THE METRIC SYSTEM.

By Prof. A. G. Greznhel.

The fundamental measures of the Metre aud the Kilogramme as units of length and weight are now so firmly established as part of our modern civilisation that it
cannot do any harm to the extent of unsettling the minds of scientific or practical men if we make a few remark on certain defects avoidable at the outset of its invention, by which the Metric System could have been made much more useful and cosmopolitan in its character.
For scientitic purposes the introduction of the C.G.S. e., centimetre, gramme, second-system of units, with the derived absolute units of the dyne, erg, watt, ohm, volt ampère, \&c., has been of extreme use in giving a cosmopolitan character to all measurements, particularly of
electrical quantities, now of such practical importance. electrical quantities, now of such practical importance.
Maxwell says that the symbols of modern civilisation Maxwell says that the symbols of modern civilisation
are the foot rule, the pound weight, and the chronometer or, in the metric system, the metre rule, and the kilogramme weight. It will be noticed that the division of
the mean solar day into twenty-four hours, each of sixty minutes, and each minute of sixty seconds, is universal
mint and the attempt to change from this sexagesimal division of time to the centesimal division was a failure from the outset. It has not been universally recognised that allied to the units of time, the sexagesimal division of the right angle into 90 degrees, and then of the degree into 60 minutes
and the minute into 60 seconds, was intimately bound up with the sexagesimal measurement of time, and depended upon fundamental geometrical considerations connected with the equilateral triangle and the hexagon. The metric
system having been introduced on the decimal idea, it system having been introduced on the decimal idea, it angle was to be adopted
For the inven
For the inventors of the metric system were deter mined upon a thoroughly consistent decimal measurement of all physical quantities; and the first to be changed was
to be the measurement of time. Instead of the universal to be the measurement of time. Instead of the universal
system hitherto-and still in use-of a day of twenty-four hours, the day was to be divided into forty hours, each Following minutes, and each minute into 100 seconds.
Following on the centesimal measurement of time came degrees, called grades, so that the right angle contained 100 grades; and each grade was divided into 100 cen tesimal minutes, and each minute into 100 centesimal
seconds. Then, to convert time into longitude, or vice seconds. Then, to convert time into longitude, or vice
versé, the navigator would have merely to multiply by ten.
The centesimal nautical mile-one centesimal minute of latitude on the earth's surface-was now divided into
1000 equal parts, called metres; and thus the unit of 1000 equal parts, called metres ; and thus the unit of
length was fixed; a metre being one ten-millionth part of the earth's quadrant, and a kilometre the centesimal nautical mile
was taken determine the unit of weight-or mass - wate was taken as the standard substance of unit density,
being the most widely diffused substance in nature; being the most widely diffused substance in nature
and a decimetre cube-the litre-of water was taken as the standard weight, and called the kilogramme-a centimetre cube of water being called a gramme.
Thus we see how the kilogramme and the metre are the logical outcome of the consistent decimal system of the centesimal division of the day and of the circum
insisted on by the inventors of the metric system.
But unfortunately for this idea, the world, as we see has refused to have anything to do with the centesimal hour, and insists on retaining the sexagesimal division
of time - the day of twenty-four hours, the hour of sixty of time-- the day of twenty-four hours, the hour of sixty
minutes, and the minute of sixty seconds. The cenminutes, and the minute of sixty seconds. also, so far as it is required in navigation; and the centesimal division of the angle being gone, the kilometre
can no longer be used by navigators as the nautical mile. The trigonometrical tables in centesimal degrees and minutes prepared for use in navigation, at great labour and expense by the originators of the metric system, were
thus so much waste paper; and the whole idea would thus so much waste paper; and the whole idea would
have been forgotten long ago, but that the centesimal have been forgotten iong ago, but that the centesimal rigonometries, under the idea that it forms a useful exercentesimal division of time, it was never used in real ife, and can only be found occasionally employed by Laplace in his "Mécanique Céleste"
fusion and annoyance of his readers
What is, then, it may be asked, the fundamental nature of the sexagesimal measurement of time and angle, that the whole civilised world should have reverted to this
system? Why should the day have twenty-four hours system the circumference 360 deg.?
We derive this method of division from the Arabian astronomers and navigators. The division of the circum-
ference into six equal parts is the most natural, because if erence into six equal parts is the most natural, because if a circle is struck with compasses, then six steps of the
compass round the circumference complete a circuit. On a dial each of these parts was divided into four hours, a dialing twenty-four hours to the day; while later each
part was divided into sixty degrees, each degree into sixty part was divided into sixty degrees, each degree into sixty
minutes, and each minute into sixty seconds, by analogy minutes, and each minute into sixty seconds, by analogy
with minutes and seconds of time; and thus to convert time into angle, or vice versa, as in longitude, we multiply or divide by fifteen. Of course all these fifteens and sixties
were objectionable to the pure decimalists, but will neverwere objectionable to the pure decimalists, but will never-
theless survive; while the extreme awkwardness of the theless survive; while the extreme awkwardness of the
angle of an equilateral triangle or of a hexagon, being an incommensurable angle in the centesimal system, was a great drawback to this latter method.
Notwithstanding that, in consequence of the use of sexagesimal time and angle, the metre has lost its physical
connection with astronomy and navigation, it is not to be connection with astronomy and navigation, it is not to be expected that the metre can now ever be changed, as its
use has taken too firm a root in our civilisation; on the contrary, it is an important question for our engineers to
consider to what extent the retention of the British foot keeps their works out of Continental markets.
Suppose, however, that in framing the metric system the inventors had recognised that it was useless to change the sexagesimal measurement of the angle and or geographical mile, and the metre would have been practically the same as our futhom, or the old French unit of length, the toise.
The fathom-in old English "fadom," in French the The fathom-in old English "fadom," in French the
toise," in Greek bpyua, meaning the stretch of the arms-is naturally used in measuring the length of rope, and thus we find the fathom at present used only as measure of depth, for mines or soundings-"Full fathom
five thy father lies," \&c. Not being a parliamentary unit of length, there would be no legal objection to slightly of length, there would be no legal objection to slightly thousandth part of a geographical or nantical mile ; for thousandth part of a geographical or naatical mile ; for
soundings on old charts the error would be on the safe side.
The good old measure, the fathom, would thus become the useful unit of length in navigation, and Mr. James ew Proposal for a Geographical System of Measures and Weights" (Macmillan and Co 1864) proposes to call a hundred such fathoms the stadium while, which would be the equivalent of the furlong, while ten stadia or stades would make the nautical mile nd three nautical miles the leaga
The nautical mile of one minute of latitude being 1000 fhoms, the earth's quadrant would be $90 \times 60 \times 1000=$ $5,400,000$ fathons, the earths circumference $21,600,000$ fathoms, the speed of one knot would be 1000 fathons an
hour, or $1000 \div 120=81$ fathoms per half minute, and hour, or $1000 \div 120=81$ fathoms per half minute, and therefore $8 \frac{1}{3}$ fathoms would have to be the distance between the knots on
glass or stop-watch
glass or stop-watch.
It is disheartening to find even nautical authorities ike Lord Brassey (vide Times Dec. 15th, 1887) using the word "knot" improperly as
equivalent of the nautical mile.
The knot is the cosmopolitan unit of speed at se nouds in French, knoten in German, nodi in Spanish and talian, \&c.), and one knot is a speed of one nautical mile an hour. It derives its name from the knots on the log line, and a ship is said to be going so many knots when that number is counted over the taffrail in half a minute, the knots being spaced as above (vide Falconer's "Marine
Dictionary," "knot"). It is generally near enough to make the knots 5oft. apart, so that a knot is roughly a make the knots 50 ft . apa
speed of 100 ft a a minute.
Marine engineers are partial to translating knots into Marine engineers are partial to translating knots into and or statute miles an hour, and thereby the number
expressing the speed is increased, and can be mentally expressing the speed is increased, and can be mentaing
compared with the speed of a train. The land mile being 1760 yards, a a ainst a little over 2000 yards for the se mile, a speed in knots can o convert it into land miles an hour.
and greatest variation in different cou
By a statute of Elizabeth, the English land mile was ander andens notion that this was the length o minute of latitude The more accurate determ were 69 English stwo miles to the degree of latitude. Of this correction, however, Newton appears to have been ignorant, when 1665 he made his first celebrated attempt to extend the aw of gravitation to all the heavenly bodies. According Cambridge by the plague in 1665 , was sitting in his garden at Woolsthorpe, when the fall of an pple led him to speculate as to the distance to which the attraction of gravity extended, whether, for instance,
extended as far as the moon. Now, the moon's parallax being known to be such that its cosecant is about sixty, the distance of the moon is about sixty times the earth's radius, and assuming that gravity diminishes inversely follows square of the distance from the earth's centre, one second the moon should fall 16 ft . in one minute. Taking the minute of latitude as 1760 yards, or 5280ft., and the moon's periodic time as twenty-eight days, Newton ound that the deflection of the moon in one minute was nly about 14 ft ., so he laid his calculations aside, although e must have known that the law of diminution of gravity ccording to the inverse square of the distance was the most natural law to take for any effect emanating from light, heat, sound, \&c., besides being immediately deducible from Kepler's third planetary law, "the squares of the the orbit of the plats round the sun be supposed circular It was not till nimeten years afterwards that Newton' attention was called to Picard's measurements of the length of the meridian made in Peru in 1670 and then resuming bis calculations with the correct length of the minute of latitude and finding his theory likely to prove true, it is related that he was so agitated as to be obliged to ask a friend to finish the verifying calculation for him. The irst attempt at the determ. who observed that when the sun was in the zenith s.c. soe it cast a shadow at noon in Alexandria which indicated the sun's zenith distance was $7^{\circ} 12^{\prime}$, thus giving the anference of latitude of the two places. Taking Alex andria and Syene as being on the sam meridian and 3000 stadia apart, Eratosthenes gave the earths circumby Mr. Crocker, the error being less than taking one by Mr. Crocker, the error being less than taking one
statute mile as a minute of latitude ; the length of the stadium employed by Eratosthenes is however uncertain
It is sometin colving that the words minute and econd are used for divisions of time and angle, especiall in longitude; a minute of angle and a mile on the earths
surface being convertible in navigation, it is becoming cust (mary at sea, to avoid confusion, to express longitud
in degrees and miles, using the word mile instead of minute; but in this way a mile of longitude is pro po furticle on the subject latite.
reycinet in the Couptes Rendus, lith length, by M. de Freycinet, in the Comptes Rendus, 14th Nov. 1887, may be a unit of length derived from the value of the acceleration a unit of length derived from the value of the acceleration
of gravity at Paris. Provided M. de Freycinet gives a of gravity at Paris. Provided M. de Freycinet gives a
name entirely different to metre to his new unit of length no harm will result, but it is futile to attempt to change he metre or foot now
Ingth, divided into the foot is the engineer's unit of length, divided into decimals, the fathom of six feet not being used now even by miners. So long as the fathom
is exactly six feet and the yard is three feet, they are unnecessary as measures; but the arithmetician loves are unnecessary as measures; but the arithmetician loves
to make the measures fit into a table as exact aliquot parts of each other, and thus the yard, originally the measure of a man's single pace, be exactly three feet. A thousand double paces is the Roman mille passus, whence our word mile; and an
average pace, being rather less than a yard, would bring the Roman mile very nearly to the same as our statute mile.
In conclusion, nothing now can alter the foot or
the metre as units of length; the pound, or kilogramme the metre as units of length; the pound, or kilogramme as units of weight; but no harm can result in resucitating
the fathom, and making it a little more than six feet, so that 1000 fathoms make a nautical mile ; but the nautical that 1000 fathoms make a nautical mile ; Lut the nautical
mile must not be taken as synonymous with knot, as is mile must not be taken as synonymous wish and, as
too often to be seen in reports of trial trips, the true sailor looking upon this mistake as characteristic of the engine-room.

WATER SOFTENING.

THE correspondence that has taken place in the columns of The Engineer khows pretty clearly that public opinion on the question of the softening of water, is as yet in but a very crude condition; and it is perhaps not too much to say that probably the majority of people do not even know what is meant by the expresion. Everyone knows that there is such a thing as hard water and such a thing as soft water; but what it is that constitutes the hardness of the one, and why the other is to say off-hand; and yet it is of the greatest importance that we should know to what category the water we daily ase belongs, and it is even desirable that we should be whether it was ourselves, so that we could determine it at or pha hard form, and igl that the question is too complicated and fraught with too many technical difficulties and dangers to make it either practicable or safe for every householder to be his own water examiner. But until every householder does inves. tigate for himself the water he is supplied with, we shall remain at the merey of the water companies and of those tecxibcal experts whose opmion is of so elastic and direction and to any siven extent It is rather aritred to expect us to pay for an article without being allowed to discover whether we are getting value for our money,
As rain falls to the ground it absorbs carbonic and sulphuric acid in different proportions from the atmosphere and in the soil, and as it percolates through the with, forming bich some of the earthy salts which it meets ic. These dissolved earthy salts give the water, which Comes to us originally soft, the quality of hardness up by the quantity of matter thus dissolved and taken "hard"" when under seven grains it may, for all practical purposes, be considered "soft." When one grain of solid matter is held in solution in one gallon- Th, thal ness due to the presence of bicarbonates is called temprary, because it can be removed by boiling; but the harduess due to sulphates is usually called permanent, as it cannot be removed in that manner.
Professor Wanklyn, in his book on "Water Analysis," in drinking. water is fallty in detail, and is not eateulated to yield the most accurate results" The manner of proceeding is as follows:-A considerable volume of water having been measured or weighed out, is evaporatel to dryness in a platinum dish. A little hydrochloric acid baving been added so as to impart a distinctly acid eaction, the residue is then moistened with a few drops filter. To the filtrate excess of ammonia is added, and then the liquid is boiled and passed through a second filter. In this way silica, alumina, oxide of iron, and phosphoric acid are got rid of as precipitates, and the filtrate is next mixed with oxalate of ammonia, which throws down the oxalate of lime. But this plan is considered very objectionable by Professor Wanklyn, and he recommends the following plan:-He takes 700 cubi centimetres of the water and having ascertained that it is quite light, he adds about half a gramme of crystals of or three cubic centimetres of both reagents. Then se stirs up and filters through sman filter, and when the filter has run through he washes with a very little distilled water. The filtrate is meand is eve sor to tome arge platinum dish, If necessary a drop or two of hydrochloric acid is added, and the liquid is got into a small beaker and mixed with a little ammonia, which will throw down a fresh quantity of oxalate of lime, which is got on a very little filter and washed, and the filtrate and wash-water sent through this filter should not much exceed some 30 cubic centimetres
altogether. By this method of operation Professor

Wanklyn points out that several advantages are gained. Most of the oxalate of lime is precipitated in very dilute solution, and the completest washing is ensured; and by making the second minute precipitation the great disadvantage of complete washing, namely, the loss of som
of the precipitate in virtue of its solubility, is avoided. The precipitate in virtue of its solubility, is avoided.
The presence of magnesia in drinking-water, Professo Wanklyn believes, there can be little doubt is also very badly determined; but all these tests are much too tech satisfactory, and least technical method of testing the hardness of water is the method invented many years ago by the late Dr. Clark, and known as the soap-test.
We all know that hard water requires more soap to make a lather than soft water. On this fact Dr. Clark based his test. He ascertained by direct trial how many measures of water in order to make a lather. This method has now been so simplified that the relative degrees of hardness of water can be registered simply by the number of soap measures consumed by a gallon of the water in
yielding a permanent lather, and the quantity of the soap n one soap measure is the quantity required to precipitate ne grain of carbonate of lime
The destruction of soap is due to the formation of insoluble salts, by reaction between the lime and magnesia
of the water and the soap. No lather will be found until of the water and the soap. No lather will be found until
the lime and magnesia salts present in the water have the lime and magnesia salts present in the water have
exhausted themselves upon the soap-forming insoluble exhausted themselves upon the soap-forming insoluble
lime, or magnesia salts of the fatty acids of soap. For the soap test Professor Wanklyn uses a "standard soap solution" which he has himself prepared. It has for its basis
Castile soap, which contains 60 per cent. of olive oil. Ten Castile soap, which contains 60 per cent. of olive oil. Ten
grammes of this soap are dissolved in a litre of weak alcohol, and the solution thus obtained contains exactly sufficient soap in one cubic centimetre to precipitate one milligramme of carbonate of lime. The alcohol should be
about 35 per cent in strength. Of course it is of the about 35 per cent in strength. Of course it is of the
greatest importance that all the soap should get properly dissolved. This standard soap solution may be purchased at any chemist's. Should it be considered desirable to
verify the strength of the standard soap solution, this may verify the strength of the standard soap solution, this may
be done by means of a solution containing a known quantity of carbonate of lime, or of chloride of calciu
equivalent to a known quantity of carbonate of lime. equivalent to a known quantity of carbonate of lime.
The solution may be prepared by dissolving $1 \cdot 11$ gran
The solution may be prepared by dissolving 1111 gramme
of pure fused chloride calcium-lime-in a litre of water. of pure fused chloride calcium-lime-in a litre of water.
This solution contains calcium chloride at the rate of one milligrame of carbonate of lime in one cubic centimetre. Or it may be made as follows:-Take one gramme of finely powdered marble, a pure carbonate of line, and dissolve
carefully in slight excess of dilute hydrochloric acid, and carefully in slight exsess of dilute hydrochloric acid, and
neutralise the excess of acid by a slight excess of ammonia, dilute the whole with water so as to occupy the volume of one litre. In order to verify the soap solution a number
of cubic centimetres of this standard solution of lime, say of cubic centimetres of this standard solution of lime, say
12 cubic centimetres, should be put into a 70 cubic centi12 cubic centimetres, should be put into a 70 cubic centimark. In this way 0 cubic centimetres of water are made to contain limee equivalentto 12 miligrammes of carbo-
nate of line. The 70 cubic centimetres of distilled water nate of line. The 70 cubic centimetres of distilled water
itself consumes soap equivalent to one milligrame of carbonate of lime in forming a lather. Therefore this 70 cubic centimetres of solution is equivalent to 13 milligrammes of carbonate of lime, and should consume exactly the soap solution not be of the right strength, it must be made eit
For the purposes of analysis 70 cubic centimetres of watll as a gallon, for more convenient to handie, serve as well as a gallon, for this contains as many mile grains in a gallon. Having obtained this miniature gallon of 70 cubic centimetres, the standard soap solution described above will be found to contain exactly sufficient soap in one cubic centimetre to precipitate one milligramme of carbonate of lime. The very imple Take toppered bottl of apaity about 200 cubic centimetres which has been cleaned and about 20 cubic centimetres which has been cleaned and centimetres of the sample of water which it is desired to analyse. The stopper should be put into its place, and then the bottle sho be shaken up. The standard soap solution should then be measured into the water by mean After each addition of the soap solution the bottle containing the water must be shaken up, and the point when
lather forms can by-and-bye be noted. In order to observ the formation of the lather the bottle should be laid on its side, and the lather to be satisfactory should persist or in in the water, it is most convenient to run in the soap solution in proportions of five cubic centimetres at a time, and to make out approximately and rapidly the degree of the hardness of the water. After this, a second more careful experiment should be made, when the soap solution can and once run in almost up to the required quantity carefully made, and the exact state of the " lathering carefully observed after each addition. Thus the degree of hardness of the water can be easily and rapidly determined
Should the water be very hard, and the hardness exceed 16 degrees, a dilution with distilled water is required in order that the lathering may take place regularly. If
after the addition of 16 cubic centimetres of the soap solution no lather be found, 70 cubic centimetre of distilled water must be poured into the bottle, and the addition of the standard soap solution proceeded with But afterwards, in writing down the degree of the hard-
ness of the water, an allowance of one degree must be ness of the water, an allowance of one degree must be
made for the addition of 70 cubic centimetres of distilled water. The reason why this dilution is necessary is because too large a proportion of insoluble lime salts
interferes with the lathering, and the rule is therefore
that water must be diluted appropriately, so that 70 cubic centimetres of water should never take more than 16 cubic centimetres of soap solution. Having shown determin the degee of havdue, of any given sample of determine the degres hardness of y given sample of means it is proposed to artificially soften water which we have ascertained to be too hard for domestic use. In paper read at the International Health Exhibition of 1884, by Mr. John Henderson Porter, the author states that there are only two methods by which lime can be removed from hard water while leaving it fit for drinking and for culinary purposes-the one being the PorterClark process and its various modifications, and the other is humorously described as being carried out more or less completely in every London kitchen, with a result to be sen the "scale" and "fur" on the boilers, kettles, and hot-water pipes. Since then, however, two other methods have come prominently before the public, and it
would therefore not be fair to leave Mr. Porter's statement unsupplemented. The two other systems are the ment unsupplemented. The two other systems are the of the Stanhope Company, which consists of treating the water continzously with a mixture of caustic soda and lime. For reasons which will appear later on, we will take the Porter-Clark and the Stanhope Company's process first, and deal with Mr. Maignen's method later.

THE PNUEMATIC DYNAMITE GUN.

A paper on "The Dynamite Gun" was read by Captain Haig, R.E., at the United Service Istitation on the 27th ult. As this dealt chiefly with the result of the experi-
ments up to the present time, and only touched briefly ments up to the present time, and only toucbed briefly cates, we propose to examine this important portion of cates, we propose to examine this important portion of
the subject a little more in detail than has hitherto been $\underset{\text { done. }}{\text { dit }}$
For some years experiments have been carried out with high explosives for the bursting-charges of shell, not only to increase the power and destructive effect of such pro-
jectiles, but also because it was clear that, in the necessity of making the walls of the shell sufficiently strong to withstand the concussion of the large charges now used, and also thickness cany the shell intact through a moderate tain sufficient gunpowder to produce a violent disruption of the projectile into a great number of pieces, if indeed it would cause a burst at all. Could, however, the same quantity of a high explosive, such as gun-cotton or dyna mite, be employed, there was no doois the shell burst ing with great violence. po obtain the full power of material such as fulminate of mercury, which is exceedingly sensitive to concussion. It has been found, therefore that though no difficulty has been experienced in firing phewder charge, without a premature ignition of the powder charge, without a premature ignition of the
detonator, it has not been accomplished with the heavier charges, which now range from 100 lb . to 800 lb . of gunto some less violent propelling force, such as compressed air. It appears that the idea of propelling shells by such States, who made a brass tube 28 ft . long and $\frac{1}{4}$ in. thick with a calibre of 2 in . There was a small reservoir for compressed air connected with the gun with an india-
rubber hose. The projectiles were made of wooden diaphragms at the base to act as gas checks. The pressure of air, admitted by an ordinary stop-cock when inch, which with a cuation 20 d , about 2000 yards. This result was sutficiently satisfactory to lead to improvements by Lieut. Zalinsky, an artillery officer, to whom the task of experimenting with the and was 40 ft . long. The air pressure was increased to 1000 lb . Attention was at the same time turned to devising a fuze which would explode the charge whether necessary to ensure the impossibility of the charge prematurely exploding in the gun. Experiments had also shown the increased effect of the charge being ignited circuits in the projectile, either of which when completed ignites an electric detonator in the charge. One is actuated by striking any hard substance, the other circuit is completed by water entering a dry battery when the hell falls into the sea
The results obtained with the 4 in . gun led to 100 lb being constructed of double that calibre to throw wrought iron tube with a brass liner $\frac{1}{8}$ in. thick. The barrel terminates in a cast iron breech-piece, which has door opening inwards. The total length of this 8 in . gun is 6 oft., and convenient mechanism is fitted for elevating and training. The air reservoirs, consisting of eight cubic feet. They are connected with the air-valve of the gun by one of the hollow uprights on which the trunnion rests. This gun, with an elevation of 33 degrees, and
an air pressure of 1000 lb , throws a brass case containing 100 lb . of explosive a distance of 3000 yards. The experiments with this gun have been duly recorded, so that it is unnecessary to detail them at length. The last were on the 27 th September, 1887 , when an old schooner was used
for a target. She was moored 2200 yards off the gun. for a target. She was moored 2200 yards of the gun.
Two blank shell were first fired to get the range, which fell ten and eight yards short respectively. The next ound was with 50 lb . of blasting gelatine at an elevation of 14 degrees, and with a pressure of 600 lb . The time of
flight was 13 seconds. The projectile fell close under the fight was 13 seconds. The projectile fell close under the
starboard quarter of the schooner and exploded, causing her serious injury. The next shot fell in nearly the same place and caused her complete destruction.

The experiments show that with compressed air as a propelling agent great accuracy can be obtained when the would be difficult to pitch successive shots from an rdinary gun in the same spot, using the same amount of gunpowder each time, as very slight variations in the manufacture or state of moisture of the explosive would fiect the velocity and result. With air, howevif, pro of pressure It is note, there is absolus the force and direction of the wind on this occasion, but it is obvious this element must play an important part in the case of large mass moving comparatively slowly through the ployed for claima diat ces weapon can be usefully emLet us examine how far this claim can be made good.
As regards coast defence, this paper states it would be a valuable adjunct to submarine mines, superior to the Whitehead or a controlled locomotive torpedo, as the Brennan. We are of an opinion, however, that the value f submarine mines has been considerably diminished by of the torpedo boat. The distance beyond which ubmarine mines can be controlled and maintained efficient does not in most localities exceed 3000 yards, and except where it is essential to run past damage could be done from a distance of 6000 yards. It is clear that in such a position they would be in little danger from the dyuamite gun in its presert condition,有 locomotive torpedoes. By day the ordinary gun would be the best antidote,
mounted in ship or fort; at night the torpedo boat is the answer. But supposing the enemy's vessel rrived within 3000 yas aving previously silenced it from the greater range, weapon? If the vessel is so obliging as to remain staveapon? If the vessel is so obliging as to remain stationary she may fall a victim, but presuming she keeps position fifty yards before the dynamite shell reaches her, position fifty yards before the dynamite shell reaches hell does not strike her, but falls into the water, it must be ithin 50 ft . radius of the hull to do serious damage. The vessel would aso hap beversing the engines on seeing the projectile coming, andinsumger
that an allowance had been made for her continuing her course. Instruments for finding the range are now efficient, but they cannot be used at night, which is the time a torpedo boat would be most efficient. Unless, therefore, much higher pressures can be utilised so as to reduce the are unable to see any great value in it for coast defence. The same reasoning applies to its use as a ship or boat weapon. It would be most formidable at close quarters, but, like the torpedo boat, must be exposed to a heavy
fire before it could attain the desired position. The sailor would probably fear most the locomotive torpedo with a speed of thirty knots and 200 lb . of explosive,
towards which we are gradually working. There is one use, however, for the dynamite gun which has been little use, however, for hee dy namite gun which for think it may be found great value, viz, countermining. This operation is simply vicinity. It is usually effected by dropping a number of arge mines in a line, a certain distance apart, and then exploding them simultaneously by means of an electric wire. The result is the destruction of all mines within a ertain radius of the countermines, thus giving a cleared passage for the ships. It is a difficult operation, espeperative perative. Now a gun which can drop the countermines exactly where required would have a distinct advantage or such an operation, and it is worth a trial, though, as stated before, it is doubtful whether ships will force their way through a mine field without having previously that portion of the defence. They can then deal with the mines at their leisure, but it would be safer to countermine in addition any mines that might have escaped observation. In addition to |the complete destruction of the enemy's mines, an essentia thus cleared of these unseen dangers, so that ships may dvance without hesitation and immediately the operation is effected. This is now done by a simple and effective means with the system of countermining as practised by method could be employed with the dynamite gun. Much stress has been laid on the fact that the United States are constructing a small vessel to be equipped with three ynamite guns, and it is an example worth following for
the purpose we have indicated. Should it not be successful the apparatus can be easily removed, and the vessel remains equally well adapted for ordinary gun or torpedo equipment. Objection has been made to the great length of the pneumatic gun, but it is stated the ratest
pattern is under 3oft. long, which is a great reduction. There is no reason also why the working pressure should fligh greatly increased, and thus diminish the time of flight and height of trajectory. Though great improve-
ment may be expected in this weapon, we do not think it ment may be expected in this weapon, we do not think it or defensive purposes.

Naval Evgivern Apponsments.- The following appointments
bave been made at the Admiralty: William H. Davis, staff ensi have been made at the Admiralty: William H. Davis, staff engi-
neer, to the Benbow, to date January 25th; A. Spalding and W. Nicklin, staff engineors, to the Exyellent, additional, to date
February 4th ; William Siddorn and Frederick A. Cocks, chief
 January 8tb, and Ricbard S. Hamm, chief engineer, to the Carys
fort, to date January loth, both reappointed on promotion, and
John T. H. Ward, assistant engineer, to the pevern, to date January 21st.
THIRD-CLASS BOGIE CARRIAGES, SOUTH MAHRATTA RAILWAY

THIRD-CLASS BOGIE CARRIAGE, SOUTH MAHRATTA RAILWAY. Sir A. m. rendel, westminster, engineer.

NARROW-GAUGE BOGIE CARRIAGE. The South Mahratta Railway Company recently asked for tenders for thirty-two third-class bogie coaches for the South Mahratta Railways. Tenders for these were sent in on the
25 th ult. The line is laid on the metre gauge. The principal 25 th ult. The line is laid on the metre gauge. The principal
dimensions will be found on the cross section and end-view dimensions will be found on the cross section and end-view the engineer-in-chief. The offices of the company are at 31, Lombard-street. The details and conditions of the speeification were as usual. This is a very good example of a narrowgauge passenger coach.

ABSTRACTS OF CONSULAR AND DIPLOMATIC REPORTS.
Norway-Bricklaying in frosty weather.-Building operations re suspended in Great Britain on the slightest approach of frost, while bricklaying is carried on in Christiania in almost the coldest weather that prevails for any time. Building during the inter months has been practised for at least twelve years, but more frequently during the last five. All the buildings erected during the preceding periods have stood remarkably well, there done over again, owing to an uncareful preparation of the mortar. Experience has not shown that walls built in winter exhibit later more dampness than those erected in summer. The reverse may be the case, sire cools the latter by emperature of takes away a great part of its moisture. The principal builders in Christiania are of opinion that bricklayers' work, executed with due care, in winter is superior to similar work done in summer. The whole art of executing bricklayers work in frosty weather consists in the use of unslaked lime, the mortar prepared with which being made in small quantities immediately before use, and the proportion of such lime is increased-together with the expense of building-as the thermometer falls. The only care required is to utilise the unslaked lime so handily and quickly as to enable the mortar to bind with the bricks before it cools. Another very important building site. Bricks which have been out in the rain or exposed building site. Bricks which have been out in the rain or exposed
to the frost should never be used. The upper courses of bricks hat have been laid are not, as a rule, covered with mats o planks for the night, that precaution being only adopted when planks for the night, that precaution betag only adopted when is therefore necessary to prevent rain from penetrating the brickwork and destroying it by the action of frost. When no such covering is used it is absolutely necessary, after a fall of rain or snow-and after the suspension of work on Saturdays-to see
that all ice or snow is removed from the walls before the work with warm lime is resumed, to prevent the warmth of the lime from being absorbed. The removal is effected by brooms and spardes, but the fire of a brazier is often used. Outside plasterag in frosty does the mortar to lose its warmth. The question as to whether there is any or what limit to bricklayers' work in frosty weather is an open one. Among the members of the Norwegian Society of Architects and Engineers, which has frequently discussed the ubject, that limit is variously estimated at between 14 deg. to $18 \frac{1}{2}$ deg. Fah. and $1 \frac{3}{4}$ deg. below to 5 deg. above zero Fah. The advocates of the latter maximum having proved by hydraulic tests that good bricklayers' work can be executed
in $33 \frac{3}{4} \mathrm{deg}$. Fah. of frost, the society has arrived, at the conin $33{ }_{3}$ deg. Fah. of frost, the society has arrived, at the con-
viction that the variations in the opinions on the subject are lue to the degree of care bestowed upon the preparation of the nortar. The adoption of a maximum limit of frost should therefore depend solely on the possibility of enforcing a fixed ule for the preparation of the mortar by the workmen. As the difficulties in this respect increase with the degree of cold, loes not pay in Christiania in more than $9 \frac{1}{2} \mathrm{deg}$. to 14 deg . does not pay in Christiania in more than $9 \frac{1}{2}$ deg. to 14 deg .
below freezing point Fah. In the case of public buildings at below freezing point Fah. In the case of public buildings at
Berlin such work is not allowed when the thermometer registers less than $2 \frac{1}{2}$ deg. Fah.; but this is probably owing to the scarcity of unslaked lime in the German market, whereas in Norway lime is always supplied to the market in a burned, not laked condition. The wages of bricklayers in Norway are for a day of ten hours, first-class hands from 4 s . 6 d . to 5 s ., secondclass hands from 3 s .4 d . to 3 s . 11d., hodmen from 2 s . 3 d . to
2 s .9 d ., and in winter proportional, according to the number of 2 s .9 d ., and in winter proportional, according to the number of hours worked.

Russia.-Communication with Archangel.-Steps of a more
Russia.-Communication wish in reference to the Obi Railway, a project which may be a very successful undertaking. Siberia, and thus obtaining both a new and extensive market fo European products, and a secure outlet for those of Siberia, would be of incalculable value. The railway is intended to run from the mouth of the river Voykar to a port in some convenien situation in the bay of Hypoodera. The length will not exceed 240 miles, and the estimated cost is about $£ 2,500,000$, or $£ 10,417$ per mile. Taking the season for running trains at 180 days only would be conveyed the receipts being about $£ 360,000$, ofter would be colting 50 per cent for working expenses . the net afte deducting 50 per cent. for working expenses; the net profits
would represent a dividend on the capital of 7.2 per cent. The scientific proofs of the possibility of constructing the line of railway are satisfactory, and valuable evidence to that effect is Hypoodera will probably covers 50,000 square miles, made southern division is one the most productive parts of Western Siberia. The Department of Railways is charged to estimate the cost of junction lines between Archangel and the northern system, this port being plated to prolong the Louniew line in the direction of the plated to prolong the Louniew line in the direction of the In both cases the construction will be on a cheap and simple plan, adapted to the light traffic of these thinly populated districts. It must be understood that any attempt to construct a railway to Archangel will, for self-evident reasons, be opposed by the St. Petersburg merchants. It is probable that the project of connecting the White Sea and Lake Onega by a canal will be realised much sooner than was expected. The Zemstvo of Olonetz petitioned last year in favour of the immediate expropriation of the necessary funds, and voted an advance of
$£ 1500$ for that purpose ; and in addition the Ministry of Lines $£ 1500$ for that purpose ; and in addition the Ministry of Lines
of Communication has contributed $£ 1350$ to the same object, the total cost of which is estimated at $£ 700,000$. The length of the canal will be thirty-seven miles, the terminal points being the village of Soumy in the Bay of Onega, and Povenatz, near Lak are to be utilised. This new waterway will be indispensable for supplying North Russia with corn, and promoting commerce between the inhabitants and the Norwegians. Hitherto communication with St. Petersburg has been closed for five months in the year, a condition of isolation, that the canal will in a great measure remedy. Facilities will be afforded for exploring the rich mines of Olonetz, a matter of great importance to the manufacturers of St. Petersburg, who are now compelled to buy their raw materials from foreigners. The navigation of Olonetz and the White Sea will also be greatly benefitted by the
canal, which will lower the cost of transport from Archangel to St. Petershurg from $2 s$ to 10 d There for uniting the northern provinces with the more fertile regions of middle Russia. One of these is the junction of the Dwin with the Viatka, an affluent of the Volga; another a junction of the Kama with the Vytchegda, in the direction of the abandoned "Catherine of the North" Canal.
Russia.-Developing British trade with Finland.-In regard o the development of British trade, I can only repeat what stated in my report of February last year. ${ }^{1}$ The hardware trade has not been so much neglected as certain others, but there is still room for improvement, especially in the cheaper sorts, a it is useless to try to force articles above the means or tastes of the population. I regret that there has been but a slight sentatives of British firms reaching Finland of late. One consequence of By recent repert many letters of inquiry from all parts of Great Britain to whichI have endeavoured to ivm all parts Great Britain, so which hoped that future years will see more such agents in the country I must again urge the necessity of an early arrival-Februar being the best month - otherwise it will be found that most of the orders have been given to other countrie already. In the spring of 1886 there were twenty repre singfors, which number travellers who visited Finland throughout the whole year. must once more insist on the necessity of British firms sending experienced agents to make inquiries and study for themselves

[^0]the industries and resources of the Grand Duchy, and the tastes and wants of its inhabitants. Finland is not at the Antipodes and can be reached at little expenditure of money or time, being ports, in addiom from Hull by both English and Finnish steamers. Travellers to Russia can easily return to England via Finland and Swedeu, Throughout the whole winter communication between Hang and Stockholm is kept open by means of special steamers, and and Hä̈, the steamers being intend summer and winter. The Finnish Government regularly steadily to augment its network of railas; and continue 1886, was opened that of Ullaborg and Niko ; and in October which the former town is connected with all the chief towns of the country. The line is remarkable for its cheapness, as includ ing bridges, stations, \&c., througbout its entire length of 211 miles it averaged less than $£ 4024$ per mile. The rails were
supplied by Bolckow, Vaughan, and Co, of Middlesbrough but a German house at Duisburg-on-the-Rhine obtained the contract for bridging materials, amounting in weight to 2009 tons. The finances of the Grand Duchy, which are entirely independent of those of Russia, are in a very flourish-
ing state, the national debt, most of which has been to public works amounting at the end of 1886 to and the country has no difficulty in borrowing money at 4 per cent. The Duchy, in common with most European countries, has suffered severely from the still existing commercial crisis, and more especially on account of the great fall in the price of timber, Finland's staple. A further explanation of the depres sion is to be found in Russia having lately imposed such heavy duties on certain Finnish wares that several industries have been severery crippled. Among the chief sufferers has been
the iron trade. Russia being practically closed to the ironmasters, they have been unable to find new fields, though they success ing strenuous endeavours and have met with much 1884 amounted to 27 The exports of iron and steel, which in to 12838 tons in 1886. The Dalsbrus over a hundred years and the most important in Finland, have been compelled to cease working.
Russia - Trade of St. Petersburg in 1886.-There was a slight increase generally in the importation of British goods into plate. The ever-increasing manufactured iron, lead, and tussian customs' tariff naturally prevent the importation on a larger scale of British goods, and stimulate native manufactures to an The imeyond the power of absorption by the native customer The importatiou of British goods into St. Petersburg is declin ing. Cutlery, plate and sheet iron were imported in smaller quants ties than in the preceding year, and it is only those the requisite quality such as cast iron steel, assorted and plates, that continue to be in, smiths work, chief commodities imported from the United Kingdom in increased quantities into St. Petersburg in 1886 were coals, coke, iron bar and cast, and lead. Much of the increase was due to the anticipation of still higher duties being imposed The importance of Cronstadt as a port of shipment is gradually diminishing, the sea canal leading to St. Petersburg being more and more used by vessels of all nationalities. Although the new ports of Gutuyevsk and Putiloff, at the mouth of the Neva, still fail to afford sufficient accommodation for the whole shipping trade, the river Neva with its deep bed supplies the deficiency at the terminus of the sea canal. Should the port of Cronstad be closed before proper harbour arrangements be interests and shipping of which Great Britain furnishes half, would ensue The question Gutuyevsk is to be extended on a scale commensurate with the requirements of the whole export and import trade of St. Peters burg still remains undecided, through a division of opinion between the commercial community and the engineers of the Government, the former favouring General Paucker's plan for the establishment of a harbour at the mouth of the river at the Old Galley Haven, almost immediately opposite the present Gutuyeff Basin. That the efforts of the Government are directed to the improvement of the canals and harbours within the Empire is evident from the fact that, during the last twelve years, over $£ 4,500,000$ has been expended out of public revenue
for that purpose.

SIEE HO BRIDGE, CHINA RAILWAYS.
mr, C. W. Kinder and mr. James cleminson, mm. inst. c.e., engineers.

SIEE HO BRIDGE, CHINA RAILWAYS

W_{E} publish this week the remaining details of this bridge. As will have been seen from the perspective view pullished at page 450 of our last volume, and from the drawings given at page 476 , the bridge is of the Murphy-Whipple type. It is designed for a single line of rails and a rolling-load of 3500 lb . per lineal foot. The members are proportioned to sustaim being 22 tons per square inch, and the compressive strength 16 tons per square inch; and in no case is the metal intended to be strained beyoud one-fifth of its strength, due allowance being made for loss of strength by flexure in the compressive members The top chords and end struts are built up in sections fo facility of transport, the posts are built of channel bars place back to back, and sticued and thed thers bracing bars and plates near the ends, the bars chas eye-plate on the connecting pins. The links of the bottom chord and like wise the ties, except those which are adjustable, are severally forged in one piece. The connecting pins are of forged scrap iron and turned tostandard gauges. The crossgirders, except those at the ends of the span which rest on the bottom plates of the end struts, are suspended from the connecting pins by Lowmoor iron hangers, and the rail girders are of rolled H section, and secured to the cross girders by double angle plates. The top chords are brazed together transversely by rolled H bars, and diagonally by angle bars, and in like manner the cross girders and bottom chords are secured diagonally by angle braces. The rails are carried upon timber stringers bolted to cross girders. The been done by hydraulic machinery The above engraving how oeen done by hydrauic machinery. the above engraviogo the workmanship throughout does the builders, Messrs. Arrol Brothers, of Germiston Works, Glasgow, the greatest credit This structure is one of a number intended to carry the main line of the China Railways over the Siee River.

THE FORTH BRIDGE-THE FIFE CANTILEVER PIER.
$\pi_{1 \text { It }}$ this impression we publish a two-page supplemental wood engraving of the Fife Pier of the Forth Bridge, and the attached cantilevers as far as completed a few weeks ago. This engraving will be found to convey a better idea than anything he . yet been published of the magnitude of the work. At junction tives and connectious of this pier, including 36 ft to and the north cantilever carried out about 170 ft. of which the greater part is rivetted up. The first struts and the bracing between them have been carried up to a height of about 240 ft ., and a length of about 1301. of is of both cantilevers he bee been carried further down than shown in the engraving those on the right-hand of the engraving being down to the level of the viaduct. The method of building out each of the projecting parts of the cantilevers until they meet each other at their several intersections will be completely understood from this engraving, and it will be readily seen that with the lowest tubes being carried out to the first vertical ties, and the latter connected up at the viaduct level, these parts and the diagonal tubular struts constitute a completely braced structure, to which the ties depending angularly and outwardly from the cops of the pier will be connected, and from which support will be obtained for the projecting top main ties. These are seen on both sides of the top of he pier, projecthis th a great distance as cantlevers, wa methods of procedure as they will have been cathered from our pares 1 , and will be readily conceived by enciueers from a study of the engraving we now publish. It may be said that some of the most difficult of all the work has now been completed, and that every foot of progress now reduces the dimensions to be dealt with.

TANK LOCOMOTIVE. HUNGARIAN STATE RAILWAYS.
ONE of our supplements this week illustrates a tank loco motive in use on the Hungarian State Railways, designed by Herr V. Kordina - whose vortex blast-pipe we recently illus. rated-and built in the State Railways workshops at Budapest. It will be seen that it has the corrugated fire-box introduced many years ago on the Austrian State Railways by Mr. Haswell. Its construction is shown so fully by our engravings that little is left to be said here. The principal dimensions are all given in English figures:English figures:-

The tank holds 950 gallons of water, and the bunkers about 30 ewt . of coal.
Sixty engines of this type have been built. They are used on the Vicinal Railways in Hungary. The rails weigh 20 kilos. per metre and are of steel. The greatest incline is 1 in 83 ; the usual speed, thirteen to twenty-two miles per hour. The the motive hauls 280 tons, exclusive of engine, up inclines of 1 in 150 with a speed of thirteen miles per hour, with lignite as fuel ; evaporation, $4 \frac{1}{2} \mathrm{lb}$. of water per 1 lb . of lignite. At the test trial by the Government, the engine was driven up to forty-six miles an hour, without the slightest oscillation or jumping. The peculiar form of the chimney is due to the use of lignite, which is a cross between wood and coal, and produces a very large quantity of sparks and light ashes.

LETTERS TO THE EDITOR.

We do not hold ourselves responsible for the opinions of our

collapsing pressure of iron boiler flues.
Sir, -The formula for the collapsing pressure P, in pounds per
square inch, of a circular flue of external radius a inches, and thickenses t inches, when the length of the flue is considerable com-
pared with the diameter, say seven times or more, has been obtained on theoretical grounds by M. Maurice Lévy and M.
Halphen in the form

$\mathrm{P}=\frac{1}{4} \mathrm{E}\left(\frac{t}{a}\right)^{3}$,

where E , Young's modulus of elasticity, is about $29,000,000$ for iron
or steel. The formula is obtained in a similar manner to that in or steel. The formula is obtained in a similar manner to that in
Euler's formula for the load on a column just producing flexure is Euler's formula for the load on a column just producing flexure is
obtained, and the mathematical treatment will be found in the Journal de l'Ecole Polytechnique. This formula differs from that
submitted by Mr. W. I. Ellis in involving the cube instead of the square of the ratio of the thickness to the diameter, and if will
be interesting to see how Mr. Ellis finds agreement between the two formule, and the experimental results of Fairbairn and others.

Woolwich, January 24 th.

steel projectiles.

SRR, -In the various articles which have appeared in The ExalNERR on the manufacture of steel projectiles you refer to the equivocal, not to say shameful position which we occupy as com-
petitors, with our foreign contemporaries. It is somewhat petitors with our foreign contemporaries. It is somewhat
numiliating to consider that this country, the generally acknowlidged originator, and the home of the steel industry, has to be
indeoted to foreigers for supplies of articles on which may depend indebted to foreigners for supplies of articles on which maydepend,
in the not far distant future, our very existence as a nation. To think of English steel manufacturers quietly accepting such a dis-
graceful condition of conscious and acknowledged inferiority, with Ell that it involves, has only a parallel in our history when the
Dutch fleet entered the Thames and simply did what they liked with our ancestors in the corrupt and shameless reign of Charles II. History repeats itself; and are we prepared, not to meet, but to
invite a repetition of the same weakness and imbecility? Surely not. Yet I can scarcely agree with those who are always com-
plaining of the want of encouragement from the Government. We ought to be and can be second to none in all that pertains to the manufacture and working of steel for its own sake alone. An industry so important as this ought to require no extraneous support.
There can be no doubt that the manufacture and working of steel has always been a matter of difficulty and uncertainty. There are so
many varieties, and with the so-called "special steels," in which we have combinations with chromium, tungsten, and manganese, these uncertain conditions are thereby greatly increased. Yet
notwithstanding the more coomplicated conditions presented to us, there seems to be a growing feeling that our failure in making
sound and trustworthy projectiles lies as much, if not more, in the sound and trustworthy projectiles ies is much, if not more, in the used. a different problem for solution, and it is also one from which by
experience we cun deduce no general rule for our guidance. In ordinary practice a workman will heat iron and, say, tool steel with the same amount of heat, and work it in the same way, without
taking into consideration that the one is fibrous and the other nay derive a lesson in forging steel whioh goes a long way towards explaining in a general way the true method of working any steel.
Let any one cut two pieces of steel from the same bar to make chisels. Forge one by drawing or flattening it down to a cutting
edge, but without hammering on either edge, the superfluous ered in the usual way ground off. Let the second piece be hammost work. Many who have worked steel for years would be
murprised to know that a piece of steel cut from a round bar will not do so much work as a piece out fut com a squareo one, for the the
reason that the latter can be better forged than the round one reason that the latter can be better forged than the round one.
Some time ago 1 wes in an engineer's shop where some cast iron
cill oniled roils were being turned. One or two places on the surface of the roils no tool would penetrate, and as usual the quality of the
steel was questioned. A piece of steel from the same bar was
prepared as mentioned above, and the work was accomplished prepared as men
without difficulty.
Taking into consideration the crystalline nature of steel, it is must make it loose and weal, and above all, form large corystals.
The problem of for $i n g$ steel may be explained in the following must make it loose and weak, and above all, form large crystals.
The probom of forging steel may be explained in the following
way. While altering the form of a mass of steel, it should be worked in such a way as will leave it no time to cool and crystallise.
The heat ought to be kept up by either a rapid succession of blows The heat ought to be kept up by either a rapid succession of bowws
from the hammer, by hydraulic pressure, or by cross rolling under pressure while revolvng rapidly-especially when making projec--
piles. Now if the initial heat can be maintained while the steel is
 Lo cool under a slowly diminishing pressure, the forging will be
found to possess great homogeneity of structure, with a fine close found to possess great ho.
grain and great tenacity.
conditions to secure results so desirable, and particularly with
the hard and brittle steels? Chrome steel, for instance, seems to be the favourite material for making projectiles ; it
has great hardness, combined with considerable power to has great hardness, combined with considerable power to
resist shock, but is extremely difficult to forge. At a recent
meeting of the Iron and Steel Institute, some of the spaekers meeting of the Iron and Steel Institute, some of the speakers
pronounced the use of the steam bammer for forging steel " a pranbarism" that must tive place to something more appropriate.
Impact must give way to pressure, for the action of tee steam Impact must give way to pressure, for the action of the steam
hammer is essentially local and unequal ; and this is its weak point. We know that a piece of steel, such as a tile, when hammered on
one side only, and then tempered in the usual way, will diminish in length on the hammered side, an of which may not allow distor tion of form. But the internal and localised strains are present, nevertheless, ever ready under certain conditions to produce un-
expected and perhaps undesirable results. The bydraulic press expected and perhaps undesirable results. The bydraulic press
for forging is certainly a great advance upon the stean hammer. the is slower and more acting mainly on the principle of the ing sound and strong forgings. At the same etime, from its slow.
ness of action, it is doubtful lif it is the best method of forging ness of actic
projetiles.
Fon
For some years I have been experimenting in forging steel
and iron with what may be called diagonal cross rolling. For forging articles of conoidal form, such as projectiles, there can be
no doubt that properly shaped rollers are best but hitherto the difficulty has been to prevent the pieces while being cross rolled from becoming hollow or spongy at the point, for unfortunatoly the
shape of the roliers must of necessity be made the reverse of the shape of the roliers must of necessity be made the reverse of the
projectile, the one increasing in diameter when the other diminishes, thus producing the most favourable conditions for rolling a hollow point; the unequal surfaces working in opposition an alteration of the form of the pressing surfaces of the rollers, the faults enumerated become really accessories to produce good
and sound work. The pressing surtaces of the rollers are reduced in area, so as to roll the projectile diagonally, beginning at the base and finishing at the point, while every successive revolution of the rollers is made to give a new grip equal in pressure every time.
acting rollers are apparently the thing wanted for forging hard and brittle material, such as chrome steel. By pressure the piece of steel can be kept at any temperature and gradually allowed to
cool, thus answering the conditions for preventing the formation cool, thus answering the conditions for preventing the formation
of large and coarse crystals. Projectiles made in this way are well planished and absolutely true to form and dimensions. They have been carefully examined and tested by the acid test, an
found free from tlaw, and neither spongy or hollow. There i a possibility that by new combinations we may be able to produce
a better class of steel castings ; and if projectiles could be made in this way, and afterwards rolled to consolidate and harden the surface, they might be found equal to, if not superior to, those
which are forged. It must be remembered, however, that forging which are forged.
steel by hammering pressure, or by rollers, does not essentially
dive increase of strenth If forged steel is in any way better, it give
is due to the fact that the forging drives out gas or impuritie and closes up the surface, making it finer and closer in the grain, and the rapid action of forging prevents by concussion the crysta lisation of the mass. Rolling steel castings, such as projectiles, a
a high speed, and while at a proper temperature, would certainl simplify and
superior
As regards hollow projectiles or shells, this method of manufac ture will, no doubt, in time be adopted. Forging shells in the ordinary way, by hydraulic pressure or by the hammer, involves a
higher temperature for the steel than it can have without injury, even if one shell can be finished at one heat. There is a machine recently patented which can bore and tap the end of a 6 in. chrom
steel shell for the ing charge, easily within one hour, and this can be done withou risking injury by over heating or otherwise.
In conclusion, when we know what has been done by our foreign contemporaries, the problem of making pieces of steel capable of
doing certain work is not very serious. Surely this country doing certain work is not very serious. Surely this country
will never be satisfied with mere imitation. We ought to lead, to offer the problem for solution, and not have to accept a challenge so humiliating as this. Charles Farrbalrn. Maybank, Sale, Cheshir
January 27 th.

WINDMILLS FOR GENERATING ELECTRICITY
Sir, -The credit of first suggesting the use of windmills for driving dynamo machines to charge electrical accumulators belongs
to the eminent physicist and electrician, Sir William Thomson, to the eminent physicist and electrician, Sir William Thomson,
and dates back to the year $1881-$ viz, to a presidential address elivered by him before Section A of the British Association fo the Advancement of Science, "On the Sources of Energy in
Nature Available to Man for the Production of Mechanical Eftect." it is true that in the same paper, and at the same time, Sir Wiliam threw some cold water on his own suggestion by urging state of development, that the first cost was too great. In this, however, as I have pointed out in detatl elsewhere-see "Note o
the Economy of the Windmill" "Trans. Am. Soc. of Mech. Engi Yorrs, John Wiles and Sons, $1885-$ he erred in overolooking the fact
that interest on capital, not capital itself, is an item, and by no mean the only item of current expense by which the economy of prime mover should be judged. I then showed, and now repeat, that when the
only correct basis of comparison of the economy of different prime only correct basis of comparison of the economy of different prime
movers is instituted, viz, the cost of obtaining the horse-power developed per unit of time, such cost consisting of the sum of
interest, repairs and depreciation of plant, cost of fuel, oil and interest, repairs and depreciation of pant, cost or
attendance and smilar items of expense entering the power
account, the windmill is the most economical motor for the account, the windmill is the most economical motor
development of power in moderate and small quantities.
tar been put to practical use for the eneration have not thus not due to the first cost of the motor nor to any lack of economy
in operation.
I here wish to emphasize the fact that the non-employment of the windmill, in this connection, is also not owing to the often
alleged fact that the rate of revolution of the windmill, according varying force of wind, is too irregular to run a dynamo for the purpose of charging a storage battery, or that the wind cannot be
depended on for a sufficient length of time per day. The real facts of the case are that in the leading American windmills, as is attested by hund reds of thousands in daily use in pumping
practice, governing appliances of various kinds, of approved design and experience, automatically so vary the extent of surface pre sented to the wind that a practically uniform rate of revolution is
obtained, irrespective of direction and varying velocities of wind, for all winds exceeding a velocity of six mines per bour. This
latter velocity must be reached before wind mills of good design, latter velocity must be reached before windmills of good design, as
ordinarily constructed, operate at the rate of revolution for which they are set. It has been found by experience that on an average
for at least eight hours out of the twenty-four hours of each day the wind exceeds this velocity of six miles per hour, the average
velocity of wind during the eight hours of run being sixteen miles per hour. Total calms in excess of two days' duration are pracThe fact that the windmill is at rest, often at short intervals,
, aggregating not quite sixteen hours out of the twenty-four, is no objection to the use of this motor for the purposes of driving
dynamo machines to charge eleectrical accumulators, for one of the very features and acknowledyed requisites of such accumulators
should be that they can be charged spasmodically at will and at odd times.
The result of study of this question must be that the reason are not sufficiently economical or reliable, but that the electrical accumulators are not yet a satisfactory and assured success. When they are, windmills will come into extended use as prime
movers for the generation of electricity, and electricians will be glad to avail themselves of the most economical motor, utilising The windmill at the present day is in a developed state, practical success, ready and available for this new use at once. It
awaits the electrical accumulator that is a thorough, practical Just now, and for some time past, the daily newspapers and give an opposite impression, viz, as if the accumulator were is the fact, and I have thought it well to call prominent attentio to it at this time. N Now York, January 15th.
38, Parker-row, New

modern machine tools

Sir, -There is a report in THE ENGINEER, January 20th, of a
paper by the President of the Manchester neers on the above subject, and in treating of planing machines he says :- Maccines adapth many years ago in the famous ' Jim
introduced by Whitworth
Crow' Crow' tool-box, and in recent years an attempt has been made to
revive the practice of cutting in revive the practice of cutting in both directions; but so far, except
on special objects, without very encouraging results." Now, if the author of that paper will pay a visit to the works of my firm in directions, which have so encouraged us that all our larger planing machines are working on that system, to the great increase of their output. There is a proverb, "Give a dog a bad name and hang him," and it is therefore of importance to prevent the impression
obtaining currency that cutting on obtaining currency that cutting on planing machines in both direc-
tions is not successfully accomplished. Nor is the success tions is not successfuily accomplished. Nor is the success of the
double cutting confined to "special objects," for its advantages double cutting confined to "special objects," for its advantage
come out in nothing so much as in large plane surfaces of cast iron,
such as stationary engine bed plates, beds of lathes, planing
machin machines, and, in fact, the bulk of heavy planing in engineering
works. The advantage of planing on both strokes is so obvious in principle that it does not require demonstration. But besides the effective use of time during the return stroke, the system, in
carried out with the tage of only wearing each tool in traversing over a given surface half as much as it would be worn if its companion did not divide the work with it. Again, there is an incidental advantage in the
circumstance that each tool chips away the end skin from the casting, a and makes clean metal for its companion to enter.
The "Jim Crow" tool-box did not possess the fir advantages, and it had the drawback of being stiff held and of But a good principle is not to be condemned because imperfect emoodiments of it have been made. It is true that the best double cutting arrangement yet made does not apply to all kinds of work;
for instance, in planing a seating between two lugs only oue of the for instance, in planing a seating between two lugs only one of the as this to the universal application of the double cutung pincing as this to the unipersal application of the double cutung priciple
which are too apt to take possession of the mind, though 90 per cent. of work may be free from the objection. The successful double cutting tool-box to which I refer was illustrated in The EngineEr of April 8th, 1887. Any engineer having large surfaces
to plane would find that the cost of the necessary additions which would enable him to have a machine constructed suitably for double woutd enable thim to anve a machine constructed sum ane y for double
cutting, or to have an existing machine, if a good one, adapted for
Leeds, January 30th.

(Joshua Buckton and Co., Limited.)

the 111-ton gun carriage

SIR,-I only now have had my attention drawn to your limited
description of the proof carriage for the 111 -ton gun in yours of January 20th, and inasmuch as the "arther information" you give to your correspondent is in the main quite wrong and may lead engineers and designners to form and arrive at exaggerated opinion
adverse to the principles embodied in the carriage, I, as the sole adverse to the principles embocied in the carriage, t, as the sole
designer of the carriage, respectully ask you to make the following corrections to your description.
The wheels of the carrage are identical in every respect with
those of the bogies and have flanges, for the obvious reasons that owing to the manner of pivotting or connection with the bogies not as you described it-the carriage otherwise could not be kept wheels in question would require to be as you state; I therefore give to you and your readers a description and rough outline

The bars D D have at their ends, which enter the body of the to the carriage by a bolt, A, passing through from one side of the carriage, and by the partially withdrawing the said bolt the rear bogie can be withdrawn, for proof of the gun on racers, as at Shoe-
bury, without disturbing the front bogie, the latter at such times being supported by special means to the carriage, while all the wheels ard on large rollersers, while the rear end of carriage is
supported I shall reserve for further inquiry of your correspondent, if he needs it. Reverting once more to the pivotting, it will be seen by refer-
ring to a plan thereof, the relative positions taken by the carriage ring to a plan thereof, the relative positions t
bogies and pivotting bars or connecting rods.

It will be seen that the bogies are free to swivel on their own centres B B, while the connecting rods D also swivel on their centre
in the body of the carriage at E E ; by this special arrangement the round curves 40 ft . radius with comparative ease. WhLinmson. round curves 40ft. radius wit
3, Overhill-road, Dulwich,
January 30th.
the explosion on board the elbe.
Sir,-I am inclined to agree with Messrs. Oswald Mordaunt and Co., in their letter in your issue of 21 st inst., that water in the
pipes was the cause of this explosion. I give two examples which appear the cause of this explos
In September last, at Greenfield Colliery, near Hamilton, where the steam pipe of a pair of 24 in . cylinders burst and killed a
man. The steam pipe came from a range of boilers to the centre of the cylinders. At this point there is a knee pipe descending vertically for 12in. next the throttle valve, and then a union pipe branching to the cylinders. On the morning of the accident the engineman was in attendance on the engine, but it had been
standing for at least two hours. At that time one of the workmen was about to descend the shaft. The engineman told him to go in in the engine-house. He gave the alarm, and soon after the steam was shut off at the boilers. On entering the engine-house the engineman was found dead near the starting handle, and it was found that a piece 17 in . by 4 in . had burst out of the horizontal part
of the knee pipe close to the bend, and from this the steam had of the knee pipe close to the bend, and from this the steam had
rushed out and scalded the man to death. The pipe had been in position for more than thed to me that the throttle valve had been tight, and that condensed steam had collected in the pipes above
it in the form of water. When the throttle valve was slightly opened by the engineman to start the engine, the rush steam from the boilers had acted on the water, and by its jerking had
burst the pipe. I recommended a drip-cock above the throttle opening it to start

A precisely similar accident happened at Brownrigg Colliery,
near Airdrie, in November last. In this case there was a small 20 -horse power engine, which by means of gearing both worked the cage and pumped the water out of a pit 24 fathoms deep. There valve, and then a pipe to the cylinder, precisely as in throttle case. The engine during the Sunday pumped water only, and it worked one hour and then stood two alternately. The engineman was last seen on the Sunday night, and nobody was at the pit but himself all night. About tive oclock next morning, the workmen
coming to their work found the engine standing, the steam down, coming to their work found the engine standing, the steam down, and no one visible. On getting into the engine-house the dead
body of the engineman was seen. It was found that a piece
the same way as at Greenfield, and from this the steam bad rushed and scalded the man to death. The engine and pipes had been at work for fourteen years. I think the accident was caused precisely
in the same way as the Greenfield one, and I recommended the same remedies I have read the Government report on the Elbe disaster, and have wanted to hear what the experts have bad to
say, and 1 have come to the conclusion that Mexsre. Oswald Morsay, and thave come to
daunt and Co, are right. January 31st. A Misive Enginger.

heat engines.

SIr, - Your issue of the 27 th inst. contains descriptions of two "thermo-motor." The design of the former was explained by Mr. Rigg at the Britith Assoniation meeting, 1885 , and although
the details of construction bave been developed since, no doubt the principle of the design remains the same. I misunderstood Mr. Rigg's description in 1885 , and owe him an apology for the
criticism I then offered. Now that I understand the construction, it appears to me that the engine is perfectly balanced. 1 would
only point out that the remark made about the recovery of
useful only point out that the remark made about the recovery of useful
work by the retardation of momentum during the second half of the stroke seems to be a slip on the part of the writer of the article of the 27 th inst.
But may I ask what is the advantage of this mettod of obtaining perfect balance? There aro several other methods of obtaining
it that involve less complication. A two-cylinder engine, the two it that involve less complication. A two-cy linder engine the two crank shaft, the two pistons of same weight and stroke, and connected to opposite crank pins, gives perfect balance. The one
crank pin may be in the central plane of the engine, and the cther may be in two parts on the two outside bends of a three hrow second connecting rod being forked. Other arrangements of the crank pins of this perfectly balanced two-fixed-cylinder engine are
possible. Two opposite crank-pins on opposite sides of a single possible. Two opposite crank-pins on opposite sides of a single
crank dise, with the two cylinders opposite bent out of line by the hickness of the disc plus the length of one pin, gives zero variation gg force couple upon it the leverage of this couple being the small distance between the cylinder centre lines, Various arrangements of two, three, , four, or five-cellinder engines, non-compound or
compound, all perfectly balanced and all with fixed cylinders, may compound, all perfectly balanced and all with hixed cylinders, may
be devised by properly adjusting the weights of the pistons and be devised by properly adjusting the weights of the pistons and
placing the cylinders in proper positions. If the object be only to placing the cyect balance, are not two fixed cylinders preferable to
produce perfect points, then four fixed cylinders seem to me preferable to four
rotating ones. Especially as regards simplicity and efficiency of rotating ones. Especially as regards sim
rolve-gear, is the fixed cylinder desirable
As regards the Thermo-Motor I do not wish to criticise its construction adversely ; I may merely ask why the air pump A
does not draw from the ends of the tubes in the vessel B? What 1 wish to draw attention to is the incorrectness of the too common
idea that the "theoretic" efficiency of a heat engine necessarily equals the range between maximum and minimum temperature divided by the former. Let A B C D E F be the true indicator
diagram, "true" meaning that it truly records all the simultaneous chagram, true meaning pressure and volume. Let A and D De be the points at which minimum and maximum adiabatio function is reached, and let G AS
and $H D T$ be adiabatics drawn down to the zero isothermal $S T-$ line

of zero temperature. The theoretic as well as the actual efficiency is the ratio of areas $\frac{\mathrm{ABCDEFA}}{\mathrm{ABCDTS}}$. This ratio may remain the same for many different shapes of indicator card. For instance, if for the upper boundary A B CD is substituted, any other boundary
$A K L D$ with the same adiabatic limits and including under it the same area, the efficiency remains unaltered. AMN D is another may be changed into any other curve, such as D RQ or D P O A without changing the efficiency, so long as the adiabatic limits are
kept the same and the area underneath the curve down to S T between the adiabatics A S and D T unchanged. These changes, and minimum temperatures and the range between them, the ratio of range to maximum being also altered.
Let C and F be the
temperatures ${ }^{\text {be the }}$ points at which the greatest and least absolute zero c and f; and draw the isothermals $G C H$ and IF J The ratio ${ }^{c} \frac{-f}{c}$ is the same as that of the areas IG C H J FI. This ratio is greater than the previous one. This means merely tha an engine whose diagram is made up of a pair of adiabatics and a
pair of isothermals is greater than that of any other engine working between the same temperature limits. There is no reason for calling this par excellence the "theoretically perfect" engine.
Other limits besides those of temperature may be practically quite as important. The maximum temperature limit is of importance minimum is not of a similar kind of importance. A maximum pressure limit is also of importance because of the strength required in the cylinder and piston to withstand it, and a maximum volume
limit is of as great, if not greater, importance because of the limit is of as great, if not greater, importa
increased bulk and expense of the machinery.
If in any special design the limits of pressure are considered that giving the highest possible efficiency under the given conditions - consists of a pair of adiabatics and a pair of level-isobaric conditions, a diagram composed of a pair of adiabatics crossed by a pair of vertical straight lines would be the best possible. If the the minimum temperature as the lower limiting condition, then a diagram made up of a pair of adiabaties, an upper level line, and
an isothermal as the back-pressure line, would be the best conceivable
Cin ali these arrangements the pair of adiabatics recur. The "theoretically perfect" diagram means that adiabatic for any
working fluid should be initially raised not by supplying heat by cond ction to it, but by mechanical work alone done on it in compressing pump. To make the operation as nearly as possible
adiabatic, the pump should be as quick-acting as may be and no time should be lost in the delivery into the vessel, where either the work is done or the fluid is stored, properly protected from loss of
heat, and where it is supplied with additional heat by conduction or radiation. This is approximately possible with gases and or radialion. .
vapours. Wher it be possible with water I will not venture to say; nor even whether it be actually done approximately by th ordinary boiler feed-pump.
The existence of the other adiabatic in the "theoretically perfect" card means that all the expansion carried out after th
fluid is cut off from connection with fuid is cut off from connection with the heat-supplying apparatus
should be as nearly as possible adiabatic. The dificulty of getting should be as nearly as p.
it so is well understood.
I need hardly point out that the indicator diagrams taken from engines are by no means true records of all the changes of volum and pressure to which the working fluid is subjected. I do not refer to the instrumental errors ore indicator. Irefer to the
facts that almost invariably there are serious changes of presure between the boiler or other teat generator and the entrance into the cylinder, and also that during the sudden exhaust the change of volume are not co-ordinated on the indicator diagram with the changes of pressure. There is a similar sudden expansion on the
first opening of the admission valve which, of course, is not
The chief point on which I wish to insist is that the existence of evidence whe between maximum and minimum temperatures is no evidence whatever of high efficiency, although engine-makers not
infrequently quote it as such. If the heat be supplied at varying temperatures, the bulk of it may be conducted at a low averag and a small quantity at an extremely high temperature. Thi would mean the reverse of effriciency, and the same ressit is
obtained if some of the heat is conductod out of the fluid at a high
temer condenser.
It seems to me that in many engines of the regenerator type everything possible is done to disobey these elementary laws heat efficiency. Care is taken that the conduction of heat to the
fluid should be at as many greatly differing temperatures as possible, and ditto for the cooling apparatus.
The true law, whice we should strive to obey as nearly as we can, am unable to express more simply than as follows:-Let the fuid in its upper limiting condition - radiated into the working mum presp cooling by conduction or radiation be accomplished in the lowe limiting condition-i.e., at minimum pressure, minimum tempera-
ture, \&o.
Ihope
you will excuse the length of this letter. I have long wished that somebody should publicly correct the false notion nfortunately too prevalent among engineers on this subject.
Moskrt H. Smith.

Loating batteries.
Sir,-I desire to show how a city may be quickly, and at a com-
paratively small outlay, perfectly protected from capture by an nemy at sea by means of a few floating batteries, so arranged for eoast and harbour defence that they shall be able to concentrate fire ortie vessels, and yet be themselves safe, impregnable, and
hon
and allosost unassallable. These batteries, brieffy described, consist of
circular, centrally anchored, revolving, top-armoured vessels, each circular, centrally anchored, revolving, top-armoured vessels, each
loating in a small, excavated basin, and each surrounded by a confloating in a small, excavated basin, and each surrounded by a con-
tinuous protecting line of earthworks, within which the foating
battery

in Action.
quickly to deliver its rapid revolving fire, and below which it can retire when necessary. The vessel enclosed by the wall is lowered
below the crest by the usual plan of admitting water into its combelow the crest by the usual plan of admitting water into its comparapet as the water is ejected by its powerful pumps.
The circular top-armoured vessel is anchored from its centre in
the middle of its small excavated basin, and is easily revolved the middle of its small excavated basin, and is easisly revolved
by two ordinary propellers. As it turns it is able to discharge by two ordinary propellers. As it turns it is able to discharge
gun after gun of its armament. Since the battery ship is always gun after gun of tits armament. Since the battery ship is always
in still water and bas great stability, its fire should be more than commonly accurate, and as its gunners are safe they ought to be cool in action. This arrangenenent is not complicated, and conse-
quently is not likely to get out of order or be disabled, and it can quently is not likely to get out of order or be disisaled, and, and it can
at any time retire below the crest of its protecting works to position of security. This top armoured vessel being strongly anchored from its centre is able to revolve in a very small basin. It
is difficult to hit, not only because of its comparatively small size,

in a position of safety.
but by reason of the fact that but very little of its bulk appear above the parapet. In truth, only its shield is ever exposed, and given a direct blow. To a single ship of the enemy only one port hole of the battery can at one time be exposed. Circular vessels
have great displacement and stability, and can therefore support have great displacement and stability, and can therefore suppor sists of the top shield-the unarmoured sides of the vessel are not exposed. The shield cannot be penetrated. It is plain that the crew have nothing to fear from any form of ram or
torpedo. Anchored in the middle of its basin, and conse. quently off shore on all sides, no assault need be approhended
In the best position a battery of this character would In the best position a battery of this character would occupy a
large shoal or soft swamp. Then even its earthworks cannot be approached by any class of boots. If from some unforese日n
apcident the circular vessel should sink its shallow basin does apcident the circular vessel should sink, its shallow basin does
not permit it to be entirely submerged, and the crew would be The.
Thes
pants.
batteries are peouliarly suited to the protection of torpedo
silenced, no enemy would attempt the removal of torpedoes. Such subject an enemy attempting to force a passage to a very heavy fire. Its concentrated rapidity and force would probably be
without precedent. A few of these citadels placed inside of harbour would render the enclosed waters unavailable anchorage or hostile ships. A harbour protected by theso defences,
and having also a good torpedo plant under the fire of the guns, could not be successfully attacked by any fleet what.
In the contest between guns and armour this system aims to give a decisive advantage to armour : (1) By reducing the size and 2) By interposing breastworks to protect at all times the mosi (2) By interposing breastworks to protect at all times the mosi armour shield that a penetrating blow shall be impossible. (4) By securing a displacement of the vessel sufficient to enable the heaviest armour-plating to be used-even much beyond the thickness of the
present present imit.
A revolving
A revolving battery of this character requires none of the heavy
and complicated machinery necessary to manceuvre the turret of the monitor class. The guns themselves are manipulated by the simplest devices, since they have practically the stability of guns on shore-owing to the large displacement of the battery vessel, and its floating always in still water-and they are turned into position by the movement of the vessel. Unlike other forts, and
most vessels, none of the guns of this battery are unavailable all are equally, useful, and may be brought to bear as rapidly as they
can be loaded. These defences form truly impregable citadels. shoals or reefs upon which they can be located are only to numerous in most harbours. The material dredged from the excavated basin will form an important part of the surrounding
embankment. Defences of this character can be organised in a short time if the great guns for their armament can be procured. hiort time if the great guns for their armament can be procured.
Kitrel, N.C., U.S.A., Jan. 16th. Thos. L. STUREVANT.

the r.a.s.e. engine trials.

Sir, - With regard to Mr. Atkinson's letter, dated 16th inst., 1 must say that I cannot agree with him in his statement that if the the pressure on b caused by the levers must be taken as acting against the engine, for if the levers were merely extended to b brake strap as the weight rose, and vice versa. The connections of the strap ends would therefore have to be reversed, so that the tail end of the brake strap was connected to the lower ends of the Now in that ease, the eesistance affered by a at f thetion ends of the levers would still be in the direction of rotation, and the formula would therefore still read $\frac{(W \times C)-(10 \times c}{33,000}$ = B. H. P
A. see that they would work effectively, as, though when the weight
rose the links would draw the tail ends of the levers away from the centre of rotation and thereby loosen the straps, yet when the weight fell far enough to push the links-by means of the levers
bbove their horizontal position, the tails of the levers would still be above their horizontal position, the tails of the levers would still be
carried away from the centre of rotation, and thereby loosen the strap and cause the weight to fall still more.

SIR,-I am sorry to have "exasperated" "R. A. S." and, not terested summary he gives of my arguments. His last dio disin ingenious, and his reasoning upon it is clear and sound, so far as it goes. But it has no bearing upon the Appold brake. It repre
sents, iu principle, the totally different Halpin brake, and with spring balance at C would give satisfactory results, When the little boys pulled, the scale would show 100 16, which, deducted
from 300 lb . - the weight of M-would leave 200 lb, as the actual weight lifted by the boys, alias brake blocks. Necessarily
"R. A. S.s" diagram is wide of the mark. It is an essential feature of the Appold brake that there is a arising from the weight-transmitt point at its end. The brake band must be endless, It would be
waste of time to continue the argment waste of time to continue the argument upon a form of brake in
which this essential feature is wanting. which this essential feature is wanting.
"R. A. S." is stired of the argument, and so am I. We shall not agree. But my purpose aas uen served. condemnation of the began by denouncing the truth as a mare's nest, and who spoke as one having very much authority, now modestly says that he "may
be wrong or may be right." I wish heartily I could the be wrong or may be right. 1 wish heartily 1 could agree in some
thing he says, but I cannot thing he says, but I cannot agree even in this. Still, it is a sign of
grace. It is a pretty safe prediction that no more trials will be carried out with the Appold brake; and with this conviction I am fully satisfied to closo my contribution to the correspondence,
thanking you, Sir, for the space you have given to me

> (For continuation of Letters sec page 99.)

TIENTSIN SWING BRIDGE-CHINA RAILWAYS. We publish this week, on page 90 , drawings of a road and railway bridge having a swing span and now being erected at
Tientsin. We shall give in later issues further details and description of this structure

The Manchester Ship Canal-The works in connection so far they have been mostly preparatory to more extended operations when the season is more advanced, have made satis factory progress. Mr. Walker, the contractor, intends to have
a railway from one end of the canal works to the other, and work up to the present time has been largely in connection
with the laying down of this railway and in opening out gnllets in the cuttings to get the steam navvies to work. At present there are about 2000 men engaged at different points where work has
been commenced; but as the days lengthen out much larger bodies been commenced; but as the days lengthen out much larger bodies
of men will be employed, and it is expected that by April next the of men will be employed, and it is expected that by April next twe
whole of the works of the canal will be in active progress. It will perhaps be interesting to state briefly the progress that has been end, the work is opened out to Ellesmere port; five steam navvies, eight locomotives, and about 800 men are engaged on this length. of about four miles ; five steam navvies, a number of locomotives and steam cranes, and a large German land dredger of great power, about 600 men are engaged on this division. Above Warrington, and thence to Warburton, work bas commenced at various places with a number of locomotives and steam navvies on the ground, and the contractor has formed a junction with the Cheshire lines to faciiltate the bringing on of his plant, cc. On this division about 300 men number of locomotives and wagons have been brought on the ground, and a large excavator which has been constructed in France is being erected for work at this point, where there are about 300
men engaged. We may add that the work has been divided into men engaged. We may add that the work has been divided into
twelve distinct divisions, each having its independent engineers and contractor's staff, whilst as each division has its own spoil banks, it
is not depand is not dependent upon any one portion of the work which in each
division will be pushed forward with all speed.

TRIPLE EXPANSION ENGINES, S.S. CITY OF BERLIN

RAILWAY MATTERS.

The Supreme Court of Ottawa has made the injuncperpetual.
The leading American railways placed orders for 90,000 tons of steel rails with the owners of various American mills
last week, at $£ 68$. 8 . 31 dols. dols.) per ton. It is estimated that
$1,500,000$ tons of American steel rails will be ordered this year.
An order, which has been recognised as largely in the interests of the travelling public as of the railway servants bene-
6itted under it, has been issued by the authorities of the Great Northern Railway to the effect that the engine drivers and firemen
of the company at King's.cross are not to be allowed to resume
duty without an interval of nine hours rest.
The Agent-General for the Cape of Grod Hope in
Then the GovernLondon has been officially informed that during 1887 the Govern-
ment railways in the colony have yielded, over and above the cost of working and maintenance, a revenue equal to $£ 4$ 2s. per cent.
on the capita invested. The net earnings in 1886 were $£ 216 \mathrm{~s}$. 11 d .,
and in $1885 £ 214 \mathrm{~s}$. 5 d . per cent. on the capital invested

The Ballybunnion and Listowel Railway, nine miles long, which is being constructed on the Lartigue principle, is now
approaching completion. Considerable difficulty has been met approanofing satisactory level crossings. In some cases plat.
with in providing
forms revolving about a horizontal axis parallel to the line, and forms revolving about a horizontal axis paralleel to the line, and
meeting on the central rail, have been used. These have to be
raised whenever a train passes.
Narrow gauge lines have been proposed for Ceylon
extensions; but it is said that to start a new system with new rollextensions; but it is said that to start a new system with new roll-
ing stock, when there is an abundance in hand to serve both Uva and Galle, would be false economy in an island like Ceylon. In the
low country, it is iadmitted, the narrow gauge would save little or nothing. Then in the hill country, there are no further districts
except Uva to traverse, and no cause thereforeto begin a new system.
A man was killed last Saturday afternoon on the Great
Western Railway, at a level crossing near Hayle, West Cornwall Western Railway, at a level crossing near Hayle, West Cornwall.
He was driving a horse and cart over the line, and was run down
by the mail train. At the inquest, the jury brought in a verdict of manslaughter against the directors of the Great
Western Railway Company, on the ground that while the dan
gerous state of tho crossing had beou frequently complained of, in consequence of accidents baving occurred there, the director
had taken no steps for the public safety.
A collection has recently been made for the engine
drivers at some of the stations on the Loughton Branch-Gieorgedrivers at some of the stations on the Loughton Branch-George-
lane, Snaresbrook, and Leytonstone-and was distributed to them
this this week, each driver having 10s., each fireman 6s, and every
platelayer, signalman, porter, \&ce, engazed in the district on fog
duty, 6s. A correspondent writing to the Slandard says:-"The thanks of the men on receiving the money were very hearty, espe-
cially the drivers, one of the oldest saying, 'I have been thirteen years at this work, and this is the first recogn,
from the public; the porters get everything.
Her Majesty's Chargé d'Affaires at Rome reports that tenders for the construction of the Reggio-Eboli and Messina-Cerda
Railmass should be transmited to the Department of Public
Works through her Majesty's embassy at Rome Firms communi cating in this manner with the Italian at Rovernment Firms communil be alowed to inspect the plans and conditions connected with the undertaking.
The Messina-Ceral line will beo 1 136 kilometres, , ivided into nine
sections. Tenders must be made d forfait. Aplicants will have sections. Tenders must be made a forfoit. Applicants will have
an opportunity of inspecting the track.
supplied. The nine sections must be completed ist of pithin pix ese is is
with the obbigation of maintenanee for one year. The conditions
wor the Reggo-Eboli line are similar. Four track roads common in England but a novelty in
America bid fair to be no novelty much longer. The great New America bid fair to be no novelty much longer. The great New
York Central stretch from Albany to Bunfalo, 298 miles, will
doubtless long continue the longest in the country or in the world, but the Pennsylvania has a quarruple track between Jersey Corld,
and Philadelphia 91 miles and Philadelphia, 91 miles, nearly completed, and the Now York,
New Haven and Hartiord is rapidy posting work on the 73 miles
between New York and New Haven.
With the 10 miles now under way, 23 miles will be already provided for, and work ow the rer
maining fifty will then be pushed continuously and rapidly. "These
threee, the American EEginerering Neass says, "are the first of such AN important change in the method of charging for the
use of freight cars on foreign lines bas been adopted by the Pennuse of freight cars on foreign lines bas been adopted by the Penn-
sylvanaiand several other leading companies. and seems to be in a
fair way to to come into general use. Heretofore the settlements air way to come into general use. Heretofore the settlement
between the companies have been made entirely on the basis of the between the companies have been made entirely on the basis of the
mileage travelled by a car, the usual rate for some years past
having beent three-quarters of a cent per mile. This phan phan has the
defects that under it a car earns nothing unless it is in motion, and also that a company has no inducement to hasten the return of a
car belonging to another line, but can hold it in a yard or at a way
tation as long as it pleases, without incurring extra charges station as long as it pleases, without incurring extra charges
Under the new system a mixed charge of one-halif cent a mile and
15 cents a day is substituted for the simple charge of three-quarters 15 cents a day is substituted for the simple charge of three-quarters
of a cent per mile. By this arangement a car which is side
tracked will at least be earning the 15 cents a day for its owner,
tind and this time charge, which will rise in the aggregate to a consider-
able amount for companies handing many foreegn cars, will be a
substantial inducement to hasten the loading and unloading of cars and their return to their owners. A subordinate feature of the
change is that the per diem rate will be charged on cars sent to shop for repairs, and on cars destroyed until date of notice to
owners, thus enforcing the necessity of prompt notification in the case of cars damaged or destroyed, a matter which the Railroad
and Enginerring Journal says is now too often neglected.
Lord Henniker has just been speaking upon the railway rates question in a manner which calls for careful
consideration. The chairman of the Railway Freighters' Asso-
ciation offers uncompromising opposition to the character of the bill which Lord Stampero of Preston announces ise the ob reintrof ofuced
into Parliament next session. And Lord Henniker advises that in this same spirit the bill should be received by the whole trading community. Except that it is to receive an addition providing for
complaints by traders to the BBard of Trade of unreasonable as that which was sacrificed to the pressure of business last session In contradistinction to the provisions of this measure, Lord
Henniker-addressing the Wolverhampton Chamber of Commerce last week-declared that traders must strenuously oppose any
propositions for the perpetuation of terminal charges, and preference charges, which created a Court of Commissioners
which was not easy of access to all traders, and from whose decisions too many appeals weres allowable. Rather than wive way on
these points, Lord Henniker considers that the traders would be better without any hill at all. The Mining Association of Great
Britain and the British Iron Trade Association are, we need hardly remark, both also greatly opposed to terminal and preference
charges. They bear in mind the foreigg competition which they
Tave to meet master at the egathering at which Lord Hy A ponniker sponee. The
Belgians, whose iron-producing centres are about 105 miles from the sea, are, it was mentioned, cerrring their iron to the sea for
2s. per ton, while ironmasters in the centre of England have to pay 2s. per ton, while ironmasters in the centre of England have to pay
1s. for the carriage to the ports. Traders should see to it that
the commercial members in Parli the commercial members in Parliament do their utmost to remove
the objectionable features of the forthcoming bill.

NOTES AND MEMORANDA.

Ir is stated that good coal has been discovered in Br the recent census the population of Madrid is show to be 475,300 , which is an increase of 77,500 inhabitants in
In London 2715 births and 1816 deaths were registered during last week. The births were 148 , and the deaths 177 , below
the average numbers in the corresponding weeks of the last ten the ave.
years.
The deaths registered during the week ending January 21st in twenty-eight great towns of England and wales corre-
sponded to an annual rate of 23.0 per 1000 of their aggregate sponded to an annua rate on
population, which is estimated at $9,398,273$ persons in the middle population, which The five healthiest places were Brighton, Hull,
of this year.
Bristol, Oldham, and Preston. In London 2688 births and 2000 deaths were registered.
The steamer Essex, of the United States Navy, has been making a series of soundings between Cape Guardafui and
Ceylon. In the Indian Ocean, between 60 deg. and 70 deg. E. long., a uniform depth of about 2000 fathoms is almost constantly met
with, gradually deceasing as the coast is approached. The greatest with, gradually deceasing as the ooast is approached. The preatest
depth met with was 2705 fathoms, oft the coast of Africa, 160 miles
fres from Cape Guardafui. To the east of this maximum, the sea bed
rises very suddenly to a depth of only 857 fathoms below the sur-
foce

The Bulletin Medical gives the following as the death ate of thirty great cities, excluding London:- "Brassels, 15 per $1000 ;$ Amsterdam, the Hague, and Philadelphia, 16; Stock holm
and Baltimore, 17, Dresden, $18 ;$ Vienna and Trin, 19; Berlin,
New York, and Brooklyn, 20; Paris, 21; Christiania, $22 ;$ St. Pewrsburg, 23 ; Venice, $24 ;$ Budapest, Bombay, and Calcutta, 25 ;
Potterdam, Breslau, and Prague, 26; Munich, 27 ; Hamburg, 299,
R Trieste, 30; Copen
43 ; and Cairo, 51 .
Peppys made use of electricity for the combustion of the diamond, but it is only in the last two or three years that the
application of powerful electric currents has been made for smelting The Cowles process for producing aluminium, and welding, as proposed by Elibut Thomposon, are making rapid, progress. The use of enormous dynamos for the deposition of pare copper from Messrs
ores seems certain now to remain a commercial sucess, Ment
Bolton, at Widnes, and Messrs. Vivian, as well as Messrs. Iambert Bolton, at Widnes, and Messss. Vivian, as well as Messrs. Lambert
at Swansea, are each depositing from 40 to 50 tons of copper per
week by curre
AT the present time the P. and O. Company owns 53
teamers, with an aggregate registered tonnage of 204,183 tons and steamers, with an aggregate registered tonnage of 204,183 tons and
$198,500-$ horse power, built at a cost of some $£ 6,000,000$ Their tons. In the course of the coming year no fewer than 200 of their tons. ins, of an aggeregate tomnage oo nearly $1,000,000$ tons, wirl
stemet and leave the port of London alone. The steamers traverse
enter and $2,500,000$ miles in the course of a year. The company gives employ.
ment to 800 officers (commanders, officers, engineers, surgeons, \&c.) ment to 800 officicers (commanders, officers, engineers, surgeons, ,cc.
of the mercantile marine holding certificates from the Board of
trade, and a large proportion have her Majesty's commission in the Royal Naval Reserve. It has also in its service an arry of nearly 15,000 people afloat and ashore. Great as are its resources
and operations, the competition of the cheap class of cargo steamers with limited passenger accommodatlon which have lately been
biult, has forced the company to extend its branches, and of
late it has established a network of a a

The report of Mr. William Crookes, F.R.S., Dr. William Odling, F.R.S., and Dr. C. Meymott Thdy, on the water supplied
to London during December, states that the uniformly excellent character of the water supplied to the metropolis for a long while past has been satisfactoriy maintained during the month of
December. In respect to its degree of freedom from tint of color
and excess of organic mater, the numerical results obtained were and excess of organic matter, the numerical results obtained were
found to differ but little from those taken note of for some time back. The mean proportion of organic carbon in the Thames.
derived supplies, or 160 part, and the maximum proportion in any derived supplies, or 1160 part, and the maximum proportion in any
sample, or 188 part in 100,000 parts of the water, although, sumped, slightly in excess of the respective means and maximums
of prent
of previos months, are quite exceptionally low for the period of
the year, as are aiso the numbers expressing the degree of freedom the year, as are aiso the numbers expressing the degree of freedom
of the water from colour tint. The mean proportion of organic carbon for the last six months of the year, or, 143 part in 100,000
parts of the water, corresponds, as nearly as may be, to one-gnarter parts of the water, corresponds, as near
of a grain of organic matter per gallon.

"The Elgin sandstone, so unique and so prolific in the domain of paleontology, has just yielded," a correspondent of the
Times says, "Two other fossils, one of which, if possible, deepens the mystery which hangs around this formation. The discovery
was made at Cutties Hillock quarry, the spot which was the immedaite cause of the great discussion at the meeting of the Britite
Association at Aberdeen in 1885 . Since then a number of specimens have been found which have aroused the keenest interest
among scientific men both in England and in Scotland, and indeed wherever geology and palmontology are practically taught.
Hitherto the upper beds have yielded purely reptilian remains, the as is yet known, has been found only in African strata. One of the fossils just disconered appears to be another specimen of that creatresent hide considerable portions of the remains it would be im-
possible dent possible defnitely to say what the fossil is. The other is more
extraordinary, and may turn out to be as rare in the British Islands as dicynodon.
 belonging to Pterichthys. As it is, those most opposed to the
theory that the upper beds are of Triassic age would scarcely dare
to expect to find the remains of so characteristic an old red fish to expect to find the remains of so characteristic an old red fish
associated with reptilian remains. Whatever the fossil may turn out to be, it is a fresh link in the wonderful chain of paleontological
evidence which the Elgin sandstones have afforded and which exidince which the Eigin sandstones have afforded ," and which
enrich the museums of London, Edinburgh, and Elgin."

MISCELLANEA

The opening of the Engineers' Instrument Exhibition organised by the Belgian Society of Eng
Bourse, has been postponed to March 2nd.
We understand the Admiralty have placed the orde for the twenty 150 -ton steel coaling lighters, for which tenders were
recently invited, with Messrs. Edward Finch and Company, engi-
FIFTEEN THousand pounds, which does not include
enginering charges, is proposed to be spent in the construction of engineering charges, is proposed to be spent in the construction of
an intermittent downward filtration system of sewerage for the an intermittent downward filtration system of sewerage for the
township of Willenhall, near Wolverbampton, the chief seat of the
AN extensive machinery plant has been destroyed by the burning of Messrs. Finney and Sons' flour mill at Bromsgrove,
near Birmingham. The building and machinery were together near Birmingham. The building and machinery were together
insured for $£ 3000$. The overheating of some of the bearings is at The sudden death in North Wales is announced of Mr Isaac Jenks, who until recently was the chief proprietor of the Minerva
Iron and Steel Works, Wolverhampton, which, on his retirement, he left to the management of his three sons, ,Messrs. Issace, Watter
and William Jenks. The deceased was seventy-three years old.
Messrs. W. Simons And Co., of Renfrew, received an order last weopeling barge-loading dredger, which will be employed in screw-propeling barge-loading dredger, which will be employed in
connection with the extensive works on the Ribble below Preston.
They have also received an order for one of their hopper dredgers. They have also received an order for one of their hopper dredgers
We $_{\text {E }}$ have received from Messrs. Thomas Fleming, Son and Co., of West Grove Mill, Halifax, a copy of the "practical and and co., diry""stublished by tham. Besides being a diary, it con-
usatul diareat
tains a great deal of very useful information concerning belts, their necessary sizz, and power-converying capucity, strength of
leather, the use of belting, and other matters of interest to those

Messrs. J. F. Waddington and Co., ship and launch builders, Seacombe, are at present constructing an "Alvarez" patent
life raft, sea anchor, and jury rudder combined for the South American Government. It consists of two side and two end tank of steel, which, whe tot of the raft, which is of wood, forms the jury
whilder. The raft will also be fitted with mast, spritsail, and jib, rudd is self-righting
The Featherstone Local Board have unanimously appointed Mr. Malcolm Paterson, M. Inst. C.E., Bradford, as oteber last, the estimated cost of which is $£ 7300$. The water is
Octor to be purchased in bulk from Waketield, and the works will consist
of a line of conduit, covered service tank, and distributing mains. The local wells are now drier than has ever been known at this fetched in pails from distances exceeding a quarter of a mile.
The views of trades unionists as to their relation with capitalists bavelately been set forth in a clear and forciblemanner by
Mr. Edward Trow, of Darlington, general secretary to the new
"Iron and Steel Workers' Association of Great Britain." In "Iron and Steel Worker' Association of Great Britain." In a
recent speech he said, "he never would believe that capital and recent speech he said, he never would beriee together. Capital
labour in the iron and steel trades would agre
was the enemy of labour, the powerful enemy that crushed labour was the enemy of labour, the powerful enemy that crushed labour.
The masters had long had the largest share of the profits arising
from follow the example which the masters had set. The iron and steel workers must be prepared to contribute to some strong union for the
whole of the country if they wish to improve their present position."
On January 28th some experiments were made with the Snyers "brush" clutch, recently illustrated in our columns, at
the Cail-Hallot Works, Brussels. in diameter, was designed for 1000 revolutions, but was only run
at 372 a minute. Tested with a Prony brake, the pulley it was engaged with raised a weight of 30 kilogs. -66 lb . -at a distance power. The demonstrations were witnessed by M. A. Bundsept, chief of the Electrical Section of this year's Brussels Exhibition,
and M. D. Robinson, engineer on the Belgian State Railways, and chief of the Machine Hall at the Exhibition. M. Robinson's
father went from England to Brussels with the first locomotive for
An important case under the Employers' Liability Act the 25 th ult. The plaintiff was a stone mason, named Jerrison, and
the defendant was Mr. W. C. Atkinson, a builder, and lately the employer of the plaintitf. The statement of claim set forth
that on the 23 rd of August last the plaintiff was directed by the defendant - who had contracted for the remoral of the old
Stockton bridge, and who was superintending the work himselfbeing in an unsafe condition, gave way, precipitating. the plaintiff
into the river, whereby he sustained serious injuries. He pow into the river, whereby he sustained serious injuries. He now
claimed as compensation $£ 241.16 \mathrm{~s}$. ${ }^{\text {Defendant paid } £ 30 \text { into }}$
Court. The case was thoroughly argued on both sides by the solicitors to the two parties. After a patient hearing, the judge
gave a verdict for the plaintiff for $£ 45$, in addition to the $£ 30$ paid
into court, together with costs.
We are requested to state that, "in view of the interests of English electrical exhibitors in the International Exhibition,
Paris, 1889, the Society of Telegraph Engineers and Electricians Paris, 1889 , the Society of Telegraph Engineers and Electricians
have appointed a comnittee to ascertain their wishes, and to make arrangements on their account with the French authorities. The Director-General of the International Exhibition having requested
the Society to take part in the matter on behalf of the official administration, it is proposed shortly to address a circular to the
principal firms interested in electric lighting and kindred pursuits, principal firms interested in electric lighting and kindred pursups,
and to convene a meeting of gentlemen who are likely to take part as exhibitorss in the forthcooming display. It is of extreme import
ance to British industries that they should be well represented on the occasion referred to, as without it there is danger of con-
tinental opinion assuming that England has fallen back in the race

The Sheffield Corporation Water authorities are getting consumers letting their taps run as a remedy against lead poisoning. They have issued a diagram showing the rise and fall of water in
stock from January, 1887 , to January, 1888, both inclusive. They
state that during 1887 the rainfall has beendeficienttoanextent never state that during 1887 tibe rainfall has been deficient toan extent never
before experienced within the recollection of observers, at any rate in the district. As a consequence the Water Company were obliged heavy rains that upon their reserve, the Dale Dike reservoir, The result is that at the present moment the reservoirs are not half
full of water. Owing to the fear of lead poisoning the consump full of water. Owing to the fear of lead poisoning, the consump
tion of water has risen in one week, approximately, by half a milion gallons per day, and in the next succeeding week there was quence of the long-continued drought, but from October in that interruption. The drainage area of existing water is 15,703 acres, of works completed and authorised 22,199 acres. There are six
reservoirs in the Ravelin watershed, with a capacity $901,500,000$ geservoirs in the Ravelin watershed, with a capacity $901,500,00$
gallons, four in the Loxley watershed of $2,786,000,000$ gallons
and two in the Ewden valley not yet commenced,

Feb. 3, 1888.
THE ENGINEER.

FOREIGN AGENTS FOR THE SALE OF THE ENGINEER.

PUBLISHER'S NOTICE.

* Wuth this veel's number is isuud as a Supplement the Index to
Vol. LXIV and tuo Too-page Supplemental Eneravings, the one
of the Forth Bridge Main Cantileer Piers, and the other of Tank
 the Publisher contains these Supplements, and
requested to notify the fact should they not receive them.

CONTENTS

TO CORRESPONDENTS.

 ${ }^{\circ}$

MEETINGS NEXT WEEK.

 SocikTy or Exorserks.-Monday, February 6th, at the Town Hall,
Westminster, at 7,30 : Ordinary meeting. The President for the past

 Current Transformers, with special reference to the . Best Proportion
between Iron and Copper,", by Gisbert Kapp, A.M. Inst. C.E., Member.

THE ENGINEER.

FEBRUARY 3, 1888

Iy copper steam pipes.
In our impression for December 23rd, 1887, we pub-
lished a paper by Mr. Nisbet Sinclair, "On Experihished a paper by Mr. Nisbet Sinclair, "On Experi-
ments on the Strength of Copper Pipes Made at
Lancefield" read before Lancefield," read before the Institution of Engineers and another "On Copper and Copper Castings," by Mr. George Thomson, on the 20th of last December. Mr. Sinclair read a supplementary paper giving the results of further
experiments, and drew the following deductions as a result of the whole series : Copper is a very trustworthy material at all temperatures within the present limits of practice in steam machinery. It may be used indifferently with or across the grain. The copper may be blistered so long as the brazing is left, and still 70 , per cent. of strength may remain. Unplanished pipes have a strength cold in the neighbourhood of brazed joints of 75 per cent. of the plate from which the pipe is made. When
heated to 390 deg., the strength of the whole pipe is 80 per cent. of the cold strength. Or it has in tl.e neighbourhood of the joint, at 390 deg., 60 per cent. of the strength of the cold copper of which the pipe is made. Planishing brings up the strength of the joint to within about 5 per
cent. of the body of the pipe, so that a planished pipe should have at 390 deg. a strength of 76 per cent. of the cold unworked sheet. The weakness in the neighbourhood of flanges might still exist to the extent of 20 per cent. But we must be governed in calculating the strength of a pipe, not by the mean of such experiments,
but by the weakest that would be passed by a fair tradesman as a sound job, and put thus the strength of ordinary pipes cannot be taken as more than 60 per cent of the strength of the copper the pipe is made of. These are, it will be seen, extremely important deductions, because it has hitherto been the custom to regard
the strength of the brazed joint as practically the same the strength of the brazed joint as practically the same
as that of the metal in the pipe. The solder used conas that of the metal in the pipe. The solder used con-
sists of copper and spelter in the proportions pretty nearly of one to one. This alloy-if it be an alloy-is less strong than the copper; but from the way in which it spreads
itself in a thin layer between the two thinned edges of the copper sheet it is supposed to give a joint as strong, as we have said, as the rest of the pipe. The solder is in fact in shear rather than in tension. Mr. Sinclair' experiments, it will be seen, upset this theory; but it is noteworthy that the weakened portion of the pipe is not necessarily in the joint, but in its neighbourhood. It is an
interesting coincidence that the strength of a brazed copper joint bears nearly the same relation to that of the solid plate that a single rivetted seam in iron does to the solid plate. The rivetted seam has a strength of 56 pe cent. of the plate. In the same way the strength of a planished copper pipe bears as nearly as possible the same
relation to that of the solid plate that a double-rivetted relation to that of the solid plate
seam does to the solid iron plate.

It has frequently been urged that copper cannot now be obtained as good as it used to be. One English locomotive superintendent has recently abandoned the use of copper stays in his fire-boxes above the level of the fuel on the grate, because they broke continually, and now uses iron instead. Various reasons have been alleged for this inferiority; one is that all copper made with gas furnaces is brittle; another is that the finest and purest ores being exhausted, much more care is required in smelting than was formerly necessary, but that competition resulting in low prices has rendered it impossible for the smelter to spend the money really required to produce to any of these arguments, but that they are not wholly
fallacious may perhaps be admitted. In the discussion which followed Mr. Sinclair's paper, some stress was laid on the fact that there were inferior coppers in the market, It would appear that much the same danger of uncertainty urged against steel may be urged against copper. tainty urged against steel may be urged against copper.
One speaker pointed out that there are not many kinds of copper to be bought, and that there is not more than of copper to be bought, and that there is not more
10 s a ton difference in the prices of the various brands. It was by no means an unusual thing to find a defective It was by no means an unusual thing to find a defectivsheet. The copper merchant always blamed the not know
smith, and unfortunately the copper-smith did not why the sheets were bad. It may, we think, be taken a proved that all the copper in the market is not of super-
lative excellence, and the fact should not be overlooked lative excellen
by engineers.
Perhaps the most interesting statement made in the whole discussion was that of Mr. Clarke, of the Broughton Copper Company. Much has been said about seamless copper tubes, and doubts have been expressed as to size. Mr. Clarke said that his firm had been making for some years past $14 i n$. seamless pipes, and all sizes up to that diameter, and they had recently covered hydraulic rams for the Victoria Graving Dock Company with seamless drawn copper tubes 26 ft . long by 10 in . diameter by $\frac{3}{3}$ in. thick. He claimed for these pipes a considerable advantage over brazed copper pipes for this reason-in manufacturing these pipes they cast the origis the object of driving out all the blow holes which were apt to be presen in ordinary cast copper. Sheet copper suffered from this, that if there were blow holes in the centre of the copper ingot from which the sheets were made the rolling tended to cover up all defects; but when a pipe was subjected to the severe test of drawing coll, probably give way in the centre. "The difficulty of using large seamless pipes was that they could not bend them when they got to 10 in . and 12iin. diameter, and also because they cost 7 d . or 8 d . per lb . more for a 12 in . tube than they had to pay for a similar pipe when brazed." Here then we have one reason why s in in possible, hower case the cost would be reduced. But the difficulty must re main that these seamless tubes cannot be bent. They require great power to curve them, even a little, and the out side of the bend is thinned and weakened. It would be necemless tube some form of bent tube which would eithe sea a casting or have brazd joints ; and as chain is no stronger than its weakest link, so a steam pipe built up in this way might really be very little stronger than an ordinary pipe. The discussion was adjourned. Whether further information can be elicited or not remains to be seen. To us it appears that Mr. Sinclair's results, taken with all the oxpelisents siad the Elbe point to the fact that in every brazed stean pipe there is an element of uncertainty introduced by what we may term the personal equation of the coppersmith, and that at the best it is not safe to reckon on a strength much over 50 per cent. of that of the solid plate. As, however a very large margin of strength always is introduced, i follows that pipes now at sea are not unsafe. Instead o having a factor of safety of nine or ten, however, it is probable that they would not resist more than four or
tive times the rending stress to which they are actually submitted.
The question was not raised at the meeting, but de serves consideration, Why use copper piping at all? It is difficult to see what precise advantage it possesses ove good lap-welded steel or iron tubes. It appears, more over, that a very good pipe might be made of thin stee rivetted. Such a pipe could not be caulked steam tight, but might be brazed steam tight, its strength depending nainly on the rivets, Olijectio stitute for caulking. Objections can, no doubt, be urged to such pipes. Small wrought iron pipes are largely used in the United States for carrying water under heavy pressure, a very trying condition. been cast on the merits of copper for high-pressure work been cast on the merits of copper for high-pressure work,
it is possible that some ingenious individual will produce it is possible that some ingenious individual will produce
something as new and as suitable for its intended purpose as the corrugated flues which rendered high pressures as the corrug.
possible at sea.

the metropolitan fire brigade

Captain Shaw's report on London fires in 1887 reverses the story of the two preceding years, in which the numbe of fires showed a yearly decline. The number now re turned is the highest yet on record. Allowing for the in crease of the population, the fires in the metropolis in
1887 were not so numerous as in 1884, 1871, or 1870, but 1887 were not so numerous as in 1884, 1871 , or 1870 , but
these were the only years in which the ratio stood higher these were the only years in which the ratio stood higher
than it did last year. Than can be no doubt that as a than it did last year. Than can be no doubt that as a the population. If we take the returns for the last seven years, we find that the average number of fires for 100,000 of the population was nearly fifty-four, whereas in the seven years 1866-72, when the returns were kept in the same way that hey are now, the average was under fifty one. If we go further back, and take the first seven years on record, namely, from 1833 to 1839, we find the ratio as low as twenty-nine per 100,000. Granting that the earlier records may be less perfect than the later, there must unquestionably be some truth where the margin is so broad. Moreover, in the later periods, where the returns have been kept on a complete and uniform system, we find the same law of increase prevailing, though interspersed with fluctuations. The rise that goes on during a period of more than half a century cannot be disputed, and the fact is established that in London there is, upon the whole, a more rapid increase of fires than in the population. It is 1870 , when it exceeded sixty. But this year is included in the septennial average which we have previously quoted, and which shows a lower ratio than in the last
septennial period. Comparing 1866-72 with 1881-87, we see that the annual average of London fires has increased by as much as 3 per 100,000 of the population, thus
bringing in during the past seven years an average of bringing in during the past seven years an average of
120 ifres per annum beyond what can be satisfactorily 120 tires per annum beyond what can be satisfactorily
accounted for. Apart from the energies of the Brigade,
property in London is not so secure from fire now as it property in London is not so secure from fire now as it
was fifteen years ago. There may be a greater certainty of the fire being promptly extinguished, but there is a of the fire being promptly extinguished, but there is a
greater risk that the fire will take place. From 1866 to In the last septenniad this has dropped to eight. There In the last septenniad this has dropped to eight. There process which appears to render London increasingly nflammable
There was a time, namely, from 1874 to 1880 , when it
looked as if the fire ratio was about to decline. It fell as looked as if the fire ratio was about to decline. It fell as
low as forty y six per annum on an average, thus contrasting with fifty-one in 1866-72. If we start from the close of 1880, and take the last seven years, we find the im-
provement entirely swallowed up, and the balance turned the other way, the annual average rising to fifty-four per parison between such suitable periods as the two last septenmiads, we are confronted with a serious advance in
the number of fires. As a further fact it should be mentioned that the London fires last year averaged one in every 229 houses, or aloout twenty to each square mile.
This brings the question tolerably close home to each man's door. The general distribution is such that in the course of the year there is a fire in each area composed of
a square measuring rather less than 400 yards on the and in the course of the year be witness to four other sides four more fires little a mer off If yards, be sides four more fires a little farther off. If he is more
lucky than this, somebody else is less lucky. The facts before us show that the Fire Brigale does its duty, but has
an increasingly ditticult task to perform. The decision of an increasingly difticult task to perform. The decision of
the Metropolitan Board to expend a large annual sum in the adoption of hydrants has been wisely taken. With fires so
thickly strewn, it pays-so to speak- to have the means of suppression made correspondingly numerous. The quantity of water used in the extinction of fires is worthy
of notice. Last year it amounted to more than twentysix million gallons, which is equal to an average of 11,000 gallons per fire. It has sometimes been more than this
and sometimes less, especially in 1886, the quantity fluctuating considerably. Captain Shaw, reports eleven cases in which the supply of water fell short of what was
needed. On eleven occasions the turncock was late, and on six occasions this functionary never came at all. Thus there were altogether twenty-eight cases in which the were twenty-nine such occurrences in the previous year, Captain Shaw remarks that there is "an improvement, and he has "great pleasure in recognising the successful matter." The absence, or late attendance, of the turnlaid, unless proof is forthcoming that this officer was called and failed to respond. The turncock system is in
itself defective. With the extension of the constant service and the setting up of hydrants, it is to be hoped may be entirely dispensed with. A new feature in Captain Shaw's report consists in the announcement that the year. This indicates a new order of things, from is evident that men are needed as well as machinery.

There is a passage in the present report which sounds multifarious and onerous duties of the Brigade, in addition to the primary function of suppressing fires, Captain
Shaw says:-"This represents an amount of work fo each member greater than can be shown by any other each member greater than can be shown by any other
force with which I am acquainted." He then makes the significant remark :- "As the number of fires is always
increasing, I venture to express a hope that become 1 , 1 to make a corresponding increase in the strength of the Brigade.," The statistics we have set be-
fore our readers will help to show the reasonalo fore our readers will help to show the reasonableness of that the Brigade ought to comprise 1000 men. It is still short of that number by several hundreds, although the gone up by about 50 per cent. Means and appliances, no that the substitution of telephones for telegraphs, which was commenced some years ago, has been completed, and ment. Time is saved, and accuracy is secured, where both are of such essential value, It is a matter for regret
that four nuembers of the Brigade lost their lives during the year, while many were seriously injured. It is execution depends the safety of the metropolis, and all its countless treasures. "What a city to sack "" exclaimed It is to be hoped that Parliament sacked as burnel. manage to give the subject due consideration in the coming session, so as to enable the Board to raise the
revenue requisite to meet the current expenses of its force. The feud which exists between the Board and the Fire Offices has hitherto been allowed to stop the progress of impossible for the Board to pay respect to the demands of Captain Shaw, and it is only by an irregular kind of of Captain shaw, and arrangement that the Fire Brigade is maintained t its present point of efficiency
condensation in steam engine cylinders. Os the 17th of May last year Major Thomas English, neers a paper on "Heat Distribution in a Steam Engine." The engine was a direct-acting double-cylinder pumping
engine intended for use during the late Egyptian campaign, and Major English carried out with it a series of valuable experiments, principally intended to ascertain something definite about the vexld question of the behaviour of steam in an engine cylinder. It is not our
intention to consider these experiments or their results in detail. In the first place, because Major English unfordetail. In the first place, because Major English unfor-
tunately presented the results in such a way that it is very difficult to draw deductions from them without much labour, and in the second, because, after all was said and done, he left the question very much where he said and done, he left the question very much where he
found it. Our object at present is to tell our readers found it. Our object at present is to tell our readers
something of what was said during the discussion, because something of what was saio in many ways supports views
the drift of that discussion in mase which hitherto we alone have put before the world. It will be well first to say a few words on the existing theory of what takes place in a cylinder. According to cylinder, which is attended by condensation during the cylinder, which is attended by condensation during the
first part of every stroke and re-evaporation during the latter part, and the condensation is, of course, productive of great waste of fuel. It is held to be purely a result of change of temperature in the metal of the cylinder,
piston, dc., by most engineers. But Clausius and Zeuner piston, cc., Dy most engineers. But Clausius and Zeuner
are disposed to believe that the condensation is due more to the presence of water in the cylinder than to the last week, by M. Hirn. It will be seen in a moment that on this is based the whole heat-trap theory, which is that the amount of condensation which takes place will depend on the range of temperature in a cylinder, and tion. Therefore, as the range in the high-pressure cylinder of a triple expansion engine is small, the conlensation in such engines should also be small. On eaders know that we have disputed the accuracy of these rews for years, and have pointed out that the superior
economy of triple expansion engines is due to a totally different cause, which has nothing to do with reducei ange of temperature; and we have also maintained tha known factor other than range of temperature in the metal of the cylinder is at work to cause condensation Such views have, as a matter of course been regariled a heterodox. Let us see what came ont during the discusion on Major English's paper
In the first place, Mr. Longridge suggested that a ver considerable gain would be obtrined by lining the cylinde lead was less than one-fourth that of cast iron, and its conducting power being also less than one half, there ought to be with lead only one-eighth of the condensaion." This is almost word for word what we suggested add that a patent was actually secured for the use of lead in this way some five or six years ago in the Unite University C. llege, and speaking after Mr. Longridge he stated that he had used lead, and though the condensation was less than with cast iron, it was not reduced anything like 50 per cent. Now, there can be no room to doubt that Mr. Longridge's reasoning was quite sound; and the legitimate deduction is, of course, that if lead failed to reduce condensation, then the condensation is due to cylinder walls. Mr. Willans called attention to the curious
cy circumstance that in certain experiments made by Major English there was greater initial condensation in an engine exliausting into the atmosphere than there was when the engine exhausted into a condenser, which is precisely the opposite of what ought to take place if cylinder condensacylinder and of nothing else. Mr. Bodmer directed notice to the fact that condensation during a stroke did not ecessarily represent heat abstracted by the walls of ish's own diagrams. Lastly, Major English in replying to the discussion said, "That it appeared to him from these trials that the initial condensation varied directly with the density of the steam, while there did not seem to be any direct relation between the initial condensation and the varying temperature." It will, we fancy, be admitted that the sense of the meeting was that some other factor than range of temperature in the metal of a cylinder plays an important part in producing condensation. enormous initial condensation which takes place in the high-pressure cylinders of triple expansion engines, how ever carefully jacketted, the whole of which is in some cases re-evaporated in the remaining cylinders, nothing Tot dry steam finding its way to the condenser. puzzling problem. The whole subject requires careful temperature in the cylinder is only that the range of may be possible to arrive at methods of augmenting examomy by eliminating other factors. Thus, for example, Me diar Eng of of a cylinder bears to its stroke will
which the diamet exert a considerable influence on its economy, and no one during the discussion controverted this theory. In fact, it gardedas fallacious by the rest. It seemed indeed asthough it was generally admitted that anything was possible about of ignorance, and the truth is the can only be the result known about the action of that extremely unstable fluid steam. That certain results must ensue from one can causes may be laid down by the physicist; but no engine or not. It is known that if steam expands isothermally one set of results will follow - if adiabatically steam in a triple expasion woine is exp whether the mally er adiabatically, or both, or neither? We suppose that a large number of engineers, if asked what take
answer that water present in the cylinder will begin to re-evaporate; yet nothing of the kind may take place. If the conditions happen to be such that the outside steam, then no heat is allowed to escape, and an increase of pressure would cause re-evaporation, while a fall in pressure will cause condensation. Again, under conditions similar to those which constantly obtain in steam engines, it is impossible to augment pressure by compression if water be present, as shown by the straight horizontal line found in many diagrams just at the top of steam into water. It is quite well known that the presence of a little water in a cylinder at the beginning of a sence of a little water in a cylinder at the beginning of a
stroke is fatal to economy. May not this be in part because, as the pressure rises in the cylinder when the steam port opens, liquefaction takes place? Whatever steam fort opens, liquefaction takes place? Whatever
may be the answer given to these or questions similar in character, the fact seems to be undeniable that condensation in steam cylinders is due in part to causes other than range of temperature in the metal of the cylinder; and it is with some pleasure we find that the members of the Institution of Mechanical Engineers are apparently prepared to admit that the views hitherto ect requive revision and examination in the light of recent experience. There is no room, we think, to doubt that the process which goes on inside an engiue and rises of pressure, so often attributed to defects in an indicator, may, under some conditions, really represent what is taking place. This much is certain, the curve
drawn by an indicator never is, save by accident, either isothermal or adiabatic, and no amount of reasoning based on the conclusion that it is either one or the other can help us much to a true theory of the steam engine.

atlantic telegraphy

There seems at last a change for the better in the position, actual and relative, of the Atlantic cable companies; and in the ase ored. The low tariff is beginning to yield a larger traffic,
nerease and not only that, but an increased revenue also. In the case of the Anglo-American Telegraph Company, the receipts for the
last half of 1887 were $£ 94,710$, which is $£ 9460$ above that of the corresponding precediug period. Alike, therefore, in increase and in the total, the results of the working show an enormous
traffic across the company's cables in the six months. If all the trafic across he companys cables in the sis months, If anl he
traftic were fully paid and it it known that press messages are
cheaply carried- here were $3,788,400$ words telegraphed in the half-year by this one of the five Atlantic cable companies. The increase in the traffic is officially stated at 162 per cent. over that for the same period of 1885 , when the rate was 1s. 8d. per cables only a very small dividend-the ordinary stock of the Anglo-American having received for the last year $£ 17 \mathrm{~s}$. 6 d . per cent-a very inadequate return for an investment which has
its risk. That this is so is proved by the fact that several breakages of cable took place last year. In one case 220 miles of new cable were used in repairing damages. But the yield has
been better in the later part of last year, and it seeme now the bulerably certain that the war last year, and seems now to be end. Its effect has been seen in the reduction of the dividends of all the companies, or in the postponement of payment of
dividends altogether for a time, but it has also allowed a remarkable growth of the traffic. This is in accordance with the experience of past cable wars - low rates of charge
increase the volume of the traffic greatly; and at the termination of the struggles, when the rates charged are increased, there
is a slight fall in the volume, and a check to the rapidity of the increase afterwards. It is doubtful whether a sixpenny word-
ind pate is as yet remunerative, because though dividends have been paid during iss continuance, they have been largely contributed
to by the interest derived from the reserve fund which the two English companies have accumulated. That of the AngloAmerican, for instance, is now as high as $£ 909,981$ in
investments, which yield an income of about $£ 31,257$ annually; ;o that whilst that sum was accumulated in times of high or comparatively high tariff, it must be looked upon as a cables or-as in some other companies-assisting to pay a dividend. But beyond the mere question of profit to the share-
holders, there is room for gratification in the fact the of the Atlontic cables is growing, and that though a moderate increase in the word-rate may now soon take place, yet in the there is the ability to pay the owners a fair return on their investments out of thie continually enlarging telegraph traffic. As yet the traffic is only in its infancy, as regards popular use,
but it will expand with every tentative attempt at low rates of traffic.

hammersmith bridge

Wr desire to call attention by the authorities to the state of ncompleteness in which this bridge, so recently opened with all deemed an important omission that a purely ornams. It may not be should be left incomplete; but it is scarcely creditable to those responsible for this fine structure that its lighting arrangements should have been left for months in their present very crude and elementary state. Of course, as much light is given by a gas jet from the top of wooden posts, albeit those posts be, as
they are on this bridge, merely pieces of rough builders' ccanting, as would be given from the summit of a post of the most ornamental devign and costly material. But a fitness in all things
should certainly be observed with respect to our great public should certainly be observed with respect to our great public
works, and we hear daily loud complaints as to the incongruity of the appearance of the temporary lighting standards with the elegance of the design of the new bridge. Surely it evipermitted to exist for several months after the epity should be bridge with the imposing ceremonial above referred to. Not only are the present rough standards exceedingly unsightly, but convinced us that these are inadequate to bear the strain of a high gale of wind. The leverage brought upon them would in such a case be far too great for the attachment-iron to bear, and serious accidents might result from gas escaping from an over-
thrown standard.

THE INVENTOR OF THE NEEDLE GUN

Nicholas Dreyse, the inventor of the celebrated needle gun,
was born a hundred years ago, on the 20th of November, 1787 ,
the son of a poor locksmith, of Sommerda, in Thuringia. A many foreign countries, and returned to his native town in 1814 from which time he occupied himself exclusively with experi ments for transforming infantry fire-arms on a new principle He was in a position to start a gun factory with his own means, but the Prussian Government having been made acquainted with the intelligence and experience of the man, assisted his enterprise so materially that, in the decade 1830 to 1840 , Dreyse saw his efforts crowned with success. In 1841 a com.
mencement was made to furnish the Prussian Army with the mencement was made to furnish the Prussian Army with the
needle gun. Foreign countries at first exclaimed against the new murderous weapon, and English journals ridiculed Dreyse as
 the less, the gun manufactory was constantly growing until in a the title of a Privy Commisions was created a noble of the land The former jierneyan smith died on the 9th December, 1867 , at the ripe are of eighty years, wealthy and greatly eeteemed. His son, Franz Vou Dresse, born 1822, follow
extensive establishwent.
the hull and barnsley railway and the midland companies.
BarNsley, as the capital of the coal country of South Yorkshire, is up in arms against the union of the Hull and Barnsley The people of Barnsley believe that union would mean an end of what they regard as "the present wholesome competition" to Hul and the other Humber ports. It is understood that the Sout Yorkshire coalowners have unanimously agreed to oppose the
proposed amalgamation, and now the Barnsley Chamber of
Commerce followw Commerce follows suit. When the line was laid down it wa other companies and on that be fettered by the action of the general and cordial support from the coal-mining community being practically handicapped in the race for business at the eastern ports. Since its construction, the charges for carriage have been considerably reduced, and trade has largely increased in consequence. Their fear is that the suggested amalgamation
means a return to the old state of affairs. The coalowners conmeans a return to the old state of aftairs. The coalowners con-
tend that in the present aspect of the coal trade it is mos tend that in the present aspect of the coal trade it is most
important that they should not be thrown back to their old position. Though they claim that in South Yorkshire districts position. Though they claim that in South Yorkshire districts able during 1887 to get more than 5 s . 9d. per ton. Under these injury to them.

LITERATURE.

Longridge on Internal Ballistics. London: Clowes and Son, Charing Cross. This paper was written for the Institution of Civil Engi-
neers but was refusel by them on the ground that the writer neers tout was refusel by thon the authorities." With this was too "treuchant upon the authorities." With this
objection we have no sympathy. The censors of the Institution of Civil Engineers do not march with the times. Have they not learned that papers are much more interesting and popular that are of the character they
describe than those of a purely abstract scientific value describe than those of a purely abstract scientific value
A society that proclaimed that all scientific papers rea A society that proclaimed that all scientific papers read
would terminate by a "trenchant" application of the points brought out to our authorities, would draw crowded audiences. Seriously, however, we think that the expression is unfortunate. "The authorities" may fairly resent being taken under the wing of the council of the Civil Engineers. Authorities "should be made of sterner stuff" Mr. Longridge may fairly complain of the objection, seeing that he asked to have the passages thus alluded to pointed out to him without success; and lastly, readers may feel that they are enticed on through a desert of severely stiff matter, by the mirage set before them of
The w
The writer, it is true, quotes Captain Noble, Sir F. Abel, and General Maitland at considerable length, and quotes them to disagree with their conclusions; but the treat ment is cair, tiere is a trace of persoual animosity means, but it is a profoundly difficult and important question; the investigations of a man of Mr. Longridge's calibre and reputation are of special value. It is impos-
sible here to trace out the course of his reasoning; but it may be said, briefly, that he objects to the lessons drawn by our officers from diagrams of pressures in the bores of guns. He points out that the question of quantity of
charge has been mixed up with rate of burning. Thus, when it has been put forward that a high muzzle pressure and useful effect has been obtained from slow-burning powder, it has been overlooked that had an equally
large charge of quick-burning powder been used the pressure would not have dropped, as shown in the diagram given, by a small charge. The relative influence of tem-
perature and pressure in the erosion of a bore are iscussed, and it is a point of real interest. Mr. Longridge finally concludes that we have been too hasty in our
adoption of cocoa powder. He considers that slowness of burning due to the physical condition of the powder and that due to size of grain have been confused; and he
thinks that M. Sarrau, in France, has perfected the investigation of the question far more completely than has been done in this country, and he discusses his
formulx. We are not prepared, as we say, to accept this formulx. We are not prepared, as we say, to accept this
conclusion, based upon imperfect information as to a very small number of rounds. We admit, and we believe that ur best artillerists do so, that the low pressure given by cocoa powder is obtained at the price of waste of powder;
but under present circumstances this is our best course to take. The fact that we cannot follow Mr. Longridge in all his conclusions does not prevent our recognition of the value of his paper, and our regret that it should have been rejected.

Renewed efforts are being made in Germany and elsewhere to utilise slag for cement. The Gorman chemists have been
busy on this point.

THE S.S. CITY OF BERLIN.

The Inman and International Steamship Company's steamer City of Berlin has been renovated and supplied with new machinery by Messrs. Laird Brothers, Birkenhead. Her dimen-
sions are - LLenth over all 510 ft 6 in.; sions are:-Length over all, B10 ft. 6 in .; breadth, moulded, 44 ft . The alterations made the jun.; gross to age, 500 tons. extensive character. She has been fitted with new engines of the triple expansion type, the cylinders being 41 in ., 65 in ., and $101 \mathrm{in} .$, by 66 in . stroke, and capable of developing 5500 indicated horse-power. The total space occupied by these engines is no more than that taken up by the old engines, although the power is now about 20 per cent. greater. Steam is supplied by eight boilers of the cylindrical return tubular type, each having heating surface 14 , 600 square feet. The beet and steel, carry a working pressure of 150 lb . per inch, and hav been tested to the Buard of Trade requirement of 300 lb . per
inch. These boilers are worked under Howden's system of ncc. These boilers are worked under Howdens system of
forced draught, the air being supplied by four centrifugal fans forced draught, the air being supplied by four centrifugal fans
driven by indepeudent engines. Two of the fans are driven direct and two are belt driven. The space occupied by these boilers is so much less than was occupied by the old boilers that a gain of six first-class state rooms on the main deck and officers' cabins on the upper deck, beside an addition of cargo space, has been obtained, and the consumption of fuel and space required for coal is greatly reduced. Circulating water for the condensers is supplied by two Tangye pumps, each worked by a and pumps for the and auxiliary feed, and for fire and sanitary purposes. The crank shaft is of the built type ; it
and the propeller shaft are of Whitworth compressed steel and the propeller shaft are of Whitworth compressed steel. An ovaporator is rtted in the engine-room capable of making 15 tons an auxiliary condenser, to which the exhaust steam is carried from all the auxiliary engines, winches, heating pipes, steering engine, \&c., and the water thus saved put back the ship, the electricity being supplied by duplicate sets Clarke, Chapman, and Parsons' engines and dynamos, capable of supplying the whole lighting required, so that there is now no possibility of failure. The ship's hull has been thoroughly overhauled, the upper and main decks have been completely tight bulkheads have been introduced. She has new decks and deck houses the promenade deck being extended to 180 ft , in ength. The rig has been altered from the old ship rig of the nman Company to that of the three-masted schooner, giving her a much lighter appearance afloat. The entire accommoda-
tion has been re-arranged. The saloon has been re-decorated about forty first-class state-rooms have been fitted amidships
tater forward of engines and boilers, and new companion ways giving access to the promenade deck are fitted. In addition to the
complement of boats required by the Board of Trade, three collapsible lifeboats are required by the Board of Trade, three Chamber' patent-each capable of accommodating eighty to 100 passengers. Fire-extinguishing apparatus by means of steam
jets and water is supplied throughout the ship. jets and water is supplied throughout the ship.
On page 91 we illustrate the
On page 91 we ilp
rom a photograph.
The trials of the ship were made outside the port of Liverpool on the 22 nd and 23 rd ult., with the following result :

It will be seen that the horse-power per square foot of grate
very high. In another page will be found a long letter from is very high. In another page will be found a long letter from
Mr. Howden, which renders it unnecessary that we should further refer to his system here.
The great success which has attended the alterations in the ship and her machinery reflect much credit on Messrs. Laird
Brothers, and will add if possible to the high reputation of the firm.

STEAM CRANE OF FIFTY TONS FOR STEAM
The great development which has taken place of late years in the production of steel, and its application in large masses, has for hammering, heating, handling, and transporting these masses. The ne
fully provided he 50 -ton steam crane, designed by M. Guyenet, engineer and onstructor, of Paris, Of this we give a description, taken from the Revue Génerale des Machines-Outils. There are certain especial dispositions in the arrangements of the parts which are 0 -operation with a hand crane of 12 tons, is devoted to the service of a 35 -ton steam hammer. It consists of a bent box girder jib A. The lower end is carried by an iron pivot B, on Wwo dises of tempered steel, enclosed in a cast iron footstep,
fixed to the bottom of the well of the crane by six bolts, bedded into the masonry of the foundations. Six suspension bolts permit the jib \mathbf{A} to be held up and the pin B to be removed without taking the crane to pieces. The jib is guided in its rotary movement, on a level with the ground, by four sector the enlarged detail.
The thrust of the crane is transmitted to the foundations by a bed plate, in which the sectors E E E ${ }^{1}$ run, and by the heel and the masonry to break the shocks, and bound tightly together by a band of iron H; the heel plate F, so constructed as to transmit the thrust which it receives from the crane to th masonry, is secured to the foundations by eight strong bolts I,
each furnished at its lower extremity with an anchorage plate of
cast iron, leaning against a block of hewn stone sunk into the sole plate of the steam hammer; finally, two iron rings J , shrunk on, serve to secure it to the upper part of the masonry foundation. To complete the description of the lower part of the crane, we may add that a cast iron crown, L , for the purpose of guiding the jib A, is fixed by bolts to the heel plate G, and to keep out the dirt. The sectors E have been adopted in preference to the general system employed of a circular row of loose rollers, united by two iron circles interposed between the cast iron collar fixed on to the pivot and the heel plate, on account of the
shocks of the hammer, which, as is well known, are very injurious shocks of the hammer, which, as is well known, are very injurious to rollers.
In working the crane there are four movements brought into operation:-(1) The lifting movement, for raising or lowering
the load; (2) the driving movement, for translating the block carriage which carries the load; (3) the revolving movement, movement, for changing the position of the piece to be forged
The whole of the mechanism necessary for working the crate is fixed on the jib A. It is composed of a steam engine with two cylinders N , the pistons of which set in motion the shaft O by means of connecting rods and crank discs J . The crank shaft carries a loose cog-wheel \mathbf{K}^{1}, called the high-speed wheel the cog-wheel K, called the low-speed wheel, is placed on the same shaft, but it can slide in the direction of the axis guided
by a collar which is worked by a lever, permitting the by a collar which is worked by a lever, permitting the
wheels K and K to be kept in or out of gear at high or low speed. wheels K and K to be kept in or out of gear at high or low speed An intermediate shaft P carries two wheels gearing with K and
K^{1}. On this shaft are also fixed two friction cones $\mathrm{U} U$, which can set in motion singly or simultaneously the three movements, can eet ing motion siy revolving, driving, or displacing. An intermediate cog- wheel
is for the purpose of changing the progress of the lift. It by a shaft, on which two loose wheels, with friction cones, are mounted, and the conical friction sleeves VV ; they are keyed on to the shaft, on which they can slide under the action of the thrust collar, and which can be turned to the right or left, according to whether the load is to be raised or lowered, by meaus of a lever.
Having described the divers actions of the initial motor, we shall proceed to examine successively the mechanisms of the four movements enumerated above. (1) Lifting: The load is surpend to steel sling chain, with jointed himks; this chain sion rod, the upper part of which rests on a series of Belleville springs, the elasticity of which adds to that of the girder thus minimising the effect of shocks and notably diminimhing their reaction on the crane. This series is composed of ten couples of circular springs 28 centimetres in diameter, supported
at their lower part by the block, the movable pulley of which receives the lifting chain ; this chain, fixed at pule extremity of the jib of the crane, passes successively over the pulley b of the
block carriage, and the various other block carriage, and the various other sharts and guides as shown, and on to the chain pinion on the upper shaft which carries at
its ends the worm wheels $t t^{t}$ driven by the of case-hardened iron. The load is rised or two endless screws explained, by working the friction sleeves V V. (2) Driving , the movement for translating the load longitudinally is obtained by moving the block carriage. This is composed of four roller guides, and two lift sheaves, and its action will be casily understood from The engraving. (3) Revolving: the rotary movement of the
crane round its own axis is obtained by a series of cogs L^{1} midway between the tonthed crown L, which serves as a fixed point, and the shaft A, terminated at its upper part by the friction cone B; this cone, under the action of band lever n, may be
put in contact with either of the driving cones U , according to put in contact with either of the driving cones U, according to
the direction desired to be given to the crane. (4) Displacing: the direction desired to be given to the crane. (4) Displacing:
the movement for changing the position of the object to be the movement for changing the position of the object to be
acted on by the hammer is nut yet completed. The whole of the movements are controlled from a small plat form.
To complete this description we give some numerical details.

The trials of deflection of the extremity of the crane have given the moserve that under a weight of 50 tons the deflection should be between 60 and 120 mm . When tested the block carrine was placed at the extremity of its course, which gave a range of 6.30 m . ; the deflection was measured at the extremity of the girder, being at a distance of $7 \cdot 90 \mathrm{~m}$. from the axis of the pivot.
The deflection was 48 mm . under 35 tons and 76 mm . under 50 tons.
Since its installation this powerful crane has given the most complete satisfaction.

THE ROYAL INSTITUTION.

THE MANUFACTURE OF TELESCOPIC MICROMETERS. In the course of the series of popular lectures recently delivered the Royal Institution by sir R. S. Ball, LL.D., on Astronomy, the speaker snid that nothing equals the thread of the spider fine as to ine of the mathematicion. purpose, but a rather better plan is to take the cocoon of the spider and to draw out thread therefrom. A piece of wire is then bent into the form of a horseshoe, the thread is laid
then over its two ends and fixed to each with wax, then it is gently drawn straight, and dropped into the grooves on opposite sides隹 micrometer frame ; next it is touched with shellac varnish where it ies in the grooves, and when fixed thereby
the thing is done." An optician, he said, might charge five In sor the same work.
In another lecture he gave the following table of

The Principal Meteoric Shovers

Name of shower. $\begin{gathered}\text { Date of } \\ \text { appearance. }\end{gathered} \begin{gathered}\text { Radiant. } \\ \text { R. } A-\text { N.D }\end{gathered} \quad$ Remarks.

THE ECONOMY OF HEALTH IN WORKSHOPS AN interesting paper on this subject was read by Mr. J.
Corbett before the members of the Manchester Association of Corbett before the members of the Manchaster Association of
Engineers at their meeting on Saturday. Starting from the basis
that Engineers at their meeting on Saturday. Starting from the basis
that the responsibility for the healthiness of workshops rested
rather on the employors than on the employes, and that the
healthier the workman the more valuable the qualities he possessed healthier the workman the more valuable the qualities he possessed
for the proper discharge of his duties, Mr. Corbett proceedod to
deal with the questions of ventilation, heating, and lighting, water deal with the questions of ventilation, heating, and lighting, water
supply, dining-rooms, sewering, and wasto appliance, as the prac-
tical probiem which bad to be solved in promoting economy of tical probeem
health in workshops. With regard to ventiating and heating, to
which which cerie paper was chiefly devoted, Mr. Corbett observed that in where the men were too overcrowded for due healthiness, but he
might point out that each man should have at least 25 square feet of tloor area, and at least 400 cubic feet of space for ventilation. The
quantity of fresh a air required per man per hour was not less than
1000 cubic feet even in culd weather, and with inactive employment and four times to ten times this amount was required emp foyborent, laborious
work in warm weather. In arranying for the ventilation of workworks they might, as the simplest course, make openings in the
shopops,
walls, windows, roofs, ,ce, depending on the wind and on the rise of temperature in the workshop to cause the requisite currents in
and out. But the wind was utterly variable and untrustworthy, and
and above the open air teaperature in cold weather when ventilation had to be reduced, and would be almost the same as the open air
temperature in warm weather, when ventilation should be in temperature in warm weather, when ventilation should be in
creased, So mere inlots and outlots to the open air, veen when
fitted with means of opening and closing them, afforded only innted with means of opening and closing them, afforded only in
adequate and contradutury means of ventilitation. It naturaly
followed from the above reasoning that all cowls and whirligigs depending on the wind for their action were most active when
least wanted, and least active when most wanted. Indeed,
he thouytt there were very he thought there were very few mechanical appliances by
which the public was more humbugged, and more oompletely
sold than the various wind whirligy ventilators which were sold than the various wind whirligg ventilators which wore
successfully puffed and advertised by many so-called ventilating engneers. He only repeated the opinions of some of the
most able authorities on ventitation in laying down the rule that
mity most able authorites on ventiation in ayng down the rule that
an air inlet or air outlet, subect to the action of the wind should
not be arranged toincrease its action in increased wind, but so tar as practicable, should be independent of the force of the wind, so as $t o$
actevenly. For thisparpose all lent staftsshould be well rised above sides, or by a flat top with side openings, or a circular double con
outlet, each of which forms alluwed the wind to blow throus them without materially altiecting the draught. One important
rule as to outlet ventiation was to have only one for each rule as to outiet ventilation was to have only one for each
room, unless for rooms of great size, because where there were
two or more outless some of them would at times act as
inlets, and thus reverse the intended currents. Air inlets, on the other hand, should be as numerous as circumstances permitted
and aranged to disperse their draughts as widely and gently as
possible. Where these inlets were through the walls they should possible. Where these inlets were through the walls, they should
always have deffectors to disperse the draught, but for extensive
top-ly Lop-lhghted rooms, similar to loom-sheds, it was needful to bring
in tre fresh air from the roof. Tre workshops, such as were usec
for smiths' work, with raised louvres along the ridze of each roof the best means of regulating the ventilation was by light wooden
doors hung so as to colose, or partly cose, the opening just below
the raised louvres. Smithy doors were often made in two heights the raised lourres. Smithy doors were often made in two height to aid ventilation, but a better plan was to have a second door juss
within the shop, formed entirely of ventilating lourres, so as
turn the draught turn the draught upward, whilst a screen board might be hun
over the lower part of the door when only moderate ventilation
was required. Turning next to artiticial means of venulation Mr. Corbett pointed out that heat was the most constantly avau-
abbe power, either by direct fire heat or by steam or hot water ; but
any such means were less posiuve and more costly than any such means were less possitve and more costly than venti-
lation by power, as applied to fans of one form or auother. Heat could be applied by placing a fire or a few gas burne
below an upcast shaft; but a much safer plan was to place
 ventilation of workshops were fans driven by power. In most
workshops the power could be fiven by shatting, or steam could be
be supphed to a
would pay well to apply a a gas engine for the purpose; the power
required is very small compared with the resuits attained. Thus one indicated horse-power will, under favourable conditions, drive
12,000 cubic feet of air per minute, or 720,000 cubic feet per hour, in and out of a workshop, affording the minimum ventilation
required for 720 workmen. ventilation is required, , ti would sorve seventy-two wen. men. With
vuch a power at hand, there was now no excuse for ill-ventilated wach a power at hand, hierre was now no exccuse for il-ventuated
workstop, for all the risk of back draught, and the irregularties
and contrarities of wind ventilation, were overcome by the power fan, which would give as much or or as were overcome by the power
simple regulation of its speed. The tan should be titted by the the
to simple regulation of its speed. The fan should be titted to the
outlet, as it was difficult to disperse its violent draught when used
on the inlets and as only one outlet was best for each room, there on the inlets, and as only one outlet was best for each room, there
was the one place for the fan. An outlet shaft would be required, as the fan could not advantageously discharge through a side
opening, which might meet the pressure of strong wind at times. Sometimes, where dust had to be kept down, and had to be carried away from lathes, \&c., it was convenient to use the space
under a boorded ground floor,
the the exhaust chamber leading t tha fan, each hathe, sce. having an exhaust pipe through the too
and one or more pipes being led down from near the ceiling, carry off the gas fumes, sco. The speed of the fan might be regu-
lated by stepped pulleys, like a lathe, or by cone pulleys and belting, or by curved cone friction pulleys, like a potter's wheel.
A readier way of checking the draghtis by a vave in the dis. charge shaft, either a throttle valve or a return escape valve ; but
in thesec cases the fan had the wear and the power of full speed at
and in these cases the fan had the wear and the power of full speed at
ailt times, while the speed regulation economised both wear and
power. This regulation of the whole room should be controlled by power. Thais regulation of the whole room should be controled by
the foreman, but the separate air inlets might be left to the men
near them. In selecting a ventiating fan, ist specally light work must be remembered. The high-speed blast fan was utterly
wasteful as a ventilator, and the best torms had very large airways
throughout, with little frictional surface, fine cutung edges, and truog curved vanes, so as to lightrly pass a great bulk of a ari.
These principles were ignored by many makers of fans, the result being that many were in the market which showed only from 30 to 60 per cent. of the efficiency of the best designs; and though
he believed we had not yet seen the best possible form, he felt
wirnted Blackman air propeller was a long way the best fan he bad yet
seen for light work, but it would not do well for more than lin. of water pressure, and so was unsuitable for blast purposes.
Where blast pipes had to be laid throughout a workssop, it is
sometimes convenient to use the blast pressure for ventilating, by sometimes convenient to use the blast pressure for ventilating, by
means of a blast jot, or set of jets in the outlet shaft, working
like the blast pipe in like the blast pipe in che funnel of a locomotive. steam jets might
be similarly used, but such non-economical applances were best suited for sudden requirements during the cleaning of fires,
machines, \&c.,., rather than for constant ventilation. Where ventilation was thus forced, it was not needful to have so large outlets
as those recommended for natural ventilation, but it was well that the sizes of outlets and shafts, \&c., should be arranged for an air
speed not exceeding 600 lineal feet per minute. The inlets should
be arranged for a speed of about 200ft. per minute, to avoid strong On the question of lighting, Mr. Corbett said that although no
rules could be given as to the extent of window or skylight area,
it was good policy to give plenty of glass in any workshop, but he
would urge the importance of suitablo glass, which should be eitber would urge the importance of suutable glass, which should be eitber
thick sheet or rough plate glass. The cleaning of windows and skylights was most unwisoly neglected by many engineers, and a
little calculation would soon prove that the cost tof frequent window cleaning would be well repald by the comfort and gas economy
resulting from it. As to artiticial lighting, with regard to gas the resue of good burners was most important, botht from the considera-
ution of health and economy, whilst with regard to electric lighting
tion the large incandescent lamps seemed to bo the best for nearly al purposes. A supply of good water, and of convenient faclitios to
enable the menen to make the bost of their scanty supplies of food, were essential requisites for a workshop; a and when one saw men
from large works olotering round the nearest public--house, or
sheltering against the walls in the streets, during their meal time it was evident that a mony of their health and strength would be effected if the employer provided them a really comfortable
dining-room in the works. Indeed, he was inclined to go still further, and to venture the opinion that in every wrrks good
washing accommodation should be provided, and that a moderate wassing accommodation subineering papers would tend to cultivate the
outlay in end men s powe in engincering work as to well repay its cost
interest
Wit Wr.th regard to the question of sewering and waste appliances,
Mr. Corbett observed that the right policy was to encourage
habits of decency and cleanliness everywhere, whilst the proper sanitary arrane enenent of all sewers was absolutely necessary. In
conclusion, he thought the most unobservant would admit conclusion, he thought the most unobservant would admit that by
proper attention to health in the workshop any man now working in an uncomiortable and unhealthy shop might be made at least 1 per cent. abler, more active, and more efticient in his work.
Taking an average workman to be worth $£ 100$ a year to his em ployer, this 1 per cent. was ± 1 per yoar, or equal to to ± 20 of capital.
All that he hud suggested would not coost $£ 20$ per man ; in most shops not $\& 5$ per man ; so he hoped that both on the low ground
of mere money value and on the thigh ground of duty to those
dependent on employers, his paper might convince them of the drue "Economy of Health in Workshops." In the discussion
the
dich which onllowen, too a commercial view of the question dealt with in the
thay on, it was greatly to their advantage, and also a matter o economy, to study the health of their workmen. The question of
ventilation was a very important one in engineering shops, par
vand ventiarty where there was a quantity of metallic dust floating in
ticulaly
the atmosphere ; the flooring was also a very important con sideration, as where it was not good it greatly contributed to the
quantity of dust; but the had been glad to see that in most Englis
quartst workshops good Hoors were the rule. Alderman Asquith observec
that the question dealt with by Mr. Corbett had been very much neglected not only in workshops but in the construction ood dwelliuy,
houses, and it was essential that they should have good houses as well as good healthy workshops. Mr. Rea thought
the Municipal Corporation might do a great deal in compell.an proper attention to sanitary arrangements in workshops,
Nasmith did not think they would tind any flagrant disregara o
nanitary and ventiating arrangements in modern workshop kanitary and ventilating arrange no doubt serious defects, but the
many of the old shops there were no
number of these pores side of the sanitaraian, and he did not think compulsion
desirable to compel these matters to be carried out. Mr. Bosw said there was a difficulty in ventilating some shops, as they had to
be built for special purposes, and architects and ventilating engi be built for special purposes, and anout the most suitable metbod
neers were stil 1 much disagreed about
that it was duticult to say what was the best course to be adopted A vote of thanks was passed.
and the proceedings closed.

AMERICAN ENGINEERING NEWS.

(From a Correspondent.)

The Hudson River Bridge at Ner York,-At the meeting of the American suciety ond ind interesturg on paper on the the "North River
thal read a long and
Bridge," which is the most impurtant teature in a project to bring

 structure as designed by Mr. Lindenthal has a river span
2850 ft., a shore span on each side of 1500 ft , and anchorage pier 2200ft. long. It it to be a suspension bridge, with wire cables, an
iron towers 450 ft . high ; the height above high water to be 150 ft Contrary to general practice, careful attention has been paid architectural appearance, in order to ensure an imposing structure
worthy of its position and importance. There will be six rairoa
Tracks would run through to an immense depot in Now - York City
and abolishing the present steam ferries. . T would accommodate
tratfic of 50,00 passengers per hour in one diriection, which woul
suffice for fifty years. The terminal depôt would have loop track suffice for biry
for the continuous running of local trains. On the New Jerse
ide the would be made with all the numerous railroads. The bridge woul in winter, making a total vertical moverent berween extreme
temperatures of sft. Each cable would consist of two cable placed vertically one over the other, and braced together with eye oars, forming a braced arch. The towers would be
steel, with tharing bases, on caissons 27oft. by 180tt., open caisson
being used. The vertical cables would be 6in. wire cables. The panels would be 50 ft . long. The cables would be wrapped wit
wire and covered with a matitle of tin. steel to protect them fron the weather, a space of lin. beeng left between the caise
mantie. The tracks would be laid with 100 lb . rails, placed preserved wood in trough stringers, these stringers being dee
enough to protect trains in case of derailment. The anchorag piers to be of monolithic concrete masonry faced with granite,
the tracks being carried through in tunnels 8 fft . wide by 4 ft , high. Through trussed are used, and the toor system would be supported at intermediate points by columns connected with trans-
verse trusses resting on the upper boom. The 150 f . shore spans of the bridge alone is $15,000,000$ dols. the the estimated cost project in its entrety would probably reach $50,000,000$ dols. The
enterprise is very ambitious, but it is stated that it is in a fair way to be carried out.
Railroads in Mexico.-Mr. W. H. McWood, of San Francisco,
Cal., has a very valuable concession from the Mexican Government for a railroad from Tepic, in the State of Jalisco, to Mazatland,
through Sinaloa and sonota to Yuma, Arizona. Work must commenced by May and completed in three years. An engineer
corps capp wital will be interested. The Moxton, New York, Central Rairoad will have
the Guadaljava branch completed by May. Work is in active progress from Aguas Calientes on the sian Luais Potosi branch, and the line from San Luis Potosi to Tampico; both will be completed
this year. The Mexican National Rairoad has over 7000 men engaged on the northern and southern divisions of the gap bet ween
San Miguel de Allendo and Saltillo, and will complete this line by October, giving a direct line from the city of Mexico to St. Louis,
Mo. The International Railroad from Laredo, on the Mexican Central Railroad, to Eagle Pass, is nearly completed. The Mexican Government is desirous of having a rairroad built from the city of
Mexico to Acapulco, of the Pacitic coast, and also one across the Mexico to A A Aapulco, of
isthmus of Tebuantepec.
isthmus of Tehuantepec. A merican Society of Civil Engineers.-The annual meeting was held
January 18th and 19th. On January 18th the meeting assembled at the house of the Society for the transaction of business, election of officers \&c. The matter which aroused the most interest was
a proposed amendment to the constitution, providing for
"student" grade and the change of name from "Junior"" to
"Associate Member." There was a long and somewhat acrimo
Mes. nious discussion, both verbally and by correspondence, but there wa general opposition to the admission of young men as "students obtain in the Eng lish institution. It was finally decided, however grado go out for a letter ballot of the whole Society, but to strike out all reference to the change of name of the "Junior" grade to
that of "Associate Member." Several committces presented reports, and C. other business was transicted. The Panama Cana courso of the canal by order of the Navy Department. On Janucourso the the party went up the East and Haplem rivers by steamer
ary 19the
to inspect the new "Mauhattan" bridge over the Harlem river. There are two 510 ft spans of arched plate girder ribs-there
being six ribs, 13 ft deep-these ribs are of steel; the bracing is of rought iron. The clear height is about 1355 t .' The approaches leted will be a very handsome structure. in the evening the The Railroud Commision of Neee Yort. Slute--The Poard of
Railroad Commissioners has issued its fifth annual report. The business of the railroads shows a large increase : - Gross earnings,
$143,744,490$ dols. 62 c, and $125,160,289$
dols.
4c.

\section*{| resp |
| :--- |
| 79,2 |
| 45,2 |
| 45 |} $45,899,491$ dols. 18 c .; dividends, $13,822,874$ dols. 10 c . and passed providing for the abolition of the car stovegard art May next,

it is stated that a number of roads have adopted various systen of heating by steam from the locomotive, and are now endeavour ing to decide upon a uniform and standard coupling for the pipes
The Board is not yet prepared to say which method is the best, as only practical experience through several winters can decide.
Proper means of ventilation are recommended. Much has been done towards the adoption of uniformity in rules and management
automatic car couplers will probably be generally adopted very automatic car couplers will probably be generally adopted very
soon, and continuous brakes for freight trains ane an improvement or the near future. The Board recommends legislation on severa sits decisions, and thinks it ought now to thave such power. Among
ithe
the sujects are the abolition of grade earnings, the abolition of the subjects are the abolition of grade earnings, the abolition of
the centre bearing rail - - -for street rails, prohibiting the leasing of parallel railroads, regulating railroad construction, penalty for
companies failing to make quarterly reports, providing that freight companies failing to make quarterly reports, providing that freigh
cars shall have a low railing round the roof to prevent brakeme from slipping off. During the year 532 people were killed and Abandoning grade crossings.- The New York and Harlem Rail road Company will lower its tracks through the 23 rd and 24 th
wards of New York City and has made satisfactory with the Park Department. The tracks will be lowered about 7 ft. estimated cost is $2,000,000$ dols, the whole of which will be borne by the company, Work will be commenced in February. The
aitered line will be in an open cut, with retaining walls for about four and a-balf miles.
Widening gauge. -The Cleveland and Canton Railroad-in Ohio
-will be widened to standard It will the receipts from 120,000 dols. to 240,000 dols. per annum It wila enable connections to be made witt a a large number of im-
portant lines; heavier rolling stock will increase the carrying capacity; it would avoid the public prejudice against narrow gauge
roods. President Blood in his report says that a narrow gauge coal train contains 240 tons, while a standard gauge train carrie
875 tons. He says that with standard gauge the road can pay on a capitalisation of 30 , 000 dols. .per mile. The thet earnings for 1887
were about 110,000 dols. or 1 per rens about Cleveland to Canton, 0 ., 115.13 miles, with branches to
runs. Sharrodsvile and Minerva, aggregating 45.46 miles; total, $160 \cdot 5$ miles. Gauge, 3ft., laid with steel rails of 30 lb , and 40 lb . per
yard. The road runs through a coal region, and would, with The Rio Grande Pacific Railroad Company has been incorporated
at Salt Lake City, Utaí Territory, to build 300 miles of road. The line will run from Glenwood, Col., to Salt Lake City, running by
the White River canon, and will continue to Ogden. TTis will be The Hudson Bay Railroad is languishing. Mr. H. S. Hoyt, who built forty miles of the rood in Manitoba for a company heated by
Mr. Hugh Sutherland, has had considerable trouble in securing payment; he has a judgment for 21,000 dols, and will hold posses
sion of the road until the claims are settled, but he does not intend to of the road until the claims are settled, but he does not intend
to operate it. The Canadian Pacific mighit use it as a branch road Rapids, at the head of navigation on Lake Winnipeg, opening up good agricultural country, but it is not likely to be extended to
Hudson Bay. Westinglouse Air Brake Company.-The Westinghouse Air Brake Company, Pittsburg, Pa., has increased its capital stock from
$3,000,000$ dols. to $5,000,000$ dols.
Of the adition, $1,00,000$ dols. will go to the stockholders as a dividend, 11 e other $1,00,000$ dol The Nicaragua Skip Canal-At Washington, D.C., a bill has
Thate Nicaragua for the construction of a ship canal between the Atlantic and Paciic, through Nicaragua, or partly through Nicaragua and
partly through Costa Rica. The capital stock to be $100,000,000$ dols. in 1,000,000 shares of 100 dols, each, with power to increase the
number of shares to $2,00,000$ TMe surveying party of the
Nearagua Canal Company arrived at Greytown- San Juan del Norte on December 9th, and is now fairly started on its duties.
The Detroit river tunnel.-A rairoad tunnel is projected under
and the Canadian Pacific Railroad and the Michigan Central Railroad. Mr. James Ross, of the Canadian Pacific, has examined the site,
and believes the project to be practicable.

[^1]VOLK'S ELECTRICALLY PROPELLED DOG CART.

VOLK'S ELECTRIC DOG-CART
The vehicle illustrated by the accompanying engraving is fitted with one of Immisch's motors of $\frac{1}{2}$-horse power type. The current is supplied by sixteen small E.P.S. accumulators, thei the seats, and the seats, and the motor is placed on hangers under the body
and is connected by a chain to a counter-shaft, from which another chain leads to a toothed ring on one of the wheels, to which it is attached by a series of blocks attached about one foot apart, an arrangement which looks neater and weighs less thau any pulley of similar diameter, namely, four feet. Experiments with the dog-cart show that the motor is barely large enough for the work it has to do. It only weighs 40 lb . But although not all that is required, valuable data has been obtained as to the power required to propel a vehicle on ordinary roads, and as to some details. On asphalte the tractive and a speed of nine miles an hour can be obtained, whereas on a soft macadam road only four miles an hour is found to be possible. The vehicle with two persons in it will ascend a grade of 1 in 30 . Taken altogether as a first experiment, the result may be considered both interesting and satisfactory. The vehicle was made by Mr. Pack, coach builder, of Brighton, and as electrically fitted up by Mr. Volk, is the object of much attention just now in Brighton.

HARPER TWELVETREES' ROTARY WASHING-MACHINE.
The machine we illustrate, as made by Mr. Harper Twelvetrees, consists of a stationary cylinder supported on a wrought iron stand, and made of mild steel plates $\frac{3}{8}$ in. cylinder is made in two parts, flanged and cylinder is made in two parts, flanged and
rior may be gained if required. This cylinder or casing is galvanised, made perfectly steam-tight, and tested to 120 lb . hydraulic pressure per square inch. A strong cast iron door fitted with handwheel screws is attached to the upper section. Inside the casing is end-plites of the same material. The tubes are placed a shor distance apart, so that water may pass freely between them. The cage is divided by a central row of tubes or diaphragm, and two compartments are thus formed, each compartment having

VIEW OF INMER
CACE

a sliding door for loading and emptying. The whole of the cage and doors are galvanised. The cage is attached to a central in two parts like the outer casing. One end of this central shaft projects so as to receive a large crown wheel, which is actuated by the driving gear. The two main features about the driving-gear are its compactness, and the automatic reversal at every fifth revolution. The gear is supported on two massive
supports, bolted to one side of the outer casing; on these a cross shaft is supported having two conical wheels, one on each side of the crown wheel already reterred to, and these are so contrived that only one is in action at the same time. The reversing is perfectly automatic, and is done by means of a
worm and wheel which shifts one or the other conical wheels worm and wheel which shifts one or the other conical wheels into gear every fifth revolution. The speed of the crown wheel pulley :ixty revolutions per minute; and, owing to the use of the large crown wheel, it is not necessary for the driving pulley

to be more than 17 in . diameter, thus saving space. The motion is readily stopped by means of a lever provided for the purpose, and for bringing the mouth of the cage exactly opposite the vided, ensuring perfect safety to the operator. The machine has a dead-weight safety valve, hot water, cold water, and steam pipes laid on; also waste water outlet, and two steamtight hand holes at the bottom for clearing out sediment, these latter hinged and fitted with hand wheel and screw fastenings. For a description of the operation of the machine we may quote a report by Mr. P. Miles, engineer to the Whitechapel mirmary, which is as follows:- In the infirmary we have about 800 inmates, and the number of pieces washed weekly
amounts to 18,000 , of which Harper Twelvetrees' rotary washer locs 6000 of the heaviest articles. The machine holds 400 pillow slips, 150 shirts, 130 sheets or 35 large quilts at once. The time occupied by either of the above loads for washing is twenty minutes, the water required being only forty gallons. No packing is wanted, the clothes being thrown in anyhow. In addition to washing we rinse, boil, and blue all the clothes in the machine without removing them, thus:-(1) The clothes are thrown in loosely; (2) warm water is let in by the proper valve and liquid soap introduced, the door closed and the machine set in motion, the water being gradually raised in temperature by the admission of steam; (3) in twenty minutes the soapy water is run off, and clean cold water introduced whilst the machine is in motion; (4) being thus rinsed, the water is run off and warm water let in, which is boiled by steam; (5) the clothes are wringing machine. Four operations are thus done to the machine, four waters used of 40 callons each total 160 in one machne, four waters used of " 40 gallons each, total 160 gallons;
time occupied, 90 minutes." Mr. Miles further states the machine works very well in every way, and that since its adopmachine works very well in every way, and that since its adop-
tion, six months ago, several hands have been dispensed with. The steam is confined to the machine, thus keeping the atmosphere clearer than when the boiling was done in open coppers. The diaphragm increases the washing-power and capacity, he we the clothes are alternately drawn out of and rolled in reats two lots of clothes alternately, whereas in the ordinary revolving machines the clothes are always in the water. The
reversing gear prevents any twisting or entanglement, and ensures both sides of the articles being rolled down the corrugated sides and diaphragm of the cage. Disinfecting may be done in the machine by subjecting the clothes to the action of steam under high pressure.

BRAY'S ANTIPULSATOR

To prevent the pulsations and variations in the pressure of gas supplied to gas engines, Messrs. George Bray and Co. are making the antipulsator illustrated by the accompanying engravings. From Fig. 2, which is a vertical section of the apparatus, it will be seen that the gas, entering by be apper petween the outer casting and an inserted tube, both seen in between the outer casting and an inserted tube, bothr seen in
section. In this inuer tube is a long, narrow slot, as seen by

dotted lines behind the little piston. When the piston is in the position shown, the gas freely enters the bellows through this slot, passing in front of the piston. As the gas fills the bellows the piston is pulled forward, and the slot is more or less covered, and the ingress of the gas restricted. When the bellows are
quite full, and the pressure slightly exceeds that of the atmo-

sphere, the piston completely covers the inner end of the slot, and the gas is cut off entirely
The action of the apparatus is found to be effective in entirely supply as the engine, and the uniformity of the pressure supply to the engine prevents that variation in the strength of the charge taken into the cylinder. The working of the engine is thus improved, and a saving in gas is secured.

Range Finders,-Major A. W. White, R.A., has contributed an ontained paper to the united Service Institution "Proceedings, lerists of all branches of the service. Major White is the head of instruction in this department. The accuracy obtainable by the service range finders is carefully and clearly investigated and the with many on account of its simplicity, The Weldon is a favourite than the Watkin. Major White works out the error due to bolding the instrument over the foot instead of directly over a cap placed between his feet as the actual point taken. In 500 yards range this comes to 44 yards, or 8.8 per cent. The average errors taken from a series of trials with the Weldon were 11 per cent. by the socent. by the "second method" for ranges 1000 yards, and 5.84 per yards. Practice shows that the error with the Watkin is only about 1 per cent.

LETTERS TO THE EDITOR

forced draught.

Sus, - In your yearly summary of engineering progress, published
in your issue of the 6 th inst., the references to my system of forced in your issue of hee
draught hardly doit justice and and in one e particular they do it very con-
siderable injustice, though this was doubtless occasioned by want of siderable injustice, though this was doubtless occasioned by want of
information. You say forced draught "has been fitted to to.. good
Yait many small steamers on Howden's system with benefit." This
statement is searcely applicable to such steamers as the City of
Venice of Nessrs. Geo. Smith and Son's Caleutta Line : the Cenice, of Messrs. Geo. Smith and Son's Caleutta Line ; the
Cetic, of the White Star Mail Line ; the Ohio, of the Inman and
International Steamship Company's Mail Line ; the City of Berlin. mail steamer, of the same company, or the Tasso and Ariosto, of Messrs. Robert MacAndrew and Co. s South American Line, sister
steamers, each carrying 4000 tons deadweight cargo and coal on a steamers, each carrying 4000 tons deadweight cargo and coal on a
comparatively light draught: all which have been fitted with my system during 1887 . The smallest steamer to which my system
was fitted last year in this country is the twin screw steamer Rescue, of Liverpool, of 1500 indicated horse-power. Several steamers of less power were, however, fitted abroad in 1887 with my system,
the whole aggregating for the year 20,000 indicated horse-power. In the next sentence you state: "Ferrando's system is being tried
by MacAndrews, and more are to be fitted," As the three by MaeAndrows, and more are to be fitted. As the three
steamers Messrs. MacAndrews have working with forced draught
are all on my system such a statement are all on my system, such a statement as you make is sc
leeping with the fairness or, at le lenst, accuracy which
characterise a journal of the standing of THE ExiNEER.
characterise a journal of the standing of THe ExelNEER.
Having made these corrections on your review, which in justice Having made these correetions on your review, which in justice
o myself I could not avoid, and which for the sane reason you
vill doubtless publish in your next issue, I will take this opporwo myseir dobless pould publish in your next issue, I wive take this oppor-
tunity of briefly reviewing the history of the forced draught movement up to this date, both in the Navy and mercantile marine,
and I will also give some particulars of results obtained with my and 1 will also give some particulars of results obtained
system in some of those steamers previously mentioned.
As stated in the paper I read at the Institution of Naval Archithe trials of torpedo boats with closed stokeholds and an air-pres-
sure considerably above the atmospherere recalled to my mind the sure considerably above the atmospherere recalled to my mind the
experiments 1 had made with forced draught so far back as 1862 ,
when I built a boiler to discover the eftects of forced draight by maintaining an air-pressure in a closed ashpit by means of a fan. Though the results weress not satisfactory in sit several means ortant fan. tures, and I abandoned the idea, at the time, of continuing to
prosecute the matter further, yet the causes which prevented the attainment of a high success, had impressed themselves distinctly
on my mind. It was therefore with considerable interest that read the accounts of the torpedo boat trials, but it appeared to mee obvious that such a mode of working a steam boiler with cold
air was radically wrong, both in principle and practice, and highly unsafe, especially for sea-going steamers, This conclusion led me
back to my experimental trials so 1822 , and after considering the
whole whole subject again witt revived interest, 1 designed my present
arrangement ot effectully overome all the practical and theo.
retical deficiencies discovered by my experimental trials with a closed ashbit in ins 186 discovered and adding my experimentental triatures insuruning the
highest poossible economy in steam boilers, and which at same time combined unequalled power with perfect safety in working.
It was not, however, until Juno, 1882 , that I Ihad the opportunity of applying my system to a smanll marine boiler with two furnaces,
which o purchased for the purpose, and finding that my anticipa,
tions of baving solved the problem of a correct system of combustions of baving solved the problem of a correct system of conibas
tion were contrimed, shorthy thereafter builta larger boile for the
purpose of establishing the proper proportions and relations of purpose of establishing the proper proportions and relations of
areas, air pressures, quantitites, zc.
new boiler were carried out in 1883 and 1884 downiments with the the the time of
net reading my paper at the Institute of Naval Architects in the latter
year. By that time I had established all proportions with exactiyear. By that time I had established all proportions with exacti
tade and had proved the easeand certainty with which any desired
power within the capability of the boiler, could be attained. Since
 peculiar qualitites of coal, and to establish more particularly the
patios of exit areas, and ane presures which govern the higher
rater rates of combustion. When 1 read my paper in 18841 was there
fore in a position to speak with some confidence of the capabilities Oregon was the latest and highest powered Atlantic steamship of
the day dere ding the day, developing 12,000 indicated horse-power from boiler
 in my experimental boiler, I could produce the same from thirty
six furnaces and 641 square feet of grate. I well remember the
general incredulity with which my statement was then received. general incredulity with which my statement was then received.
In that paper 1 also called attention to the danger of working
hoilers on the closed stokehold system at a high power, this system hoilers on the closed stokehold system at a high power, this system
being then largely introduced into our war ships. Thogh the rea.
sons I gave appear obvious enough to anyone who will give the subject a little consideration, my warnings of disaster when this system
should come to be really proved, were unheeded. The only trials that had taken place with this closed stokehold system had been limited to runs of from two to three hours' duration with clean boilers and
fresh water, and even these trials gave indications of serious Up th this period I had been content to thoroughly work out
Uata with my experimental boiler, without seeking to apply my
dat data with my experimental boiler, without seeking to apply my
system to a sea-ging steamer, but baving now made quite sure of my ground I contracted immediately after the reading of my
1s84 paper to reboier and fit with my mystem of forced draught
the New York City, of Messrs. Serutton, Sons, and Co, West the New York City, of Messrs. Scrutton, Sons, and Co.'s, West
India Line. This steamer was refitted a few months thereafter,
 apparatus, the quantitiey and air pressures used, based on th
results obtained from my experimental boiler, proved to be exactly
from in this steamer without alteration to this day. This steamer, with
ordinary compound engines working on 80 lb . pressure, now run ordinary compound engines working on 801 b , pressure, now run
ning in her fourth year, has run continuously since starting entirely with forced draught without the loss of an hour's time, making he
long voyages at a rate of combustion giving from 17 to to 18 indicated horse-power per square foot of fire grate. One noticeable feature
in this
hall with salt water, except when sailing from London once every three
to four months. All waste is made up from the sea, and when the density becomes too greant, the boiler is blown down, and made
up afresh from the sea. Notwithstanding this severe tratan during these years, the boiler is at this day almost as good as new
and without a tube ever having been touched. In the words and without a tube ever having been touched. In the words of
the ciief engineer of the ship, which I find in the December
number of a monthly contemporary, "the boiler, including fan engine and fan, has not cost five poonds since it left the makers' hands,
and is now in trite and is now in first-class condition." The importance of these facts
can scarcoly be over estimated by the headsof ournavaldepartment,
and by steamship companies, who are seeking and
reduced space, combinemed with the highest for inconeased power in
durability of boilers. In fuel and durabiilty of boilers. In my paper of 1884 I directed attention to
the important feature of my system, which prevents the great
variations of temperature of the variations of temperature of the interior, and injury therefrom to
which other boilers are subject. The correctness of this claim
which in which in 188 bwas based chiely on inferential grounds, has been
remarkably confirmed and proved by the severe practical tests of these years. The other important advantagese which I I claimed for
my system were great evaporative power combined with high conony in fiel, complete control power combined with high
power, and capability of being worked in th any desired
at ordinary way power, and capability of being worked in the ordinary w
without trouble. All these claims have been amply sustained
the test of continuous work at sea. One further noticeable feature is, that whatever can be obtained in power and economy on a full
speed trinl can always be sustained, and, at least as regards power speed trial, can always be sustained, and, at least as regards power
exceeded, in ordinary working at sen. This is owing to the fact that my arrango fow never been made with a view to th also to the circumstance that the trials have hitherto been mad with raw hands. The results necessarily improve when the staft on board become familiar with the mode of working, and especially
when they follow strictly the few and simple instructions I give as to the proper course of working.
What has actually been attaine
will be better understood by the study of the results obtained in several of the steamers mentioned in this letter. The New York City, as already mentioned, with 80 lb . steam pressure and ordinary
compor compound engines, has during arm these years dovetoped grate on a power ption of coal averaging about 1.4 lb . per indicated horse tion as low as $1: 337 \mathrm{lb}$. per indicated horse-power per hour. The City of Venice, owing to certain circuustances, , has only lately been
fully worked in the manner I designed, and I am therefore unable, at the moment, to give accurate ratios, of consumption and powe in terms of indicated horse-power, but Her performances are more which, probably, are as consacto. Her pade her last voyage to
than ever effective and satisfactory. She made Calcutta at an average speed of 11, knots on a consumption o 25 tons Scotch coal per day, which, her ouners inform me,
40 per cent less than would have been required for the same spee with her compound engines, though supplied with steam from boilers having double thea of fire-gra
more than twice the area
The power are still further illustrated in the case of the City of Venice by the circumstance, that the owners in order to test ho enect o my system against triple e expansion engines of the same power
supplied by steam from boilers worked with natural draught, had time with triple expansion ensines on three cranks and two double ended boilers, having twelve furnaces and maximum steam pressure City of Veniece being pressure in the two single.ended boilers of the working of these two steamers
of worked on my system has proved herself much more economical in fuel and more powerful, as she is maintaining a fully higher speed
and has a more amply supply of steam. As the refitting of this other steamer with hern
firm new mache, who would do full justice to the work, it was by no
foul compete theirs that the natural draught be no The Ohio, which bas now been running continuously for upwardi
of six months, ,as been thoroughly tested. With nine furnace and 111 square feet of grate surface, her boilers- on my system
produce considerably higher power than was formerly obttined
from her boilers with eighteen furnaces and 300 square feet of grate. The maximum indicated horse-power contracted for was
2100 , and the consumption guaranteed 1251 lb . per indicated horse power per hotr, and on the official trial, when testing co
the mean indicated horse-power was 2124 and the

1. 1.23 lb . On her voyages it is more difficult to obtain the accurate being used from the main boilers for auxiliary engines and ship's purposes. o have given elsewhere full particulars of the las supply the propelling engines with steam supply the propelling engines with steam on a consumptio
more than $1-25 \mathrm{lb}$. of South Welsh coal per indicated hor

As regards power, the engines of the steamer have-on he
ordinary voyages across the Atlantic-continued to maintain ordinary voyages across the Atlantic-continued to maintain
higher power than on the official trial, while there has been ing and other ship's purposes than on the official trial, the average total being at least equal to 2250 indicated horse-power of the
main engines. The boilers have, however, never yet been worked up to the highest power of which they are capable, even with th
present forced draught appliances, which were designed and pro portioned to maintain 2100 indicated horse-power at sea, as the size and pitch of the propellor do not permit of the main engines
being worked to a much higher speed and power with advantage the cylinders receiving at this power nearly as much steam as the,
can properly use. The engines have, however, been run for at sea to show that with the usual staff of one fir with present appliances, be maintained without trouble across the Atlantic. I have diagrams taken during the day on which the
ngines were running above average power, showing 2425 indicated ngines were running above average power, showng
horse-power, and, as the steam then used tor auxiliaries and other power, the boilers would then be supplying steam for a total power per equare feet of of fire-grgate, the coal used being entirely
American. 1 wish to call particular attention to these and th Yollowing facts established by the working of this steamer, the importance of which will excuse the length of detaile up waste
every voyage across the Atlantic the boilers have made from the sea, and on some voyages the amount of salt water used
bas been sufficient to leave a considerable scale in the boilers. hhough I do not recommend so much salt water in boilers worked
at this pressure, it has as a a act, been used without any detriment to these poilers even at the high rate of combustion stated
to the whole air of combustion for these boilers is obtained from one fan 5 ft . 6 in. in diameter, running at about 320 revolutions per
minute for a total of 2250 indicated horse-power, and about 350 revolutions for 2500 indicated horse-power. In my paper read at
the Institution of Naval Architects in 1884, I made a special claim with much less than the usual quantity of air. This has also been amply confirmed by the working of these steamers, hence their high economy combined with high power. These results have been quite sustained, so far as a trial can show, in the trial of my system in the City of Berlin-last month,
after being re-engined and re-boilered by Messrs. Laird Brothers The fire-grate of the boilers of this steamer, on being measured before trial, was found to be 270 square feet. On running down
the Irish Channel, with the propelling engines taking all the steam chey conld use, and indicating 6025 indicated horse-power, the lifted, and steam blown off hard without a poker or slice being used in team for the auxiliary engines, of which there are sixteen or sorenteen, with the electric light engines and heating of the entire
ship in full operation, was supplied from the main boilers. If the ship in full operation, was supplied from the main boilers. If en ther pur
whole supply of stem from tho boilers for auxiliary and othe poses be taken as equal to 300 indicated horse-power of the mai
engines, an estimate which I believe Messrs. Laird Brothers would support me in saying is not overstated, the total indicated horsepower from the 270 square feet of grate is 6325 , or $23^{4} 4$ indicated horse-power per square foot of fire-grate.
If these real trials at sea, during wh
necessary work of the stokehold is at the same time carried on by the stokers, be compared with the two or three hours' forced
draught trials of the Admiralty with closed stokehol may be thrown on the conparative effects of the two systems. The Admiralty trial is made with engines expressly designed for
racing and recording the bighest possible indicated borse-power, racing and recoraing ther tighest possibe indicated horse-power
with probably one stoker to each furnace, and all such neecssar
ashes, \&e., during such a trial are utterly unknown. Though
these short, forced draught Admiralty trials with the closed stokethese short, forced draught Admiralty trials with the colosed stoke-
hold thus no more compare with what could be maintained continuously at sea for twenty-four hours than the pace of the Derby winner during the seconds of the race compares with what it could
sustain, without damage, during a two hours' run, I do not find that
even even during these few hours of supreme effort any record of so
much as 22 to 23 indicated horse-power per square foot of grate having been
Obio withou The case of the Celtic, of the White Star line, is one on different ines. The boilers to which my system is applied are the original
boilers of the ship, over fourteen years old, and by no means so well adapted for the use of forced draught as new boilers, specially
designed, would be. The arrangement of the boilers in the ship not designed, of course, for such a mode of working, also made the application of my system more than usually difficult, and a case
which under less competent management could easily have been made a mess of. In the able hands of Messrs. Harland and Wolff, oy whom the work was executed, and under the judic
vision of the superintendent and the engineering staff pany, the Celtic, with two boilers loss since the refit, has main in considerably less time with no greater consumption of coal ; thus showing, even under unfavourable conditions, the valuable advantages that can be derived from the application of my system. Now siolated in stating that the managers of the company, and their naval advisers, Messrs. Harland and Wolff, have been so satisfied with the working of my system in the Celtic, that they have
adopted it for their two new large steamers building at Belfast, to which you referred in your summary, and which will probably surpass in power and speed all competitors on the Atlantic.
I trust I have given sufficient examples to prove that my system
of combustion has-as I claimed for it in my paper read before the Institution of Naval Architects in 1884-a combined power and economy surpassing any other mode of supplying steam, and
further, that it is as easily worked as natural draught, and has the important features of rendering the boilers thoroughly under
control as to the generation of steam, so that no blowing-off need control as to the generation of steam, so that no blowing-off need
take place with sudden stopping of the engines; also, that it reduces the wear and tear of the boilers and enables them to be worked an high heat in the chimney even when working at the That the limits of power and economy of which my system is
capable have not yet been reached, I have proved by special capable have not yet been reached, I have proved by special
experiments. In my I. NA. . paper of 1884 the tha, ino indicated
horse-power which I said I could maintain in ordinary work at sea, from 641 square feet of fire-grate, or 18.7 indianted horse.power per square foot, in such a steamer as the Oregon, I acoomplished
easily in my first sea-going steamer the New York City with
8olb. pressure ; and I have-as 1 have shown-far exceeded this, since, in the Ohio and other steamers. In my I. N. A. paper of
1886 , I stated that 25 to 30 indicated horse-power per square foot 1886 , stated that 25 to 30 indicated horse-power per square foot
of rate could be obtained at sea with ease and safety from my
system. This, as I I have proved, is within safe working limits. At the present moment I have undertaken to supply engines of the
ame power as those of the Ohio, to be worked with same power as those of the ohio, to be worked with two single-
ended boilers and six furnaces having 100 suare feet of grate.
These boilers may be worked continuously at 2500 indicated dorsepower. The limit of safe and economical working is, however,
much beyond this, but I recommend that the higher powers be reached by very gradual steps.
You mention that the progress of forced draught has been slow during the past year, and many who have seen some of tho
porformances of my system have enquired with some surprise why
it has not been more widely adopted. There are sufticient reasons. no doubt, for this. Some inventions of very doubtful merit, but catching appearance, often seem to be borne on their way to comfrom their first appearance, though after enriching their possessors to struggle for years against ignorant opposition and detraction
ntil their merits can be no longer ignored, and eventually they take their rightful place. The history of engineering progress
ecords miny instances of the latter, the present records mane instances or the former in various stages of progression. comparatively slow progress of the adoption of my invention. If a
personal reference may be excused, I fear I am not so capable as most of placing the merits of my invention before steamship owners
and others. In several cases also it has been worked for contrary to my instructions, and consequently failed for the while my plans by other firms to old boilers, not quite suitable, and not ascertained, more or less unfavourable, and in two cases at least direct at a higher speed than the purchased engines could endure merits or demerits of my system had as little con unfavourable circumstances as the propeller of the ship had, yet
they served the purpose well of raising and propagating reports of and which I find in many parts in active circulation to my system Though annoyed frequently by the vexatious delays caused by such circumstances, 1 felt I could " bide my time," as I Innew I was
working on the only true lines in this matter. The laws of nature
by which we are surrounded and ruled, though ine by which we are surrounded and ruled, though inexorable, are not
capricious; and when we work in harmony with them they become our faithful and controllable servants. Having ascertained by combustion in one boiler, I knew absolutely that the same could This 1 have, of course, never failed to realise, and I find that the bore nearly any boiler is itted with the proportions 1 have esta
bished, and worked in the manner I direct, so much the better will
The delay bas also not been without its compensations. It has
caused my invention to be tested all the effect of conirming its merits all the more thorougly. It has also
given opportunity for following points of detail in working :-The proper mode of durable
 attempted; the method of keeping the tubes clean during the
longest voyages, so that the last day of a forty as good as the first, and the prevention of dust or ashes being The unequalied excellience of my system of forced draught havin last six months, it is now overcoming all the opposition it has had
to to encounter, as well as the cis inetia which inventions requiring
considerable changes in practice must overcome before uers move and adopt it in a mass. There are now many indigations whicl show the turn of the tide. Several of the engineers who advise
steamship owners and companies who formerly were to my system, and prophesied for it an early death, have their misto and are now recommending its adop and and they as yet do not know my system except probabily from some the processes of combustion who most confidently give their opinion against my system. It will therefore be only for a very
short time that such advisers can hinder its progress, as the wither of facts will soon disceredit their opinion. It will serve to show how at the present moment being applied to the boilers of new steamers

THE ENGINEER.
of upwards of 60,000 indicated horse-power, the greater part being for $\begin{aligned} \text { in use }\end{aligned}$
the case in warships, where the down draughts are very few in number, and even these are so choked with armour gratings, \&e.,
that no flow of air can be obtained through them by natural means, and the only up-draughts are through the furnaces, which are too
low to carry oft the heated air in the higher parts of low to carry off the heated air in the higher parts of the boiler rooms. It can be urged, however, that the fans can be always kept
going, even with the hatches open, and under certain conditions they are beneficial; but for very easy steaming, such as is done kept with the dampers on the first notch, the use of the fans would have to be greatly restricted. For the fans to be of
any use for ventilating purposes they must be driven to exert a small pressure, and it would therefore be very difficult to
keep the steam from blowing off if the fans were running.
The the The practical experience with carcely a single exception, marine boilers have not been able to work many hours consecutively without requiring either their tubes rolled or seams caulked. In the recent naval operations round the coast, it was shand ould not making long passages at full speed the modern ships compound
compare favourably with those vessels that have not got compore engined so much doctoring up to keep them tight." There is
required so required so much doctoring up to keep
surely some infatuation in holding on to a system of which such sur be said by a partisan, and more especially when
can
puts an end to all these points of difficulty and danger. puts an end to all these points of difficuity and danger.
With a few armour-clads having engines to work safely, even at sixteen to seventeen knots speed, and boilers fitted with my system, captured with ease if found a few hundred miles from land. Steamers fitted with my system could maintain the same speed as on trial for weeks together, and would only require to keep the closed stokehold vessels in play for a short time until they were disabed
when they could dispose of them at their leisure. If the present when they could dispose of them at their
forced draught system in our armour-clads and cruisers is likely t produce such a catastrophe as I have pietured, our navy is in a
sorry position indeed. The important point tis to discover, beyond sorry position inded.
doubt, whether the picture is not to o likely to become a sad reality
JAMES HowDE. under the circumstances, postulated?
Glasgow, January 24th.

James Howden.

> free trade and no trade.

Sir, -The distinction between gross income and net income is, it seems, new and occult to "A Heathen." I fail to see how the argu-
ment is advanced by such travesties of the point at issue as those ment is advanced by such travesties of the point at issue as those
he indulges in. Mr. Scott, on the other hand, puts a definite and sense that imported produce is, but surely national outlay is re tion is equally outlay, whether it goes to the production of com modities for home consumption or of commodities to send abroad
in exchange for other commodities which will be consumed here. in exchange for other commodities which will be consumed here.
It it pretty generally agreed now that it is not to the god of the
country to make the production of goods for bome consumption more costly by reason of artificial impediments, sucb, for instance, as opposing the use of machines-in short, that the true interest of
the labourer lies in applying his labour in the most efficient manner. Your columns are witness how eagerly the whole army
of inventors and manufacturers pursue this end. The wealth of the country depends in the long run on the
efficiency of its labour ; that wages are higher here than on the Continent is simply due to the greater efficiency of English labour,
applied under the conditions existing in England. If this be lost, no fiscal measures can m.
Kensington, January 25th.
maintain a superior
w.
v. A. S. B.

Sir,-Your correspondent, "Heathen" replies to my letter with a question, but omits to answer mine asking if he admeplying to his
f4 paid to his butcher is expenditure. Before reple inquiry, permit me to remind him that he attacked the theory that
imports are income by an argument that depended upon the confusion of an individual's profits with a nation's returns from foreign
trade. He bracketted both under the term "income," as if the
 in which he says, "What is true of a nation is true of a man."
Having been shown this error, he now nsks if I I can adm Having been shown this error, he now asks if I can admit a
third and different meaning for the word "income." Certainly; and probably several others, But what then? We are not
discussing the number of meanings which "income" will bear, but
whenther discusser imports are income; or, if "Heathen" prefers it, whether a surplus of imports over
or otherwise.
Perril Perhaps "Heathen" will object that he does not suggest a third
meaning. Let us gauge his new question by his first letter. He meaning. Let us gauge his new question by his ard st suct like?"
asks what are "our products, coal, rion, steel, corn, and such like
The grows, nor does the ironmaster upon the iron or steel he produces; grows, nor does the ironmaster upon the iron or steel he produces,
so they cannot be "income" in that sense. As certainly they are
not not returns rom foreign trade, which was the second sense in
which "Heathen" used the term. But they are still income, inasmuch as they are the products of our own labour, and as such
represent an accession to national wealth. Now, having obtained this definition, "Heathen" is of course waiting to say, "Coal, iron, \&c., are income; we export these
materials, and therefore exports are income;" just as he gazes lovingly at the $\mathfrak{E 4}$ paid to his butcher, firmly convinced that it it is
his income still, though possibly the butcher would take a different his sincome still, though possibly the butcher would thee a different
view.
stat nation is true of a man."
A merchant at the end of a year's trading finds he has made
$£ 3000$ profit, and that he has drawn for personal use $£ 2000$. He decides to leave the other $£ 1000$ in the business. Now, though on
the 31 st of December the $£ 1000$ was income, on the 1st of January it puts its surplus products into foreign trade-ie., the only trade But perhaps all this is waste of argument. Possibly, "Heathen"
inter intends to admit that imports are income, but wishes, together
with Mr. G. D. Scott, to argue that to import at a low price what we could otherwise produce ourselves at a higher price, is simply to
increase one source of wealth at the expense of another. But will
and they excuse me for saying this is begging the entire question? The
Free Trader is convinced that the opposite is the truth instance of a type with which most business men must be fame an
Suppose "Heathen" and his supporter, Mr. Scott, are eniliar. in a business for which there is an excellent foreign market, just
out of their reach in the matter of price. A reduction of 5 percnt in their costs will place the market within reach. A portion their raw material is, say, sugar, obtsinable either at home or
abroad. A sudden change in the conditions surrounding the
foreinn foreign product enables them to make the requisite reduction in
cost by purchasing foreign sugar. Would not these good gentlemen fall before this temptation, and put their factory in full swing,
employing additional hands, increasing their purchase of the ingredients other than sugar, and adding to their own wealth and the
tale of the Of course, they would be consistent with their principles; they
would energetically assist the English sugar manufacturers in their agitation for a tax on foreign sugar, and presently having succeeded
in their object, raised the price of all obtainable sugar, and removed in
the temptation from their own path, they would now buy English
sufar as being siightly cheaper the It is true that, having artificially raised their cost to the original figure, they might soon be relieved of all necessity for troubbing the
English manufacturer with any orders for sugar or anything else that they might find it necessary to close or reduce their works, Trading" friends would not complain for they would have the
satisfaction of knowing that they had been "fostering our home
industries"- "protecting" them some people term it. industries this wish reduce the amount of imports is surely This is the increase of exports-actual increase, not relative. For the latter we need not concern ourselves, as the exports must be paid for either with imports or gold, and the form which the payment
will take will without doubt be that most suited to our needs. It will take will without doubt be that most suited to our needs. will probably be imports, and in any case the greater the value
better is the net result for the nation. In the endeavour to il posible export trade, it wil even that of buying in the cheapest all possi
market.

34, Freke-road, Lavender-hill, S.W. January 25 th.

Sir, - -May I have space to point out that Mr. Brett now asserts that in consequence of foreign protectionist duties we receive les
value in return for our exports than we otherwise should-that is to say, on his showing, the procuring our present amount of imported commodities creates more employment here than it would if the removal of adverse duties caused our exports to fetch better prices. Is this what Mr. Brett means? Id a it is advantageous thus to provide employment. In your articles
on technical education you have asked how that could be a remedy or technical relieve artisans from long hours and low wages. May I not ask
ret he same question in regard to Protec Englishmen wat it ha failed to do for Germans? He has supplied us abundantly with caricatures of current economical writings-has he any practical
philosophy to put in their place? One theorem he has given us都 would Protection even on no-trade principles
W. A. S. Benson.
ven on no-trad
January 31st.
passenger lifts.
Sir, -I notice your paragraph about the $\begin{gathered}\text { American lifts, or } \\ \text { "elevators," }\end{gathered}$ as they are called in the States. The interests of the company You allude to are well represented here by my friend Mr Gibson. You ask what the English manufacturers are about.
hapen to be able to give you some information on this matte happen to be able to give you some information on the mater.
The impetus which has recently been given to the use of lifts in The impetus which has recently been given to the use of lifts in
England has not come from America, but has been mainly due, apart from natural causes, to the operations of the hydraulic power ampanies. You will no doubt be surprised to hear that during
compand
the past four years about four hundred and fifty lifts have been the past four years about four hundred and fifty lifts have been orenty-five miles of mains, in which a pressure of 700 lb . on the square
went nch is constantly maintaned for use ass motive power ; 99 per cent.
of these lifts have been constructed by English makers. Probably the best lifs serrice in London is that at the Hotel Metropole, the largest hotel in England. There are seventeen hydraulic lifts in the hotel worked from the hydraulic proper mains without the use of pumping machinery on the premises. These lifts are of English
design and manufacture, and there are numerous other good America knows nothing of the advantages of high pressure hydraulic power and hydraulic rams for lift service, except through suspended principle of construction and the use of water at a low pressure. ane safest hifts cannot be made on the suspended
principle, and from a mechanical standpoint low pressure may be said to be defunct. I greatly admire, however, the skill with whith such unservicenble materials Under some circumstances, of course, suspended lifts must be used, and the American competi-
tion in this class of lift has, I am glad to say, stimulated us to improve these machines. English lifts of this kind equal to the
American can now be obtained. In connection with the London Hydraulic Power Company, I arrangements and working of lifts of all ciasses by nearly every maker of note, and am of opinion that whether considered from
the point of view of safety, simplicity, efficiency, economy, or the first place.
Palace-cham
mbers, Bridge-street, Westminster,
anuary 30th.
strength of flues and end-plates of lancashire
Sim-Refering to bollers.
Srs, -Referring to the letter by Mr. Ellis, of Manchester, in
vour last issue, on ""Collapsing Pressure of Iron Boiler Flues," it seems to me that he bas opened a subject which ought to be
thoroughly discussed in your columns. Pressures carried by
lancashire boilers her Lancashire boilers have risen in recent years 120 lb , per square
inch being now sometimes employed-and will certainly rise still inch being now sometimes employed - and will certainly rise still
further if the triple-expansion engine is to be used on shore. The is so time-worn ss to be of little use meagre, and any that exists Under the above circumstances 1 should say that any trustworthy
formule which would give a correct estimate of the strength added formulx which would give a correct estimate of the strength added
to flues by Adamson flanged seams, Bowling hoops, or Galloway tubes, or any experimental results connected with above joints or
tubes, would be of great service to those engaged in the design of As regards the end-plates, there also seems to be a want of
sound formule and experimental data, and a difference of opinion on the comparative merits of plate gusset stays and bolt stays,
tying both end-plates together. Does the load borne by these plates
The
simple a character theat no difficulty is presented in making a change to higher pressures.
Another question arises as to the limit of pressure which can be suitably carried by boilers of the Lancashire type, and after that
limit is passed, what form of tubular boiler would be best adapted limit is passed, what form
for use at manufactories.
January 25 th.

Institution of Civil Engineers-Birmingham Students' Assoof the Birming firsm metudents of the Institution of Civil Engineers was held on Monday at the Colonnade Hotel, under the presidency
of Mr. E. Pritchard, C.E. Mr. .C. Hunt, M. Inst. C.E., delivered
ol

Unth iversity College, Bristol.-On Thursday evening, the ing" in the Atheneum Hall, Bristol. The lecturer sketched briefly formed the most important stepping-stones in its course of development. He emphasised the part which Bristol had taken in the
development of the applications of steam. Near Bristol, Hornbowers compound engine was first set up. The patents for the
use of the crank and fly-wheel were held by Wasborough, a Bristol engineer; in Bristol the Newoomen engine was frrst applied for
mill purposes; and from Bristol the Great West mul purposes ; and from Bristol the Great Western started on its
celebrated first journey across the Atlantic. The modern steam engine in its multiplicity of types and adaptations wwe then
discussed, characteristic examples being described and illustrated by transparencies. The part played by science in the evolution o the steam engine was dwelt upon, and an appeal on behalf of
technical education concluded the lecture

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OF BIRMINGHAM,

(From our oun Correspondent.)

There is a little revival this week from the quietude which came are coming to hand with rather more freedom. Buyers who, in some directions, had been liniting their accounts, are, now that
we have started upon another month, more disposed to enter the market. Finished iron makers enter upon February with good anticipations.
Sufficient w
Smost full work is in hand at the mills and forges to allow of by the firm quotations, and while this necessarily limits the extent
 a substantial character which in many other centres is wanting. to be consid
yars past.
Marke iro prices, especially the qualities is in good request at the former prices, especially the best known brands of horsestoe and rivet
iron, But the enhancod values of medium and common quaatities
have checked business to some extent. Prices of the last-mentioned have checked business to some extent. Prices of the last-mentioned
qualities are not so well maintained as makers expected, and some
 considerable business is being done, and common bars are $£ 5$ to
$£ 5$
5 s. The prices of sheets, alike common and best sorts, keep in better
condition than they have been for a long time past, and makers are condition than they have been for a long time past, and makers are
now putting money together. This is inducing the preparation for
a re-start of minlls long idle. There is some danger that this policy a re-start of mills long idie. There is some danger that this policy
may adversel affect prices, but it is thought that demand will be
suticiently large to take the increased production without influencsumgientrationge to muche extent. A portion of the the Bromford Iron-
ing quotation
works, West Bromwich, formerly occupied by Messrs. John Dawes works, West Bromwich, formerly occupied by Messrs. John Dawes
and Sons, will probabhy re-start in the course of a few days under
the style of the Bromford Iron Company the style of the Bromford Iron Company, and the now pro-
prietary have already secured agents for the London, Liverpool, and other markets.
Common 20 -gauge sheots are $£ 65 \mathrm{~s}$. to $£ 610 \mathrm{~s} ; 24$-gauge, $£ 615 \mathrm{~s}$ s.
$0 £ 7$; and 2 -gauge, 20 s. additional. Galvanised sheets maintain
 per ton, advised this week by cable from Melbourne, was re
by the gavanised sheet makers here with much satisaction.
Morewood and Co's

 for the respective gauges.
A large buk of corrugated sheets was sent away last week for
the West Indies and other markets. Good orders for plain, as well as corrugated sheets, are coming in from Australian buyers
The better demand for plates keeps up, and the mill are doing

A good deal is heard at the present time of the competition of
irron and steel maxingy districts on the coast with inland iron and
steel districts steel districts. A striking instance has just ocuured in in the steel
trade of this part of the kingdom, as showing that it is possibl trade of this part of the kingdom, as showing tbat it is possible
sometimes to tell another tal.e. The Staffordshire teel and Ingot
Iron Company has just taken a large order for flat bars 12in. Iron Company has just taken a large order for flat bars 12 in.
wide for delivery to MIiddelesrough and also an order for round
bars fdin. diameter for Glasgow. Such a circumstance as this is bars 6 jin. diameter for Glasgow. Such a circumstance as this is
highly creditable to the Staftordsire stel Company, and the
solution of the secret is to be found in the splendid machine facilities which the company possess for rolling steel bars of large sizes,
For steel wire rods there is a steady demand, and representatives
of Warrington makers on 'Change in Birmingham to-day quoted
 Pig iron consumers sought this afternoon to secure supplies at
less rates than they have hitherto been paying. on account of what
they are pleased to regard as the quieter condition of the market they are pleased to regard as the quieter condition of the market
and the lessened strengtt in the North of England. Native imported brands were in many cases equally firm. They reported themselves in receipt of communications from principalse expperssing
the belief that though the market is for the moment quieter, prices will recover themselves, and reach fully quarter-day rates. Native
makers are so excellently situated as regards the business in hand,
that they refuse to thao they refuse to give any ear to buyers appeals for easiee
quotations. Prices are maintained at 52 s . 6 d . to 55 s . for hot blast
 delivered. Heamatites keep very strong at 55ss. 6 d . for good west
coost forge brands, delivered free, and supplies are short. From lematites at, date.
here is no feature which is more encouraging in the state of trade than that the local mineral and goods traffic returns keep up
remarkably well. Traffic has now recovered the interruption remarkably well. Traftio has now recovered the interruption
ocasioned by the holidays, and the returs, alike as regards in-
coming and outging traffic, are much larger than this time a year ago.
The demand for manufactured iron in North Staffordshire is
is scarcely so brisk this week. It is supposed, in explanation of this
circumstance, that merchants have placed nearly all their current contracts. However, makers have been supplied during the past
few monts. with suffieient to keep them closely occupied for a con-
siden specifications in hand. Sheets-quoted nominally at $f 615$. f. .o.b
 ton. Pig iron is well called for at improved prices.
The revival in the shipbuilding trade is proving a good thing for
the district The chain, cable, and anchor trades are wearing a more promising appearance than for a very long time. Numerous
and important inquiries are to hand, which point to much activity amongst the shipbuilders. Some of these inquirires are being
accepted, and makers of chains and anchors in the Tipton and Dudley districts, who have long been very quiet, are becoming
busy again. More orders might be booked if makers mer willing to accept all the prices offered, but they are not. One of booked orders for half-a-dozen complete ships' outfits of cables anchors, rigging, and drawing chains, \&c. The work is of mueh
value. The prospects of this important industry for 1888 are very gratifying.
The engi.

this year the expectations which were formed of them during the

 closing couple of monttss of 1887 . There is not to much activityin the matter of new orders, though the works mostly keep well
occupied, and certain of them are running relays of men night and dayto execete cortain of them arem are running relays of men night and
demand is well seconded by orders procribed purperiods. The country engines, air-compressors, liftiting tackle, and general machinery.
Steam and other pumps for irrigation purposes, and mining
machinery, are also going away well to South Africa and the Indian
Empire. Our own Goveroment have of late placed orders for marine engines, torpedo machinery air-compressors, \&c. Certain of these contracts 1 have noted in this report at the time
or
of their receeipt.
Mesrs. Tangye are steadily engaged, and one of their most recently completed contracts is for the horizontal engines for driving
the cable of the Birmingham cable tramway. Another big order the cable of the Birmingbam cable tramway. Another big order
which they are now finishing off is for centrifugal pumps for Australia.
Messrs. Ralph Heaton and Sons, the Mint, Birmingham, are busy upon the valuable orders which they possess in connection with the Chinese Mint contract.
Messrs. G. G. Bellis and Co
Messrs. G. G. Bellis and Co. have recently been particularly suc-
cessful in the matter of Government contracts for torpedo boat machinery, and they are also building torpedo boat machinery for the Government of India. When at the works of
tbis firm a few days ago, I found them completing large extensions Wessrs, James Archdale and Co., Birmingham
Messrs. James Archdale and Co., Birmingham, are turning out
some splendid machine tools at date and gunmaking and some splendid machine tools at date, and gunmaking and cartridge
drawing machinery is a specialty with them. Government contracts of this sort are just now undererexecution. Wire netting machinery
in thre outurn at the works of Mr. E. S. Bond, and Australian is in large outturn at the works of Mr. E. S. Bond, and Australian orders are plentiful. Among specialty engines a demand is being
expressed for petroleum engines of increased power. Messrs. A. Shirlaw, Birmingham, are building a 13 -horse power engine of this the engines answer admirably. The competition in the trade in stocks, dies, ratchet braces, and similar tools continues severe, but The Birmingham works of the Credenda Seamless Steel Tube Company are ust now the subject of a scheme for an extension of the company into a limited Ciability concern, with a capital of
of 100 . the other wort:s of the same company exist, are the originators o the new company, and it is matter for satisfaction in this district
that a scheme suggested some while ago of removing the business wholly to Lancashire has been abandoned. The Birmingham works are very busy, and engineers at home
demanding these seamless steel tubes.

NOTES FROM LANCASHIRE.

Mauchester. - A generally quiet tone has again come over the
iron trade of this district, and although it is exceptional where iron trers show any anxiety to press sales, there is a good deal of iron, bought at prices under the recent full advance, held in
second hands, some of which finds its way into the market at niver what may be termed the wer tone to the market, especially as regards pig iron, gives a weaker tone to the market, especialiy as regards pig iron,
in which ther is very little byung just now going on, and except
where consumers are compelled to to take some special brand, there are generally cheape second-hand olts offering in the market surfi-
cient to meet the present limited requirements of buyers. Makers Who hold for the full prices which have been ruling recently find
themselves just now practically out of the market, and sales of any weight are only possishle at very low prices, Much the same may
be said with regard to hematite qualities of pig iron, which can be bought at considerably under the full prices quoted by makers.
Manufactured iron is in a much stronger position than the material, but here there is also underselling, and makers
finding new business rather difficult at the recent advance. The Manchester iron market on Tuesday brought together the
usual average attendance, but there was only a slow business doing. For local and district brands of pig iron prices were ing in this market are decidedly easier. Lancashire makers who to $40 \mathrm{~s}, 6 \mathrm{~d}$ a , less 24 , for forge and foundry qualities, delivered equal to Manchester, and on smal. sales they are able to get these figures.
For Lincolnshire iron 37s. 6 d. to 38s. 6 d ., less 2 L , represent about the average selling prices for forge and foundry qualities, delivered being quoted in some instances. Good foundry brands of Middles-
brough can now be bought readily at 40s. 4 d . net cash, delivered
 iron is offering at under the prices which makers have recently been quoting.
For hematites some makers are still quoting nominally 55 s , less 2d, delivered in the Manchester district, but where there is any ousiness doing, considerably under this figure has to be taken,
and oceasional sales are made at about 5 sk . od. to 54 s , less 2 2 ,
In manufactured iron, altbough the recent advance has tended and as makers are mostly well
 the Manchester district. For steel boiler plates quotations remain ism at $£ 8$ s., delivered equal to Manchester.
As an intem which may possibly be of interest in connection with
the present inflated conditisiof of the metar the present inflated condition of the metal market, I may mention
that arrangements have been made for offering very shortly for that arrangements have been made for offering very shor
sale by auction in Manchester about eighty tons of copper. Ironfounders report more work coming forward, but they are still not in a position to hold out for any material a
and work has to bo taken at excessively low rates
The imporement
The improvement which is so very generally talked of in the
engineering branches of industry is slow in appreciably felt, but there is certainly a steady progress towards
better trade. In nearly all departments itquiries ous, and are certainly an indication that there is a fair amount of work coming forward. Cotton machinists almost without excep.
tion are full of work for some time forward ; boiler-makers are kept well employed; loconotive builders have, recently secured a
fair amount of work, and makers of carringe wion fair amount of work, and makers of carriage, wagon, and yeneral
railway plant have received some fairly large orders. Machine tool makers, stationary engine builders and general engineers, as a rule, are still only moderately employed, but in these branch
there are also encouraging prospects of an improved trade A company, with a limited number of shareholders who bave fully subscribed ail the capitai required, has taken over hof bosiness the patent Fourness limp, and will carry on the works both in Manchester and Brusse
In the coal trade bu
unchanged from last week. There is no pressure of demand for any description of fuel, and with collieries only in very exceptional cases working more than five days a week, supplies are ample to
meet requirements. Common round coals for steam and forge purposes continue rather a drug, and for these and engine classes of fuel the prices that are being taken are practically no higher than those ruling during the summer montbs. The average prices at the pit
mouth remain at about 9 s . for best house fire coals $; 7 \mathrm{~s}$. to 7 s . 6 d .
 For shipment there has been a rather better demand and for good qualities of steam coal delivered at the high level, Liver-
pool, or the Garston Docke got, but ordinary descriptions can still be bought at 6s. 6d. to s. 9 d . per ton.
Barroon.-Ther
pig iron this week, and business has
although, as a matter of fact, makers are not disposed to enter
into large transactions at present rates, which are somewhat lowe 4 the week. Mixed Bessemer numbers are quoted at from 44s to
4s. d . per ton net, f.o. b., and ordinary forge and foundry iron 43s. 6 d . to 43 s, , 9 d . There is more enquiry from consumers for
forward deliveries, as their immediate requirements provided for in the deliveries already arranged with makers steelmakers who do not use their own iron have lately been buying more largely, while prices are down. This position, however, does not affect Barrow, where steelmakers use the iron they make themselves, and convert it into steel at one fusion. Stocks of iron are The steel trade is in a much better condition by reason of the fact that the only dull department during the past few weeks has been the rail branch, which is now recovering, and a better inquiry is
springing up; but prices are unchanged, and $£ 4$ per ton is still springing up; but prices are unchanged, and $£ 4$ per ton is still
the quotation for ordinary heavy sections net, f.o.b., with lighter sections at $£ 45$ s. per ton. There is still a full enquiry for steel shipbuilding material, and plates and angles have been largely
ordered, while enquiries are to hand from all sources ordher easier, plates being down to $£ 7$ per ton net, f.o.b., and position to accept many new orders, as their hands ars full for some time to come. There is likely to be a large increase in the
output of Siemens-Martin steel, now that so large a demand is output of Siemens-Martin steel, now that so large a demand is
made on this department by shipbuilders. No new orders have been placed by shipbuilders, but it is probable that the next few
weeks will see a renewal of the activity which formerly characterised this trade in Barrow. Engineers are better employed, both in the general and marine departments, and they have better prospects. No change can be noted in the iron ore trade, which remains brisk
and steady, at prices varying from 9 s .6 d . to 12 s .6 d . per ton at and steady, at prices varying from 9 s .6 d . to 12 s . 6 d . per ton at
mines. In coal and coke there is a steady trade, and the demand is improving. Shipp
this time of the year.

THE SHEFFIELD DISTRICT.

(From our oren Correspondent.)

STEAM coal is in fair demand throughout South Yorkshire
ancel though prices keep yery yow. Lxcellent coal for locomotive pur-
poses is not making 6 s . per ton at several of the pits. In poses is not making 6s. per ton at several of the pits. In house
coal thero is again rather colder weather, and there is no class of fuel so susceptible to climatic changes. House coal ranges from
fs. 6 d . to 8 s .6 d. at the pits. No change is reported in iron, though the advances recently secured are maintained. Steel, except to the United States, is in brisk demand. All qualities required for railway material are in request on account of foreign orders for
railway material, chiefly from South America. Colonial work is ralway materia, chieny from south America, collonial work
heavy in nearly all specialities of railway stock, India and South Africa showing the greatest improvement.
Exceptional interest attaches to the expedition ayainst the pre-
datory Yonnie tribe on the West Coast of Africa ployment there of the new Maxim gun which is being mgnufactured ployment there of the new Maxim gun, which is being manufacture
by Messrs. Vickers, Sons, and Co., River Don Works, Sheffield. have attended several trials of this weapon of precision, which, ,
will be remembered, Mr. H. M. Stanley has taken with him to the Congo. The last experiments were on account of the Chinese
Government, and were witnessed by Lord Li , of the Chinese Legation, and his secretary. Governor Hay, at Sierra Leone,
despatched General Sir Francis de Winton with orders to advance through the dense jungle to the fortined vilages and bard and destroy them. The General had only one Maxim gun, 45 in. calibre and a small 7 -pounder. The Maxim gun was carried by two
coolies, and its tripod by two more, while a few others followed in single
 London Telegraph - were in swarms on the wooden towers on the
walls, TTe 7 -pounder opened fire, but the sholls stuck in the the walls, and were of little use. Then the "Maxim," worked by Sir The bullets rained in throuch the portholes and in between th planks, killing numbers of the enemy. The breastwork and other towers were similarly treated, and such was the consternation created by the rapid and accurate shooting of the gun, that
the Ching Wad tower was evacuated, as well as the other vilages of the same nature, and the chiefs surrendered, and are now in prison. This success of the Maxim gun is no more
than would be anticipated by anyone who, like myself, bas seen it
at work spitfire and it
 The president of the Sheffield Chamber of Commerce, Mr. Charles the opinion that we were on the threshold of a period of moderate prosperity and steady progress. The question of a canal between
 he bad made inquiries into the matter, and he was assured there were
no great engineering difficulties in the way of a canal between the two places. The undertaking, was one of such immense advantage,
and could be done with such little outlay of capital, that at the and could be done with such little outlay of capital, that at the
earliest opportunity they should consider the scheme at the meetings of the Council of the Chamber. Mr. G. F. Lockwood-the
ex-Master-Cutler-who succeded Mr. Belk in the presidential chair, thoroughly agreed with Alderman Brittain's remarks as to
the proposed canal. The Manchester Canal he said wa started, and if it was a success-and he hoped it would be-he did notting other canals in the country. He thought it was very short-sighted colicic that the crailway companies were permitted to step that in the bill which was abandoned last session a stop was put to the railway companies buying up any more canals.
Mr. Ritchio-the President of the Local Government peaking at Sheffield on the 30th January, gave much satisfaction an English and Scotch session. Special gratification was expressed limited liability were to be that hie question of ralway rates and mimited liabiity were to as a part of the Ministerial programme
No town in England has suffered more from the present applica last year the result of which this district is interested was to bring out a net loss in the difference between the $\pm 4,000,000$. This simply represented of the shares, and was altogether exclusive of the losses sustained by those who bought their shares at a premium, and of companies
which have altogether disappeared in

THE NORTH OF ENGLAND

 (From our ovon Correspondent.)

Stevenson, Jaques, and Co.'s current quotations: "Acklam
Hematite," Mixed Nos., 45 s . per ton
 net cash, at furnaces.
Warrants are greatly influenced by the frequent changes at
 ay. At Middlesbrough holders ask 32s. to 32s. 3d., but little or The stock of pig iron in

Connall and Co.'s Middlesbrough uantity held on that day being 347,724 tons.
sery good. The exports of pig iron between the 1st and 30 th ult. tons.
The
The demand for manufactured iron is good, and makers continue
to book orders at the prices which have ruled since the middle of December
The report of the accountants to the Durhan Mineowners' and n increase in the price of coal sufficient to wermber 11st shows extent of $1+$ per cent. in miners' wages.
th sets forth that Conciliation and Arbitration has just been issued 887 , the average net selling price of manufactured iron was
 end of last year. The output, however, seems to have increased, manufactured and sold than during the preceding period. Inas much as prices have distinctly risen from 10s. to 15 s . per ton o late, it is clear that the above unexpected result as regards price
must be due to the books of makers being overladen with old lowpriced contracts. This adds one more proof to the oft-stated quotations and any benefit being received by the manufacturer quotations
therefrom.
The ann
The annual meeting of the Board of Arbritration was held at of the Standing 2oth uitt, and was largely attended. The report shows that the number of operatives subscribing to the Board i July last. The balance in hand is $£ 64412 \mathrm{~s}$. 10 d . The expenditure during last year amounted to $£ 970$ 5s. 3 d ., a fact that shows that
conciliation and arbitration are luxuries which cannot be had without paying somewhat heavily for them. A great many disputes
were settled during the year, including several relating to the manufacture of steel. This raised an important point. Hitherto the Board had existed for the benefit of the manufactured iron
trade, as indeed its title implies. Latterly, however, as the manu factured iron trade has been on the decrease and the steel trade on the increase, its services have been in considerable request for the
adjustment of disputes arising in the last-named industry, But adjustment of disputes arising in the last-named industry. Bu
only when both employers and employed have been willing t
abide by its decision has it been abbe to deal with these cases it has had no compulsory power. It was announced at the meeting of the 30th ult., that the standing committee recommends that as soon as may be the title of the Board shall be altered, so as to in-
clude the finished steel as well as the finished iron trade. The are of opinion that the time has arrived when this should be done during the present year, and in January next the title and the
rules will be permanenty altered to suit rules will be permanently altered to suit. The Board of Arbitra-
tion has now entered the twentieth year of its existence, and guage of the chairman, been an "untold blessing " to the great The dispute between Messrs. Bolckow, Vaugban, and Co. and
Lloyd's Committee has been settled. The manufacture of steel Lloyd's Committee has been settled. The manufacture of steel
for shipbuilding purposes has been resumed at Eston, and Lloyd's test as heretofore. The settlement has been the result of Mr by the company, and which have been pronounced satisfactory by
Lloyd's Committee Lloyd's Compmittee

NOTES FROM SCOTLAND
 (From our oven Correspondent.)

There has been a want of animation in the Glasgow pig iron market this week, Very little speculative business, comparatively
speaking, has been done; but prices have, on the whole, , een fairl
steady. The ironmasters are agreed that while the exports are not quite up to the mark, the home consumption is larger than
usual, a fact which is also apparent from the coostwise shipment
of pigs to date, showing an increase of 6000 tons over those o
Jan
 current year. The past week's shipments amounted to 6669 tons
against 7988 the for pigs is still the United States, and it is. nouticeable that the
export trade to
 stores, Since last report an additional furnace has been put in
blast at Glengarnock Ironworks, and there are eighty-three blowing The current values of makers' pigs a

 There is a steady and good business in Scotch hematite pigs
which is being consumed in large quantity for the purposes of the The iron and ste
and while the amount of new work being placed at the moery bust , the prices.
The past
The past week's shipments of iron and steel goods from Glasgow $£ 9441$; sewing machines, 11815 ; and general iron manufactures,
$£ 29,000$, a hopper steamer with machinery being in addition sen out to Egypt.
destination. She is raluen at $£ 7300$, and she steams out to her The coal trade is fairly active, there being a good demand for
manufacturing purposes, while the cold weather has quickened the demand for domestio use. There was dispatched from Glasgow
26,781 tons, Greenock 150 A Are
A mouth 9264, Bo'ness 4946, Granton 660 , and Port Glasgow $80-$ total 72,517 tons, as compared with 54,592 tons in the same week
of 1888 . There is practically no change in the quotations for the There is considers.
mining districts. Resolutions have hang the colliers in the different mining districts. Resolutions have been passed by Lanarkshire
miners to the effect that "in view of the improved trade of the
country, and the enhanced value of coal,
should be forwarded to improve wages and to promote union." The secretary of the thane Mincrs Union has been instructed to com
municate with the Mineral Oil Association and the various oil companies, asking back the remaining part of the reduction, so that the wages may be restored to what they were in July last year. At many of the collieries in Fife, notices were lodged with the employers on Saturday last that fifteen days from that date the
men would finish present contracts. This action of the men meant to resist a curtailment of 10 per cent. in their wage During the past month twelve vessels, with an aggregate of with ten of 15,980 tons in the first month of last year. All the launches were steamers, with the exception of one sailing vessel and a lifeboot, and the greater part of the tonnage was of steel.
Contracts for new vessels aggregating about 15,000 tons have been Contracts for new vessels ag
booked during the month.

WALES AND ADJOINING COUNTIES.

(From our oon Correspondent.)
The steady improvement that is going on in the coal trade is caught up. One of these, in the Mynyddyslwyn parish, Newport, is certain to tempt, the character of the coal being of high value and scarce. I see that Rhondda No. 3 is, as forecast, going steadily
up. It is now quoted at 8 s . 3d., showing an advance of 1 s . from ap. It is now quoted at 8s. 3d., showing an advance of 1 s. from
what it was a few months ago. This class of coal, like the 4 ft . smokeless,
small its a
as most ex as most expected. Cardiff quotations were only 9 s , to $9 \mathrm{~s}, 3 \mathrm{~d}$. on Monday, and since prices have remained the same, though firm at hat. Good kinds can yet be bought for 6s. at pit, ss. to se. 3 ad .
at port. Small steam is quoted from 4s. 3d., and as the demand at port. Small steam is quoted from 4s. 3d., and as the demand
is improving, will very likely be advanced. One of the most scarce of coals is small house coal ; for this 6s. 9d. is given readily. Its coking properties are good, and the works
Cyfarthfa and Dowlais, are large consumers
1 recorded last week the loading of the Asama at Cardiff. It
teamed away with the enormous cargo of 5000 tons of coal-the steamed away with the enormous cargo of 5000 tons of coal--the
largest yet cleared from this port. Some idea of the large Rhondda will be given by noting that several of them are Last week's cool trade at all the ports was a good one. Cardiff
leared over 170,000 tons, iestance, five vessels cleared 11,500 tons, and nine others took
nit bet ween them 10,560 tons.
Swansea suffered from
ent away a good average, and Newport continues easy, as it was, The Aberdare colliers continue to exercise the
federation" movements. On Monday there was a meeting of fifty-nine delegates representing over 35,000 colliers, and
an executive committee was formed with president and secretary. ocal committees are also iestion. It is to be boped that the society will support all good movements, and aim especially at nourishing the Moriner's Provident Institution.
The coaling cranes invented by Sir W. T.
The coaling cranes invented by sir W. .. Lewis and Mr. Hunter are doing excellent work. They were especial objects of interest hands of that well-known firm, Walker and Co., Leeds. Since then they have come up to fullest expectations, and for rapid shipment are unsurpassed. A few instances of this may be given. One day 8.40 a.m., and by twevive 10101 tons had buen puter on board. This
was at the rate of 340 tous per hour. Even this was eoliped day, when the Ambient was loaded. In this case 200 tons were put in twenty-eight minutes, or at the rate of 428 tons per hour.
In former times igh pressure, but only to the damage of cargo, the coal suffering in a serious manner. In the working of these cranes the coal it
shiped in very much the same state as when the collier placed it the screens. rapid despatches by the Taff and Rhymney lines from the collieries, and these exceptional feats of shipment, substantial benefit is being
reaped by the coalowner, as a steamer delayed at port is a costly The Taff Vale dividend is to be 13 per cent. Rhymney, 8 per
inction. ent. Barry shares are going up.
The Taff
Thale and Bute Dock amalgation is still keenly discussed, and I hear from many quarters confidence expressed in its
passing. The Barry, which is to be completed by the autumn, is
expected to to Rhondda coal. In the face of this, the working of the new line to Newport trom Ponthyriddd and the opening of the Rhond Rone to
Swansea, amalgamation would seem to be practical wisdom. Swansea means to have a good slice yet of the Rhondda coals.
They are the only things needed to make the port a more
formidable rival to Calf naearer France, she will lessen Cardiffa exports.
No less than a day and a
300 applications have been received for the position
 ability and energy have made his succe
nust be a good man to fill the vacancy.
referred to the tin-plate market and meeting at Swansea this week, his remarks were listened to with attention. He states that a proposal had been made for a combination between the tin-plate
trade and the French syndicate, but it had fallen through. In his
opinion they would soon see tin down agnin to its normal value opinion they would soon see tin down again to its normal value
With regard to the combination in tin-plate alone, that is going nimitation to make. It was proposed at the Exchange this week to
lime stop make at 6 p.m. every lriday. This will reduce the make one.
sixth-that is 1 \& million boxes per annum. Notbing is yet decided, though the leading makers have quite made up their minds to lessen
make in one way or the other. I have all along looked upon this step as unnatural, and not iikely to be effective. It has been tried several times
The export
tions are unaltered ; buyers slinutly about the average. Quota tions are unatered ; buyers slightly backward, but makers have
good orders and are not disposed to entertain any falling off in In steel, rails are not quite so firm, and the 2 s . 6 d . advance in
price bas been taken off.
Bars and blooms are price bas been taken off. Bars and blooms are unchanged, and
works, on the woole, continue a busy trade. At resent Iimagine
that Cyfarthfa is taking the lead, especially with its tin bar. Care in selection of ores and in the make has resulted in the production
of a bar which now stands A1 in the market, and the demand, hear, is excessive.
A formidable competition to most of the new works is coming nto the field- the Treforest Works , Their position, twelve miles
nearer to Cardiff, and on the side of the line to Newport and to Barry, as well as
a powerful rival.

NOTES FROM GERMANY.

(From our oron Correspondent.)

THE tendency of these markets continues firm, although it would appear as if the convention period had arrived at its zenith, for i
the news from certain quarters be correct some of the covenanted groups have already exceeded the limitations fixed, so if this were
to be repeated the days of the grand convention would be numbered. Again, the case of boycotting on the part of the crude
iron convention, mentioned last week, is also calling up
some of the press organs, insinuating that if such practices
continue to the detriment of the wrought iron industry, the continue to the detriment of the wrought iron industry, the
Government may be induced to interfere, which, of course, would give a death blow to all similar combinations, but it is hardly likely Government would meddle in the matter, though who can say to what lengths paternal Governments will or wil tot greve the
this as it may, there is nothing but the slight duty to prevent the importation of pig iron, if the convention acts unreabib. The demand generally is brisk, especially for forge and basic pig iron,
which are only procurable with difificulty from the smelters, and which accounts for prices suddenly jumping up as they do; but most other articles have a decided ascending tendency, and bave been well maintained, so it cannot now be long before all manu-
factured goods take a flight upwards, in accordance with the actual factured goods take a,
rise in raw materials.
rise in raw materials,
From Silesia the reports are most satisfactory. The wire-rod
mills are delivery; all factories dependent upon this material are also very delivery; all factories dependent upon this materiat are also very
busy. The steel works are compeled to work night turns to com.
plete orders, and works are being enlarged. The iron forges and plete orders, and works are being enlarged. The iron forges and
rolling mills have as much to do as they can accomplish, and the whole of toe works are
that customers are with dificulty promptly served, and as to the that custrace proprietors, they are satistied too, as what pig iron
blast furnace is not contracted for goes off as quickly as made, and all the prices are satisfactory, as they are mostly regulated by the conventions
on a paying footing. From February 1st the Breslau iron merchants have announced that they shall advance present list prices of plates. As regards the Rheinland and Westphalia, the demand for iron ores keeps up and has, indeed, somewhat increased, which is only
a natural consequence of the blast furnaces being so busy. Roasted steel-stone costs up to M. $13 \cdot 20$, while Spanish ore is noted 16 at the wharf on the Rhine at Duisburg or Rubrort, equal to nearly
M. 20 at the furnaces. The prices of pig iron, with the exception of Spiegel, have remained nearly unchanged, but have a rising inclination, which is likely soon to lead to higher rates, in consequence of
all the limestone quarries of the district having been bought up by a single company, which will now enjoy a perfect mo. nopoy of to 1 limestone requisite for the bast furnaces,
rise of $1 \frac{1}{2}$ to 2 M . has taken place since this was written, and
the convention at the enanced the convention at the enhanced prices has contracter for
the output of most furnaces for the first half of the year, and in some cases beyond. Spiegel iron has made a jump from M. 54
to 58 for 10 to i2 p.e. Mn.; while 20 . and this without any apparent cause to outsiders, as neither for
export nor inland has the demad export nor inland has the demand increased. Forge pig cannot be
brisker, and many works have closed contracts for all their output sorts une. Prices range from M. 50 to 52 , and even 53 for best 40, whilst the sales oftice decelines to to make mony new sales. just at
present. Foundry pig goes off well at old convention list prices as present. Foundry pig goes off well at old convention list prices as
lately given Bessemer is noted 53 to 54 , basic at 45 p.t., and is in
much request. The pig iron production, including Luxemburg, has been for
December last 359,867 t. ; forge and spiegel, 175,$569 ;$ Bessemer, 34,330 ; basic, 106,901 ; and foundry, 43,067. From January 1st to December 31st, 1888, $3,907,364$ against $3,339,803 \mathrm{t}$. for the like
period 1886. If the average production for the last three months be taken $350,000 \mathrm{t}$., this would equal an output of $4,200,000 \mathrm{t}$. per annum, but the production is increasing at a rate which would
make it quite equal to $4,400,000 \mathrm{t}$., to say nothing of the $160,000 \mathrm{t}$. makerted each year. TTis exxeeds very much indeed all require-
imports besides the Russian market, which formerly took large
ment ments, besides the Russian market,
parcels, being now closed against the country, so a a litlle sooner
or a little later in the year a point will arrive when either prices or a little later in the year a point will arrive when either prices
must come down or output be decreased. The finished iron trade
is announced to be in firm and paying; nevertheless, the rolling mills complain of the inequality between their prices and those of the raw materials
becoming more and more pronounced, which diminishes their
profits. For the interior orders for merch proits. For the interior orders for mercbant iron come in sufficient
number numbers to keep the works employed for the present, but there is
little doing for export, and these priess are very low. It is in con-
temp said of hoops, only that the works bave inland orders assured for a greater length of time, the price remaining M . 137.50 to $110 \mathrm{p} . \mathrm{t}$.
There is a little more doing in boiler and heavy plates, December
showing showing an increase over November of 5000 t., and many more
orders are expected this month than last, yet this branch is not which is not to be thought of yet nwhile. For the season the sheet
mills are running briskly, the price being still M. 184, but which was
step with forge pig, the rise has, bowever, been postponed to see take place. The wire rod branch is not quite so flourishing as it was, inasmuch as the export business is not brisk at all. The is low, so much so, indeed, that it is is nearly M. Mo 20 below bar the ricon,
and for that reason the mills are endeavouring to and for taat reason the mils are endeavouring to get rods of, say,
10 mm . classed as bars. There is a great over-production. It is already done or will accomplish. What the new convention has not inclined to give it a long lease of existence, one reason for
which being that some of the largest works bare not joined, about which there is much tribulation, and they are accused of having
little regard for the German iron industry by not so doing, the other reason is that the question of quality will probably cause to get the prices up, and the only means then left is to decrease were observable because only one-fourth of the wire nail factories
have joined their conte have joined their convention, but the wire spring and light chain
factories have formed one now, so it is hoped wire rods for domestic prices take place. There is nothuest and no more lowering of machine shops and foundries, except that the latter in Silesia, carting amonge ast otber direct from a great deal of pottery and ligkt
common sales-office at freinaces, have formed a common sales-office at Gleiwitz .The constructive works in iron,
as roofing, sc., are busy still, and the boiler shops have more work in hand. The wagon factories have now got work for a length of directions all over the country, also locomotives are being given
out, but the prices received for them are by no means extravagant. The brass foundries are full of orders, and a much needed rise in
price has taken place, so that bronze castings are now quoted M. 2.20, phospor bronze $2 \cdot 30$, red brass, $2-20$, and smithed copper
tuyeres 3.60 p. ko.
the old toke rrade has become especially active ; what with forcing in Westphali, Rheintand, the Saar distrinct, and Belgium. In fact,
more furnaces would be blown in if coke could be immediately procured for them
In Belgie
not as busy as they werentinues very scarce ; the rolling mills are not
advanced prices, and ase the expeort of of girders is is slaske, to exive the to
England. In tact, the whole trade on complaints, for the coke makers grumble at the conlowners about the price of dust coal for coking ; the blast furnaces at the coke makers and the rolling mills at the high price of pigsand coals; and at the buyers for not coming forward with more orders. Forgg
pig cost 46 .f.; foundry, 48 to 49 ; merchant bars, 120 . Conl is sceedingly irm.
n upwench iron trade has taken a marked turn for the better in an upward tendency all round. Pig iron has gone up to 46f. for
forge and 56 to 60 for foundry, while merchant yrion has kept pace,
and is now 130 at works and 145 at Paris, and girders are 120 and
p.t. respectively.

AMERICAN NOTES.
 (From our oren Correspondent.)

New Yonk, Jan. 18th, 1888.
Tue blizzard throughout tho North-West, especialy in the territory of Dakota, has been excep-
tionally severe. Entire families have been lost, tionaly severe. Entire families have been lost,
live stock has been frozen by the hundreds in
stalls, milroads are blockaded, and trains are from fifty to one hundrect hours late. The snow ploughs are hard at work, and in a few days will
have the trans-continental lines The winter has beont the most severe for opers.
The the The woster important matter in financeial and indus.
trial circles today ins trial circles to doyn is the attitude of the Reading
Railroad and miners' strike. They have combined and will appeal to organised labour throughout the country for funds to maintain them in their six months. The impression is kaining ground that the Reading Company is making a mistane;
but the officials still insist that they are able to but the officials still insist that they are able to
bring their rebellious workmen to terms. Several hundred establishments will be out of coal in ten days, Bupply of bituminous mines within reach of
the sup
the Atlantic Coast is not for the extraordinary requirements that will be
for the Yor the ext
prested.
The iron
moderate trade is quiet. In metals there is a plates closes strong. Tin is in quite active to mand in a retail way. Large lots are seldom sold. copper syndicate bas closed a contract with the
Rio Tinto Cone Rio Tinto Company for its entire product for
three years. The same syndicate has made conthe North West. The other heavy producers in the Norrt of the year exports of copper since
thainst $272,500 \mathrm{lb}$. same time last $1,893,805 \mathrm{lb}$.,
again copper matte and ore, $1,983,530 \mathrm{lb}$., against no exports last year to this date. Lead is offered
freely at $4 \cdot 90$ soles at $4 \cdot 80$. Spelter is in fetive freely at 490, sales at 480 . Spelter is in active
demand at 5 t. Sheet zinc is sold at 6 ? c . Steel rails are quoted dull at 32 dols, to 33 dols.; wire
rods, 40 to 41 ; old too rails, 22 dols. Doublehead rails would find buyers, at 22.50 dols., but
the asking the asking price is 23 dols, , and stocks are light.
The general situation in the iron trade is satisfac. The general situation in the iron trade is satisfac-
tory, although business is moderate. Advices from the interior show a general curtailment of
demand, owing to cold weather. The exports of demand, owing to cold weather. The exports of
tin to the United States from Holland for 1886 were 473 tons, against 916 tons for 1885 ; for nine
months of 1887 the exports from Holland were 20 months of 188i the exports from Holland were 1886. The production of pig iron last year was
$6,433,851$ tons, against $5,684,542$ gross tons for 1886. The production is being increased, parti-
cularly in the Southern States.
At this time 143 8 bituminous furnaces are in blast, producing 83,101 tons per week; 110 charcon furraces, pro-
ducing 9160 tons per week; 118 anthracite fur-
naces, producing 38206 tons per week daces, producing $3 s, 206$ tons per week.

NEW COMPANIES.

$\xrightarrow{\mathrm{Thg}} \mathrm{fo}$
Ciem Irfon Slate Quarry Company, Limited. This company was registered on the 21 st ult., to increase, to lease from Mr. Parry Lloyd the Cwm Slate Quarries, parish of Llanwrfyd, county
P. Dloyd, Glasbury, Radnor

Registered without special articles.
The Discoreries Company, Limited.
This company was registered on the 19th ult,,
with a capital of $£ 20,000$, in $£ 10$ shares, to deal in all kinds of novelties and to manufacture and trade in goods of every description. The sub-
scribers are:-
A. Barrett, 28, High-street, Sydenham, shorthand
J. Writer Purchase, ii, Queen victorias-rireet, soii-
E. K. Purchase, $11, \ddot{\text { Queen }}$ Quictorias-street, ärchi-

Mcst of the regulations of Table A apply.
Folding Gate and Shutter Company, Limited. This company was registered on the 20th ult., the letters patent No. "1889, dated February 17th, 1885, granted for "Folding steel gates and
shutters," and for such purposes will adopt an agreement of the 1 thth ult., entered into with
W. W. Bodwick. The subscribers are :-
J. W. Morris, Thorners-chambers, Fenchurch-

Emest Baker, C, John-streot, Bedforderowham valuer
R. J. Drinkwater, 14, Hillstreet, Knightsbridge
The number of directors is not to be less than
three, nor more than seven; qualification, $£ 200$ in shares; the subscribers are to nominate the first; remuneration, $£ 750$ per annum, and a sum
equal to one-tenth of the net profits remaining after payment of 10 per cent. dividend.

Manila Railuay Company, Limited.

This company was registered on the 25 th ult.,
with a capital of $£ 500,000$, in $£ 10$ shares, to acquire the concessions, rights, and privileges, relating to
a railway from Manila to Dagupau, in the Isle of a railway from Manila to Dagupau, in the Isle of
Lazon, with power to maintain the said railway,
and any other railways or public works authorised by concession of the Spanish Government,
or of the Philippine Islands. The subscribers or of
are:-

The number of directors is not to be less than appoint the first, than ; the subscribers aro to
 be 7 per cent. cumulative preference shares.

General Cycle Supply Company, Limited. This company was registered on the 24 th ult., cycle manufacturers, general merchants, cycle manufacturers, general merchants, ma-
chinists, millwrights, machine and engineering tool makers. The subscribers are:-
W. Forbes, 79, Cambridge-street, s.w.
H. B. Ironside, Foots Cray, Kent

J. Fisher, Lewisham, builder
T. W. Gowen, Walthamstow, clerk .

Two, nor more than seven the not to be less than two, nor more than seven: the subscribers are to
appoint the first two; qualification, fifty ordinary or two founders' shares. The remuneration of the board will be $£ 50$ por annum on each issue of
500 shares. Mr. W. J. Endersley is appointed managing director at a salary of $t 200$ per annum
to be increased at the discretion of the board.
J. F. Blyth and Company, Limited.

This is the conversion to a company of the
business of ironfounders and engineers carried on by J. F. Blyth and Co. It was registered on the
1stb ult, with a capital of $£ 10,000$, in $£ 1$ shares.
The subscribers are:-
H. Rogers, Clifton, Bristol, manufacturer .. Shares

 Alex. Kerl, 14, Great Winchoster-strevet,", solicioitor
H. C. Murchison, s, Austin Friars, secretary to a

The subscribers denoted by an asterisk are the first directors; qualitication for subsequent direc tors 10 shares; remueration, $£ 30$ plar annum
to the managing director-Mr. J. F. Byth- $£ 100$ per annum to the chairman, and $£ 50$ to each
other director

Patent Hydraulic Freestone Company, Limited.
This company was registered on the 23 rd ult.,
with a capital of $£ 10,000$ in $£ 1$ shares, to accquire with a capital of $£ 10,000$, in $\mathcal{\ell} 1$ shares, to acquire
and work the letters patent No. 4927 , dated 10 th and work the letters patent No. 4927, dated 10th
November, 1881, relating to the manufacture of artificial stone. The subscribers are:-
J. R. Smith, 17, Lowfield-road, West Hampstead,

The number of directors is not to be less than eligible. The subscribers are to appoint the firt directors, and the company in general meeting will determine remuneration.
Patent Improved Sea Batling Machine Company,
Limited.
This company proposes to trade as proprietors
of bathing machines and bathing establishments in the United Kingdom or abroad, and for such purposes to purchase the eteters patent No.
dated September 3oth, 1886 . It was registered on the 25 th ult., with a capital of $£ 15,000$, in $£ 1$
shares, with the following is first subscribersi:o. MeCrea, Brixton, clerk.
D. Brown, 2 , Cambridge-terrace, Fühä, clërk. E. E. Allen, Cheisea, engineer T. Pittman, T, Hempanphreysestreot, oid Kent -road, w. Walmisley, $\ddot{s}, \ddot{4}$, and $\ddot{\text { s. }}$, Queen street, $\ddot{\text { E.C. }}$.,

The subscribers are to appoint the first directors. The number of directors is not to be less than
three, nor more than six; qualification, fifty three, nor more than six; qualification, fifty
shares; remuneration, $£ 50$ per annum, with $£ 10$ shares; remuneration, $£ 50$ per annum, with $£ 10$
additional for the chairman. Mr. Oliver Pitts, of s., Gladstone-street, S.E, and Mr. D.
Deacon, of 1 , Holland-road, Brixton, aro res tively appointed manager and secretary.

Public Streets Lighting Company, Limited.
This company was registered on the 20 th ult., on in all branches the business of a public and private lighting company, and to produce and
trade in all apparatus, appliances, and things trade in all apparatus, appliances, and things
used in connection therewith. The subscribers

The number of directors is not to be less than three, nor more than five; the first are Messrs.
Hubert Barrow Doo, Frederick Hill, and Edmund Hebrert Stevensoo, remuneration, 25 per cent.
of the net profits after 10 per cent. dividend has of the net profits after 10 per cent. dividend has
been paid.

Skytmyr Copper Mines, Limited.
This company proposes to acquire cortain copper mines, buildings, and appurtenances,
situate in the county of Nedenas, Norway, upoul terms of an agreement of 19 th ult. between the Nedenass Copper Company, Limited, and Henry
Charles Surchison. It was incorporated on the Charles Murchison, It was incorporated on the
2lst ult., with a capital of $£ 120.000$ in $£ 1$ shares, 21 st ult, with a capital of $£ 120.000$, in $£ 1$ sharee,
the whole of which will he allotted, credited as the whole of which wif be alotted, cr
paid up to the extent of 15 s. per share.
paid up to the extent of lis. per share. Shares
A. C
J.
H
H
 company
Herry Verden, i4, G̈reat winchester-strect," soii-
cito

The number of directors is not to be less than two, nor more than five; the first are Messrs. C.
Macdona, David Macfie, Alexander C. Macfie, and Sidney Sharp; qualification for subsequen directors,
diriectors will be at the rate of $£ 100$ per annura direct.
each.

Stannaries Company, Limited.
This company was registered on the 18 th ult., with a capital of $£ 10,000$, in $£ 1$ shares, to carry
on the business of miners, potters, brickmakers quarrymen, engineers, and contractors. The sub-
J. Fraser, M.E., Carmarvon
W. J. Antram,
2cs, shirland-road,
W., shorthand w. E. Bac

The subsoribers are to appoint the first directors qualification, 100 "A" shares, or one founder's
share. The minimum remuneration is to be at the rate of $£ 200$ per annum in respect of each
directo

THE STEEL GUN CAST AT PITTSBURG
The Pittsburg Despatch of January 17th says:The big steel gun was drawn from its mould at the Pitsburg Casting Company's works early
yesterday morning. Although it is nearly five days since the metal was poured into the mould, when taken out the steel was too hot to be touched The huge casting, after it was released from the chains, lay prone upon the eartby floor, where it
was critically and silently inspected by Mr. Hainsworth, the master mechanic of the foundry, and Lieuts, Fleteher and Force, United States Steel
Inspectors. Flaming lights were flashed upon every part of the crude cannon, ns the almost
breathless examination continued. Powerful brastes were also used; but after fifteen minutes,
glas
durin quartette quartette of experts stood up and instinetively
grasped and shook each other's hands. The action Was more expressive than words, and was readily
understood by the workmen. With a loud cheer they sprang for the steam Whistles, and, fo torture shrieked a mighty pean of victory. The
casting is smooth and free from either depressions or excrescences. Mr. Hainsworth is confident unless some mishap should occur during the
delicate process of rough boring,' that it will fully meet the requirements of the Ordnance Department. It will still be several days beforo
the casting is sufficiently cool to permit the sawing off of the superfluous steel at breech and muzzle This will be the first step toward getting it into
something like the form of a cannon. These pieces wil be used to make a test of the tensile
strength of the steel. The will be used for boring is already nearly complete in the finishing department; but this work wil probably not be commenced ere the middle of
February. It will require at least four weeks to do the work. The cannon will, therefore, not be ready for shipment to Washington bofore March,
or perhaps later. The ability to make heavy steel cannon at a single cast means that such guns can be made at a reduction of one-sixth the cost of the present heavy artillery of tho world.
Pittsburg can produce great guns of this sort, there is every reason to expect that she may become the centre of cannon manufacture for the
world. It would be no slight addition to Pitsworld. It would be no slight addition to Pitts
burg's magnificent industries if yesterday's experiburg s magmincent industries it yesterday's experr-
ment should develope a rival to Krupps sand Armstrong's estabishments right in our midst. Since a gun foundry here, Pittsburg is in a fair way of starting one on her own account.

Nitro-oflative Shelis.-The Constantinople Stamboul of December 13th says that experiment
have been made there lately with the purpose of proving that the Snyder projectile, charge wath with
nitro-gelatine, can be thrown from an ordinary nitro-gelatine, can be thrown from an ordinary
cannon without bursting in the gun. The expe cannon without bursting in the gun. The expe
riments were made under the orders of General
Asif Asir Pacha, Inspector-General of Fortifications londing field howitzer. The shell was loaded with ten pounds of nitro-gelatine composed of
94 per cent. of nitro-glycerine and 6 per cent. of colloriont. of nitro-glycerine and 6 per cent. of
aman, gun-cotton, camphor, and
ether. Ten shots were fred with accident to the bowitzer. A troct an siditest of 200 metres from the howitzer and composed of twelve plates an inch thick bolted together, with
a support of oak beams 14in. thick, was coma support of oak beams 14in. thick, was com-
pletely demolished by one shell. The other shells did not explode, because the ground did
not offer them sufticient resistance. Eight photo. not ofter them suanient resistance. Eight photo.
graphic views of the experiments were taken, and those of the target as seen before and after the
explosion. The report made by Asif Pacha has
been explosion. The report made by Asif Pacha
been laid before the Turkish Minister of War.

THE PATENT JOURNAL.

 Condensed from the Jourmal Pats.' the Conmistioners of
Application for Letters Patent.

When patents have been "communicated" the
name and address of the communicating party are printed in italics.

20th Jeavary, 1858.

876. Flower Pors, W. Allen, Benthall.
877. Advestino the Axes of Cylind Ai7. Anvestina Ashorth, Mancheater 878. COTTiso, \&c., Machine Tools, S. Matthews, New-
castle-on- Tyne.
 Birmingham.
878. Muves, H. H. Sinkinson, Manchester.
S83. Vkntilativa Sewers, \&c., S. H. Adams, Monk. ridge.
Weiohino Machines, C. P. Skipworth.
CRaxe, I. Otter, Brightside. 885. Craxe, J. Otter, Brightside.
879. Reoulativa Bye-Pass Cocks, E. B. Whatley, Collier's Picks, R. T. Howard, Kearsloy, near Dravoht Preventers for Doors, H. Waddington
icerington Accrington. 889 . Stoves for Heatino Air, A. E. Fletcher, LiverVentulatino Apparatus, E. P. Brett, York,
Readiva Desks, \&c., M. A. Boyde, Marchester.
 atch Bolts, J. Cadbury and J. G. Rolla
gham.
ICket Holder D. Larmer, West Derby. S94. Ticket Holder D. Larmer, West Derby
s95. SAEETY WINDOW CATCH, C. Jones, Bury. ear Manchester.
Dymino Cotron Cords, J. Marshall, Wallesden, Girthe for SAddles, F. H. Peat, London. Mortis,
Chairs for Permanent Ways, F. S. Mort Llevid Isk Eraser, R. N. Hobart, Liverpool.
ADVERTISINO, W. Brownlie, Glasgow.
CARPETS, W. C. Gray and W. Tannahill, Glasgow. Compound Material, F. R. Putz, London.
Workino Coal, W. T. Goolden and L. B. Atkin n, London. Ctle, Woolwich. unchino Jacquard Cards, P. A. C. de Sparre Gas Motor Engises, J. Southall, London.
Wire Work Structure, A. Schunck, London. GAs LAMPs, T. Gordon, London. .
BoILER PLATEs, D. Purves, A. L. Jones, and W. J. arling, London.
Spitivion Machine Beltino, G. B. Mallinson and
Speight, London. Speight, London.
CENTRIVUQal Blades, \&e., R. H. Fisher, LiverScraper for Poratozs, de., C. F. Wilmot, London. SLIDE ALVES, T. Lockerbie, London
BICCLELES, A. Easthope, London.
VELOTIFDEs, A. Easthope, London. ALKLIEE METALS, G. Baron de Overbeck, London.
(F. Hornuag and F. W. Kasmuyer, Germany.) 21. Plovor Shares, J. E. Rasmuyer, Gocmany.) G. Jeanes, London.
880. Foa SIGNALLINo, C. Tighe, London. 24. Mrasurisa, \&c., J. G. Lorrain, London.
881. Measurio. \&c., J. G. Lorrain, London.
882. Frezing Michive, W. H. Tomson, Lon

21st January, 1888.

London. Controllino Railway Sienal Lever, W. F. Bur-
leigh, London. leigh, London.
98S RALWAY I
leigh, London.
${ }_{23}{ }^{23}$ d January, 1888.
M86. Rocking-boat for Children, c. R. Illingworth, Halifax.
987. Sirt Collar Brace, A. Savage, London.
988. Bleachino, de., Textile Fabrics, A. McNab,
Glasgow, Rlasgow. Roling Boards for Piece Goods, C. H. Priestley, Bradford.
Bradfondions for Piece Goods, C. H. Priestley, Bradford. 992. Found.
Bradford. 993. Charging Bottles, de. with Syrup and Aerated
Watkr, H. W. Carter, E. M. Wright, and W. Edney, Bristol.
pationete Paper, \&c., C. Davies, South Liverpool.
99. SHips' Berths, W. P. Hoskins, Birmingham.
996. NekdLes, A. R. Allwood, Alcester.
 999. Calico-printina Machines, \&c., E. J. Jones,
1000. Trolleys for Transportino Coal, a. C. Hart, London.
1001. Warming Railway Carbiages, \&c., J. Milnes,
Huddersfeld 1002 . Sanitary Suspensory Brace, P. G. Harris, Tenby.
1003. STopperisa Botries, W. T. Cook, Sheffield.
1004. Bricks, G. A. Wright, London. 103. Bricks, G. A. Wright, London.
1005. VeLocredes, A. Hunnable, Lond 1006. Cabtridges, A. Barker and H . Andrews,
London. London.
1007. WAter-fittinas for Hose Pipes, J. H. Stone,
London. loos. andostable Combination Folding Chair, D.
Lowe, London. Lowe, London.
Londonamo-ELectric Machines, J. H. Davies, London.
1010. Difyerential Screws for Presses, C. and W. Junge, London.
1011. SEwinc Machines, J. B. Bailly, London. 1012. TINDER-box, L. Foix. London, Lond 1013. Prouectiles, C. A. McEvoy, London.
1014. Coast, \&c., W. T. Goolden and L. B. Atkinson, 1015. Puprino Evoines, E. Barnes and Tangyes
Limited, London. 1016. Electrical Transforming Apparatus, A. M. Taylor, London.
1017. Imitation Oil Paintinos, H. A. Bogaerts, London.
101s. Apparatus for Carburettina Air, c. Herzog, 1019. Sewing Machines, J. J. Robinson and E. Hanff, London. Wool, H. T. Anthon, London.
1020. Wood Whe Lock, A. Davies, London,
1021.
1021. Lock, A. Davies, London. Lotron, dc., R. Tatham,
1022. Prepraina Slivers of Cotton Manchester.
1023. Revolving Axletrees for Vehicles, C. P. Holliss,
London. London.
1024. ELETBIC Coils, L. S. M. Pyke and H. T. Barnett,
London. Lo25don. Automatic Exhaust Valve, G. Fincham,
London. 1026. PICTUREs, W. P. Thompson.-(J. W. C. C. Schirm,
Giemany.) 1027. Permutation Locks, H. H. Lake.-(T. Kromer, Germany.)
1028. Cable Grips, dec., W. J. E. and J. E. Carr; London.
1029. Rotiry Galvanic Batteries, A. Wunderlich,
and London.
1030. Disingectants, H. G. Armstrong and J. E.
Waller, London. 1031, Srowal Liohts, \&c., J. Pain and A. A. Craig,
London. London.
1032. Appabatus for Indicating Height, J. A. Bryce,
London. 1033. Apparatus for Indicatino Pressures, J. A Bryce, London. HobBy-Horses, \&c., T. Hurst,
Mountina
10., London.
1035. Comerned Speed and Pressure Indicator, T.
The Whitefield. 1036. CLEMMENTR DRIVER, J. S. Lyon, Cambridge.
1037. HATs, \&c., J. Ashworth, Manchester. 1038. Cleaning and Preservina Boller Furnaces, J.
Řnkine and J. P. Hall, Jarrow. 1039. Spriva Card Easel and Suspender, J. Appleby, Birmingham,
1040. ExANININo the Underside of Cloth when being
Woven, J. Irving, Barnsley. Woven, J. Irving, Barnsley.
1041. WAsH or Rubiva Bo^Rs, J. Watling and W.
W. Smith, Barnsley. 1042. Hors, Barnilley. and A. Blackburn, stretford.
1034. Dobby Apprantus, J. Irving, Barnsley.
1044. Composition for CLEANING GLASs, \&c., D. S. Roberts and A. Peters, Bristol.
1045. LAMPS for BURNINO OLEAGINOUS VAPOUR of GAS and AIr, G. Rose, Glasgow.
1046. Fie-rates, W. B. Redish, Liverpool.
1047. EUREKA PERFORATED, \&c., Sock, J. Bigford, Birmingham.
104s. KEEpino a Buovant Rody at a Constint Deptit
below the Surface of Water, F. M. Sims and W. C. Nicholls, Manchester.
109. Brooss, J, I. Ryder, Derbyshire.
1050. ADVErTising Reflectors, G. Whitehead, Birmingham.
1051. STANDS for BICYcles, \&c., J. Parr, Leicester.
1052. ITERIIOR and ExTRIOR of SIIK, \&c., HATS, S. 1052. Interior and Exterior of Silk, dc., Hats, S.
J. Barber and J. Challinor, Stockport.
1053. Wriving and Mancina Fabrics, w. H. Beal,
Halifax. Halifax.
1054. Preventina the Collaprina of Furnaces in
MArine, \&c., Botlers, J. Rankine, North Shields. Marine, \&c., Bollers, J. Rankine, North Shields.
1055. 1056. Detector Sound Sional, H. J. Peddie, Edinburgh.
1057. Open Back Shear Sprina Bicycle Saddle, L.
ind von Lubbe, London.
1058. Destruction of Vermin, G. Rodger and W. J. Cordner, London.
1059. TAPs, \&c.., C. and C. W. East, London.
1060. Books, W. P. Thompson.-(J. M. Beers, United States.).
1061. Vaves, W. P. Thompson.-(The Barnett Brass
Company, United States.) Company, United States.).
1062. CHIMNEX PoTs, G. F. Verini, Liverpool.
1063. VELOCIPEDEs. J. Cottrell, Liverpool.
1063. VELocipedes. J. Cottrell, Liverpool. Liverpool.
104. BaLE BAND FAstenive, H. Lindon,
1065. OIL LAMPR, C. Halliday, Manchester. 1065. Oil Lasps, C. Halliday, Manchester.
1066. Switches for Field Railways, R. Dolberg,
Berlin. 1067. Meat Choppina Machines, P. Muller and A. A.
scholer, Berlin. Schöler, Berlin.
1068. Jornts of Rails for Figld Railways, A. Dol-
berg, Berlin. berg, Berlin.
1069. Jorsss of Rails for Field Railways, R. Dol-
berg, Berlin.
 1072. Travellino Circular Saw Benches, E. Co
F. W. Reynolds, and G. W. C. Catford, London.
1073. Safbit Stirbup Irows. F. W. Reynolds, and G. W. C. Catiord, London.
1073. SAFETX STIRRUP RIoNs, A. Vickery, London.
1074. WARP MAcrinks, B. J. B. Mills.-(Messrs. Be and Co, Germany.),
107 F . FEat Hoons and Felt Hats, W. Morgan,
London.
 107. Recertion of Coin, W. Pearse, London.
107s. Swrrches for MAKINa ELECRIIAL Cibcuits, S.
Bergmann and J. T. Dempster, London. Bergmann and J. T. Dempster, London.
1079. CABINET for Insuring or Assuring the Public, A. E. Adlard, London.
1080. Sorop Motion for Sprivisa, \&c., Machines, H. H.
Lake.-(W.C. Sanfond, United States.) Lake.-(W. C. Sayford, United States.)
1081. Crushiva Machives, A. P. Granger, London. 1081. Crushiva Machives, A. P. Granger, London.
los2. Absorption Towers, H. P. Weidig and R. c.
Remmey, Remmey, London. Smoke in Steam Boilere, \&c.,
1083. Prevention of Sioner 1033. Prevention of Smoke in Steam Boilers, \&c.,
Fornaes, A. Don, London.
10s4. STamping, \&c., in Colours, C. N. Binteliffe and
H. N. Parkins, H. N. Parkins, London. 1085. Chain Bolts for Doors, H. E. Newton.-(c.
Cleveram, United Stetes.)
1086. Avtomatic Musical Instruments, F. E. p. Ehrlich, London.
1087. Steas Boilers or Generators, S. Orlando, London.
10ss. Braces or Suspenders, J. Healey, London. 10s9. Weiohing Scales or Balances, G. F. Redfern.-
(W. C. Thomson, United States.)
1090. Cuttino, \&c. Veoktables, G. F. Redfern.-(P. J. Carmien, France.)
1091. Recordina Mechanism and Electricity, A. Aird, London. London.
1093. BAkino, \&e., Pottery, J. Edwards, London. 1093. BAKING, \&c., Portery, J. Edwards, London.
1094. VELocIpdes, P. Purnell, London.
1095. Horse RAKEs, J. E. Ransome and F. W. Gar 1096. KITCHENE 1096. Kitcheners, H. Hunt, London.
1097. Adaptation of Coiss, L. Courlander, London. 109. VELocipene, D. Albone, London. Lake, London.-
1099. Convevine CABH, \&c., H. H. Lake,
(G. B. Kelly and W. A. Webber, United States.) Conveving Cash, \&c., H. H. Lake, London.-
. Kely and W. . Weber, United States.)
Eectrical Brazino and Solderino, G. Downing, London.
101. ANTI-corrosive Compositions, J. O. Wallace and 1102. Tonina Strinaed Instrumexts, C. G. Schuster,
jun., London. jun., London.
1103. Comanuica
104. Cormunichtino Sionals, P. Dalley, London.
1105. TREATINO SEWAGE, W. Webson.

25th January, 1888.
110s. Ticket Issuing, A. Légé and C. A. Remané,
London. London.
niog. Light Giving Apparatus, G. Prescott and J.
Farrar, Dublin. Farrar, Dublin.
1110. RINo SPriNina, E. Leak and T. B. Wilson,
Manchester. Manchester.
Sil. Spoot Fisisher, M. H. White and T. White and Sons, Glasgow.
11. Threads in St
12. Threads in Spinning Frames, J. Barbour and J.
Berkeley, Belfast. 113. Corkino Botrless, W. Thomson, Glasgow.
114. Droerno Tool, B.,G. Hall, County Cork. 14. Drogina Tool, B. G. Hall, County C 1115. Manoles, G. C. Douglas, Dundee.
116. WEIorish Machives, C.E. Payne, Birmingham.
1117. Wire Brushes. J. Masters, London. 1117. Wire Brushes, J. Masters, London. Galloway,
1118. Pacciso for Cyinders, de., J. J. Gat Glasgow.
1119. Cartridors, G. Quick, London.
1120 GIO Mills, E. Michaelis, A. Smethurst, and C. Wood, Manchester.
Wichaelis, A. Smethurst, and
1121. FLits and Fasteners, E. Tweedale, Halifax.
1122. Wovex GLoves, W. A. Campbell and G. G. Pom 1122. Woven Gloves, W. A. Campbell and G. G. Pom
phrey, Glasgow.
1123. GRINDN NeEDLEs, J. Moseley, Manchester.
1124. BARREL Bolts, G. Moore, sen., A. L. Moore, jun., 1124. Barret Bolss, G. Moore, sen., A. L. Moore, jun.,
and S. Bott, Birmingham. 1125. Rubber Sheets, S. A. Rogers, Manchester.
126. Reovatng GAs Hkitino, J. E. Carter, Halifax.

- (o. Böhm, Garmany) 1127. Ladiss, Jackers, G. W. Hunt, London. 129. Galvanic Batteries, A. A. Fortin, London.

1129. Reoluatio Gas Heatina, J. E. Carter, Halifax.

- W. Bahm, Germany.) (W. Bohm, Germany.) ham.

1131. TEAching Clerf, J. Roeckel, London.
1132. HANsom Cabs, S. Betjemann, London. 33. Photooraphie Shutters, J. C. Asten, London. 135. Metallic Cement, A. Clery, London. 1136. Belt FAstener, T. C. Sargeant, Northampton.
1133. Twin Screw Propeliers, E. Hunt, Glasgow,
(E. Henry, France.) (E. Henry, France,
1134. Tous for PIPE Joints, A. N. Rankin, London.
1135. SAFETY WATCB-POCKETS for LADIEs, A. Dormitzer, London.
1136. Skevina and Releasina Doors, G. W. Henderson, London.
1137. RoD CLIP, E. Neale and F. Carter, Birmingham.
1138. AUTOMATIC MACHINEs, H. I. Forster, London.
 14. STANDS for UMbreLLAs, C. Deschler, London. Water-mark, F. Hawke and C. J. Ford, London.
Drilino Machine, A. Whitney, London.
 Fastening Window-shbhes, J. C. Cart and F.
C. Carr, London. 1151. VEoEtaBLE Soup, C. Tacot, London. 1152. Bortle-stoppers, L. E. Sunter, London,
1139. Compression of GUNPowDER, A. Greenwood,
London. L154. TLIE Roofinos, A. Eggiman, London.
1140. FIre Screens, dec., W. P. Thompson.-(A. Chauffroy, France.)
1141. Sout Ferd LUbricators, w. Grimes and C. C.
Witefield Liverpool Wakefield, Liverpool.
1142. ChEcKiso Arparatus, R. Foulkes and W.
Hutchinzon, Liverpool. Hutchinson, Liverpool.
115s. Purification of Crude Anthracene, F. Len-
nard and S. P. Eastick, London. nard and S. P. Eastick, London.
nis. Toy SwEETMEAT SUPPLY Box, G. F. Lutticke,
London. London.
1143. STEAx Boilers, H. Davey, London.
Lurification of Sewaek, dc., A.
London. London. 1162. Polverising Ores, E. C. Grifin, London.
1144. Filtering Ber, dc.. H. Stockheim, London. 1164. Iron Bedstends, A. Wright, London,
1145. Screws and ScRw- Suts, A. Schutz, E. Schultes, and R. Plilicker, London.
1146. Facilitatino Taraet Practice, w. Lorenz, London.
1147. Catridoe Cases, w. Lorenz, London.
1148. Superbeatino Steas, T. Bell.-(J. Niven, Uitenhage.)
1149. Interlocing Railway Point and Sional Levers, J. Saxby, J. S. Farmer, A. J. Grinling, and
G. Fox, London.
1170 Feltivo Hat Bodies, H. H. Lake.-(J. \quad.
 1171. Casks, \&c., A. Dunbar, London.
1150. Clensina Hend and Fket of
 173. Electric Induction Apparatus, B. Scheithauer,
London.
1151. Removino Tin from Tin Scrap, C. K. FarquharLondon.
1152. REMovino Tin from Tin Scrap, C. K. Farquhar-
son and R. R. Gubbins, London.
1153. Disinfecting SEwer Gases, J. Arnold, London. 1175. Disinfectivo Sewer Gases, J. Arnold, London,
1154. Equpment for Cavalry, \&c., E. T. H. Hutton,
London. London.

26th January, 1888.
1177. Supporting Elements in Electric Batteries,
E. E. Mandeville, London. E. E. Mandevilie, London.
nedy, Londion. nedy, London.
1179. Wrindina Frames, E Guest and T. Brookes,
Manchester.
1180. Rack and Catch, A. P. Jevon, Birmingham.
1115. Screw Cramp T. B. B. and J. Anderson, Belfast.
1158. Cokew Craspr, T. B. and J. Anderson, Belfa Banjos, E. A. Calvert, Chiswick. J. Monteith,
Holders for Candles, \&c., J. Rotiry Engines, J. Monteith, Glasgow. MATCH-Boxes, J. Brown, Glasgow. Match-boxes, J. and A. A. Brown, Glasgow.
Boots and Shoes, J. Cutlan, London, Supports for Cooking UTENSILS, J. E. Pickles J. E. Holden, Halifax. Smeeton, Halifax.
PAD for VIouIN, W. M.
EJECTORS for Brech-LoAding Fire-ARMs, Pad for Violiss, W. M. Smeeton, Halifax.
EJECrors for Brecch-Loading Fire-arms, J.
ter, Edinburgh. Lser, Edinburgh, J. Erskin, Halifax.
1192. Lasprs, J. Erskin, Halifax.
1193. CorkIn Botrus, T. Ireland, Adenshaw.
1194. SToppering Botries, \&c., R. George, Bristo Ttoppering Bottles, \&c., R.'George, Bristol.
Treatina Anthracite Coal, J. T. Wiliams, UTilisation of Water Power, J. Rettie, F. W. E.
U.
 97. Self-actino Catch for Securing Corves in
Mines, T. Brook and E. Brook, London. Automatic Brake for Carts, P. McKenzie,
Ejow.ilators, A. Brown, Glasgow.
Ene. H. Field, 1199. Ventilators, A. Brown, Glaggow.
1200. Fvibie Plue for Stean Bollers, \&c., H. Field,
Southall. Southall.
1201. Paotooruphic Plates, A. J. Boult.-(L. Backe-
landt, Belgium 1202. RALWAY Sleevers, W. G. Bagnall and A. H,
Heath Londin Heath, London.
1203. SAFETY LAMPs, T. Jackson Chen 1203. SAFETY LAsps, T. Jackson, Chiswick,
1204. RANG-FINDNG APPARATUS, H. C. W
H. C. Heiffer, London H. C. Heiffer, London. 1205. Warp Lace Fabrics, J. S. Wells, London.
1206. Stitchina MachiNes, W. Birks and Hind

1208. Actuating Railway Switches, A. J. Martins and
120.
120. 1210. Reversible Chlorine Batteries, E. Andreoli. 1. (P. A. Fichet and A. L. C. Nodon, France.)
121. PArcelling TobAcCo, G. Wilcox, London. 1212. Wrindlina Bobbin, J. Stevenson.-(J. Lallewand,
France.) 123. Electricity to Spectacle Frames, J. T. Leigh
ton, London. ton, London.
1214. GAUQE GL
1215. Mantles for LAMPS, Werner, London. Simpson, London. 1217. Tricycles, J. M. M. Truffault, London.
1217. Combina Machines, F. W. Durham, London, 1218. STopperivo Bottlrs, A. Kempson, London.
1219. Velocipedes, G. J. Stevens and J. Cuningham
 1220. Trappina RAbbirs, dec., T. Jones, London.
1221. Uxclist's GALose, E. Prudon, London.
1222. Aoolutinant, H. H. Lake.-(H. F. W. Vollner, Germany.)
1223. BuFFER, A. B. Ibbotson, London.
1224. CIrcular Railways, A. H. Crock
1224. Cribcular Rallways, A. H. Crockford, London.
1225. Composition for Wounds, H. H. Lake.-(H. F. W. Vollner, Germany.) 1227. Churns, S. Pond, London.
122. CHURNS, S. Pond, London.
1229. BADINO CoALS, F. W. Walker, London. beck.-(F. Fortellac, Vienana.)
1230. Fornaces for Roasting Ores, G. de Wolf, 1231. Metal Frames for Pianofortes, H. J. T. Broadwood, London.
1232. Artificial Fuel, C. H. Gosling, London.

SELECTED AMERICAN PATENTS. (From the United States' Patent office Official Gazette.) 372,487. Borler Flve, D. Purres, Ferro Dene, Green
Lane, North Dulocich, Surrey, England. - Filed
October
Claim. - (1) In the manufacture of boiler flues, the
hereinconsists in forming the plate with thickened bands on one side and channelling it on the opposite side, and
then rolling the thickened bands into stiffened ribs,

372,487

with the channel intact, substantially as set forth.
(2) A boiler flue formed of a platehaving circumferential channelled stiffering ribs formed upon the plate by rolling without intermediat
substantially as described.
372,560. Pliers yor Cuttino and Stretching Wire,
J. W. Oerstreet, Litle Hickman, 14th. Overstreet, Litle Hickman, Ky.-Fited July
Claim.- The herein-described pliers, consisting of two pieces alike in construction and pivottally secured
together near one end, each piece having a handle

portion, C, a curved jaw portion, E, and a circular vided with recesses G G, and the outer end of each pro-
vaw
portion having a serrated face H, portion having a serrated face, H, and provided with
a projection, I, upon its outer side, substantially as and a projection, 1 ,
for the purpose forth.
372,582. Subarine Excavator, J. and P. Wagner,
Atchisom, Kans,-Filed August 16 th, 1857. Atchison, Kans.-Filed August 16 th, 1887 .
Claim.-(1) The combination, in an excavator, of

buckets having a smooth edge and a pronged edge,
and reversibly connected with each other, substan-
tially as and for the purposes described. (2) The com-
bination, injan excavator, of the hinged reversible
buckets provided with doublo pete bination, injan excavator, of the hinged reversible
buckets provided with double penetrating edges, and
a straining beam conncted to a straining beam connceted to the said buckets by
butt plates and removable fastening devices tially as described. (3) In an excavator, the combination, with the buckets, of a cross bar formed of double plates and journal blocks, upon which the said buckets
are hinged, sheave pulleys supported between the are hinged, sheave pulleys supported between the
plates of said cross-bar, a strinining beam, and chains
passing from said straining beam around the pulleys, plates of said cross-bar, a striming beam, and chains
passing from said straining beam around the pulleys,
substantially as described (4) In an exeavator, in substantially as cescribed. (4) In an exeavator, in
combination with the buckets $A A^{1}$, the cross-bar B,
the pulleys ${ }^{2}$, the pulleys C, the toggle plates D1 D2, hinged shaft E,
and chains FG, combined for joint operation, suband chains F G, combin
stantially as described.
372,660. Apparatus yor Measurino Cloth in
Bolms, A. B. Cross, Salem, Mass.-Filed Junc 20th,
1887. Claim.-(1) The frame a and its pivot or spindle b,
combined with the sliding carriage e the inder carrying frame f hinged to said carriage, the toothed the feed-piece h, secured to the carriage e, as and for

the purpose set forth. (2) The frame a and its spindle
or pivot b, and the sliding carriage e, having pivotted to it the framee f, combined with the toothed measuring disc or wheel G G1, journalled in said frame f, the
feed-piece h and spreader i, secured to carriage e, as
and for the purpose set forth. and for the purpose set forth.
372,699. Fuse or Firing Mrohanism for Pronkc-
Tiles, A. Noble, Neicastle-upon-Tyne, England Filed May Mth, 18s8. Claim.-(1) The combination of a projectile pro-
vided with a cavity at the centre of its base, a piston
in such cavity a forwardly ex in such cavity, a forwardly extending piston stem,
and a time fuse at the fore end of the projectile and a time fuse at the fore end of the projectile,
which is ignited by the blow of the stem when the stem is thrown violently forward, substantially as set
forth. (2) The combination of a projectile provided forth. (2) The combination of a projectile provided
with a cavity at the centre of its base, a piston
fitting within the with a cavity at the centre of its base, a piston
fiting within the cavity, a forwardy, extending
piston stem, a time fuse at the nose of the projectile
 a needle carried by the fuse in a line with and a short
distance in front of the piston stem, and provided
with a head at its rear end, the fuse priming in adwith a head at its rear end, the fuse priming in ad-
vance of the needle, and a tubular guide of the fuse holding the needle back away from the priming, and
which yields and allows the needle to be forced forward against the priming when the piston is thrown
violently forward against the needle head, substan tially as set forth.
till
372,978. Beater. Roll for Pulp Engines, J. Hoyt,
Manchester. N.H.-Filed May 5th, 1887. Claim.-(1) In a beater roll for pulp engines, the combination, with the discs or plates having circular
flanges, of the roll bars resting on said flanges and the
wedge-shan wedge-shaped keys interposed between the bars and
bolted to said flanges, substantially as described. (2)
372,978.

In a beater roller, the combination of the supporting
discs provided with flanges, the discs projecting discs provided with flanges, the discs projecting
beyond said flanges forming shoulders, the roll bars
notched to fit said shoulders, whereby cond play of the bars is prevented, the wedge-shaped keys interposed
between the bars and the fastening bolts, sulbstanbetween the bars
tially as described. Epps's Cocos.-Graterul and Comportiva. - "Bya
thorough knowledge of the natural laws which govern
the operations of digestion and nutrition, and by a the operations of digestion and nutrition, and by a
careful application of the fine properties of well-
selected Cocoa, Mr. Epps has provided our breakfast tables with a delicately-flavoured beverage which may save us many heavy doctors' bills. It is by the judicions
use of such articles of diet that a constitution may by gradually built up untilis strong enough to resist every
tendency to disease. Hundreds of subtle maladies are
亚 floating around us ready to attack wherever there is a
weak point. We may escape many a fatal shaft be
keeping ourselves well fortified with pure blood and a weak point. We may escape many a tatal shat and a
keeping ourselves well fortified with pure blood and a
properly nourished frame." -Civil Service Gacette properly nourished frame." - Civil Service Gasette
Made simply with boiling water or milk. Sold only
in packets, by grocers , ,abelled- "JAMss Epos \& Co.,
Homeoopathic Chemists, London."
[ADVT.]

[^0]: 1 Enoineer, March 11th, 1887, page 180

[^1]: Lekds Assoclation of Foreman Enginekrs and Draughtamen.

 - On Thursday evening, at the ordinary monthly meeting of the above Association, Mr. J. Yates in the cbair, a paper was read by
 Mr. J. F. Elsworth on "M Modern Steam Boilers.," The author deait first with the vertical boiler pointing out its advantages and defects,
 and showing bow these latter might described and the various points in its manufacture commented upon. The Galloway and Hopkinson forms of this boiler were also
 dealt with tioned the difficulty which had been experienced in getting the furnace tubes to withstand the high pressures. A number of methods
 of strengthening
 man, and Midgley ring-seams, and the Fox, Brown, Fenby, and and various types described. The efficiency of boilers was next touched upon, the author showing how much of the heat generated by coal it was possible to convert into steam in a boiler, and con-
 cluding with some remarks upon the phenomenon of priming. The paper was illustrated by a number of diagrams. A useful discussion
 ensued, which was taken part in by Messrs. Whitehous, ensued, which was taken part by Messrs. Whitehouse, Moorhouse,
 Atkinson, Fowler, Crier, Tempest, Horsfall, Young and Darley.
 After Mr. Elsworth had replied a vote of thanks was proposed by

