nuts,

 as also are those bolting the segments of the fly-wheels together and bolting the arms to the hub or boss. The brasses are, as brass and brass. On the big Corliss engine the bolts bolting the fly-wheel sections, and those bolting the arms to the boss, have neither check-nuts nor pins. It is only when turning to the locomotive exhibits that one realises how much may be overlooked or slighted, and yet escape criticism. Here is a four known firm of locomotive builders, with the crosshead on th left-hand side keyed on all out of true. It is, in fact, a dis graceful piece of workmanship, for beneath the guide-block an the botlom guide-bar all corler, and between the block and top bar at the diagonally opposite corner, we can put in I don kow how many co piston-rod will be sprung when the engine is running I hardly dare to think of, much less to guess at. The bolts securing the straps to the connecting and coupling-rod ends have neither applies equally to the pins to secure them-a remecting the lifting link to the quadrant is provided with a cotter, which is, oner, left unsprit. The link motion and the connecting-rod nearly all the locomotive connecting and coupling-rods, for better amples of fitting need not be desiredBefore going any further on the subject of the securing of olts, it will be as well to state that it is in each case strenuously dividual case, positively assured. To the assertion that single dividual case, positively assured. To the assertion that single
nuts are apt to slacken back, the reply is, that they don't slacken. In Europe the eccentric straps and connecting-rod bolts are secured by nuts and check-nuts, and by split fins or are forged split, and opened out after being put finally in the places; but in the engines exhibited, the taper pins-wher retain them in their places. European mechanics strongly
object to this, while nobody claims any advantage from the dis. pensiag with these extra securities which render it necessary for Mr. M. N. Forney, in that valuable little book, "Forney's 460 : In inspecting the cylinders, pistons, guides, and connectAnswer. Especial attention should be given to that all the bolts and uuts on the connecting-rods are tight.Question when the ent part of the ? Answer: All the bolts uuts, and keys should be carefully examined, tó see that they are properly fastened. The bolts and nuts in the eccentric traps are especially liable to come loose, \&c. \&c.-Question 468 To what points of the running gear should attention be directed during inspection? Answer: . . The bolts and nuts about both the engine and the tender trucks should be watched, to see uplicate parts should be carried with the engine? Answer Kers, bolts, and nuts for connecting-rods. © is is is thoroughly practical, and there is doubt that each of the above instructions is well directed and posiively essential. To proceed, however, a locomotive, numbered and pins to the eccentric-rod eyes, but bolts and nuts without pins are employed to hold the link halves together, the links being nade in two pieces, bolted together at the ends with a distance block between them. The connecting-rod bolts have check-nuta but no pins, while the eccentric-rod eyes have nuts and taper pins. that, so far as workmanship is concerned, is a positive eyesore it is a consolation to know it was built by apprentices, and uilt in the dark. The pump consolation to know it had been attached to the end of the crank pin. The crank was bored too large for its seat, and the key has sprung it on the keyway side away from the seat so that a piece of paper can be passed be-
tween the bore of the crank and the seat. The connecting-rod key on the right-hand side of the engine is so loose in the keyin between the two. A washer on the end of one of the crank the face of the washer is a close fit on one side of its diameter, it is gaping at least $3^{1} y \mathrm{in}$. open on the other side. The pin connecting the slide spindle to the rocker arm on the right-hand side of the engine shows under the head a similar state of affairs, The rods are, with the exception of the keys, well fitted, and so
is the link motion, the bolts being secured with split cotters, and the casehardening beiug especially well executed.
A large marine engine-building firm exhibits, near the locomo-
ives, a large marine engine shaft and crank, with the work on arge marine engine shaft and crank, with the machine thing but noteworthy, except it be for coarse chatter marks which appear all over it, while the less said about the planing on the
It is with a sigh of deep relief that one turns from these two
last exhibits to the handiwork exhibited by the Cornell University studenta, who show the best exhibited specimens of scraping, or to the lathes exhibited by the Worcester Massachusetts Free Institute, on which both the fitting and the finishing are excellent.
The finishing on the machine tools exhibited by the Putnam Machine Company is equal to the finest silver plating. The finish is, it is true, done with the burnisher, but that is of no consequence, since it is only applied to those parts where finish
and not fit is the object sought.
In the Hoe printing press exhibit we have examples of excellent
and substantial fitting and finishing, while for a specimen of accuracy of machine work the Poole rolls are a marvel.
The workmanship upon the Sellers machine tools is also noteworthy for excellence of execution both in fit and finish, as might be expected of this firm.
One of the most interesting exhibits in the Machinery Hall is the Thompson or Buckeye engine and governor. The engine is illustrated in the accompanying engraving. It will be seen from the section of the main and cut-off valves that the main valve is aubstantially a hollow box or chest closed with a lid or cover.
In the large long stroke engines its form is that of two such In the large long stroke engines its form is that of two such
opposite to that to which the eccentric rod is attached. The of its cular case seen on the engine shaft. The outward movement of these levers advances the eccentric forward on the engine shaft, and two well tempered cast steel wire coil springs furnish the centripetal force which returns them when the spsed slackens. Said springs are provided with set screws for adjusting their tension. Figs, 3 and 4 explain the construction of the governor, and its attachment to the loose eccentric. Fig. 3 shows the posiengine is at rest or when the speed is not sufficient to move them. The spring E is shown drawn out to certain degree of init:al tension, while D shows its appearance without tension, the space between nut f and the stud d representing the distance it should be drawn to equal E. Fig. 4 shows the weights thrown out as far as they will go, in which position the earliest cut-off takes place. It also shows the position of the levers required for a direction of motion the reverse of Fig. 3, the direction in each case being shown by the arrows. The range of adjustment turns the eccentric one quarter of a turn, so that if the earliest
cut was fixed exactly at the beginning of the stroke, the latest
stability required in the equilibrium. The engine exhibited has a cylinder 16 in . diameter, 36 in . stroke, driving a pulley 10 ft , diameter, 25 in . wide, and 300 ft . of shafting, for the purpose of exhibiting the engine at work.
Mr. J. W. Thompson, the inventor of this engine, has made a laudable effort to improve the construction of the well-known indicator, and especially with the view of improving the diagrams taken from high-speed engines, which it is well known are frequently of a most unsatisfactory character when the ordinary
instrument is employed. Mr. Thompson states that the sircumstances which compelled him to make the improve ment were similar to those which led Mr. Gooch to adopt the principle of causing the marking-point only to travel to the full extent required by the diagram. Subsequently Mr. Richards added a parallel motion to steady the movements of the pencil, and caused the latter to travel a greater distance than the piston. Mr. Thompson contends that Mr. Richards' improvements did not fully carry out Mr. Gooch's idea, as the mechanism adopted by Mr. Richards involved three times as much disturbing momenIn order to remedy this dee lever of Gooch.
In order to remedy this defect, and overcome the difficulty of

hoxes connected by a hollow neck. The steam enters its interior through circular openings in its cover, and thence passes into the brought to coincide with its cylinder ports. The exbaust takes place at the ends of the valve into the ends of the chest, thence through passages into the exhaust pipe. To the openings in the back of the valve are fitted self-packing rings, which serve the purpose of insuring a steam-tight connection between the interior of the valve and the steam chamber in the back of the chest. The area of these openings is made just sufficient to bold the valve to its seat, hence it is as nearly balanced as is practicable or desirable. As the valve chest contains only exhaust
steam, the engines may be run with the chest lid removed, any leakage detected. The cut-off valve works inside the main valve, and alternately closes the ports leading to the cylinder. A fixed eccentric operates the main valve, and an adjustable one operates the cut-off valve through the medium of a compound rocking-arm device and its connections. A small rocking shaft, which forms a part of the device, works in a bearing in the main rocking arm, and moves with it, so that the movement of the cut-off valve, relatively to its seat in the main valve, is both as to time and extent just what its eccentric would produce if the valve worked in a stationary seat, and was attached directly to said eccentric. The stem of the cut-off valve passes through the hollow stem of main valve, and is con-
nected to an upright arm on the cut-off rock shaft, on the end
would be just at mid-stroke, but as the earliest does not need to be earlier than about one-twentieth, to hold the engine without little earlier than three-fourthe of thestroke. The proper adjustment in this respect is obtained by turning the governors forwards and backwards on the shaft as required. The action of the governor can be best understood by reference to the accompanying sketch, Fig. 5. Let A represent the engine shaft, and B the weight attached to the lever of the governor, which lever is pivoted to the case at d, and having a range of movement outward to c. The centrifugal force of a body revolving in a circle is, for a given uniform speed, directly as its distance from a centre round which it revolves. The resistance of a coiled
steel wire spring increases directly as it is extended. Supposing steel wire spring increases directly as it is extended. Supposing tension equal to the distance $a b$ it is evident that if the weight B is moved out to C , the spring will be drawn to C, and will exert just as much more force than when at b, as will equal the increased centrifugal force of the weight at C. With such an adjustment of tension the regulation would be perfectly isochronous, provided an equilibrium between the two forces could ever be reached, but since it cannot it is necessary to introduce such conditions as will require a slightly greater speed to carry the weight to C than is required to start it from B. This condition diminution with a little less tension than the distance $a b$, the
reverted to a single lever, and caused the end of it to move in a straight line.
The lever a, Fig. 6, is pivoted to a bracket E, which has a fixed pivot, so that its upper end c is free to move. A light and short radius bar b is attached to a rigid standard F , and also to the which the such a point that its effect is to counteract the curvature produced is practically straight for a distance fixed. The line purpose, though beyond certain limits the lines produced by this and the Richards' indicator begin to curve, and the length of the straight portion is the rame in each. The reduction in weight in Thompson's indicator as compared with Richards, ascertained by actual weighing at the pencil, is stated to be fully two-thirds but it is claimed that the saving of weight is greater than that proportion, as the lever having to carry a pencil alone, does not require the same strength as one that has to carry a link and matically required to give correct indications, length mathe longer than that of the rod b. The joint is thus bronght down near the piston, and is a modified form of ball and socket which allows both the lateral movement required by the paralle motion and the rotative movement involved in swinging the lever to and from the drum. This joint is made compensating, so that lost motion may be easily taken up. On this indicator two joints The reen piston and the pencil are dispensed with.
The result of these alterations in the eonstruction of the
indicator is shown on the diagrams sent herewith. One was taken with the ordinary indicator, the other with the improved instrument; one instrument was right-handed and the other left-handed, so that the corresponding ends of the cylinder are at opposite ends of the paper. These diagrams were taken under
such circumstances as most severely test the instrument used, such as high speed, light load, quick induction and cut off, and a high grade of expansion.
They were both taken from the same engine, and under the same conditions, as far as these could be obtained. The size,
speed, and kind of engine are marked on the diagrams. The best speed, and kind of engine are marked on the
diagrams were taken with the new indicator.

Among the novel motors in the Exhibition is the Rider compression engine, by the inventor of the well-known Rider cut-off gear. The Rider compression engine consists essentially of a
compression and a power cylinder, with their respective pistons and connections. The lower portion of the compression pistons and connections. The lower portion of the compression cylinder is kept cold by a current of water which circulates round its hot by the action of the fire below the heater. The heating and also the cooling of the air is instantaneously effected by its alternate presentation to the surface of the heater and cooler in a thin annular sheet. The same air is used continuously, as there is neither influx nor escape, the air being merely shifted from one cylinder to the other. All the movements of the various parts are uniform, being solely derived from regular,
circular, and rectilinear motion; anl as there are no compli-

[x]

out for itself a bed of nearly three quarters of a mile in width in the gravel and clay formation. During the dry reason the
water only covers a portion of the bed where the channel is water only covers a portion of the bed where the channel is
deepest, but like many other Indian rivers its course is perpetually shifting, and the channel which a few years back hugged the right bank has been gradually silted up, the deepest section now approaching the left bank. In the rains the water covers the whole bed, and when heavy floods occur it rises over the left bank and overspreads a large extent of country. The town of Broach lies on the north, or right bank; it is considerably raised so as to be completely protected from floods. The railway
viaduct over the Nerbudda consisted of sixty-seven spans of viaduct over the Nerbudda consisted of sixty-seven spans of
generally 621 ft . length each, supported upon cast iron columns or piles 2 ft . 6 in . external diameter, made up of 9 ft . lengths, The total length of each averages between 8uit. and 90 ft , and they are screwed into the bed of the river to depths varying from 30 ft . to 40 ft . Each pier consists of five of these piles
ranged in a single row transversely to tha viaduct, with here and there some extra piles supporting fenders for protection from the there some extra piles supporting fenders for protection from the
trunks of trees which are frequently floated down by the floods The double line of rails is carried by longitudinal wrought iron lattice girders over the three central piles, and the weight is distributed over the five by cast iron cross girders. There is room left, therefore, on each side of the line for a platform or
footway, but these, although at one time contemplated, footway, but these, although at one time contemplated,
have not been completed, and foot passengers usually cross have not been completed, and foot passengers usually cross
the river in bosts. The piles are cross trussod down to
the 8th a steam launch was in readiness, and was actively engaged in carrying traffic and tugging native boats across the river, The launch was brought from Bombay by rail, a distance of
200 miles. A delay of little over an hour is occasioned to the mails in crossing.
Temporary landing stages have been erected, and a more convenient one is in course of construction attached to one of the piers of the standing viaduct, which will enable the larger barges the difficulties and passengers readily. It is clear that, great as his staff have to overcome, they have met them with admirable energy and foresight.

When circumstances allow diving operations to be carried out, it will be ascertained whether the piers were undermined or otherwise. Either that or the fracture of some of the piles most probable causes of failure. The appearant are among the rails tends to show that the last span must have fallen almost vertically downward.
The viaduct has been standing for about filteen years, It suffered damage in 1864, when six spans were carried away and subsequently renewed. In 1868 three spans were carried away spans represents a length of about two and a-half furlongs. The excessive flood this year is attributed mainly to the but heavy fall of rain up country. Great apprehensions were entertained for the safety of the Taptee viaduct, owing to reports of heavy floods up the river in the neighbourhood of Nagpore. The water is stated to have risen within 4 ft . of rail level on that viaduct. The country bears signs of heavy local rain, but the floods have subsided, and both the rivers are now in their norual monsoon coudition.

THE PATENT JOURNAL.

Condensed from the Journal of the Commissioners of Patents.
Grants and Dates of Provisional Protection for Six Monthe. 2322. Improvements in obtaining and applying Mon Mive PowER to sub-
marine openations, Edward Jordon Hough, St. Helen's-place, London.marine oper
$2 n d$
June,
1876.
2966. Improvements in machinery for Scouring, Setino, or Glassina
Leatber or Bensina Hides, Frederie Augustus Lockwood, Bristol, U.S. 2999. An improved machine or apparatus for Wasmivo and Pekina
Por AToEs or other vegetables or roots, Thomas Bradford, High Holborn, Potatoes or other vegetables or roats, Thomas Bradford, High Holborn,
London.- 2 th Juty, is76.
3091. Improvements in the construction of Steam Boriers, and in appa8091. Improvements in the construction of STEAM Boul.ERs, and in appa-
ratus to bo used in the manufacture thereof. Bristow Hunt, Serle-street,
Lincoln's-inn, London.-A comminication from Alvan Dinsmore Brock,
 3181. Improvements in the manufacture of ARticles from Copper, and
in apparatus employed therein, Sydney Pitt, sutton, Surroy. -A communi
185.
3376.
Sieh and Theodore Schwarz, Hamburg, Gormany.
Sing apparatus, Peter 3377. The improvement of TURNBTILEs, and apparatus connectod there339. An improved combination of processos and apparatus for the manufacture of SoDA and PotisiI, and the recovery of the sulphur employed
therein, Walter Weldon, Abboy Lodge, Merton, Surrey,-28th August, 1876. Improvements in Automatic Thread Layers combined with Thresi Carriers, applicablo to tho machines employed in manufice-
turing ribbed loped, or knitted fabrics, Thomas Coltman, Leicoster-
 bury, Loodon.-31st dugust, 1876 .
347. An improved method of Raising and Lowering Window-blinds
 tember, 1876.
3519. Improvements in apparatus for WEAvino Looped and PiLed FABrics,
Bristow Hunt, Serlo-strect. Lincoln's-imn, London.
 the dead, James Gillman. Leeds.
Improvements in Sewisc Machinery, Howard Pratt Garland, 3519. Improvements in DIscciarorino Waren from STEAYSHRPs and other
vessols, and in apparatus to be omployed for this purpose, Robert vessols, and in apparatus to be omployed for this purpose, Robert
Griffith, Bayswater, London.-9th Sepoteimber. 1876. . 3558. Improvemonts in RoLler or Wrakt SKates, Fredorick Young,
Dalston-lano, Hackney, London, aud Charles Frederick Descon, Southarmpton.
3500. Improvements in Reapiso and Mowino Machines, Adam Carlisle
Bamett, Thirsk, Yorkshire. Bamlett, Thirsk, Yorkshire.
3.562. Improvements in apparatus for nse in Stoppivo and Costrolliso the Botion of SHips' CabLes, Alexandedon-11/h September, 1876 .
stieet, Cloudesley-road, Islington, Loudon3566, A now or improved apparatus for Stopprino Poxpino Enoines, John Robertson, Lanemark, New Cumnock, Ayrshire
3572. Improvements in Sorool Formiture, Wil 357. Improvemonts in Sonool FRR
3574. Improvements in Cooling Woven or Felted Fabrics after the procoss of steaming or blowing or boiling in water, Heary Lister, Ashbrow
Mills, Hudderstield, Yorkshire 3576. Improvements in Purifyiso and Disisvective SEwaoe and other
foul waters, and in tho proparation of disinfectants, William White, foul waters, and in the proparation of disinfectants, William Whito,
London-road, Newcastle-under-Lyne.
3578. Improvements in Habvestino Michines, Bernhard Samuelson and 3578. Improvements in Harvestivo Machises, Bernhard Samuelson and
William Gcorge Manwaring, Banbury, Oxfordshiro.
S5So. Improvements in the method of Windivo Hosiery YARN, and in S5SO. Improvements in the method of Windivo Hosiery Yirn, and in
apparatus employed therefor, Howgate Greaves Warburton, Leicester-
 Spools Peter Joel Livsey, Manchester,
Dimock, Hartford, U, 3586. Improvements in apparatus connected with Cleassina tho Borroms
of Smips and other submerged structures, Henry James Cole, Wandsof Ships and other submerged structures, Henry James Cole, Wands-
worth-road, Surrey.
358%. Improvements in Sionaling Apparatus, Philip Haughtou Whittaker, Yarr-street, Liverpool.
358. Improvements in Ris, 3588. Improvements in Ris, Moktise, aud other Latch Locks, Edgar
Hum, Stoke Nowington, London.
3592. Certain improvements in the construction of instruments for 3592. Certain improvements in the construction of instruments for
SrigRINe SheEP or other ANIMALS, William Clark, Oxford-street,
London, 3596. Certain improvoments in machinery for Finishiso the Evps of
RoLss for Metal Rollisc, Frederick Richard Wheeldon, Wolver-
hapton 3598. Improvements in Globe Holders suitable for gas and othor lamps, Henry Horton, Finsbury-street, London. in stretching and finishing of
360. Improvements in FRames employed
skirts, Thomas Bernard Ward Holt Town, Manchester skirts, Thomas Bernard Ward, Holt Town, Manchester. WRR Borw TovaLERs, and other vossels or artlicles made of glass, china, stoneware,
or other brittle or hard materials, James Vornon, Nowton Stewart, or other brittle or hard materials, James Vornon, Nowton Stewart,
Wigton. 3604. An improved Pristiso. Papre-cotiind, and Tag-makino Machine,
William Robert Lako, Southampton-buildinge, Loncon.-A communi 3008. An improved Focontain Penholder, Whilam Aloxander Brice,
 3610. Improvernents in Tanoed spades and Shovels, Francis Adkins,
Oldbury, Birmingham. 3614. Improvements in the construction of Crank woaving, Denis Bury, Oswaldtwistle, Lancashire.
3615. Improvements in Wood Scesws, and in machincry for making the same, and in means, methods, and processes connected therewith
Thaddens Hyatt, Gloucester-gardens, Hyde Park, London, and Thoma Rickett, Devonshire-place, Porshoro-road, Birmingham.
3616 Improvements in StwDs or CLASPs, Willam Heary Douglas, Stour 3616 Improvementershiro.
bridgo, Worcestershir. 3618. Improvoments in Screw Propelerns for propelling vessels thr
the water, Robort Henry Armit, Victoria-chambers, Westminster. the water, Robort Henry Armit, Victoria-chambers, Westminstor.
3620. Improvements in Exainss worked by the combustion and expan
sive force of an inflammable fluid mixture, Matthow Piers Watt Boul sive force of an inflammable fuit misture,
ton, TTew Park, Oxfordshire.-15th September, 1876 .

CovEns around CAKze of Blackisa or other material, Willitam Cowper
Pollhtt, Holborn, London 3620. Improvementit in Penckiso Risos and in the mothod of and appo-

 Sourne, Victoria
3oss. Improvement

 similar articles, Charios Edward Heron Rogera, East Rothora, Notting.
hamahiro
364. An improved Phoroonapmic Tistisa Appanates, Goorgo Nesbith,

 Darwen, Lancuatirre.
305t Improvementa

 London.- A col
dantin, Paris
3s6o. Improved

3600. An improved BRAT, Charles Heary Everett, Douglas-place, Queen's-
road, Bayswater, London.
 304i, Improvements in the Pubitication of Gas, Robert Harris, Bow,
London

 Soward, Tompleogese, Dubinn.
3ot7. Improvements in Foosion

 3670 . Imp, Lo to
stroot, Old Kent-road, Surroy, and Waltor Symington, Oid Kent-roodd 3082. Improvomonts in the Funxacss and Fluse of Stex Boilers,
Samuel Hancock and William Soar, Nottinghamehire.
 3684. Improved meana, or apparatusus to be omployed in Cosskertiso and
Discorskrixo Rant
Sult
 don.-A communication from Samuel William Lambeth and William
Raymond TJfourade, Philidelpha, U.S.
 Locss. Improvemements in in the modiago

 8vos. Improvements in the mothod of mnd apparatus for Securixo GLass
in metalice window frames, Robert Hird, Bliploy, and Alfred, Calvert, Loeds, Yorkehire.
3097. Improvemonts in machinery for 耳xirtiva Healds, James Haydock

 Hoilbeck, Leeds
Broo Improvements in Brerccis and Bicrcue, STinds, Thomas Browett, 3701. Improvements in app uratus for Wonkinso and Lockivo the Pown
 Kilburn, London.
Philadelphin, U.S.
 tion from Robert Whytithill, Now Yourk.
370. Improvements in tho means
8705. Improvements in the oneans or apparatus employed in the manu.
facture of Whocoat IRoo or STERE Disc or W WEKLS, James Abercromble ${ }_{370}$ Cariling, Leods.

 3771. Improvements in the mothod of and apparatus for W Whanso RAnw w
CAnnuazs with oxhaust or wasto steam from the engine, Alfred Mason Bradtord
3712
Impro

374. Improvoments in processes for tho production of Ieos and sTEEL,
and in the construotion of furnaces for that purpose, Charles Wiliam
 ORXMEsss, and for applying the same to mouldings, Richard Scully,
Bannerstroct, st. Luktes, , London. 3716. Improvenomis in the construation of Loows for Weaving, William
Lancastor James Henry Pilkington, and William Peol, Accrington
Incoshire.

 Perfumod and othor vapours, Charlos Ambrose McEvoy, Plocadilly

 3720, Improvecinents in tho manuutucturo of Enowo in
Robert scott, Crom woill-stroet, Notting hamahire

 Tor distilleries, and for simidar purposes, Frauk Wirth, Franktorton
the-Maine, Gormany, -A communtcation from Gustav Ellonborger, Darmastadt, Gormany.
726 . A now or improved Conpositiox or $V_{\text {ARxish }}$, Charles Joseph do Moyer, Alphonso Ruidant, and
September
730

 York, U.S.
Inventions Protected for Six Months on the Deposit of

 3706. Improvementa in Wzianiso Machixws, James Mackenzle, Edin
burgh
27h
September, 1876 .
 covering for steam boiltors, steam and hot air pipen, and roots, and ti
general such parts of machinery as are liabol t friction or tho eflect

Patents on which the Stamp Duty of 250 has been Pald 3194. Carbonic Actd, Frank Wirth, Frankfort-on-the-Maino.-2nd Octo
ber, 1873.

 3216. Bekn Visseus, John Rice, Southsen-4th October, 1873.

 322. Con
Octobr, 183,
as,

${ }_{8 i}$ 250. Lusicicatons, Gcorgo Hasoltino, Southampton-buildings, London-

Patents on wblch the Stamp Duty or $\mathcal{\& 1 0 0}$ has been Pald 2882 . Screws, Spikes, dco, Willinam Horatall, New York. - 5 th October 2017.1
2878,1
28.8 2878. Rook Bonso, de., Fordinand Floran Villopigue, Brower's-lane,
Iondon-4tho cotobi, 1860,

2946. Printisso Isk, do., WWiam Chaplin May, Stratord, Essex. - 0 ote October, 1860. October, 1869 . 3024. Looms, James Raper, Mason Pearson, and Dantol Mills, Braiford.-
$16 i L_{\text {O }}$ October, 1869 .

Notices of Intention to Proceed with Patents.

2246. HATs, Hermann Stern, Berlin.
2232. CARDivo Esoinse, Josoph Dan, Rochdale.
2250. Cutcks, dco, James Boorman Johnston, Now

2262 Loovs, wwillm Yorran-Brow, Southampton ${ }^{-1} \mathrm{~A}$ communication from Georgo Crompton.

${ }^{2733}$ Dedilus, Willam Hensman, Woburn, and John Hensman, Ampthill,
 229. Equaresswank, John Wood, Manchestor.

London. - A communicartion from Harrailla Foster Pond Goun-buildings,
2302. STEMM Boirzes, Frederick Hayward, Gracechurch-street, London.
2300. 3 Hot May, 1877 .

2314. Valves, Goorgo Froderick Deason, Liverpool
2315. Soovaivo Grais, John Mat

Sowerby Bridgo, York.
rs, Lleut. Alan Howard, R.N., Portemouth.-1et
2323. BULLDisos, Jobn Sidebotham, Blackpool
2325. ELEvAToRs, Jobn Hancoox, Hungerford.
${ }^{2320 .}-2$ Motrive Powkr, Edward Jordan Hough, st. Holen's-place, London.
${ }^{23355}$ 1876, CARTADDOE CABE, Goorgo Lincoln Jeffrieo, Birmingham.-Bred June,

${ }^{2385 L}$ PLLNision Memise, Charles Clement Walker, Lilleshall, Salop.-7eh

London.-A communication irom Bonjamin Berkley Hotehkises, \rightarrow lotik
June, 1876 .
June, 1876.

 2439. PLovens, Willinma Henry sleep, Crofthole, Cornwall-12eh June 2447, BRacse, Henry John Broughton Kendall, Great Winchesterstrect,
London. 13 ,

 Bortuss, Sigismuund Schuman, Glasgow,-212t July, 1876

Porassiox, Walter Weldon, Merton, Surrey Bricss, Wailer Weldon Merom, Surrey

Tuuss, dec., Francis Chamberlati, Barnsley, York.-6ih September, Rovasko Liqeons, Henry Boddington, Jun., Manchester.-7th SqpSoo An, Hunter Honry M M Crdoch, Staplo-inn, London- - communi-
on from Robert Stothert Kirkpatrick $-8 / h$ september, 1876.
 Wiscorso Yanse, Howgata Greaves Warburton, Ars. Henry Horton, Finsbury-stroet, London. Wood sciews, Thaddous Hyatt, Hydo Park, London, and Thomas
 BLackiso , Willinm Cowpor Pedlhtt, Holborn, London.
Kicse, Jobin Garlick, Birmingham
Kivs, John Garlick, Birmingham . Stia. STEAM Boivers, Charlos Denton Abel, Southampton buildings,
London-A communtcation from Lebrecht Stofnmuller and Carl Stoin:

All persons having an interent in oppoodng any one of much appltcontions should leave particulars in writing oppthing objoctions to such applications
at the offico of the Commisioliners of Patents within twonty-one daym of
its sutt

ABSTRACTS OF SPECIFIOATIONS.

 ${ }^{797}{ }_{\text {isi }}$

Thini invention relates to a proceces of refining culdo oonkert withe
 colourng matter in the ronining of erulio ozokertit.

To trifo minn water supply tap the inventor attaches an apparatus con-

 804 Rrovciso Tus C
Accord ing to this providional specfication, non-.conducting materal)

${ }_{80}$

Wtho pocuppled drumm along centre of vesvosil

188

 815. ARTtMoliL Lce Risk, $H L$ Lont

 The mixture consistatso of the ollowing ingredionts, namely, antimon

810. Prumitiso Texnte Fanucs, W. Tucker-Doted 284 Fotruary
 and arin
dellevin)
sior .

 Antoning towelling.

combined with air and wator discharger. Self-acting governor for con 823. The features of novelty in this invention consist in applying ono, two, of bolts, bands, or flat ropes, as described, wherroby they aro rendered 824. Lubricant, G. Neicton-Dated 28th February, 1876 This invention mainly consists in an improved Iubricant, composed in
stated proportions of tar ofl, rosin ofl, or other suitablo oils, tallow or other grease, caustic or other sods, pitches and limes, in suitable propor-
tions, as found applicable for various kinds of machinery or rolling stock. 825. Clessivo Krives, C. T. Guthrie.-Dated 28/t February, 1876,
This invention has for its object tho self-adjustment of the cleaning surfaces to the sectional form of the blades and the cleaning of both sides
simaltanoously. The cleaniog surfaces aro formed of superposed facing
of leather bedded against layers of india-rubber ; the bottom one is hrranged so as only to allow of its removal for renewal, and the top one
placed in suitable guides, and directly above it and in this top one is
made a recess (provided with a cover) to contain cleaning or polishing mode a recess provion win a cover) to contain cleaning or poishing
powdor, and in the bottom of such recess are made smail holes so that
the powder may escapo to between the cleaning surfaces, which are kopt
in close contact by elastic pads attached to a hinged cross bar secured by a spring catch. This apparatus may all be arranged and combined upon
and smull foot or bedplate, wbich may bo secured by screws or othorwise to
toble or apport. The above-describod arrangement may be amplified 826. Drivina Beirs, T. Aitken.-Dated 28th February, 1876.
In the construction and manufacture of driving belts acco In the construction and manutacture of driving belts according to this
ovention, the inventor employs a strong and woven fabric composed of ho same whon woven by means of boiled oil and squeezing rollers. He uses four, five, or moro warps, according to the strongth and thick-
ness of belt required; the soveral warps are operated by ordinary heald the shattle and weft threadt whecebs " are presented for the pansage of and weft are thoroughly
interlaced and wcven, and a strong and closely woven material with 827. Expansion Grar, M. A. Starke--Dated 28th February, 1876 This invention is applicable to all classes of machines, the principal
parts of tho gear being, First, a valle chost with expansion valve and dis-
position : Socondly, gear with pawls and regulation arrangement. The ox
chost instead of tho throttle valve, in such a way that the valve stands
ertically, Tho lifting of it the thate stroke, and so that it remains unaltered in an open position during tho
period of full pressure, the shutting of the valve depending on tho 828. Splittina AND Dividisg Wood, J. Rooley, - Dated 2sth February, This invention rolates to improvements in machincry or apparatus for
cutting, splitting, rending, and dividing wood, by means of reciprocating for being used for lighting fires, for laths, or other purposes,

This invention relates to improvements in pottery or carthenwaro pipes,
whereby certain shaped pipes of stonewaro or similar matorial can bo
mado in conjunction with certain shaped brackets or clips of terraceot or similar material, practically available for convoying rain wator from
oofs of buildings, and for other similar purpoose 830. Kilss, T. Whiticell.-Dated 28th February, 1876.

In making bricks, long kilns or chambers are employed, the bricks aro
loaded upon wagons and are caused to enter tho cool end of kill or
chamber, and to advanco forward to the hot end of the same at a suitablo 831. Gas Liohtino Apparatus, J. A. McEvoy.-Dated 28 he February, This provisional specification describes combining an electrical contact
maker with the handio of a gas tap, in order that each time gas is turned
on to a burner it may be simultancously lighted by electricity. 832. Regulatino tie Flow of Floids, H. Jeikin.-Dated 28th Rebruary, This provisional specification doscribes, First, an apparatus for causing
a constant flow, which consists of two vessels separated by a partition through which passes a plunger which is attached to an equilibrium valvo
admitting fluid into the first chamber. The flid ppanses through an aperture in the partition from the first to the second chamber. Tho
difference of pressures in the two chambers is kopt constant by the motion of the plunger which opens or closes the valve. Secondly, an
apparatus for cauning a constant flow which is similar to the above, but
has instad of tho plugger a compressible foat in the second chambor
which is attached to the stem of the valve, and which by its change of Wisphacement, and consequent rise and full, keep the pressure in the
disple and 833. RoLler SKates, W. E, C. Stanhope. - Dated 28th February, 1870 .
Two wheels are placed contrally and longitudinally of tho foot-stand and are mounted in boarings in swinging frames which are pivoted to, 832. Fekdino Foel into Furnaces, W. C. Ford.-Dated 28 th Fedruary, This invention is for supplying small plecos of coal from a hopper
apon a deflector plate, from which the fuel is scattered over the firo in
the furnace by the force of a jet of steam or air, or both combined. The deflector plate is proferably novable, so as to bo pushed alightly y into the urnace through the opening in the plate or wall, and slides are provided
to regulato the flow of fuel from the hopper, and to close the opening
tito the furnace. 836. Improved Eleotro-Maonets, P. Jablochkoff.-Dated 29th February, This invention rolates to an improved construction of electro-magnets
wherevin the conducting coils are brought into direct metallic contact wherein the conducting coils are brought into direct metallic contact
with tho soft iron coro, For this purpose he employs for the conducting
coil, by prefercane, a thin metallic band coiled. up the core in such a
manner an to have one of its edges in direct metallic contact with the manner as to have one of its edges in direct metallic contact with the
core, while the flat surfaces of the successive colls aro separated from
each other by an interposed band of noo-conducting material, such as
 Yormed with an incine or cam, and an anti-friction bowl in mounted so
that it can bo moved by the action of a spring into position for the said
cam to act upon it. The said spring is released by tho carrige when the
serowing is completed, and tho dies are then withdrawn from action. 83s. TANsiso Hides, L. H. Tranier. - Dated 29th February, 1876.
Tho inventor injects carbonic acid gas, or the gases resulting from com-
bustion, into the tanning liquid, and somotimcs uses a weak acid
liguor, The skins and the liquid are kopt in motion and in a state of agitatio
839.
The movement or works are enclosed in the hands of the clock or
within the dial whon necessary. The dial to be illuminated within its
chamber. 840. Fog Sionats, IW. Worthington,-Dated 29th February, 1876,
Many railway accidents occur from want of proporly placing fog itgnais, and at given times in dangerous places. This anvention apparatus which will entiriely ovorcome these diftioultes
is it may be charged with a number of signals under the command of rallway vehtole or tho action of any other sigunl apparatus.
841. SA3pLe ENvELops or Baos, E. A. Makin, C. W. L. Makin, and
B. Mareroft.- Dated 29th February, 1876. This consists in forming onvelopes or bagg for samples and letters with
two pockets. The papor, cloth, or miterial is first cut to the form, then the edges are, gummed and folded over, afterwards the mate-
rial is doubled until the two pockets are formed cach one with a closing 842. Mrirrs, P. Jensen-Dated 29th February, 1876 ,
The meter is mado with a revolving wheel within bin a case, and at the end exd the water issuing between the inlet wheel and around the inlot pipe The portions of the wings that are in quiescont water form resistances
and as the metor wheel rises to accommodate the increased volume of
water, the resistances become A deflector directs the water out horizontally.
843. Telgorapiy, P. Jensen- - Dated 29th Fedruary, 1876. Relates to La Cour's telegraph systom patented 2nd September, 1874,
No. 2999 . Tuning fork of transmitter vibrating constantly
844. Paessino, L. Smethurst, S. Shave, and T. Shavo.-Dated 200

This conists, First, in covoring the hollow prossing plates with,
wovon or folted fabrio or other suitably propared sort or olastic material,
in aheots or as a padding or wadding between the paper boards and e
platos. Secondly, in so constructing and arranging such machines as to
bo solf-acting in charghing the bollow plates with heating modium or
 sharponing the shoces of borses during froets, and appliances for ordinary
wear with froant "cogan" the tiving the shoes from the feet. In oconenection witimary the

quentl
847.

 $\underset{\substack{\text { box, } \\ 848 \\ \text { The }}}{ }$

tap
849
74

 of the skate and
of the former.
851. RIMK SK Stes, J. Cole, sen., and J. Cole, jun. - Dated 200 h February,

THE IRON, COAL, AND GENERAL TRADES OTHER DISTRICTS.
The Wolverh (Pom and Con Correspondent.)
TuE Wolverhampton and Birmingham quarterly meetings were
held yestorday and to day--Thursday. The great attendance of hast quarter day was exceeded, and there appeared mone anxiety
about the course of prices. No alterations were made in the price of finished or pig iron or coal, and this led to ne negotiations upon
last quarter's basis, Owing to the large sales of pigs which had taken place in the previous few weeks, they were not in much of 2 . 6 d . over previous transactions ruled the few purchases which were reported. Nevertheless good hematites might have
been obtained at from 70s. to 72 s . 6d., but Staffordshire all-mine could not be got at all under $£ 4 \mathrm{st}$. From 60 s . to 6 sas . bd . were the
rates for Derbyshire medium qualities, and up to rates for Derryshire medium qualitities, and up to 7 os. for the better
qualities of Derbyshire and Yorkshire. At $\& 215 s$. common cinder At under the rates regulated by $£ 41$ 12s. . .d. for Earl Dudloy's bars and $£ 9$ for B.B.B. B. bars, best marked iron could not be had.
Bars of a capital quality were in large supply at $£ 810$ s. Between Bars of a capital quality were in large supply at $£ 8$ 10s. Between
that price and $£ 6$ 15s. (which is now the minimum quotation for prices were asked for sheets (singles) from £10 down to $£ 9$; and at 29 10s. a fair quality was to be had. Great endeavours to get $£ 8$
vere made by established hoop firms, but they had to meet the ompetition of men who quoped one or two figures between that
 oiler plates ; but $£ 910 \mathrm{~s}$. was the price for girder plates
Of the two there was more disposition to purchase finished iron
than was observable three months ago. The orders upon the market, however, cannot be characterised as either numerous or of great aggregate worth. The inquiries touching best fron were, relation to medium and common qualities, indeed, a similar con-
dition of things was observable. However, this does not mean from mill and forvecincations for quantities at one time demanded
 to 9s. 6d., and 11s. for furnace coal mine winter is over have passed away, the market was by no means satisfied. Than for three weeks past, there was, however, much lesss apprehension under this head.
The understanding now is that Earl Dudley will not advance his解s the Cannock Chase Colliery propritors should make At the Michon their recent advance of 1s. per ton.
there was a painful anxiety about the action of the colliers, lest they should resort to force to get the rise for which they were then clamouring, and this made makers of iron generally disinclined to
book forward. Transactions were reported in all departments, but they were only for small quantities, and prices were strong in every branch. No alteration was made in the crucial prices of pig iron
Mr. Lloyd, the manager of the Lilleshall Company, Shropshire declared that there would be no alterations in the quotations of
his firm : Shropshire cold blast pigs were therefore $£ 6$ and hot blast \&i 15s, a ton. The chief staffordshire makers acting in
blat
 small proportion of cinder were $£ 35$; and cinder pigs proper were
strong at $£ 215 s$. Finished iron remained as before, the prices ranging for bars from $£ 10$ and $£ 1012 \mathrm{~s} .6 \mathrm{Cd}$ down to $£ 717 \mathrm{~s}$. 6 d .
At the corresponding quarterly 1874 prices were maintained on the basis of in $£ 12 \mathrm{a}$ a ton for marked bars, but on the morrow in Birmingham the price list of marked
iron was reduced $£ 1$, or to the basis of $£ 11$ for iron was reduced $£ 1$, or to the basis of $£ 11$ for bars, with the usual
extra 12 s . 6 d . for Earl Dudley's make. At the same time the Lilleshall Pig Making Company reduced Prices
left cold blast at E6 10s. and hot blast at 455 s .
terly meeting this year (in January) in Wolverhampton Pirst quar round were declared without quotable change upon the basis of $£ 6$ for cold and $£ 415 \mathrm{ss}$. for hot blast pigs of the Lilieshall Company,
and $£ 1012 \mathrm{~s}$. 6 d . for Round Oak bars. Pigs were very strong, and and
the leading brands in other districts. Pigs were very strong, and
sold to the all-mine pigs of Staffordshire were quoted $£ 4$ 15s., and the best
brands were hard to get at under 2s. 6d. below that figure. The demand for finished iron, whether of the best or of a medium, or, indeed, the cheapest, quality, was not at all active; still makers
were firmer in their quotations, by reason of the high price of pigs, than they would otherwiso have been. Tho minimum quotation enced in placing orders for singles at E11. M Messrs. Baldwin's
minimum quotation was
before Christmas, both at Cannock Chase and about Dudley, and
throughout the Black Country the quotation of 13s. for furnace coal.
At the Wolverhampton April Quarterly Meeting a reduction took
place. The Lilleshall Company officially dropped their ton, making their cold blast $£ 5$ 10s What course it was the intention of the Earl of Dudley, Messrs.
Ward and Sons, Messrs. Williams, Messrs. Barrows, and the other leading makers of pig and finished iron, to take, was
made known. The Cannock Chase Coal Company hal a day two previously reduced their prices in amounts ranging from 6d. ap to 3s. per ton (leaving their best yard coal from 14s. 6. . to
12s. 6d. a ton), and the market took it for granted that there
would be a reduction likewise in Dudley and Staffordshire coal with a drop in marked iron of 20 s. a ton. Such a drop was third-rate qualities might have been bought at $£ 1$ under the quotations of the previous quarterly meeting. At Birmingham on
next day (April 13) all classes of traders were disappointed. reduction was declared in the standard prices of either coal or
manufactured iron. At this time only 58 of the 148 furnaces built in South Staffordshire were in blast.
On Friday, April 21st. however, the principal coalmasters of
South Staffordshire and East Worcestershire met at Dudley and after sn hour's discussion it was acreeded that Lord Dudley's furnac coal should be reduced from 13s. to $11 s$, a ton. Subsequently, Messrs.
E.P. and W. Baldwin and anotber conspicuous sheet firm dropped prices 1 a a ton, and in Birmingham on April 27 th the principal
ist houses reduced marked bars $£ 1$ a ton. making the standard $£ 9$ with the usual 12s. 6 d extra for Round Oak. Common unmarked
bars were then selling at $£ 7$ 10s., and, of course, the above mentioned drop did not apply to them. Plates fell 20s, an
Messrs. Barrows, by reducing their gualities 40 s , Messrs. Barrows, by reducing their qualities 40s. a ton, brought
heir quotations down to a level with those of the trade in advance of whom Messrs. Barrows had previously been by $£ 1$. At the Midsummer quarterly meeting this year in Birrmingham, vere declared unchanged upon the above quotations. But little lise than a disposition to throw feelers was to be noted
Lilleshall Company announced at the commencement of business that their rates would remain as last quarter, viz, hot blast $£ 45 \mathrm{~s}$,
and cold blast $\& 5$ 10s. long weight. Staffordshire all-mine pi were stronger than they had been, consequent upon a reduction in
make. Hematites were freely offered at $£ 3$ 12s. 6 d . short weight. it which figure a good sample of part Staffordshire and par
Northampton tions for finished iron were maintained upon the basisis of $£ 9$ for bars. A fair quality of singles might have been got at slightly
under 59 10s., whilst others were tolerably firm at a little less than $£ 10$ and "Severn", singles were quoted at $£ 13$, and I.B.
quality of the same firm, Messrs. Baldwin, $£ 16$ per ton. Common quality of the same firm, Messrs. Baldwin, $£ 16$ per ton. Common
bars were to be had at $£ 7$ as a minimum ; but the more frequent quotations were $£ 710 \mathrm{~s}$, and $\mathscr{C 7} 5$ s. Colliery proprietors reported vould be yelding, was brought up. Furnace coal was freely offered at 7. at on; a fair quality was to be bought real
to ss. 6d, with two tons in upon a boat load.
Throughout Birmigh
account are thos Which are just now mostly occupying the hands. Those orders, been long unexpressed, and which are now beginning to find vent,
are not of anything like sufficient extent to occupy all the hands who have for the past month or two been engaged on foreign
orders, but who, now that the navigation season is over, are needing new orders, The current requirements of buyers, are small,
and in some instances unprofitable. Some amusement has been created in the fire-arm departments by a report that a City firm
had received a commission from Birmingham to sell 150,000 Sniders, and that that commission had been executed, and the says that these " 150,000 arms, together with 30,000 more of the same description purchased from Birmingham, have been shipped
for Servia. The tale is regarded in Birmingham as apocry or Servia. The tale is regarded in Birmingham as apocryplal
In the districts lying around Birmingham the orders receive rom the European Continent are fairly encouraging considerin closing. Makers of marine ironwork have had a fair time of it Ianufacturers of iron padlocks, traps, and wrought nails, have not sufficient work for their workpeople, many of whom are on
short time. Those among the latter who make spikes and large nails have reduced wages 10 per cent., or 6 d . per cwt. The dispute in the chain trade contiuues, and with no prospect of its
settlement. One or two employers have acceded to the emands, and given them the 10 per cent. rise. This, while it is alleged to have been done simply to secure the execution of
pressing orders, is loudly complained of by other makers. It is ascertained that it will cause ships' chandlers, who about now place cession 1 g general, and that to make inquiries now will only strengthen prices. The difference between the brass padiock
smiths and their masters was settled on Monday by the latter agreeing to pay the men a rise forthwith of 10 and the
remaining 22 in January, making the total 10 per cent. which the men struck for six months ago. The advance
is to be upon a list issued to the trade some three years since. The customary trade notice has been given to merchants and factors of
a proportionate rise in the price of brass pads, as the result of this concession. Brass pads of the better sort will soon be made manufactory for the purpose, to be furnished with specially made stamping machinery, is now in course of erection in the town.
Birmingham engineers and machinists complain of the limited mount of foreign busines now in hand; nor are the engineering firms in the surrounding districts any better off. The prospects of Worse, however, asto the great jewellery trade of Birmingham they nent in trades to which they have before been wholly enused. Their prospects are not bettered by the fact that a United States fitm, who make with machinery aboerts and other chains plated The goods are called "Canadian," but they are really made in the United States, where the links are closed by hydraulic power.
Brass wire bas been advanced \dagger d. per 1 b . in Birmingham, where the gre
upheld.

NOTES FROM LANCASHIRE

During the last few days a considerable amount of iron has been sold in this district, and there is a stronger feeling in the market,
but the business doing so far as can be judged seems to be very much of a speculative character, and there is not yet any general influx of oraers from consumers to indicate any great improvement in Tuesday was again very dull. It seems, however, now more than possible that prices have at length touched their lowest point, and
makers are very chary about entering into forward engage. ments, as they are evidently anticipating a more favourable market before long.
Lancashire
Lancashire makers, although they are not doing much more
business, exhibit rather a stiffer tone, and are not at all disposed to business, exhbit rather a stiffer tone, and are not at all disposed to
ontertain deliveries into next year at current rates. Quotations for delivery into the Manchester district remain at 56s. to 578, per ton Tor No. 3 foundry, and $55 s$, per ton for No. 4 forge.
Lincolnshire iron also, notwithatanding
doing is still very small, is rather stiffer in this district, No. 3
dish foundry delivered
at 57 s. 6d. per ton.

Middlesbrough iron is not now being pushed in this district to
anything like the extent it was a few weeks ago, and makers anything
many of whom are evidently pretty well sold for the present, are asking an advance upon late rates, No. 3 foundry delivered into the Manchester district, being now quoted at 54s 9d. to 55s. 9 d . per
ton; No. 4 foundry, 53 s . 9 d ; and No. 4 forge, 52 s . 9 d , per ton. Cumberland hematites appear to be searce, and they are rathe
difficulte to obtain in this district. The average uotations here
ure ${ }_{6 \mathrm{~d} \text {. for No. }}{ }^{\text {are }}$
In the finished iron trade there is a better feeling; a good many
more inquiries are reported, and some of the large forge proprieto more inquirise are reported, and some of the large forge proprietor months or so. Prices are stiffer, and one or two makers have inti2s. 6d. per ton after the quarterly meetings this week. For bar delivered into this district Lancashire and Middlesbrough maker
are now asking $£ 617 \mathrm{~s}$. 6 d . to $£ 7$ per ton, and Stafiordshire ditto $£$ are now asking $£ 617$,
per ton and upwards.
In the coal trado the milder weather of the last few days ha classes of coal, but still generally a steady trade is being done classes of coal,
and late prices are well maintained. Tha advanced pricees, how,
ever, which were contemplated this month by some of the colliery proprietors in the Wigan district, are difficult to obtain and wit
the the exception that Pemberton, 4ft. cannot be bought at quite
such low low fures, there is no material change upon last month,
rates. The first and second aualities of common coal suitable for house-fire purposes are in rather better demand, but inferior sort for forge and steam purposes are still a drug. Burgy is not quite
so stiff as it was, and slack, which is now much more plentiful in the market, is being pushed in some quarters at slightly lowe
In the shipping trade there is no very material change. The slight amount of improvement which was observable a fow week in the export trade, business being chiefly confined to a fev

THE SHEFFIELD DISTRICT

From our oren Correspondent.)

In the lighter branches of the principal trades carried on in thi town and neighbourhood, there is, if anything, even more satisfac-
tion expressed at the improved state of affairs than was the cas tion expressed at the improved state of affairs than was the case
when I last wrote, several of the leading cutlery and electro-plate manuf als ed ase
edge-tool departments, some few of the manufacturers of joiners and other edge theols being quite busily engaged. Other houses
devoted to the same line of business complain of a slackness of devoted to the same line of business complain of a slackness of
work, and report that they have still very great difficulty in getting in their accounts. This, indeed, is the general outcry of the
travellers out all over the country. They can now get a few orders, but money is as scarce as cver. in so favourable a manner, nor do my observations lead to the belief that any great change is at hand. In pig iron, as I remarked last
week, there are a fair number of sales for the use of the loca founders and others, but the bulk is not heavy, nor ore forwar upon the the rule. Prices are steady in this respect, consequen the reports of improving trade which are now being made from North Lincolnonshire ingnotone district throughout the king dom. In the able source of supply to the South and West Yorkshire manufac of blast. Matters are so bad, in fact. that a strong stream of emi gration is going on from that part of the country
In finished iron the end of the quarter, and the unsettled state of being declared at the Staffordshire quarterly meetings, has furthe limited the previously small number of transactions in the ope market. Some of the works in the district, however, are producing
a common bar at a very low price, one or two of the makers having recently disposed of parcels in the Lancashire market-inferen tially for shipment-at appreciably under $£ 7$ per ton, delivered
either in Manchester or Liverpool. Whether the price pays or no is anything but clear, taking into consideration the costs of
materials, labour, and other prime charges. In the armour-plate departments thes.
amount of work in hand. At the Atlas Works, John Brown and Co., Limited, the armour-fort, citadel, and other parts of the
Inflexible are in course of being made; the mouldings for the rounded parts of the citadel having been received here this wee
from Portsmonth. The trade repo
month of September sta Leeds Chamber of Commerce for the mankers of ienon continues, and there is, perhapss, even engse less dis
position to give orders now than there was a month ago. In the locomotive trade orders are difficult to obtain. The machine maker have with few exceptions experienced a further falling off, and
the tool trade continues without improvement moderate demand prevails.
A few days
A fow days ago Messrs. John Brown and Co., Limited, Atlas
Works, Sheffield, successfully rolled an armour-plate of the hithert unprecedented thickness of 24 in. When the rough ends were cu off the plate was found to be in the most perfectly homogeneous
condition, the iron used being of the ordinary fine quality. The
thicket thickest plate previous to the rolling of this was one 22 inin. thick. continues, and without any prospect of an early settlement being arrived at. The men are very firm.
The report of the directors of the Sheffield United Gas Light
Company, just issued, shows that the profits for the half-year Company, just issued, shows that the profits for the half-year
ending June $30 t h 1$ ant were £25, 658815 s . 6 d ., out of which dividends
are are recommend 7 at the rate of 10 per cent. per annum on the A and
B stock, and 7 per cent. on the C stock and the new ordinary shares, After these payments have been made $£ 350410 \mathrm{~s}$. will be
left to the credit of the reserve fund which will then amount left to the credit of the reserve fund, which will then amount
to $£ 44,329$. The maximum charge for gas was reduced on July 1st to 34, per 100oft. maximum charge for gas was reduced on July 1st resigned, and Mr. William Romans for several years engineer to
the Allinge Gs stead.
Some months ago I mentioned that a Leeds firm had arranged
to begin making horse nails by machinery, with Swedish iron specially rolled for them here. The firm alluded to was Messrs
Greenwood and Batley of Leds. machine-invented by Mr. Brundage, an American gentleman-for hamm time. Bach nail is stre to equal to the hand-made article. The machine torns out about ninety nails per minute.
It appears that some ardent patriot residing in this vicinity has subject of the successful exalusion, of Sheffiold steel and other goods
from the United States, and suggesting the from the United States, and suggesting that the colonies should
fe induced to retaliate by imposing be induced to retaliate by imposing a heavy tax on all American
goods sent to them. As might have been pre-supposed Earl Caods sent to them. As might have been pre-supposed, Ear
consideration, is in rot reply that the proposal, $\mathrm{f}_{\text {as }}$ you will see on
onhich her Majesty's Government can
The Board of Trale returns for the month of September are again unfavourable, there being a falling off in september are
particular, except in respect of fuel and machinery. In hardwary and cutlery the only increase was to Spain, Braziz, and minor
countries, For the nine months of this and former years the fol-

\section*{| Rusin |
| :---: |
| Sorimy |
| Giolumand |

 British North

British India
Australia
 Other Countries}

The Albion Steel and Wire Company, Limited, which came in existence in September, 1872 , is now likely to be wound up. The
nominal capital is $£ 150,000$ in $£ 15$ shares. The company lost over E73 000 during the first three years of its existence, and has almost atways been before the public in a prominent manner by reason of
the shareholders' meetings, and the strenuous efforts made son time ago with the view of putting the concern in a better position.
These efforts appear to have failed, as on Friday last the directors issued circuars convening an extraordinary general meeting of the having for their object the winding.up of the concern. ang been necessitated by the legal proceeding On Tuesday another circular was issued by the com of its creditors stating that, in order to prevent the creditor mentioned from

Some classes of house coal continue to "go up," nominally at all
events. In one case I hear of an advance of 1s. 6 d . per ton, in another of 1s, and in a third of 2 s . per ton; but I greatly ques
tion whetber, in any instance, the rise can safely bo enforced that the market is so plentifutuly suppplied. Steam and gas coal are pany, to the effect that no wagons other than those havin Dock Com in South and West Yorkshe docks, has caused some indignatio cent. of the wagons are so constructed nor is that form of hardly likely to put themselves to serious expense in order ters are will convenience of this particular board. The immediate ressult
mpesume, a diversion of shipments to Grimsby, Goole and Keadby.

THE NORTH OF ENGLAND.

A DECDERDLY better tone has been apparent in the North of England iron trade during the past fow days. This is larrely due
to the better prospects raised by the publication on Friday last of
to the returns pof the North rof the publication on Friday last of
tor ind inon manufacturers iron held in makers' hands to the extent of over 12,000 toons, as
irompared with the immediately preceding month; compared with the immediately preceding month, and although
this was to some extent counterbalanced by an increase of ovrr 5000 tons in the stock of iron in the publio warrant stores, yet
there has been a more substantial fall of stocks than there has been an any previous month of the present year, and the hopes of
those engaged in the trade have been correspondingly stimulated At the present time there are only 108 furanaces in blast in the
North of England, as compared with 112 in blast at this time last year, while fifty-five furnaces are out, as compared with forty-seven th this time last year. It is a curious and apparently anomallous fact
that notwithstanding four fewer furnaces have been in lo make of pig iron for the past month has been 3078 tons more than in September of last year.
but makers were firm in there on'Change on Tuesday was not large eccept less than 46s. 6d to 478. per ton for No. 3. The shipments to the Continent are now going forward on rather a large
scale, especially for the Baltic ports. There is also a greater dis It is not expected that more blast furnaces will be blown prices present. Now that there is a chance, however seemingly limited,
of a permanent rise in prices, there is a disposition on the part of blast furnace owners to reserve themselves for the expected flow of the tide, At the same time, the blast furraces blown out during
the past month will prevent the production for the current month from coming up to that of either of the last two
There is a large quantity of Cleveland pig iron going into the
home markets, especially into Scotland and the Midland counties, Where it seems to beat all rival brands in the quality of cheapness nearly 7000 tons those fur the corren for the past month exceed by The report of the accountant to the North of England Iron the following effect:
Gentlomen, Having colloctod from tho firms and companies bolonging
to your boord the roturn of their sales of manufactured iron during the
three months end ing the sta

13, Grosham-street, E.c., sth October, 1876.
Inasmuch as the net average selling price of all kinds of finished per ton more than for the present quarter, the employers connected with the Board of Arbitration have just given a three months'
notice to terminate the existing wages agreement, which is based notice to terminate the existing wages agreement, which is based
on se. d . per ton for puddling. It is interesting to note that this is the lowest price that has been paid for pudding in the North of it will be brought lower than it has been since 1865 .
The Board of Arbitration held a meeting at Darlington on Monday to consider a claim made by the owners of the Moor IIron-
works, Stockton, for $£ 600$, on account of the failure of the workmen connected with these works, while members of the board, to carry out the terms prescribed for the rolling of light rails by Mr.
Rupert Kettle, or to submit the same to the judgment of the Rupert Kettle, or to submit the same to the judgment of the
board. The owners of the Moor Works in May last received an order for 650 tons of rails, of a special section, and they made or endeavoured to make, special arrangements with their men for its completion. The men, however, refused to execute the contract
on the terms proposed, and their employers subsequently brought on the terms proposed, and their employers subsequently brought
the present claim for Cofo. The workmen's representatives of the of the boand to entertain the claim, on the ground that the rules case. The board could not agree upon the matter on Monday, and hence the meeting was adjourned for a fortnight. Some of the
employers attach a good deal of importance to this claim, insumeh as it will test the question, not heretofore settled, of whether employers can claim compensation for the default of their work-
men as members of the Board of Arbitration.

The finished iron trade generally remains in statu quo. There i really no change in the matter of work on hand, but in view of
what are regarded as brightening prospects, neither rail makers nor plate makers are disposed to accept the rates that were current
a fow months ago and I Company have positively refused orders they would pladly have This feeling is generally shared in by other firms in the district The ironstone miners of Cleveland, in consequence of the
diminished demand for ironstone, have recently been put on diminished demand for ironstone, have recently been put on short
time. The principal mines are now working no more than five days per week, and some others are likely to be reduced to four days. Workmen, also, who were rather scarce during a great part Little ehange can be noted in the coal antiful
no doubt, true that for household and steam coal there is. It is, a rather better demand, and prices are firmly maintained. but ont subste the trade is not calling for any remark. Coke is quoted
at substantly the rates of last week, and the consumption is
and dull as ever, ood inquiry for manufacturing coals is quite as delivered on Teess-side
The Board of Trade returns show that during the month of August thirty-six vessels, of an aggregate tonnage of 23,965 tons,
vere built on the Tyne, Wear, and Tees during the months of July nd Augast.
On Tuesday an application was made at the London Bankruptoy Court, by tho Forcett Stone and Lime Company, to oppose the
registration of resolutions arrived at at a recent meeting of the creditors of Messrs. Thos. Vaughan and Co., of Middlesbrough, to liquidate by arrangement. Mr. Registrar Spring Rice, after hear
ing the objections, decided that the resolutions to liquidate by arrangement should be registered, and that the objections mus
therefore, fail.

NOTES FROM SCOTLAND.

THE condition of the warrant market is not quite so encouraging as it was a week ago. There can be no doubt that the confidence
n improving trade, which, from a variety of causes had been inspired, had the effeot of creating great anxiety to buy, which
has now given place to more cation and greater quietness it is certain that a substantial improvement has tnken place. than the exigencies of the market will permit, and for this reason we may expect that before a steady course of activity
eets in there will be two or three false starts made. Among other ndications of the growing impra, Clyde trustese shows an increase of $£ 4328$ over that of the corre sponding quarter of last year. There are at present 118 blast
furnaces in operation, or oue more than at this time last year, nd the manufacture is being steadily prosecuted, though consider of pig iton under warrant in Moessrs. Connal and Co. ' A quantity
thaw week
During the week the warrant market has been considerably quieter, with less business doing, and prices have also slightly
iven way. On Friday forenoon business was done at 57 s 6 d ourten days, and in the afternoon 57 s .3d. cash was accepted
 eash. On Tuesday the market was again rataer easier, with busi
ness in the forenoon at 57 s . 1 yd . to 56 s . 11d. cash and 57 s . 1 d d month open, whereas in the afternoon buyers offered 57 s . one
month, which sellers accepted at monin, whed tele rs accepted at prompt cash . The market had
an improved tone yesterday and to-day, and business has been done up to 57 s . 4 d d. cash and 57 s . 6 d . one month.
Buyers of shippivg iron have obtained so
account of the altered condition of the warrant mancessions makers' prices may be said to have been s substanatially masketained.
G. m b. Nos. 1 and 3 , declined 6 d ; Summerlee, No. 1, improved s. Carron, ordinary No. 1, advanced 2s. 6d.; and the specially The shipments of pig iron from Scotch ports for the week. ending
the 7 th inst. amounted to 11,903 tons, being 1008 less than in the previous week, but showing an increase of 157 tons as compare with those of the corresponding week of 1875. There is, however, amounting to 74,030 tons.
The imports of Middlesbrough pigs at Grangemouth for the week
were 3940 tons, being 515 less than in the previous week but ons more than in the corrasponding the previous week, but 97 total increase on these imports of 55,214 tons since last Christmas Makers of manufactured iron bave little or nothing to report
this week. There is still a great lack of orders in most depart ments. Last week's exports of iron manufactures from Glasgow
 The demand for household and smipping, and also these sorts have shown have advanced about 3d., and household 6d.; other qualities being unaltered. After a time of so great depression, even the slightest improvement is hailed with satisfaction, as is the case in this instance. The f.o.b. quotations are as follows :-- House-
hold coals, 8 s .6 d to 11 s , per ton ; steam, 9 s . 3 d. to 10 s .9 d .; splint, 8s. to 8s. $9 \mathrm{~d} ;$; main, 78. to 7s. 6 d, ; smithy, 13 s .6 d . to 14 s .
With regard to the trade in the eastern mining change can be reported. There is still, for the season of the yent a very good shipping demand, but prices continue low. Kilsyth districts was held in Kilsythe for tore purporese of taking
into oonsideration the present state of the mining trade. Several into consideration the present state of the mining trade. Several
addresses were delivered, the chiof speakers being Mr. Hughes, of Masyhill, and Mr. Gillespie, miners agens agent, Falkirir, and they
of the seviving, the miners made in behalf of union, those present who did not belong to the The riveters in the join.
Company, shipbuilders, Port Gont Messra. Robert Duncan and question of wages, They work by the piece, and they desire
to be paid 8 s . 6 d . per 100 rivets, while 8 s , 3 d . is oftered
completed for the winter courso of led tures under the auspices of the Glasgow Science Lectures Associa-
tion. The first lecture will be given by Professor Tyndall on Fermentation," on Thursday evening, the $19 t h$ inst., and those to
follow will be by Mr. R. A. Proctor, F.R.A.S., on "The Giant Planets," Sir C. Wyville Thomson, LL.D., F. R.S., on "The Conditions of the Antarctic Regions; ;" Professor Odling, F.R.S, on "A
Glasgow Discovery in the Chemistry of Gases ;" Mr. William Pengelly, F.G.S., on "The Antiquity of the Cave Men;" and by Pro-
fessor Allen Thomson, LL.D., F.R.S., on "The Evolution of the Brain." There is, I hear, a great demand for ticket
It is worthy of notice that there are at present berthed in the Clyde getting loaded fourteen new sailing vessels of an aggregate
tonnage of 13,700 , and four new steamers of 5550 aggregate tonnage, , which have all been launched within the last
and are estimated to have cost upwards of $£ 300,000$.
The Vale of Clyde Tramways Company, who obtained powers
in last session of Parliament to propel their cars by mechanical in last session of Parliament to propel their cars by mechanaical
power, have been making trials of the engine of Messrs. Merry power, have been waking trials of the engine of Messrs. Merry-
weather and Son, London, that of Messrs H. Hughes and Co.,
Loughborough ; and the pneumatic car of Mr. W. D. Scott-

Monorieff, of Glasgow, with the view of making what they may
consider the most suitable selection for the purnose of their traffic A new dock, giving 1550 ft of quay space, 19 ft . depth of water
at ordinary spring tides over the sill, and an entrance of 40 ft . the work costing nearly $£ 40,000$, has been opened at Berwick-on-

WALES AND ADJOINING COUNTIES.

 (From our oun Correspondent.)GREAT complaint exists at Cardiff amongst the shippers with respect to the smallness of the freights obtainable. To give an idea of the rates I append a few of the leading ones levied on the
steam coal-to China, from 25s, to 26s. Indin, 16s. to 19a. 5d. Cape of Good Hope, 19s.; Jamaica, 10s.; France, 9f. to 10f.; Gib such as to the French coast, the return is very small. I am in
bounds in stating that most, tons many of thg that most of the French cargoes are under 300 tons, many of them, indeed, but a little over 100 . Taking one of the latter dimensions at
bulk as at least 2 d . per to charge that may defray the
yields no return to the made to float another steamship comp an energetic effort being It is well 20 to 30 per cent. after paying insurance.
much es 80 per 30 . thoroughly conversant with the trade but speaking to a gentlema opinion, first, that the speculation was overdone; and secondly, of a vessel was such as tre teave in the best of cases but a sorry return for the inventmen
One cause of the depression is to be seen in the slackness of the
iron trade. When vessels could take out coal and bring back ire ore, then vessels of all classes paid well able prospect of a return to this state of things shipbuilding might safely be encooraged.
Several Welsh capitalists have diverted their attention fro iron ore to silver, and I hear of one promising undertaking in
Spain which has one of the ablest of our mining engiveras at the Spain which has one of the ablest of our mining engineers at the
head. Iron, steel, and tin are all
factory business being done.
In reference to iron, the demand seems falling rapidly, from the small average of the last year. Part of Tredegar work were stopped last week, and have only, as regards a mill or so,
been restarted in the hast few days. The paying off of some of
the "tradesmen," as the best hands are called bas awlee gloomy forebodings in the neighbourhood. Dowlais is pushing on as briskly as any works on the hills, and
has now one of the largest stocks of pig, puddled bar, and stee ingots I have ever seen. The spirited enterprise at these work The managort
The management at Rhymney is progressing with its arrange
ments for the make of steel, but it will be some time before they are completed. There is no movement at Cyfarthfa at present. Some of the Welsh papers have been raising false impressions with respect to the amount of orders for iron rails now held in
hand by the Welsh manufaoturers. The true character of the hand by the Welsh manufacturers, The true character of the
trade can be seen at a glance from the September exports. The total quantity from Cardiff during the month was 3644 tons-insufficient to keep even one works in vigorous make. The best course for our ironmasters will be to supplement their works with applimpoos afor steel making, and now that labour is cheap, the
nooner done the better The tin and tin-plate trade is dull. The men at Briton Farry
have resumed work at the reduction, after a prret strike. large ordora are held, but the prices are unremunerative.
In the neighbourhood of Llanelly the state of trade, both a regards coal and tio-plate, is deplorable, and strikes of a serious
nature are impending. At one colliery the men threaten to leave work this week if a reduction is enforced. Messrs. Neville and o., who have well earned the character of being the most con full work duriug adverse times, are at present exposed to very serious antagoiongm on the part of their colliess.
There was a little dificulty with the men in
There was a little difficulty with the men in the South Dunraven ive a h liondaa valley, this week, and a charge of refusal to the manager before the magistrates, but dismissed. The men are now working again.
The Taff Vale strike continues, and up to the present the tactics
of the men have checkmated the masters, I stated last week that of the men have checkmated the masters. I stated last week that
a number of men have been had from Newcastle-on- Tyne. These a number of men have been had from Newcastlo-on-Tyne. These
came and took the place of the others, but the strikers nanaged to "interview" them, and succeeded in representing themselves in so feelings plight that the strangers have returned. Rather excite Monday is expected to preeage a storm.
The coal trade of the week has been a fair average. The export,
foreign, has been close upon 80,000 tons from Cardiff alone, and this week would hoo promised wll but for Caraif alone, and New engineering works have been opened at Newport, which prom
and from the fact of Sir Geo. Eliot taking up his residence in the ocality. The port is evidently looking up. Last week the exports None of the papen
None of the papers have noticed the death of Mrr. Lionel Brough,
Government Inspector of Mines for Bristol and Monmouthshire districts. He was a shrewd, independent, and somewhat rugged gentleman, muoh liked by the colliers ; and, in his official position, holding high rank. It has been my lot to come in friendy contac
with him at most of the great colliery explosionk of South Wales and to have frequent opportunities for noting his energy and
ability. He is suceeeded by the assistant inspector, Mr. Cadman.

PRICES CURRENT OF IRON AND STEEL.

Tax following prices aro correctod up to last night, bat it should bo
borro in mindid hat in many cuses makers aro prepard to toote difteront torms
and termp, or to give more than the market quotations and makera

Ship Plates MANUFACTURED IRON

Pearsox \& K Kowless Co. best (24 dis, for cash)
 ship or bridge plates (A) Mast plates $\left(\frac{\mathrm{A}}{\mathrm{MAST}}\right)$
Boller Plates-
Whrrivacon," to 5 owt. each plate
Do. best bost
Do. treble best
2f per cent. discount for cash. The \ddot{P} Parson and $\ddot{\text { Knowles }}$ Co.'s price Warrington, in lots of not less than 2 tons, or free alongside at Liverpoo in lots of 10 tons and upwards.

Bowliso \& Low Moon, terms in each case $2 \frac{1}{4}$ dis. for cash in pay-
ment of monthly nccounts, or 1\& per cent. dis. for cash in lieu ment of monthly accounts, or $1 \frac{1}{4}$ por cent. dis. for cash in liou
of three months bill Tho Low Moor Co. deliver in London at 100. i Liverpool, 7s. 6 d ; and Hull, $\delta \mathrm{si}$. por ton extra.
Under 2 ewt each
Under 24 ewt. each
2 2 1 owt. and under 3
3

cwt.
$\begin{array}{c}\text { cwt. } \\ \text { owt. }\end{array}$
.

Plates exceeding 6 ft . wide, $\because \mathrm{2}$ s. per cwi. extri. Himmerod an
taped, extra per ewt. 3 a
TAyLor Bros.' boiler plates 6 d . per ewt. loss ; their terms as Bowling and Low Moor.
" Movsoon" best, to 5 cwt, to aft. 6 m . wide, and to
30 superticial foet, per ton at works. Rest bost
Best best
Spociol, to best, to $4 \ddot{\mathrm{cw}} \mathrm{w}$.
Damnowe it Rovas extras for over
Beot, por ton short, at worke
Best best
Barrows \& Sons
loomfield plates
Best plates.
Best best plates
Clevelas
Fox, Head, \& Co. (at works, cash less 2])Bofler shell plates (BOILER)
Flanging plates (BOILER)
Do., special quairty (AAA)
\qquad
$\begin{array}{lll}12 & 0 & 0 \\ 14 & 0 & 0 \\ 17 & 0 & 0\end{array}$

Glasoew, i.o.b. \&S 0s, to
Angle Irn-
Bowiso \& Low Moon (terms as above). .. per cwt.
Land Tiron, not exceeding ten united inches ..

Best
Beat best boiler
MONMOOR" (at Best
Best best T-Tron, as above, $108, \ddot{0}$ extra.
Angle and T bars, sin. to 91 in , 10s. extra.
9 in to 10 in , 20s. extran

Bar Iron-
Bowiso,
Low Moor, \& TAYLor Bros, (terms as aboye)

Chnin iron, Ramet, same sizes as above as above, extra per catt, 2 Mossoon," at the works, per ton-
Bars, inin. to 3 in. round and equare, or to 6 in . flat
Beat Best
Best best"
Bivet iron, usual sizes,
Best best ...
Usual extras

$\ddot{\because} \quad \ddot{\ddot{0}} \quad \ddot{\square}$
EARL or DudLEY, $\%$ dis, fo. be, at Round Oak-
Round Oak," rounds up to \sin..
Single beat
Double
Treble ",
Rivet iron-single best"
On separate orders" of less than $\ddot{5}$ cww. per \because ton extra, 10 .
Wales, at Collego Works, Cardilf-Coke bars, best

Merchant Bars-
Fhats, from lin, to 6 in, wide cash in por ton- thick and upwards
Rounds and squar for
Rounds and squaros, from $\frac{1}{2}$ in. to 3 in., best
Whinwelt \& Co., f.o.b. ($2 \frac{1}{2}$ dis. for cash), per ton-
$\underset{\text { Best }}{\text { Crown quality }}$

Best
Best best'
 No. 2 bars, fo.o. Cardiff
Owen, delivered at Cardiff or Nowport, not cash

Sheet-

"Monmoor," to 8ft. long by 3 ft . 20 w.g., per ton at $\}$
works.
Do., best
Do., best besit

Barrows \& Sons-
B.B.H, sheots..

6100

$\begin{array}{lrl}610 & 0 \\ 70 & 0 \\ 8 & 0 & 0\end{array}$
$\begin{array}{lll}8 & 0 & 0 \\ 8 & 0 & 0 \\ 9 & 0 & 0 \\ 0 & 0 & 0\end{array}$ 10
6
6
6
6
6 \& \& s d
$1010 \quad 0$ $\begin{array}{lll}1110 & 0 \\ 12 & 10 & 0\end{array}$
 $\begin{array}{lll}11 & 0 & 0 \\ 12 & 10 & 0 \\ 13 & 10 & 0\end{array}$
"Severn"

D"oubles to 24 w.g., sos. and Trobles to $27 \mathrm{w} . \mathrm{g}, ~ 60 \mathrm{~s}$. per ton, extra

Crowtier Bros. \& Moran (at workss-
Coko Tin-Singles, to $20 \mathrm{w}, \mathrm{g}$., to 120 in . by $36 \mathrm{in}, \mathrm{p} . \mathrm{cwt}$.
Doubles, to $24 \mathrm{w} . \mathrm{g}$, , to 96 in . by 36 in .
Charcoal Tin $\frac{\text { Tingles, as above }}{\text { Doubles }}$
Do. $\quad \begin{aligned} & \text { Best singlea,", } \\ & \text { Best aboubs abs }\end{aligned}$
Terms, 2 L dis. for caah on 10th" of the month. Orders of
J. Tiss, and upwards, for shipment free in 10 cwt. cases. Doubles:

Engine Iron-
Kirksiall Fonal Co. (from cold blast, pig, refined, and selected).
Plain bars, rolled, viz:
 "All othe "uses according to pattern and weight.

Wire

Wertecross Wire \& Iron Co., delivered in Liverpool. Terms $2 \downarrow$ dis.
 Dipping in boiled oll s̈a. per ton extra,
per to
Best galvanised do.
 $\begin{array}{lrr}15 & 10 & 0 \\ 16 & 5 & 0 \\ 17 & 0 & 0\end{array}$
 $\begin{array}{rrr}17 & 0 & 0 \\ 810 & 0\end{array}$
 Best $\underset{\mathrm{W}}{\mathrm{RB}}$ fron wire, bright or annealed-

 | Per bundle of 68 lb | 93 | 10.0 | 10,6 |
| :---: | :---: | :---: | :---: | :---: |
| Nos. | 13 | | |
| Fer bundle of 60 lb. | $14 / 6$ | $15 / 9$ | 15.6 |
| Nos. | 20 | 21. | 22. |

Best best drawn killed galvanised tolograph wire (joined in half
mile lengths to No. 9 inclusive with Rylands ' Patent Jo mile lengths to No. 9 inclusive with Rylands' Patont Joint)
Nos. to 6 to
7
7 Terms of paymont, 212 per cent. for cash on 120 th of month following

Nail Rods-GLasoow, fo. $\underset{\text { Cleveland }}{\text {.. }}$
$\begin{array}{rrrr}7 & 15 \text { to } 8 & 0 \\ 615 \text { to } 7 & 0\end{array}$

Nails-

 Rails-GLasoow, foob.

ClEvELAND
WALES-Tredegar Imon Company $\quad \ddot{\ddot{0}}$ Tredegar Iron Company $\begin{aligned} & \text { fo. Ne New port or Cardiff. } \\ & \text { At Aberdare and Morthyr (Daven- }\end{aligned}$
port) port) .
For colliery sldilings (works) New and perfect permavent way rail (at works)
Bridge rails to 30 lb . per yard ruin

Railway Chairs-Glasoow, fo. b.
Pipes-Glasoow, fo.b.

Throat Ibrication.-The throat and windpipe are especially liable to inflammation, causing soreness and dryness, tickling and irritation, inducing cough and affecting the voice. For the e symptoms use glycerine in the form of jujubes, Glycerine,
agreeable contections, being in proximity to the glands at the
moment they are excited by the act of sucking, becomes actively moment they are excited by the act of sucking, becomes actively labelled "JAMEs Epps \& Co., Homeopathic Chemists, 48, Thread. needle-st., and 170, Piccadilly."

