THE INFLUENCE OF THE INDICATOR DIAGRAM ON THE DESIGN OF VALVE GEAR.
Volumes have been written on the influence of valve gear on the indicator diagram, but the story of the influence
of the diagram on valve gear has yet to be told. The of the diagram on valve gear has yet to be told. The
effect of each on the other has been about the same, in effect of each on the other has been about the same, in
one sense. In another, the diagram has played a far more important part, Indeed to it in the main may be ascribed the origin of scores of patents which cumber
the shelves of the Patent-office library. We think we the shelves of the Patent-office library. We think we
shall be under the mark if we say that there are more than shall be under the mark if we say that there are more than
one hundred recognised systems of steam distribution at work now in this country, Europe, and the United States. The efficiency of the greater number is about the same, while the superiority of any one of the others over its fellows mainly exists in the brain of the inventor. and noof various types of valve gear in pursuit of a fancied advantage, expense has been incurred, failures have been heaped on the steam user. It seems, we may add, that a word of warning is wanted just now more than ever,
because there is a strong temptation to follow economy in electric light machinery along devious and intricate paths best left unexplored by those to whom a breakdown is a consummate misfortune. For writing thus we
shall probably be told that we entirely under-estimate the value of correct distribution, to which possible argument we reply that we are quite familiar with all that can be proved on paper concerning the importance of obtaining first place, these theoretical results are not invariably realised in practice, and that, even if they were, they may be purchased at far too high a price.
Fig. 1. It consists of a rectangle A, and a space B The end at C is cut off sharply by the hyperbolic curve. The end at C is cut off sharply by the sudden opening of is represented by the rectangle A , the expansion

$$
{ }_{b}^{4}
$$

portion being the space B. It will be noticed, in the first place, that there are four sharp corners at $a \quad b \quad c \quad d$,
and something very closely approaching to a corner at e. and something very closely approaching to a corner at e.
We may for the moment subordinate $c d$. The pursuit of the two corners $a b$ and the acute angle e is mainly
responsible for the multitude of valve gears. It is an responsible for the multitude of valve gears. It is an
article of faith with most steam users to say nothing of nearly all engineers, that the presence of these sharp
corners is essential to economy. We believe it can be corners is essential to economy. We believe it can be
shown that this belief has no foundation of proof supplied by practice; but we reserve this point for the
We have said that the curve from e to C is commonly regarded as a hyperbola. It could, however, only be
this if the fluid expanding was a perfect gas working this if the fluid expanding was a perfect gas working
isothermally. The curve of expanding steam is something very different in theory. Its precise character has,
however, not vet been settled by the physicist. We need however, not yet been settled by the physicist. We need
not trouble ourselves with this, however. In practice the not trouble ourselves with this, however. In practice the
curve is very generally for the greater part of its length a
close close approximation to a hyperbola, this result being
brought about by re-evaporation in the cylinder, which brought about by re-evaporation in the cylinder, which
fattens the diagram. It is not, however, so much with the diagram as it is that we have to do, as with the diagram as it is intended to be by inventors of valve
gears. So much premised, we are in a position to gears. So much premised, we are in a position to
consider what is the nature of the problem which the inventor tries to solve.
Let us begin with the base line $b d$. This is to be
traight from end to end. It will of necessity lie a little straight from end to end. It will of necessity lie a little
above the atmospheric line in a non-condensing engine above the atmospheric line in a non-condensing engine;
a little above the line of absolute vacuum in a condensing engine. No valve gear can better it in this respect. To get the corner b, the exhaust port must remain open to
the very end of the stroke. It must then shat suddenly; and, as suddenly, the steam-adimission valve must open The inventor will very soon find that it is impossible to perform both operations almost simultaneously with a single valve, unless the engine runs at very slow speed. Con-
sequently he has recourse to two valves-one for admis sion and another for exhaust. Here we must, in a manner, digress for a moment in order to point out that
a separate exhaust valve is often used for reasons only indirectly connected with the corner b. Returning now, we have next to consider the line $a b$. This is straight
and vertical. As the piston is almost at rest when this line is being formed, it follows that a comparatively small area of port opening will suffice to give it. The case is
entirely different with $a e$. In order that the line may be quite horizontal, it is clear that, not only must the port opening be ample, but that there must be such an excess
of steam-chest pressure prevailing that steam will rush through the port fast enough to maintain that steady the horizontality of the line a e e depend for their existence. And here it will be in place to say that disappointment in getting the corner and the line as intended is very often due not to the shortcomings of the
valve gear, but to too small a steam pipe or some other unperceived agency which reduces the valve-
chest pressure. Our readers will find it not a little chest pressure. Our readers will find it not a little
instructive to take a few diagrams from a valve chest; or instructive to take a few diagrams from a valve chest,
even to fit it with a pressure gauge, and watch the performance of the hand on the dial.

Eager as inventors have been to secure the two corners a and b and the straight line $a e$ that eagerness which urges them to get an acute angle at e. The Corliss trip gear, for example, and the great host of its congeners, have all resulted from the demand for a sharp offensive than a rounded union between the straight line and the beginning of the expansion curve. The difficulty of getting this rapidly augments with the speed of the engine. Let us, to make this clear, suppose that when the piston had reached the point e it stopped until the steam admission valve had closed. It is clear that, so long as
it was not allowed to move again until the valve was quite shut, the leisurely closing of the valve, however inthe curre and the straight line The drawing of the of could not begin until the piston started. On the other hand, if the piston moved continuously and very quickly while the valve closed slowly, the complete closing might not take place until the stroke was nearly ended, and the
not not take place until the stroke was nearly ended, and the
result would be that a large proportion of the stroke result would be that a large proportion of the stroke
would be done with falling pressure and wire-drawing through the admission port. From which considerations it is properly deduced that the faster the engine runs the quicker must be the closing of the steam valve. What this means, put into a very few figures, we shall now set forth
We take the case of an engine running at the now-adays moderate speed of 120 revolutions per minutefairly large engine, let us suppose, driving a dynamo Each revolution will be made in half a second, each stroke in a quarter of a second. Let us suppose that the
piston speed is 720 ft . per minute, the stroke being 3 ft . Let the cut-off take place at one-fourth of the stroke. The velocity of the piston will be then, roughly, about the average, its precise value depending partly on the
length of the connecting-rod. Now, 720 ft . per minute is 12 ft . per second, or 144 in . If it is decided that the valve shall move from full open to completely shut while the piston moves lin., then the operation must take place in the 144th part of a second. If we permit the
piston to run 2in., then the time allowed for closing will be doubled, and so on. To get an absolutely perfect expansion curve, and a perfect union between the expansion curve and the pressure line a e, the valve
should close so quickly that the piston could not move any appreciable distance whatever while the closing was going on. This is impossible, and the utmost that inventors can achieve is to hasten the closing to the utmost.
The broad mechanical result is that the valve must be first snatched open, and then caused to shut with a jerk, conditions which are obviously mechanically wrong. It is because of the practical impossibility of getting an auto-
matic high-speed trip gear to work that so many attempts have been made to produce a positive trip gear ; up to the present with a success which depends for its completeness
on the sense in which the words " high speed "are used. A good illustration of the difficulties to be overcome is supplied by the fact that double-spring grip Inglis-Corliss trip gear cannot be used at a high speed, the inertia
and vibration of the springs preventing certainty in their closing action. They have not time, indeed, to get a fair grip of the tongue pieces by which they pull the valve open. It forms no part of our present purpose to criticise
valve gear ; but we may say here that the shorter the valve gear ; but we may say here that the shorter the
stroke of the moving parts of the trip gear, whatever it is, the better is the chance of success, and on the Continent gear is used which permits of considerably higher speeds being attained than are possible with the old Corliss gear.
It would
It would greatly extend the range of this article were we to go into the question of the relative merits of
different types of valve gear, not as steam distributors, but as mechanical contrivances more or less liable to break down. It is clear, we think, that for electric
light work above all others, there are certain paramount light work above all others, there are certain paramount
considerations which overrule everything. The first is considerations which overrule everything. The first is
that the valve gear shall have the minimum number of that the valve gear shall have the minimum number of parts and joints, because each of these is a thing that
may, by its failure, lead to the stoppage of the whole may, by its failure, lead to the stoppage of the whole
machine. Not long since we saw a French engine in the valve gear of which we counted twenty-two joints, all to be lubricated and watched. The diagram was very good. Our readers will, however, we believe, quite agree with
us that no merit in the diagram would compensate for us that no merit in the diagram would compensate for cylinder to distribute the steam. Yet, if we go into some modern engine-houses in this country, we shall see valve gear which is hardly less complex and profuse in
quantity. It is provided to get a good diagram mainly, quantity. It is provided to get a good diagram mainly, but no doubt partly to isolate the engines made by one firm from those made by other firms. We have nothing, however, to do with this latter fact. We believe that the pursuit of square corners has, as we have said, induced the use of complicated valve gear, delicate in its action, easily put out of order, costly to make and maintain, beautiful in its finish, and on the whole a mistake from first to last; and we hold this view because there is abundant reason for saying that much more simple gear will give results which, in economy of fuel, can hardly be
distinguished from the results obtained by complex gear, distinguished from the results obtained by complex gear,
and in other respects is in every conceivable way better. In Fig. 2 we have a diagram theoretically imperfect, and yet so far good that the difference in the consumption of steam per horse per hour between it and an engine giving a square-cornered diagram would be almost inbills. Here there are practically no sharp corners; yet it would be very difficult to say how such a diagram represents imperfect or wasteful use of steam in any appreciable practical way. It is impossible to prove that per horse per hour. It does not happen to be a real complication than is represented by a gridiron cut-off slide riding on the back of a main slide. Let us consider the so-called defects of the diagram a little in detail.

In the first place, we have a curve at b instead of a square corner. Now engineers, at all events, have made
up their minds that, whatever theory may denote, there is a good deal to be , whatever theory mayded compres sion corner. Rankine advocated compression up to the initial pressure, as getting rid of clearance; but we have learned a good many things since Rankine wrote. There compression required to bring out the advantage of jacketing, at all Whents in compound engines running at moderate speeds. steam in the jackets as with it, it will be observed that the compression curve is very small. The corner a is square enough. It is very easy to get this with almost

any valve gear; but e is quite rounded off, because the valve takes some time to close, and the steam must be that the lire-drawn to a so in extent. Can in hown by running the engine at a speed sufficiently slow to get by running the engine at a speed sufficiently slow to get
a trip gear to work with certainty ; or, secondly, by the complication and risk of a breakdown, entailed by the use of all such gear in high speed engines? We this The truth can, however, best be arrived at by taking what facts do and do not teach.
In a recent impression will be found a very valuable tabular statement compiled by Mr. Bryan Donkin, setting forth the economical efficiency of several engines,
all typical of the most advanced practice. The performance of all these engines is excellent, but some are better lence of some is due wholly to great merits of their lence of some is due wholly to great merits of their
valve gear? We venture to think that no one will be rash enough to attempt to maintain such a theory. Here, however, we must, to protect ourselves, point out that we are not in any way taking into consideration the effect of small clearance spaces, short ports, the utility of separate exhaust valves in keeping admission ports hot, the effect of the arrangement of the valves on
cylinder drainage, or such like matters. We are dealing now solely with the influence of square corners in the diagram on the use made of the steam in the cylinder We have, it is true, no diagrams from these engines; but none the less is it clear that economy has been sought
with success, not so much in the arrangements for distributing the steam as in those for keeping it hot while at work. That is, indeed, the condition above and beyond all others essential to econom.
But again let us turn to the marine engine. I we exclude a few exceptional mill engines, mostly of foreign make, it is not too much to say that the modern marine engine is the most economical steam engine in the world and yet trip gear is unknown at sea, and square corner are impossible in the diagrams, because the valves are invariably sliding valves, worked by the link motion. Here it may be urged that the economy is due to the use of three cylinders; but the compound marine engine is not so very far behind the triple-expansion engine, and we have yet to learn that any mill engines have greatly beaten the best type of compound marine engine. When they have done so, it is not, we venture to say, because of square corners in the indicator card, but because of the use of re-heating or some similar detail, and this holds true of compound mill engines with Corliss gear to both cylinders. We may add that instances are within our own knowledge where such engines manage to consume as much as 25 lb . to 281 l . of steam per horse-power pe hour. But let us push the argument a little further
Marine engines will, no doubt, give a horse-power for be tween 13 lb . and 14 lb . of steam per hour, representing, engine th. of coal per horse per hour. Now, in a trip cylinders if er is got pretty equally from each of the the firs. If, then, we take only the power developed in 1.751 l cylinder, we have a fuel consumption of $3 \times$ same for $=5 \cdot 25 \mathrm{lb}$. of steam per horse per hour. The that tically free cut-off takes place, and the diagram is praccylinders from wire-drawing. In both the othe and continual wire tinuously the whole way from admission to exhaust But is it not clear that the steam is used to just a great practical advantage, whatever theory may say, in the intermediate cylinder, at all events, as it is in the high pressure cylinder. For the low-pressure cylinder it may be claimed that it has the benefit of the vacuum. It is the east certain that each of them gives out approximately the interne or the same than the high-pressure cylinder
It would extend this article beyond reasonable limits were we to push the argument further. We may sum up ingenuity has bin a few words. It is thath money wasted in the effort to obtain an indicator diagram of a particular type. The object is not worth the cost. The difference in the consumption of steam per horse per hour, particuideal diagramound engines, between the engine giving the limits, practically nil. It will, we hope, be fully understood that we draw a very well-defined distinction between a proper card and the very imperfect diagram which seems to content some steam users. In a word, we do not ignore the teachings of common sense. We may
add our conviction that not a few of our readers will endorse our statement that some of the worst engines made, especially in the United States, secure a sale solely on the fancied merits of a square-cornered diagram,
and even that is not universally genuine. The true secret of economy lies not in trip gear, although that is good enough in its way, but in fairly high pressures and large ranges of expansion in hot cylinders. But we cannot too strongly enforce the lesson that wet steam will baffle all attempts to keep down coal bills, no matter what the shape of the indicator may be.
For large eagines running at speeds up to about 100 revolutions per minute, gear of the Corliss type possesses several advantages which have nothing to do with the shape of the diagram. Principal among these is the ease with which such gear can be controlled by a governor. An interesting article might be written upon the influence of the rotary governor on the design of valve gears. But
the matter has no relation to the subject we have been discussing.

THE STRENGTH OF SPARS AND RIGGING OF

 SAILING VESSELS. No. III.From the considerations already put forth, it will be seen that if a wedged mast be increased in diameter, the stiffness may become too great, and if it be reduced in diameter, the thickness of the plating will have to be increased to give the necessary strength, but in that case the weight is increased, and consequently the strains. There is, therefore, for each case a diameter giving the of material. It may be determined by a trial-and-error process.
There can be no downward forces acting on the lower mast head, and it is entirely free to resist the transverse bending thrown upon it by the topmast and the forces at the lower mast cap. The support at the topmast hounds will be seen from the table given in a previous article to be largely in excess of that at the lower mast cap. The stay at the latter place will, therefore, need support from the lower shrouds through the mast head.

Assuming the mast head bent to a stress of five tons per square inch at its lower part, we may find the forc
from

$$
\mathrm{P}=\frac{p \mathrm{I}}{l y}=\frac{5 \times 2700}{15 \times 12 \times 13}=5.7 \text { tons. }
$$

This part of the applied force at the cap would, therefore, be transmitted to the lower hounds, and the stress
on the lower shrouds would be on the lower shrouds would be

$$
11 \cdot 1 \times \frac{16 \cdot 6}{10 \cdot 9}=16 \cdot 7 \text { per cent. }
$$

of the ultimate strength.
The forees at the cap will be $9 \cdot 3-5 \cdot 7=3 \cdot 6$ tons, to
The forces at the cap will be $9 \cdot 3-5 \cdot 7=3 \cdot 6$ tons, to
be supported by the cap backstay. The stress on this stay will, therefore, be

$$
70 \times \frac{3 \cdot 6}{9 \cdot 3}=27 \text { per cent. }
$$

of the ultimate strength.

Assuming in the same way a stress of five tons per square inch on the lower part of the topmast head, it will be able to take $2 \cdot 2$ tons of the load on the topmast cap backstay, and thus to increase the stress on the topmast backstays from $15 \cdot 9$ to 27.5 per cent. of the ultimate strength, and to reduce the stress on the topmast cap
backstay from 57 to 31.4 per cent, of the ultimate backstay from 57 to 31.4 per cent. of the ultimate
strength. strength.
The stresses on the stays will, under these circumstances, be as given in the above-mentioned table in the column of stay." "The bending stresses on the topmast, the top gallant and roval masts, will be comparatively small, owing to the greater flexibility of these spars as compared with the short mast heads.
The stresses due to the downward forces on the topmast may be calculated from

$$
p=\frac{\mathrm{P}}{\mathrm{~A}}+\frac{\mathrm{P} l^{1}}{125 \mathrm{I}}
$$

where P is the sum of the vertical forces, including the weight component, l the length from lower cap to topmast hounds, A the sectional area, and I the moment of
inertia of the section of the topmast. Taling the casc inertia of the section of the topmast. Taking the casc where only the lower topsails are set, we have

$$
p=\frac{68 \cdot 3}{26 \cdot 5}+\frac{68 \cdot 3 \times 27^{2}}{125 \times 1030}
$$

$=2 \cdot 58+\cdot 39=2 \cdot 97$ tons per square inch,
which leaves about the same margin for bending stresses
as in the case of the lower mast. The stresses at the as in the case of the lower mast. The stresses at the topgallant and royal mast ought, when calculated in the same way, to have the same margin for bending stresses.
The higher we go up the more elastic become the supports, or the larger the deflections, which would be required in order that the stays may support the forces. But at the same time the spars become more flexible, and can admit of these increased deflections with even less stresses than in the case of the lower mast. The
higher, therefore, the position of the stav, the greater will higher, therefore, the position of the stay, the greater will
be the percentage of the total force which it will take, be the percentage of the total force which it will take, and the smaller that which the mast takes.
Above the lower hounds the stresses will practically be the same, whether the mast is wedged or not, because,
although the relatively small difference in the deflections at the hounds when the mast is wedged and when it is not is important, as far as the stresses on the comparatively short and stiff lower mast are concerned, it is of very little moment in comparison with the much larger deflections of the masts above.
One of the most common damages to spars is the failure of the topmast. This may be due to inefficient support
from the stays, but is more probably due to insuffien of strength to resist the downward forces.
ase the best method to add to the strong th is ly ircicasing the thickness of the plating or by fitting angles. If angles are fitted, then it is better to foly is the strength more uniformly distributed, but the actual strength is increased thereby.
The butt attachment is in all spars of the greatest whole of the being in the direct line of practically the being a large percentage of the total girth. The edge connection between the plates is less important.
The bowsprit may be taken as a mast, the lateral forces on which are very small, and the rolling strains on which are practically nil. Its own weight becomes more important, in so far as it acts more nearly perpendicular to the centre line of the spar. The greatest strains thrown upon a bowsprit are, however, those due to the tensions on the foremast stays. These will tend to bend the bowsprit upwards in the widdle line plane of the vessel. sprit upwards in the middle line plane of the ressel. ing the sails on the foremast caught aback, and taking the vessel to be pitching with a period and maximum angle of displacement somewhat less than those assumed for rolling. It will easily be seen that for a given strain on the forestays the corresponding strains on the bobstay and jibstay will be very much greater, owing to the very much smaller spread of the latter stays with reference to the bowsprit and jib-boom. As the bowsprit cannot, just as the masts could not, take any appreciable part of the forces, it is necessary that the stays below should be very strong, and as the bowsprit cannot deflect to any great
extent without severe strains, it is necessary that extent without severe strains, it is necessary that should for a given pull pive a small extension. It should for a given pull give a simall extension.
is, therefore, desirable that these stays should be is, therefore, desirable that these stays should be
made of solid iron or steel bars fitted so as to be bearing hard at both ends. In considering the support which stays afford to masts, it has been assumed that there is no initial tension on the rigging. Usually there will probably not be any appredue to the setting up of the rigging. If, however, there is then its effect will be to reduce the deflections by an amount corresponding to the collective initial tension on the stays. This is equivalent to increasing the stiffiness of the rigging. Wherever stiffness is wanted, it is, herefore, advantageous to have permanent setting-up
strains, and the lower the stays are fitted the harder they ought to be set up.

Yakds.

The forces which act on a yard are more difficult to determine than those acting on a mast; but, on the other hand, if once determined, the distribution of the stresses is much simpler. The wind pressure acting perpendicular to the plane of the yards is easily determined. The actual tension on the sail is, however, much greater than this force. Let the angle which the sail at the yards makes with the plane of the yards be ψ-see Fig.
6 -and the total tension on the sail at the yard W, then the the tatal tension on the sail at the yard the vards will be W ent perpendicular to the plane of the iv cos 4 . The forces due to the weights and rolling reactions may also be resolved perpendicular to the plane of the yards and parallel to the mast. The yard is supported at the centre, and the tension of the sail may be supposed to be uniformly distributed over the length of towards the ends. The distribution of weight along the yard is capable of exact determination. For vards of the ordinary form, the centre of gravity of the half length o the yard is at a distance of 18 per cent. of the total length of the yard from the centre.
Let the normal pressure of the wind on the sail be S ,
and the length of the vard l, then the and the length of the yard l, then the moment about
the centre of the vard of the component the plane of the yard will be :

$\frac{s}{4} \times \frac{l}{4}=\frac{s l}{16}$

The moment of the force parallel to the mast will be:

$$
\frac{s}{4} \times \cot \psi \frac{l}{4}=\frac{s l}{16} \cot \psi .
$$

The corresponding moments for the weight will, if w is
he weight of the whole yard, be :-
the weight of the whole yard, be:-
and $\quad \frac{w}{2} \cos \theta \times 18 l$
where θ is the angle of inclination of the vessel.
For the rolling reaction the moment perpendicular to the plane of the yards is:-

- 18 l

where c is a constant dependent on the period, angle of There are no rolling reactions centre of gravity of ship. the example taken the royal yard was 52 ft . in length, and weighed with sail and fittings $\cdot 7$ tons. It was when weighed with sail and fittings $\cdot 7$ tons. It was when
hoisted 157 ft . above the centre of gravity of the ship. The angle of inclination of the vessel may be taken as 15 deg., the angle which the yards make with the middle the plane 24 deg.: the angle which the sails make with the plane of the yards 15 deg.. and the coefticient for the The reactions '00142.
of the yards are, therefore, as follondicular to the plane
Wind pressure $\frac{.7}{4 \cos 24 \mathrm{deg} .} \times \frac{52}{4}=\quad 2.5$ foot-tons
Rolling reactions $\frac{7}{2} \times 00142 \times 157 \mathrm{ft}$.
$\times \cos 24 \mathrm{deg} . \times \cdot 18 \times 52=$

- 7 foot-tons

Weight
$\times \sin , 15$ deg. $\times 18 \times 52$
Total $4 \cdot 0$ foot-tons

The moment of the forces parallel to the mast are Wind pressure $\frac{7}{4 \cos 24 \text { deg. }} \cot 15 \mathrm{deg} . \times \frac{52}{4}=$ Weight $\frac{7}{2} \cos 15$ deg. $\times 18 \times 52=3 \cdot 0$ foot-tons

Total $12 \cdot 4$ foot-tons
The resultant is therefore
$=13$ foot-tons
$=156$ inch-ton
The moment of resistance of the yard was 30.5 inch 8. The stress is therefore
$p=\frac{156}{30 \cdot 5}=5 \cdot 1$ tons per square inch.
The above moments are based on the assumption that the yard receives no support from the braces. Som? support will be afforded in this way, but it can only be a very small amount, as the braces are nearly perbe a very small amount, as the braces are neary perpower yard had been taken, then it might be considerably assisted by the sail above it being set, as that would

tend to raise the ends of the rard below. The most serere case will, however, always be that where no sail severe case will, however, always be that where no sail
is set above. If the yard ends are supported by stays is set above. If the yard ends are supported by stays
to the mast above, then the bending moment will be to the mast above, then the bending moment will be
reduced to about one-fourth of the above for the forces reduced to about one-fourth of the above for the forces
parallel to the mast, and the place of maximum stress will parallel to the mast, and the place of maximum stress will
be near the centre of gravity of the half length of the yard.
The sum of the various forces may be taken to be uniformly distributed over the length of the yard. The bending moment at any place of the yard will, therefore. vary as the square of the distance from the end of the arm. The thickness of the plating of the yard may be taken to vary as the diameter, in which case the moment of resistance will vary as the cube of the diameter. For a constant stress along the yard the diameter should therefore, vary as the two-thirds power of the distance from the yard end. If the yards were made to this contour, then there would be a sudden change in the curvature at the middle, which, for practical reasons, would be undesirable. Nor can the ends of the yards be made of so mall a diameteras the Gaffs and booms may be treated as yards supported at two or more places, and the bending stresses calculated sail will, however, act against the weight of the boom instead of with it.

Materlal.

It has so far been assumed that all the material of the spars and rigging has been steel. In the example taken we may assume the diameters of the spars to be the same, whether they are made of steel or wood. In that case the ratio betiveen the sectional areas of steel and wood spars would be 07 , and the ratio between the respective moments of inertia and the moments of resistance - 13 . The weight of steel is about twelve times the weight of the wood of which spars are made. The weight of steel spar will, therefore, be $\cdot 07 \times 12=\cdot 84$ times the weight of a wood one.
The steel will stand about ten times the amount of stress the wood can bear. The strength of a steel spar is, thereore, 1-30 times that of a wood one.
The modulus of elasticity for steel is about 23.7 times that of wood used for spars. The stiffiness of a steel spar , therefore, $13 \times 23 \cdot 7=3 \cdot 1$ times that of a wood
The resilience of a spar is the work done in straining it to its breaking point or to a certain percentage of the breaking stress. It will be meazured by $\frac{p^{2} \mathrm{I}}{\mathrm{E} y^{2}}$, where p is a given percentage of the ultimate strength, E the
modulus of elasticity, I the moment of inertia, and y the modulus of elasticity, I the moment of inertia, and y the
half diameter of the spar: The ratio between the resilihalf diameter of the spar. The ratio between the resiliences of a steel and wood spar will, therefore, be

$\frac{10^{2} \times \cdot 13}{23 \cdot 7}=\cdot 55$.

For the same diameter the resilience of the wood spar is, erefore, the greater
For the same strength a steel wire rope will weigh about 42 per cent. of the weight of a hemp rope, and the diameter or circumference will only be one-third that of hemp rope.
The following table gives a comparison between the various elements for steel and wood spars, and for hemp
and stecl wire ropes. and steel wire ropes. The results are averages, and will vary with variations in the quality of the wood or hemp,
or with the construction or with the construction of the steel spars and ropes. In cach case the quantities stated are assumed to be unity for wood and hemp, so that the figures represent really the ratio between the quantities for steel and the corresonding quantities for wood or hemp.
The weight of the spars was shown to be the most masts, becanse not on the forces, but the rolling reactions will be inereased in pro*
portion to the increase in the weight. It is usually desirable to save as much material as possible for the sake of economy, but when the weight of the structure itself causes much greater strains than the other applied forces it has to support, the reduction in the weight of structure. Everything which tends to saving of topweight tends, therefore, to the improvement of the support for the sails. It will be seen from the table below that for the same diameter of the spar there will be substituted for wood, and this saving will be accompanied by an increase of 30 per cent. in the strength against cross bending. Further, by substituting steel wire ropes for hemp ones, there will be a saving of 58 per cent, in the
weight of the rigging, for the same strength. This shows the great advantage of adopting steel both for spars and standing rigging. Steel has, however, its disadvantages.

It is desirable that the rigging shall take practically all the transverse forces. To do so it ought to be stiff as to extend it a given amount. Steel wire ropes are seen to to extend it a given amount. Steel wire ropes are seen to
be about $4 \cdot 9$ umes as stiff as hemp ropes, so that so be about $4 \cdot 9$ umes as stiff as hemp ropes, so that so
far steel is again preferable to hemp. It will, however, be seen that, both for the same diameter, for the same weight, and for the same strength, the stiffiness of the steel mast is
in excess of the wood one. The wood mast would therein excess of the wood one. The wood mast would there-
fare be preferable, in so far as it would with the same rigging leave the greater part of the work to the stays,
whereas the steel spar would, on the other hand, take a whereas the steel spar would, on the other hand, take a
larger proportion of the transverse forces, and might larger proportion of the transverse forces, and might
with yielding stays take more than it could support. As the stiffiness of the spars is increased by the substitution of steel for wood, it is desirable that the stays should
at the same time be made stiffer, and steel ones are thereat the same time be made stiffer, and steel ones are there-
fore preferable to hemp ones when steel masts are adopted, even if they were not so from other considerations
Suddenly-applied forces, such as might be caused by the impetus of the wind, must within a short space of
time strain the structure from a minimum, say, zero, up to a maximum, say, a certain percentage of the breaking stress. The effect of the impulse will be partly spent in
doing this work. It is therefore desirable not only that the structure should have a certain amount of strength,
but also that it should be able to vield to a large extent but also that it should be able to yield to a large extent
before breaking; in other words, that it should have a before breaking; in other words, that it should have a
certain amount of resilience. In this it will be seen that both the steel spars and the steel rigging are deficient. The resilience of a steel spar being, for the same
diameter, only about one-half that of a wood one, and the resilience of steel wire ropes about one-fifth that and hemp ones. Against suddenly-applied forces the wood and hemp have therefore the advantage.
Other metals than steel might be
Those of less specific gravity, like aluminium, would offer greater chances of improving the structure than the heavier ones with high tensile strength; because the thickness could then be increased, thereby adding to the resistance to crippling, without increasing the weight.

For the same angle of inclination of the vessel, the moment of the wind forces will, for similar ships, vary as
the fourth power of the dimensions. The moment of the the fourth power of the dimensions. The moment of the
weights will also vary as the fourth power of the dimenweights will also vary as the fourth power of the dimen-
sions, as will the moment of the reactions due to rolling, if we assume the same angle of roll. The strength of the spars will vary as third power of their linear dimensions.
The stress on the spars will therefore be increased as the vessels become larger. As the various forces are increased as the third power, and the strength of the stays as the second power of the linear dimensions, it follows that the stress on the stays is also increased in the larger vessel. weight of the material itself, it follows that any increase in the scantlings adds considerably to the straining forces. There is, therefore, for each material a limit to
the size of spar which can be made of it. When this limit is reached, then any increase in the strength by means of increased seantlings is impossible, and it begreater strength in proportion to the weight. This limit greater strength in proportion to the weight. This limit
is for steel spars in the very largest sailing vessels not so very far off, as will be seen from the large proportion the stress due to the weight bears to the total stress in the
adopting steel instead of wood as the material for the largest vessels will be apparent from the above, as this material will admit of greater strength for the same weight, or of less weight for the same strength.
The flexibility of the spars and the extensibility of the stays are measured respectively by the ratio between the deflection and the length of the spar, and the ratio between the extension and the length of the stays, both of which ratios will vary as the linear dimensions of the structure. The deflections and extensions themselves will vary as the square of the dimensions. The resilience is half the product of the deflection and the force. In proportion to the applied forces the resilience will, therestructure, or the larger vessel will possess considerably more resilience than the smaller one. This, again, goes to show that wood and hemp are more suitable than steel for the spars and rigging of small vessels. These materials will in the small vessels provide the resilience, itself.
The fact that the stresses on spars increase so rapidly with the dimensions, and that additional scantlings do not necessarily materially improve the strength, explains the many failures of masts and rigging when the size of sailing vessels was rapidly being increased. It was not
so much by adding material that these vessels, spars and so much by adding material that these vessels, spars and
rigging were improved, as by careful attention to the rigging were improved, as by careful attention to the
details of the structure and to the lessening of the straining forces by reducing the stiffness of the vessel, and by removing unnecessary top weights. A very great deal
depends on little details. In a ship's hull a few loose rivets, or even large partial destruction of the structure, does not or may not materially affect its efficiency as a
whole. With the rigging structure it is different. The whole. With the rigging structure it is different. The
faulty fitting of a chain plate, the suapping of an eyebolt, or the uneven setting up of a few stays, may cause the complete collapse of spars and stays
Even when all details are perfect, when the dimensions of the spars and rigging are ample and properly propor-
tioned, when the stifficss is gradually reduced from the tioned, when the stiffiness is gradually reduced from the
deck to the truck, when there is sufficient resistance to deck to the truck, when there is sufficient resistance to
meet the ordinary impulses of the wind, and when all is as near ordinary imput is possible for the constructor to make it, even then failures may happen. The builder has done his part, but it remains with the stevedore and the captain of the vessel to do their part. It was seen that any alteration in metacentric has it in his power to alter this quantity to the extent of 100 per cent. or more, thereby increasing or decreasing the rolling reactions in the same proportion. The captain has it in his power to fall off from the wind and roll with the waves under the most trying conditions. It is evident, therefore, that a slightest fault in the structure. It is impossible to con struct masts and rigging which will resist any wind forces vide a structure which is shipbuider can only proordinary circumstances, and it is for the stevedore and to see that these average working conditions are neve exceeded.

THE EARLY RAILWAYS OF SURREY
No. II.-THE CROYDON, MERSTHAM, AND GODSTONE
When the Surrey Iron Railway had got well started and was far advanced towards completion, it seemed fit that step should be taken for carrying it another stage on the way to
Portsmouth. At a meeting held at Wandsworth, June 3rd,
俍 1802, Mr. George Tritton in the chair, it was unanimously resolved that a subscription should be entered into to defray and George Wildgoose were engaged to do this, and to prepare plans, sections, and a book of reference, according to the
Standing Orders of Parliament, under the direction of Mr. William Jessop. At a further meeting on October 7th, Jessop
and his son Josias were appointed engineers, and Jessop's report, dated that day from the London Coffee-house, was

He approved of the route surveyed, with a small
ion, and considered the line from Croydon to Reigate by Merstham would pay for itself by the traffic in lime and were given the month before of intention to apply for power to make a line, though an extensive loop from near Purley spite of great opposition from the advocates of an extension of the Croydon Canal, who were headed by Lord Gwydir, and had gained over John Rennie to their side, the railway party
won the day, the Croydon, Merstham, and Godstone Iron Railway Company being incorporated on May 17th, 1803, with power to make "an inclined plane or railway for the passage
of wagons," from Pitlake Meadow at Croydon to the town of of wagons, from Pitlake Meadow at Croydon to the town of
Reigate, with a branch from Merstham to or near Godstone Green. Jessop's estimate of the cost was only $£ 52,347$, but the capital authorised was $£ 60,000$, with power to raise
$£ 30,000$ more if necessary. The total length of the system sanctioned by this Act would have been about $15 \frac{3}{4}$ miles, but $£ 45,500$ was all the Company was able to raise, which only
sufficed to get it to Merstham limestone quarries. Neither sufficed to get it to Merstham limestone quarries. Neither
Reigate, which would have been on the way to Portsmouth, nor Godstone Green, where there were splendid quarries of free-stone, was ever reached. As in the case of the older line,
the works were carried out with considerable promptitude, considering their rather heavy nature. On July 24th,
1805 , the line was opened for traffic so far as it ever got, a distance of about 83 miles, A long account
of the proceedings may be found in the Morning
Chronicle of July 27th, 1805, which also describes the foundation of the railway as compesed of "white chalk and flints pounded, watered, and rolled, with a small
sprinkling of gravel on the top," and holds it forth for the benefit of the commissioners of the roads near London. The account is under the title of "Extraordinary Feat of a
Draught Horse." Mr. Banks, it seems, laid a wager that a
weight of 36 tons, unassisted, along the railway towards Croydon. This it easily did, going six miles in 101 minutes, starting afresh four times. Having won his bet, Banks
directed four more loaded wagons to be attached, and finally directed four more loaded wagons to be attached, and innally fo draw the whote lot. On being carefully weighed at Croydon the total load was found to be 55 tons 64 cwt ., a fact which excited almost as much wonder and admiration as did the Rainhill trials of locomotives so many years later. As the line fell 1 in 120 the whole way, and was, no doubt, in As excellent order, there is nothing really very surprising in the feat. Probably the train would have gone to Croydon just as well without a horse at all.
The Committee, or Board of Directors, as it would now be called, of the C.M. and G.I.R., consisted of thirty-four members, twenty-six of whom had been on that of the Surrey Iron Railway two years before. Several London bankers, Col. Hylton Jolliffe, M.P., of Merstham House, owner of the quarries, and the Rev. William John Jolliffe were on the new
Committee, but not on that of the older line. The Jolliffes Committee, but not on that of the older line. The Jolliffes exercised an important influence upon the fortunes of both
tramways during many years, as will be shown later on. The proprietary of these lines was, to a large extent, the same. that of theydon terminus of the Merstham inewas, of the parish church, about the Gun Tavern yard. Part of the property of Ellis Davis's almshouses was taken, then the line ran round at the east end of the church through some bleaching grounds which had lately formed part of the gardens of the old Palace of the Archbishops of Canterbury. Portions of the Palace were also taken, though a good deal of it still coming up with the Brighton-road behind the Blue Anchor Inn. Continuing through-Haling Park,-it-took a course now marked by a back lane behind the long row of houses just beyond the Park. Passing just below St. Augustine's Church,
its site beyond has lately been built over, but opposite the Windsor Castle Inn the course of the line begins to be clearly Windsor Castle Inn the course of the line begins to be clearly
marked by a line of rough posts and wire fencing. This conmarked by a line of rough posts and wire fencing. This con-
tinues a considerable distance, during which it may be plainly tinues a considerable distance, during which it may be plainly
seen from the Brighton Railway, passing a large chalk quarry on the way. Very slowly the line diverges to the westward on the way. Very slowly the lue diverges to the westward gradient, said to have been, and appearing to be, 1 in 120. Near the cross roads at Purley, opposite the church, some
villas stand on the site, and then the road to Russell Hill Schools crosses it. The raised horse tracks and a few sleeper holes full of grass may yet be seen along here. Just beyond comes a genuine little bit of embankment, much grown over
with grass and bushes. After this is a long stretch ploughed land, on which the course of the old line may be aintly traced. Still slowly diverging and rising, it has been cut through at Smitham Bottcm by the chipstead Valley ment, curving a little to the left. On the top of this the holes where the stone blocks rested are very plainly to be seen, especially in what we should call the up line. In fact, it is the only place on either of the Surrey trams where they
can be well traced. The embankment is about 20ft. high where it ends on the north side of the road from Coulsdon to Epsom, but is only 18ft. wide on the top. The outer blocks were therefore extremely near the edge. Apparently the rails were laid to break joints, though this may not have been the practice gencrall. Fore ther went out of use. An isolated bit of embankment, on the south side of the road, was till lately very perfect, made of chalk, but has mostly been carted away. After a short break Asylum, after which the route of the line is of Cane Hill Asylum grounds, but becomes visible beyond at the edge of a plantation on the hillside. Its average distance from the Brighton road is about a quarter of a mile, though much less between Croydon and Purley. Approaching the high road at Hooley-lane cross roads, it ran on the east side of Stoney
Cottage. Some blocks may be seen here in a rough wall, Cottage. Some blocks may be seen here in a rough wall,
but for the space of nearly $1 \frac{1}{2}$ miles further no trace of the line remains, for the reason that its site is now partly occupied London and Brighton Railway was made in 1838-41, and London and Brighton Railway was made in 1838-41, and and Reigate highway, or Brighton road, was formed in 1806-8 and passed under the tramway by an arch about half a mile and passed under the tramway by an arch about half a mile huge chalk mounds now the railway, oring it When the tram reappears it is at a branch road leading off to Chaldon Here it was in a shallow cutting which immediately adjoins the Brighton road on its eastern side. One of the origina bridges, of genuine canal type, carries the branch road over the excavation. The spoil banks partly fill it in on the north side, and it has had to be secured with wall plates, and one arch is of the local limestone to the springing, all the rest of the bridge being red brick. The outer faces have a pereertible batter, and are 16 fft , apart at the springing line leaving the roadway between parapets about 13 ft , wide. Underneath the span on the ground line is 17 ft , and the headway about 10 ft . The span seems small for a double line of 5 ft . gauge and 5 ft . intermediate space, but as the wagons were also 5 ft . wide there would be about a foot clearance on either side. Some 200 yards farther on there is another bridge Fig. 3, of precisely similar size and type, carrying a lane leading to a farmhouse The cutting here is deeper, and water accumulates in it after wet weather. It resembles a grassy lane, 18 ft . wide at th bottom. No traces of the sleeper sites remain. Soon the filled-in place of an occupation bridge in the fields is reached planted with trees. At about five furlongs from the last bridge a third ises. At about five furlongs from the las fields beyond. This bridge is somewhat different from the others, the sides being formed with flints in two panels with limestone between, and sloping back considerably to the springing line. This has two or three courses of stone, the arch being turned in brick. The width and span are the same as in the former cases, but the headway is greater and the parapet walls longer and, as will be seen from Fig. 4, very
much splayed or curved. In a little way the plantation ends, the line comes level with the road, and has a few
cottages on its site. It then passed over the south of Merstham Tunnel, and pursued a south-easterly course behind the Jolliffe Arms. Half a mile or so from the tunnel the line ended at Merstham limestone quarries.
finished Godstone Green regarded as the stump of the ungone down the hill and round to the south-west, had it beer

EARLY SURREY RAILWAY BRIDGES

Fig. 3-RAILWAY BRIDGE NEAR CHIPSTEAD, 1805
ong disappeared.
In 1806 another effort was made to complete the scheme sanctioned three years before. An Act of July 3rd gave the Company power to raise the balance of the $£ 90,000$, virtually many way it could. Several accounts give the capital after place, it would seem that the money, if really raised, went to pay off debts. With a branch of a quarter of a mile into a quarry near Purley, the system was nine miles long, equal to $\ddagger 7220$ permile, or, say, $£ 7000$ without rolling stock. Considering the nature of the works, it could hardly have cost less. As regards dividends, the Merstham line was but little more successful than the Surrey Iron Railway. In 1822, however some shares were sold, which were described as paying 1 per cent. per annum, and there is even some reason to think that upon one occasion no less than 2 per cent. was divided. Still the returns were undoubtedly very small and it
The same scale of rates and tolls obtained as on the Wandsthe line, except that by the chaldron ppears, but only by the ton. This might be 4d. per mile and except, perhaps, a little manure, was probably the only article of back-carriage. Depôts for manure might be established at various points, and lords of the manor and andowners could set up wharves for their convenience, but where any of the intermediate stations were, or whether there were any, we have no knowledge. There were probably a few occupation level crossings, where the gates were normally kept closed against the railway, as the wagoners were expected their own gate-men, but owners and oce go freely about n the line, provided they did not damage it or obstruct th raffic. The Company could, seemingly, charge what raffic. The company could, see 500 lb . in weight, provided notified such charges at the wharves and toll-houses, and could exact wharfage for goods left more than twenty-fou hours. Level crossings had to be paved with "Purbeck squares "for two yards on each side, flush with the top of the flanges of the rails.
The Croydon Canal turning out a failure, and being hope lessly unable to get any nearer to Portsmouth, in 181 established a connesting line between its wharf-the site o which is now partly occupied by West Croydon salf a mile off he Surrey trams at their yord or Tamworth-road, with a cin siderable fall and curve all the way. At the canal basin was windlass, by which the wagons and trucks were drawn up the last few yards on to the wharf and unloaded into barges, which usually brought back coal direct from the ships.
The connection, in all probability, proved profitable to th Merstham line, though most likely it rather injured th: Surrey Iron Railway. It plainly gave the Croyden Merstham, and Gcdstone Company an alternative route to London, and for heavy goods intended for shipment wa certainly better than the Wandsworth route. A good deal c
tone used to be sent down from Merstham at one time the deposits of "fire-stone" in particular being in great demand for constructing ovens and furnaces. There was also some traffic, at any rate about 1820, in stone from Worth near Crawley, about twelve miles south of Merstham. Most ikely the stone trucks went on by road and rail straight through from Worth to Croydon. Fuller's earth, too, is found in considerable quantity about Redhill and Nutfield, near Merstham, and formed one of the chief articles of traffic. Being largely used in the clothing trades of the West and North, it would go to Wandsworth for transport up the river, and on by the canals. Lime, however, was the staple, and to this day Merstham grey-stone lime can hold its own with ang distances was almost prohibitory, so that to get lime in London from within twenty miles was a great point.
About the year 1807 Mr. Banks and the Rev. W. J. Jolliffe entered into partnership as building contractors on the large scale, and soon attained the highest position in that line of business. Favoured by the Rennies, they undertook the execution of many of their greatest works, and constructed, notably, Waterloo, London, and Southwark bridges, except the ironwork of the latter. In these works they employed Merstham lime, and, in fact, practically controlled the traffic on both the Surrey trams. There seems little doubt that they were the contractors to whom the tolls were periodically leased. All over the country the great solidity and excellence worthy of the ancient Egyptians, and almost seemed to emulate their enduring monuments. Both partners amassed enormous fortunes, Latterly they lived near each other in Tilgate Forest, Sussex not far from the Worth stone quarries, which were, no doubt, developed by them. Banks, who was knighted by George IV, is said to have been quite a self-made man, in fact, some
accounts say he worked as a navsy at the construction of the Merstham line. This is probably wrong, hon the deserte n Chipstead Chient plate-way. There is a fine portrait outting of the ancient plate-way. In 1833 the partnership was dissolved, and the Merstham tram, which was said, from the point of view of those days, to have "done a pretty goo rade for twenty years," probably suffered in consequence. Although the London and Portsmouth canal schemes of 1801 came to little, and an extension of the croydon Canal the the latter place in 1804 was defeated by the project was long kept on foot, ailways which had already got with, instead of opposing, the raw ays Rennie the elder was rearly a fourth of the distance. presented plans for the Grand gain the leader, and in Me presen Navigation at Tunbridge to Portsmouth, utilising a portion of the river Arun, and including " a cut or canal from the Iron Railways at Merst ham " to the main line of navigation at a farm in Burstow parish, Surrey. The plan, however, was defeated in the session of the following year. Nothing daunted, a fresh scheme, backed by the Jolliffes, Barclays, and Trittons, on the railway side, and the Duke of Norrork as to the land owning interest, was brought out im January, 1812 , from Merstham through Horsham to the projected

WILLIAM JESSOP
Wey and Arun Canal at Newbridge, but a petition to Parlia ment was all it came to. Six years later it was attempted to be revived, with, if possible, less result still.
Early in 1825 appeared the prospectus of the Surrey Sussex, and Hants Railroad Company, whose object was to unite some of the south coast ports with Brighton, and go thense to London. As horse power was to ke used unles something better was discovered, and as Sir Edward Banks and four of the Joilfes were on the board, the line would came to naught.
The rails were similar to those of the Surrey Iron Railway One which we have seen, perfect all but part of the flange, is 36 in . long, 4 in . wide on the tread, with the flange 3in. high in the middle. On the bottom are two parallel ridges, one Ther the outer edge, the other in the centre, $27 \mathrm{im}$. in length. The outside of the tread has at the left the letters, facimy C.M. \& G., so that the inscription would read continuously from one rail to the next. The other rail has one end broken off, but is plain underneath; both are only $\frac{1}{2} \mathrm{in}$. thick. This
last is probably one of the original rails, the former being a

The A
The Act of July 15th, 1837, incorporating the London and Brighton Railway Company, authorised it to purchase " the
whole of the said Iron Railway from Croydon to Merstham The matter being referred to arbitration, the sum of $£ 961$ was accepted, although $£ 42,000$ was at first asked. As the tolls of the tramway had been advertised to let for three years from January 1st, 1837, this event would seem to have been somewhat unexpected. By September, 1838, the line
was in possession of the Brighton Company, which soon after desired tenders, by November 8th, for purchasing the "iron trams" or rails, then lying either on the old contiguous Company had to be sent in to Mr. B. Cinally, by a short Act Wandsworty, beve the Merstham, and Godstone Iron Railway Company was dissolved, and ceased to exist as from the date of the Act
From 1803 to 1826 the yearly General Assembly of this line took place at the King's Arms Inn, at Croydon, and from 1827 to 1829 , and 1831 to 1834 at the Greyhound, in the same town. In 1830, however, and the last five years to 1839 in clusive, the George and Vulture, in George-yard, between Lombard-street and Cornhill, was the place selected. With the exception of the first and last meetings, which were,on June 7th, the first Tuesday May was the hour, of these interesting gatheris. Uniortunately, account of the proceedings at antioned still remain
The photographs both of this line and the Surrey Iro Railway are by Mr. W. Ash, 50, South-street, Wandsworth.

REVOLUTION COUNTER.

We illustrate a neat form of revolution counter which O. Berend and Co., Limited, are just bringing out. It has been designed with a view to meeting the requirements of consult ing engineers for a handy instrument which can be carried without inconvenience in the pocket. This counter closel resembles rather a large-sized watch. The case is oxidise The spindle projects through the boss of the ring, and a point and hollow bit are provide. A sorthen the side of the spindle indicates the position of the driving pin, on tounter is

POCKET SPEED COUNTER
and scratch are to small to see clearly in a dark engine-room. Why should no square or oval spindle be used. The marking of the dial by the same ma the ther forms of cours clockwise and anti black, and little signal dise which is either red or black, depending on the direction of rotation of the spindle, shows which set of figures is to be used. This is a capital arrange ment. The hands are set back to zero by opening the back of the case and turning a thumbscrew. The counter, which is of Swiss manufacture, appears to be excellently made.

ELSWICK NAVAL MOUNTINGS.
No. 1.
Ir is only occasionally that an opportunity occurs of obtaining trustworthy descriptions of the best designsin gun

6-POUNDER QUICK-FIRE MOUNTING

mountings, for reasons which need not now be discussed. inserted, and to these photographs are added. Special | Consequently, Sir Andrew Noble's paper, read before the | |
| :--- | :--- |
| inserted, and to these photographs are added. Special | |
| stress is also laid on Elswick mountings, because Elswick | | Institution of Naval Architects last year, furnished an $\left\lvert\, \begin{aligned} & \text { stress } \\ & \text { has taken the lead in a remarkable way in this branch of }\end{aligned}\right.$

PEDESTAL MOUNTING, 12-POUNDER QUICK-FIRE GUN
opportunity which could not be allowed to pass without | war material. British officers, when attending foreign an effort to turn it to account. It was desirable, also, if trials, have remarked that whatever new features or possible, to add to it such information as would enable special developments of excellence might appear, the
best gun mountings were apt to resemble those they had seen at home very closely. The Rendel heavy gun mountings many years ago, and subsequently the remarkable small and compact Vavasseur mountings, in which the recoil of the gun was controlled as it had never been done before, only need to be mentioned to remind professional readers of the truth of what we have said. To these we may add one equally well known, but to which attention is called, as it may have escaped the notice it deserves. Elswick first brought forward quick-firing guns, and in 1886 30-pounders were already made by them.

In 1890 the Navy had so completely adopted quickfiring guns, that while the Nile and Trafalgar, launched in 1888, had armaments containing 4.7in. quick-firing charging 100 lb . projectiles; while the lists of 1890 show that the French navy had as yet only 65 mm . $(2 \cdot 57 \mathrm{in}$.) pieces discharging $8 \frac{1}{\mathrm{l}} \mathrm{b}$. projectiles, as in the Carnot armament, and Germany had $10 \cdot 5 \mathrm{~cm}$. (4.13in.) guns in the Brandenburg class. The advantage secured by Elswick was not confined to priority of date, and the feature to which attention is specially called is the application of the sights to the portion of the carriage which did not recoil, so that the eye could be kept on the Which did not recoil, so that the eye could be kept on the line of sight without disturbance-a principle which is ceived thet it was carried out in very few quick-firing mountings exhibited at the World's Fair in Chicago in 1893.

Sir Andrew Noble's paper having been printed in the Proceedings of the Institution of Naval Architects, the Proceedings of the Institution of Naval Architects,
present object is to notice more particularly the mountings dealt with in it. Figs. 1 and 2 and a photograph on page 62 dealt with in it. Figs. 1 and 2 and a photograph on page
show an improved mounting which first came in about show an improved mounting which first came in about
1887 for three and six-pounder quick-firing guns, super1887 for three and six-pounder quick-firing guns, super-
seding the "crinoline" or "elastic" stands. The gun seding the "crinoline" or "elastic" stands. The gun
here recoils in the line of fire, and proved itself very successful on trial at Portsmouth, and was adopted in successful on trial at Portsmouth, and was and many other navies. The photograph shows the fixed ammunition. The shoulder-piece pistol grip, the fixed ammunition. The shoulder-piece pistol grip,
$\& c$., are seen in Fig. 2 and the photograph. These guns \&c., are seen in Fig. 2 and the photograph. These guns
are now principally used in tops and in the armaments of are now principally used in tops and in the armaments of
destroyers. destroyers.
Figs. 3 and 4 and a photograph on page 63 give the 3 in . 12 -pounder quick-firing gun on the pedestal mounting introduced in 1890. It will be seen that the piece is fixed in a cradle carrying a buffer fixed beneath the piece moving with it in elevation, and providing for recoil in direction parallel to its own axis. The carriage is of forged steel, in the form of a Y, having a long shank which fits into the pedestal and forms the pivot. The whole weight is taken on the end of the pivot, and the mounting can be trained with ease by a few pounds applied at the shoulder piece. The pedestal is very solid, is of forged steel, and affords excellent protection to the pivot; the base is also small, and there being no rollers or roller paths, the deck may be considerably distorted without interfering with the working of the piece. In unprotected positions it is specially desirable to diminish and simplify any portion
of the mounting likely to be struck in action. The shield of the mounting likely to be struck in action. The shield is 3 in . thick, balanced and attached to the carriage by flexible stays-see Fig. 3-so arranged that if the shield be be struck the stays yield so that a very reduced shock is
transmitted to the carriage. This mounting was the first transmitted to the carriage. This mounting was the first to be fitted with the drum and bar sight-see Figs. 3 and 4 and photograph, page 63 . In 1891 an experimental mounting of this type, somewhat resembling that in the photograph on p. 64, but without the shield, was made for a 4.7 in . gun, with 3 in . shield and sloping roof with yielding stays. It was attacked in a comparative trial with a piece on a centre pivot roller-path mounting, in which a 3 in . shield formed an integral portion of the mounting, which had as well an outer shield $1 \frac{1}{4}$ in. thick. The latter mounting was disabled after two rounds-one from a
3 -pounder and one from a 6 -pounder. This trial showed 3-pounder and one from a 6-pounder. This trial showed
that steel castings, although giving excellent tests, could that steel castings, although giving excellent tests, could
not withstand a severe blow from a projectile. The not withstand a severe blow from a projectile.
pedestal mounting received twelve rounds before it was pedestal mounting received twelve rounds before it was
disabled-four from a 3 -pounder, six from a 6 -pounder, disabled-four from a 3 -pounder, six from a 6 -pounder,
and two from a 4.7 in . gun, and it would not then have and two from a $4 \cdot 7 \mathrm{in}$. gun, and it would been disabled had the pedestal been made, as they are now, of forged steel. In the experimental mounting the pedestal was of steel plate and angle; the last projectile fired penetrated the pedestal and jammed the pivot. Even then the damage was not serious, and could have been remedied in a few hours. With this exception, the mounting was as good as ever. This type of mounting for guns up to 6 in . calibre is now almost universal in our own and many other services.
The photograph on page 64 shows the $4 \cdot 7 \mathrm{in}$. quickfiring gun on pedestal mounting, as used in our own and other services in secondary armaments of battleships, such as the Barfleur, and in principal armaments of cruisers.

Naval Engineer Appointagets.-The following appointments have been made at the Admiralty:-Fleet Engineers: H. S. RashChampion cancelled; R. Harding, to the Vernon, additional, for the torpedo boats and such tenders as have no engineer officers attached to them. Staff Engineers: J. A. H. Hicks, to the Duke of Wellington, additional, for the Cressy ; T. C. E. Hughes, to the Duke of Wellington, additional, for the Hecla. Chief Engineer: W. J. Anderson, to the Duke of Wellington, additional, for the
Gladiator. Engineers: F. Pring, to the Duke of Wellington, for Gladiator. Engineers: F. Pring, to the Duke of Wellington, for
the Glory, and W. J. Leighton, to the Research. Acting Engineer : F. Guyer, to the Wildfire, for general duties in Sheerness Dockyard Reserve. Probationary Assistant Engineers: G. W. Mathew, to the Devastation; J. E. G. Cunningham, to the Vivid, additional, for the Ocean; A. O. Wood, to the Vivid, additional, for the Ocean; H. V. Gordon, to the Majestic; E. B. Scott, to the
Diadem. Artificer Engineers: John Guthrie, Eugene Mundy Diadem. Artificer Engiaeers: John Guthrie, Eugene Mundy
Baker, and Joseph R. Drake, all to the Pembroke; Geo. Dewey, Nathaniel E. Blake, Charles H. Hotston, Frank Mill, O. H. Naylcr, Frederick D. Morgan, Archibald P. Norris, John Cook, and Go. Betteridge, all to the Duke of Wellington; Amos Nicholls, to the H. MoTeir, to the Ramblcr. Reserve Artificer Enginecr: Alcx.

LITERATURE

Waterworks for Small Cities and Towns. By Jons 1899
This forms one of the Enyincering Record series of orks on engineering subjects. Its aim is to meet the lesire shown in many letters received by our valuabl old that the book contains no new theories, nor any eferences to methods of construction or design whic ave not proved satisfactory in use. As an offiset to this, however, it is claimed that there will be found in it lected in a single volume, and troublesome to is intended to be of value to waterworks' trustees as well is superintendents and engineers; hence, a great deal of ttention is paid to some details which technically notices, all through the book, descriptions of subjects of minor importance, which would be incomprehensible but or this explanation. A noticeable feature is the number Whole pages are sometimes filled with such quotations, some of them emanating from men of high standing in
the engineering world, and nearly all of them being wellhosen.
These quotations are largely relied upon, and in one place we read that they "give such explicit information on the subject of earths that little further comment is
necessary." The subjects under discussion had been he proper material to use for earth dams. The opinions expressed are almost wholly in favour of gravel-i.e., mixed with a small proportion of clay, in preference to clay alone. As a standard for practical purposes, one o gravel, $0 \cdot 33$ yard of fine gravel, $0 \cdot 15$ yard of sand, and .2 yard of clay.
The use of too much water is deprecated in the forma ion of an earthen embankment. It is pointed out tha its employment is perfectly natural from a contractor's
point of view, because the liberal use of water will point of view, because the liberal use of water will
apparently make a very tight bank with the minimum expenditure of labour and time. With most materials employed in the construction of such works, however,
there is a strong probability of "chinking " of the bank as the surplus water dries out, if an excessive amount is ased. As to the actual method of forming the embank ments themselves, especially those containing gravel, it
is recommended that the lavers of material should be thin, that they should be rolled dry in the first instance, then sprinkled with water and rolled again for a shor fime, and then that a final wetting should be given firs before the next layer is applied. Dams and weirs are
dealt with at some length, dimensioned sketches of existing constructions bein, Sine the So are devoted to masonry dams. Here we notice that the author has simply taken existing works as his startin point. Descriptions of portions of various dams are The information is well put together, but lacks detail In fact, as a whole, this statement may be applied to the whole volume.
An interesting chapter is that entitled " Specia discussion of the motion set up in ponds and lakes b changes of temperature, whereby the top layers of wat are made to change places with those below. Mr.
Desmond Fitzgerald is quoted to explain what thi entails, and we are told how that lakes, with any con siderable amount of organic matter, and also deep artificial reservoirs where the original ground surface has not been properly stripped, have two great " overturnings " each year. These occur in spring and in autumn,
the lower layers of water, which are quiescent during the period when there is comparative quiescent during the mall temperature changes, gradually collect all the organic matter from the upper layers, and decay goes on
until all the oxygen is used up. When the "o overturning" comes all this bad water is brought up to the surface and infusoria and diatoms, obtaining a fresh supply of it is well to take water from the top of such reservoir during the periods of stagnation, and, of course, it is of importance to see well to the stripping of the sides and that many engineers are "disposed to sneer at the ide of the necessity of removing all the organic matter from the bottom and sides of the valley which is to form a drinking wor domestic supply. These are alluded to in this chapter, and a list of such organisms with the particular odours attaching to them copy of Drinking Water
are told, "but a short time to determine which species is esponsible for any given case" of bad odours. "Unforunately, it is not such a simple matter to devise a satisfactory remedy, and in the present state of knowledge
on the subject no general advice of any value can be offered.
The author next proceeds to discuss in order :-" Ground Tater Supplies"; " Springs"; "Open Wells"; " Driven
Wells"; and "Deep and Artesian Wells." Here we are given extracts from the specifications of different engineers, ne the general outlines of the different kinds of well are discussed. In one place we read-the author is
describing "driven wells."-" Finally, Mr. J. L. Norton modified the American driven-well practice for military during that campaign-the British Abyssinian compaig in 1867-that driven wells using small tubes are fre quently called Abyssinian wells in Great Britain and on quently called Abyssinian wells in Great Britain and on
the Continent." Numerous descriptions, not in most
cases very detailed, are given of different kin
in America, on the Continent, and in England.
Pumps and pumping stations are next dealt with This portion of the work requires no special mention except perhaps in so far as it contains an interesting
chapter on the air lift pump. One authority quoted Mr. D. W. Mead-says of this system: "It is the best combination pur oppliance which hatbeen placed on the market for obtaining a large quantity of
water from a small hole;" and further, "In cases where it is a question of volume and not economy, the air left has this advantage over everything else
There is an interesting chapter on filtration and filters, the action of which is described very lucidly. Then we the action of which "Istakes and Intake Pipes,", . The Pipe System," in which we have descriptions of flexible jointed pipes for submersion in water, and the laying of these and "Service Reservoirs and Standpipes," which latter and dealt with in some detail. None of these, however contain any special information-save perhaps of some of the standpipes-which is not common knowledge. The last chapter but one deals with "The Quantity of Nater
to be Provided." This is largely taken up with the to be Provided." This is largely taken up with the
question of how much provision should be made for coping with outbreaks of fire. We are told that "probably nore wist of water needed by towns and small cities than in any other feature of waterworks design;" and further, that " a good fire stream takes water at the same rate as
about 6000 people using the water for domestic purposes alone." This chapter contains one sentence which is worthy of quotation at length.
has been learned by experience that the draught during few hours may be at twice the average daily rate per capita during the year. On Monday mornings, for in stance, when washing is done, and late in the afternoons of hot days, when lawes are sprinkled, there is an exces-
sive demand for water, for which provision should be sive demand for water, for which provision should be
made." The last chapter deals with the management and general upkeep of waterworks. Here there is discussed at some length the question of checking wastewhich is so much greater in the United States than in this country-meters, and the cleaning of mains. Here, too, electrolysis and the destruction of water pipes by
this agency are mentioned. One statement made by the author in this connection is that tramways and electric railway companies "should be just as much interested as the water departments in keeping the return currents on the tracks, for the wandering electricity means waste of power, and consequent
Goodell is no electrician.
Reviewing the work as a whole, we have which in its way will be useful in several directions. The author is evidently well versed in American wate works practice, and, in addition, has made himself con versant, by reading, with a large number of waterworks
in this country and on the Continent.

Die Ankerwicklungen und Ankerkonstructionen der Gleich

 strom-Dynamomaschinen. Von ESpringer. 1899. Dritte Auflage
Thrs work consists of a very thorough and detailed description of the various methods of armature construc tion and winding for direct-current dynamo machines and the author is Professor and Director of the Electr School of Karlsruhe, in Germany, which doubtless man of our readers are aware is one of the best fitted electro technical laboratories in the world. The author points out that the third edition differs considerably from the second, and has received essential additions. He has also described in greater detail his own series parallel method of winding, which he states has almost entirely superseded the ordinary parallel winding for multiple pole machines. After a general introduction the author shows attempt to describe particular windings for any given machine in this portion of the work, but deduces general formule in the form of equations, in which it is merely necessary to substitute certain values which themselves de He then discusses the subject of ring armature winding in the same way for two-pole and multipolar machines, and describes the Morden-Victoria, the Arnold, and other windings ; both parallel and series methods are dealt with and very well drawn and clear diagrams illustrate the descriptions. Drum-armatures are next treated, beginAltenack, and the various subsequent forms are describel Special attention is devoted to the author's series paralle winding, and he states that large multipolar drun armaure machines should have bar windings and not wire vindings ; it may so happen that the current is too smal used. In such a case, if the usual calculations for serie windings be tried, it may prove that the number of bars and collector strips would be too small, and then the author considers that his series parallel winding removes and at all times me also points out that it is very difficult with loop winding, so that the machines shall work faultlessly, and it frequently happens that while a particular machine will give good results, another of exactly imilar design will spark and heat very seriously.
The cause of the difficulty referred to appears to be which may be produced by the excentric position of the armature, by want of homogeneity in the steel, by unequal size of the poles, unequal strength of the lines of force or through unequal turns upon the limbs of the magnets. The author subsequently deals with the calculation of eactionctin armature reactions in special windings. The systems of winding
designed by Swinburne, Brown, Brown-Morden, aud Sayers, are very fully and carefulty described, and illus-
trated by very clear diagrams. Open windings are deal with in a separate section, and the author clearly explain why the small number of coils is advantageous in the case of armatures used for arc lighting, as che pensiti than it otherwise would be
The second portion of the volume deals with the con struction of the armature framework itself, and detailed illustrations are given of various forms of armature bodies with the different methods of constructing the ribs or other supports for the windings, the derice adopted for securing positive driving of-the coils, th
forms of Paccinotti teeth grooves, tuwnels armatures, details concerning the stamping of the disce slom the best means of binding to guand agint daner tor the effect of centrifugal force upon the wires The author then cavefully describes and illustrates the the varieties of collector segments, and the methods adopted for fixing them in poition, and also the meas used for rennectivg the pindinge to the semmente. He io evidently compared the advantages of the varied forms of end connections, and illustrates the types of template end connections, and ilustrates the types of template
and special forming blocks used for securing accuracy in manufacture

The volume closes with a series of plates of actual machines beautifully drawn to scale, and very similar to those published in Mr. Gisbert Kapp's recent work. The hole subject it revid an a and for, but is is evidenind of the student rather thaw na formula to the with the stuent rather than to enable him to grapple with the practical problems of the in conjunction with the recent work by Mr. Fisher Hinnen, as each will act as a valuable commentary upon the other.

legraph sans Fils. Par Axdre Brocs. Gauthier-Villars, Imprimeur-Libraire. 1899 .

The author of this work is a Professor of Physics at the College of Medicine, and has written the volume with dew describe the latest results obtained in wireles telegraphy for the benefit of those who, without bein specialists, have so much technical knowledge as to be deduced from the results obtained, and also the construe tion of the apparatus employed. He very rightly point out that a great deal of rubbish has been published in the daily papers by unscientific writers, and that this has le certain persons to doubt whether there is any truth in the recorded results, while others, who are convinced of the truth of the statements regarding the possibility of tele graphing without the use of wires, are still uninformed a to the precise means by which this result is attained
He, therefore, proceeds to describe in a somewhat popular manner the historical aspect of the question. sketching lightly the work of the early electricians, ami giving an idea of the general laws underlying the subject general notion of the work of Morse. Lord Kelvin, a general notion of the work of Morse, Lord Kelin
Hertz, Maxwell, Blondlot, Lodge. and others. He say that he has not attempted to follow strict chronological sequences, but has described certain experiments of
Blondlot before those of Herty because they mark the almost imperceptible transition from telegraphy by mean:
Tres and wireless tele
The author holds that the three great names of Fresnel, Maxwell, and Hert/ will be joined hereafter, though they belonged to different nationaities, and his aim has been to make known their works in popular form.
The Morse apparatus is described in some detail, and also the syphon recorder of Sir William Thomson, and then the attempt is made to explain various electrical phenomena by hydrostatic and dynamic analogies. The exciters of Lodge, Righi, Bose, and Blondlot are described, and then the discoveries of Hertz are reached.
The author pays special attention to the design of the coherer, and takes also special pains to explain that the velocity of propagation of an electric wave is comparable potentie velocity of transmission of light. At hig mettials and frequencies the electrical effect upon the sketaterial at all. The researches the is insisted upon. After describin the Marconi apparatus, and the results already obtained in signalling across the English Channel, the autho points out the possibilities of signalling to ships at sea and that sphere, and would bected by electricity in the anm The author considers that for distances of say, thirt miles, the speed of transmission of the Marconi apparatu is less than that of the ordinary telegraph, but it must be remembered that the varconi apparatus is quite new, and doubtless subject to improvement. In conclusion, the author considers that while the application of wireles telegraphy appears at present to be strictly limited, it may afford means of considerable improvement, in the service o existing long lines of telegraph it may be possible to existing ive wa es instead of ordinary currents along the existing wires, and to use a coherer at the end of the
wire. This might very probably remove many difficultie now encountered in ordinary working of telegraphs.

SIEGE TRAIN LOCOMOTIVE
kerr, stuart, and co., limited, stoke, engineers

SIEGE TRAIN FOR THE WAR.
We are enabled to illustrate the trucks and locomotives forming the siege train which was supplied to the War-office by Kerr, Stuart, and Co., Limited, last November. It will be remembered that a very smart piece of work was done in connection with this train, to which it may be interesting to recall to our readers' memory. The inquiry reached the firm's London office on Monday, November 13th. Practically nothing required was actually complete at the date of the miles of straight and one mile of curved railway, with tive seepers, \&c., thirty sets of points and crossings, two sets of
and were in such a condition that they could be despatched without delay

All the points and crossings were manufactured in the time at the company's works, and the mile of curved railway was bent to template, there being no less than three different irons required company had in stock all of the channel wagons requred for the construction of the four-wheeled wagons and a few chilled cast iron wheels. Some of the chan nels for the bogie wagons were also in stock. The balance Owing to fog during Saturday and Sunday Noock in Liverpool and 19th, these got delayed in route to the , November 18th at Stoke, and the North Staffordshire Railway took special
the 22 nd-a week later-after having been run for two days in presence of War-office authorities. Some of the men ngaged on this part of the order vor hree days and three mights without stopping. The testncluded running the locomotives on a special railway curved to G0ft. radius, with full steam pressure. The War-office also insisted on a hydraulic pressure test of the bollers of 280 lb . On the square inch-the general working pressure being only 140 lb . We are informed that they were gauger uring this test, and showed lithe deflection and absolutely no permanent set when the pressure was removed. We are wabe in a prop the erent and of course permission had to be obtained to divert ment, and, of course, permission had to bo obtained to diver them. The class of locomotive is exactly not same as ha Egyptian Government, but also to those of the Cape and Russia. Details of the locomotives are as follows:-The ylinders are 6 in . in diameter, and have a 10 in . stroke. The gauge is 2 ft . The diameter of the wheels, of which there are our, all coupled, is 24 in ., and the wheel base is 3 ft . 6 in . The diameter of the axles is $3 \frac{3}{8} \mathrm{in}$., and the journals are $3 \frac{1}{2} \mathrm{in}$. by 5 in . There are thirty-six 1 in . tubes in the boiler, and the fre-box is of copper. There are 83.5 square feet of heating surface in the tubes, and 16.5 square feet in the fire-box, making a total of 100 square feet. The grate area is 3.33 square feet. There are water tanks at the sides coming The weight when empty is 5 tons 10 cwt , and when gallons. The wior 6 tens 12 cwt The cylinders are placed outside and there is a light metal awning over the driving platform Most fortunately this type of locomotive is one which has ately been ordered in considerable numbers for construc fional work abroad, and in consequence of this nearly all the parts were in a more or less forward condition. Even allowing for this, however, it was a wonderfu! piece of work to get them out in the time.
Fig. 1 shows the four-wheeled wagons. They had a platform 11 ft . by 4 ft . 10 in . The wheel base was 5 ft . 6 in ., and the wheels 16 in . in diameter. They carried $3 \frac{1}{2}$ tons. They were fitted with a brake on one wheel.
Fig. 2 shows the bogie wagons. These were 16 ft . long inside the end posts and 4 ft . wide overall. They are to carry six tons, and will be used for the transport of guns. Onc
wheel of each bogie is braked. The wagons are in reality simply flat-platformed trucks limited to 4 ft . wide, so as to accommodate the gun carriages, and provided with removable check posts. It was necessary that the platforms should be no more than 4 ft . wide, so that gun carriages could be placed on them, the wheels of these hanging down on either side. The makers knew that the platforms must only be 4 ft . wide, but being unaware at the time the order was given for what purpose the wagons were going to be used, they had put the sockets for the check posts outside of the wagon frames When the War-office officials came to inspect the work thi was at once discovered and orders given for the sockets to be put on tittle time, arels. Nall the more alteration that the order was executed within the prescribed limits.

Fig. 1-31-TON FOUR WHEELED WAGON
diamond crossover roads, twenty-four four-wheeled wagons to carry $3 \frac{1}{2}$ tons each, fifteen bogie wagons to carry six tons each, and two six-ton bogie brake wagons, was given on Saturday, November 18th, to the eompany's head office in London, and the majority of the work, including both locomonesday following, November 22nd, four dayslater, including the Sunday. The remainder was completed and despatched well within the contract period, which was ten working days.
pains by making inquiries along the line to find them and Sake them on to Stoke. The springs were manufactured at Sheffield and the chilled cast iron wheels in Edinburgh. At each place the firm had a representative, who, as and when to the works. Special trucks were attached to passenger train express trains for the purpose. There was also a representative in Liverpool arranging for the reception and loading of the finished material on board the ship which was to convey

In addition to the foregoing there were also two 6 -ton bogie brake wagons. These were provided with a brake to each of the eight wheels; and with regard to brakes we may mention that only after the order was given was the exact torm or brake to be used decided upon. Naturally under throughout and stock articles could not be resorted to. The brakes are applied by means of hand wheels at the end of the wagons. The bogie brake wagons were of simila

This was a remarkably short space of time, and we have investigated the matter in order to find out how it was managed, making a special journey to the company's works at Stoke for the purpose. As soon as the inquiry was received the company satisfied itself that such material as it had not got in stock could be at once procured from other firms. It was in an excellent position to carry out such an order: Besides the work which it carries out itself, it has large contracts on hand with other firms. These, by arrangement with its clients, who co-operated in a most laudable manner, it was arranged might be drawn upon. For instance, the rails and sleepers sent out were manufactured at Mosbay,
it to Cape Town. Kerr, Stuart, and Co. are loud in their praises, not only of the North Staffordshire Railway Company, but of all the sub-contractors, for the whole-hearted manner in which they all dealt with the work.
The locomotives sent, of which there were two, were originally destined for the Egyptian Government, and had been on order some little time. They were, however, not in a very advanced state. The frame plates, although in stock when the inquiry was received, had not been treated by the frm in and menced. They were actually despatched from the works on
design to the foregoing bogie wagons, and are presumably meant for the same purpose, as here again the check posts are not put outside the frame work
The rails supplied are of the Vignolles section, and weigh 20 lb . per yard. They are in 21 ft . lengths. The sleepers are of channelled steel of trough section, the underside of the tops being provided with a thickening piece in the centre. For the fixing of the rails two tongues are punched at are so arranged that the tongues will project comer These of the rail on each side when this is plaed in position the rail on each side when this position

6.POUNDER QUICK-FIRE MOUNTING

sIR W. G. ARMSTRONG, WHITWOR'TH AND CO., LIMITED, NEWCASTLE-UPON-TYNE, ENGINEERS

SHIPBULLDING AND MARINE ENGINEERING DURING 1899. No. 1.
The statistics of tomnage built or building cmbodied in the elaborately compiled statements presented by certain enterprising daily newspapers at the end of each year are beyond question highly interesting, but the accuracy of the figures-notwithstanding that they are the outcome of information obtained at some pains and considerable expense, no doubt, from shipbuilders themselves-and nore especially the accuracy of the deductions made and the comparisons drawn therefrom by the compilers, leave
a good deal to be desired, by the professional reader at all a good d

Tonnage is a term with such plurality of meaning that horough uniformity in its use can scarcely be expected in eturns obtained from such a large and more or less rresponsible number of informants as the builders of craft, big and little, rough and fine, embraced in the conveniently broad and general term shipping tonnage. Year after year discrepancies and exaggerations, unintentional or designed-which, of course, the newspaper compiler can scarcely be expected to rectify or even challenge-are made, and these invariably take the direction of magnifying the work of particular firms and districts. These errors, though not always allowed to pass-our shipping contemporary Fairplay, for example, this year, as in some previous years, directing attention to them-are too complex or too immaterial for professionally interested and initiated readers to attempt setting right, and, of course, it never occurs to the "man in the street" to question these statistics and comments of his favourite newspaper.
Nor is it our purpose in what follows to undertake the onerous and, after all, perhaps needless task of criticising and revising such statements. Our object in referring to the matter at all is to make clear that, while availing ourselves of the returns thus enterprisingly got together by papers like the Newcastle Chronicle and the Glasgow Herald, it is idle to affect an accuracy which takes account of fractions of a ton in 6000-ton vessels, and of every little smack and sailing boat turned out, many of which have been taken cognisance of in order, apparently, to swell the grand aggregate to the utmost. The figures hereafter given are not presented as accurate to half a ton or a ton, and the deductions drawn are based not so facts. Our account, too, will have le:s to do with the volume of tonnage produced by individual firms or dis-
tricts than with the outstanding technical features of the noteworthy productions of the vear
As regards the volume of work accomplished, the yea 1899 is ahead of all preceding years since shipbuilding United Kingdom, and it applies also to most, if not all, of the foreign com, and it applies also to most, if not all, of able scale is carried on. Dealing, meantime, considerable scale is carried on. Dealing, meantime, only with figures the output of the several districts, including outligures the output of the several districts, including outlying ports; also alongside, for comparison, the output
for the vear previous. In almost every case, it will be for the year previous. In almost every case, it will be tricts, and thus 1899, in particular instances as well as in aggregate result, has been the "best on record."

The relative importance of the several districts is readily seen from the table, but a few explanatory remarks are necessary regarding the figures. Sail tonnage in the ordinarily accepted sense of the term is at present non est in British shipbuilding activity. At least rew, if any, ocean-going sailing vessels were built in Britain during 1899, although a number of vessels of moderate size are now on hand in Scottish districts. It is misleading, therefore, to find "sail tonnage" bulking very largely maced in the buiders retums. What is so named for want of any other convenient classification really consists for the most part of such-like craft as barges, lighters, pontoons, \&c.-craft, in fact, not mechanically propelled-and also of coasting smacks, yachts, and small sailing boats. In our table all have, for conveni ence, been classified under steam tonnage, and although this does not very materially affect the tonnage figures, it is otherwise with those referring to the number of
vessels. Deductions might, in fact, be drawn from the two series of figures, as to the average size of steamships leading the several districts, which would be quite mis. leading. Thus: On the Clyde itself-the premier river and the recognised home of specialised shipbuilding-as many as forty of the $2 s 0$ vessels in the table, consisted of craft neither designed to be directly propelled by mechanical means nor yet by the unbought wind," but tributing to most part the comprised for most part capacious barges for river carriage purposes with which the Thames is countries. Of the 138 vessels were steel the Thames is credited, no fewer than 117 were steel and iron barges or lighters, one firm turning certainly another 48 or such craft. Important enough, certainy, but not to be classified with sail tonnage, strictly speaking, any more than with steam tonnage. Of the 157 vessels same way were on 5 e ligters and keels, and on the Merses barges, ketches, luggers, and sloops
The tonnage output given for the various districts also includes, of course, the work produced for our own and other navies, and it should be remarked that " tonnage " in respect of such work means " displacement " tons, or tons weight, as distinguished from customs measure tons of 100 cubic feet capacity in the case of merchant shipping. On the Clyde, naval work amounted to 42,100 displacement tons spread over nine vessels. On the Tyne, naval work amounted to 30,120 , made up by eight vessels. On the Thames it reached 3200 tons, made up almost wholly by high-speed torpedo boat destroyers; and on the Mersey naval work amounted to 8640 tons, made up by three vessels. Adding these contributory items to the work given in the table as having been turned out by the dockyards, we have a grand total of 138,560 tons of warship work for our own and other navies-equivalent to 8 per cent. of the total tonnage produced.

With respect to the number of firms contributing to the output of the respective centres, the Clyde total reof forty-fouring smal firms out of account-the work work of fourteen firms, the Wear thirteen firms, and the Tees and Hartlepools together nine firms. Not so many years ago it was the custom to pit the whole group of North-East Coast rivers against the Clyde in making comparisons as to the measure of activity and success attained in turning out ship tonnage during any year.
12. POUNDER QUICK-FIRE GUN ON PEDESTAL MOUNTING sir w, g. aimbtrong, whitwohth and co., limited, newcastle upon-tyne, exgineers
(For description ser pagr 59)

On this occasion, and for several years past, the Tyne itself forms no insignificant competitor of the Clyde, while the combined efforts of the three North-Fast Coast rivers, comprising thirty-six firms, results in 860,000 tons being produced; a very striking performance compared with that of the Clyde 491,000 tons by forty-four firms. Tonnage is, of course, but a rough, if not misleading, measure of the work iprolved, and of the value of the product concerned. There is no gainsaving that the Clyde figure represents, in these respects, quite as much if not more, than the combined outcome of North-East if not more, than the combined outcome of North-East oast activity. In spite of the gradually encroaching dvances of tye buiders and elaborately-fitted mail boats, dredging, and telegraphClyde specialities - and notwithstanding the high Clyde specialities - and notwithstanding the high
renown of several Tyne firms in naval production, the Scottish river still holds the palm for the volume of its output of highly specialised and intrivolume of its output of highly specialised and intri-
cately fitted shipping "tonnage." Of the 240 steamers which mainly constituted the Clyde output, 24 seamers which mainly constituted the Clyde output, 24 dredgers of various types, sand pump as well as hopper, dredgers of various types, sand pump as well as hopper, eight were hopper barges, eight were paddle steamers,
seven were stern-wheelers, 27 were trawlers, liners, and seven were stern-wheelers, 27 were trawlers, liners, and
carriers, 12 were steam yachts and launches, while at least 20 were steamships of the mail and passengerleast 20 were steamships of the mail and passenger-
carrying type, ranging in tonnage from 14,000 to 3300 tons. That other districts are now sharing, however, in he high-class work formerly almost wholly overtaken by the Clyde is undoubted. Evidencing this, we need only mention the Cunard liner Invernia, launched on the Tyne some months ago; her sister ship the Saxonia, lannched on the Clyde later; and later still, the Saxon for the Union Company, at Belfast. The launch of these vessels in the respective districts at or near the end o the year 1899 fitly brought to a close a year of shipbuilding records of various kinds, which indeed began with the launch of the White Star leviathan Oceanic-the vessel of the century.

PROPOSED FIECTRICAL SUPPLY COMPINY FOR SOUTH WALES
Among the Electrical Supply Bills before Parliament during the coming session will be the "South Wales Electrical Power Distribution Company." The promoters of this company have just issued what is called a "Statement for the proposals of the company are. The capital of the company is to be $£ 1,000,000$, divided into $£ 750,000$ of ordinary share capital, and $£ 250,000$ of debenture capital. Power is sought to construct three electrical generating stations, cne at Neath, one at Pontypridd, and one at Pontypool. From these supply centres the company proposes to spread out an ricity to anyone who wishe to 1 it thoughout the whole of the county of Glamorgan and so much of Monmouthshire as lies to the west of the river Usk. This area contains 1050 quare miles, and contains collieries, steel works, tin-plate and copper works, stone quarries, railways, tramways, engineering and ship repairing works, and factories of all kinds. It is argued that electricity is coming into almost iniversal use in manufacturing, engineering, and other works on the Continent and in America; that hence, these works effect great economies in their manufacture ; that the works of South Wales are in competition with these foreign manufacturers, and are suffering, and may suffer still more in the future, for lack of the "electrical facilities which their vals enjoy. Furthermore we are imformed that there are cossesses every other advantage but which cannot be carried possesses every other advantage, but which "annot be carried time cnly $16 t$ square miles of this area of 1050 square miles is supplied with electricity. It is urged that there will be a further facility to the public, in that electric tramways may be run in those districts which otherwise, owing to unequal raffic conditions, could not economically run tramways. All the local authority would have to do would be to lay rails, \&c., and buy current by meter as and when it was required. This would prevent having large generating plant comparatively idle for the best part of the week and only busy on market days. Electricity would also be available for lighting power in villages and country houses. The company cvidently has
high aspirations, as it aims at the prevention of the denudation of villages of their population and the overcrowding of towns, for it is argued that if workmen can have power to work with they will remain in the villages. The small-power users in the country will be able to buy power as cheaply as they could buy it in towns, and this, it is hoped, will enable them to manufacture "nearly as cheaply as the large steam-power works and mills." It is also anticipated that farmers will use electric power for many agri cultural purposes. Certainly the promoters are very sanguine in their anticipations, and have drawn attention to every possible small consumer. The average price per Board of Trade unit at present ruling in South Wales is about 5 d . The maximum which the new company would be 4 d . per unit for an intermittent supply, and 2d. per unit for a regular supply. "It is probable supply, and 2d. per unit for a regular supply. "It is probable
that the actual charge would be much less." We are told now that in America and on the Continent current is supplied to large consumers for trade purposes at as low as $\frac{7}{4} \mathrm{~d}$. per unit in some cases. The average price taken over a large number of cases is $\frac{1}{2} \mathrm{~d}$. This would mean, say, anything up to $£ 10$ per annum for a horse-power, instead of from $£ 15$ to $£ 20$ per annum.
The company does not seek a monopoly. It would be hardly likely to get it if it did, seeing that there are existing elec trical interests in its area. It does not seek to supply electricity within an already authorised area save to "wholesale consumers," and a wholesale consumer is one who undertakes to take not less than 20,000 Board of Trade units per annum. distribution mains, and tale electricity from the new hay pany in bulk. "There is ample room both for the company and also for the lighting businesses of the local authorities, and neither need interfere with the other." Of course, this is the same cry as has been raised by large supply companies before, and some of them have not lived through the ordeal of a parliamentary committee.
This particular company differs very little from those which have gone before. The cheapness in production is to be due to close proximity to collieries and to " the diversity of the needs arising in a large community of consumers, which diversity is found to average the consumption of power
at a high ratio throughout the twenty-four hours." Exactly
4.7IN, QUICK-FIRE GUN ON PEDESTAL MOUNTING sif W, g, ARMSTRONG, WHitworth, and CO., LINITED, NEWCASTLE.ON-TYNE, ENGINEERS
(For deecripition am paye 59)

his argument has been put forward before, and in all probability it is correct, but the company may find it not quite so correct as it evidently hopes it will be. It is probably quite true that there will be a large day load, but it is almost equally probable that there will be the same evening peak which there is now, and this will necessitate a large reserve of power which will be idle during most of the twenty-four hours. In the evenings of winter, for example, there will be all the trains and light railways-if there are any-running will all be running at their full with power and light: and then there will be the company's other lighting business, to which it is certain to aspire. The argument is that all the various and different directions in which electricity will be supplied will average one another, and that there will be an almost even output. Of course, as we say, this may be found to be so, but we very much đoubt if it will be-at all events, to the extent foreshadowed.
The "statement" concludes with an appeal to "every person holding office, either on a Town Council, Urban Dis trict Council, Parish Counci, or as a magistrate, in South Wales," to support the work, and to further it by their aid and several directions are given in which this can be done. Of course, this is a clever move on the part of the proposers, and who have therefore endeavoured to take the bull by the mans and persiade these officials that the company will horns and persuade these officials that the company wil

A new telegraph line between Madras and Calcutta has now been practically completed, says Indian Engineering. Copper conductors are used entirely for the new line, so as to Mannad. A third line will also be constructed to connect up Bombay to these lines. The copper wires along the new ronte are supported on oil insulators, so as to minimise the effect of the saline atmosphere along the coast.

THE MANCHESTER ASSOCLATION OF ENGINEERS
Mr. Henby Hodgson, the newly-elected President of the Manto the members on Saturday last, taking for his subject "Our Position as Engineers." The question, he said, to which he wished to draw attention was, whether in the race for the world's mechanical requirements we were holding our own, and, if so, were we likely to continue to hold our own. He was no pessimist, but he was of opinion that the conditions of production would have to
undergo considerable modification if we were to continue to oceupy the foremost place in the rank of the mechanical producers of the world. One of the modifications required had reference to the relations between capital and labour; these ought under uo circumstances to be antagonistic. Although at present there was no open display, an undercurrent of in their power to advance the interests of the emplovers, which in the long run were also the interests of the workmen themselves. Piecework, if it could be put on an equitable basis, and so formulated as to meet all cases, seemed to him to promise a good
measure of success, and in such work as lent itself to a fixed hasis of prices had proved fairly successful ; but there was a fly in the amber in this case. A rate was fixed for the production of a cer tain piece of work ; the workman laid himself out to do his best considerable sumse of time became very expert, and earned a and on the ground that he was earning too much, the pricc his best endeavoursect of which was to prevent the man usmy piecework, which so far as he could judge, must militate against plecesystem. This was a want of clasticity to meet the varying prices of the article manufactured. It appeared to him that in the case of such manufactures as admitted of being worked on the piecework principle, the price paid for production shonld be the sale of the ay ele. Srice obtaimble iore compreh market for piecework would, however sooner or later bave to be adopted and a system of industrial partnership seemed to be a solution of the problem. In this partnership capital should have some fixed minimum rate of interest, and the workman a fixed minimum rate
of wages, the profits resulting, after these had been met, being divided equally, or in some other proportion, between the twc. This scheme might'answer if profits were 'always certain, but the difficulty in that respect would be met \&by not dividing
all the profits when made, but keeping in hand some'proportion to build up a reserve fund from which the minimum interest on capital would be made a certainty in the time of the lean years. The workman's wages having been paid weekly, he would have nothing to receive at the end of the term unless profits had been made, and he was inclined to believe that the incentive This idea might be deemed U topian, and it might be said it had been tried and failed; but he believed the tendency of the times in several directions was to bring it within the range of practical politics, and, at any rate, the rudiments of such a scheme were in saccessful operation in the manufactured iron and steel trades in some districts. Mr. Hodgson then proceeded to deal with the inIn the locomotive building trade, he remarked, they were all aware that a number of important orders had been recently placed in America, owing, it was said, to the inability of English firms to undertake the required delivery. With regard to stationary engines, they all remembered what took place recently at Glasgow, Where, out of a requirement for four lange engines for tramway our best customer for stenm engines, now sent the largest pmortion of its orders for stationary engines to one firm in Switzerland. Our suprenaacy in the shipbuilding and marine engine building trades was also being assuiled. In conclusion, Mr. Hodgson remarked that when the present abnormal demand was over, and the testing time ; the competition would not be confined to ourselves, and unless wo took steps to place ourselves in a better position to meet the outsider, he was afraid we should in the end come off very badly.

The traction engines with Sir Redvers Buller's fores Natal are sad to be doing excellent work, hauling the hery wagons out of holes and swamps with the utmost ease.

RAILWAY MATTERS

All the London and North-Western Railway lines leading out of Crewe to the North
hridges will have to be erected.
A peputation from the Leeds Corporation inspected the Sheffield Electric Tramway system this week, travelling over
the ecmpleted section, inspecting the power house, and visiting the
car shed, $\&$.
The Secretary of State for the Colonies has appointed Mr. F. Bedford. Glasier general manager of the Sierra Leone
Government Railway. This railway is the cnly British railway that is open for trattic in West Africa.
The first work of extending the London, Brighton, and South Coast Railway Company's terminus at Victoria has been
commenced by the closing of the Grosvener Hotel, which the comcommenced by the closing of
pany purchased for $£ 210,000$.
The northern express from St. Petersburg to Ostend in connection with the boat service to London ran off the rails on
Thursday morning, the elth inst,. as it was entering the rixway station at Brussels. The locomotive
and three passengers slightly bruised.
The declared value of locomotives exported from this
Tutry
 and in 18944750,039 . So that in the last five years the value has
about doubled, and no doubt would have been higher had not the
builders beel already very busy on home orders.
The railway accidents in the United States in November numbered 266 , of which 122 were collisions, and 137 derail-
ment. Fifty-six persons were killed, and 204 injured. A general ments. Fifty-six persons were killed, and 204 injured. A general
claxsification shows that 11 were due to defects of road, 52 to
defective equipment, 53 to negligence in operating, 10 to unforedefective equupment, 53 to negligence in operating, 10 to unfore-
seen obtructions, and 140 were "unexplained."

The death is announced of Di. Edward H. Williams, of the Baldwin Locomotive Works. He was formerly manager of
the Pennysyvania Raiload, ,in appointment which he gave up in
1870 to hecome n partner in the above works. Dr. Williams was hic
187 to to heomene a partner in the above works. Dr. Williams was
is years of aye, nnd was widely known by his many philanthropic
The light railway movement at Aberdare was sum-
arily ended last weel. At the inquiry an objection was lodged marily ended last week. At the inquiry an objection was lodyed
which was decided to be fatal, namely, that the application of the promoters dealt with an area entirely within the district of one
sanitary authority. The application was opposed by the district samitary authority. The application was on
conncil, the Taff Vale Ruilway, and others.

The Great Northern Railroad of the United States is introducing a system of , roofit sharing with their employes next
month. It is stated that the management has deeided to recommend. to the stockholders a plan for a distribution of a large block vice of the company for a certain number of year
Ar Pontypridd last week the proposed light railway for the Rhondda was the subject of public inquirr. The oppo
sition was strong, and amongst others the Taff Vale Railway urged
the great expenditure that had been incurred to meet public needs. the great expenditure that had been incurred to meet public needs. annually, and over a million at Porth. Examination postponed

Operations in connection with the extension of the Glasgow and South-Western Railway from North Johnstone to
Dalry will shortly be commenced. The new railway will relieve the great pressure of passenger and goods traffic on the main line.
At present the stations are situated at some distance from the contres of population; buto on the formatione of the new lin
will te provided with more convenient travelling faciities.
At Laxey, in the Isle of Man, a place famous hitherto for its ancient water-wheel, there has just been completed a
hydraulic plant for working the electric railway between Douglas
and Rmmey during the winter months. The principal advantage hydrauic plant
and Ramsey during the winter moctrh. The Princtipal advangage
in connection with the use of hydraulic power at Iaxey is that it enables the ontire steam plant to be shat down for about seven
months in the year, during which time the pressure of traffic is at As an apt illustration of the soundness of the views we
aresesed last week concerning the value of fire-box surface, we expressed last week concerning the value of fire -box surface, we
may cite a recent performance of Mr. D. Drummonds engine
No. Tit, fitted with water-tubes in the fire-box. The engine
recently took the South Arican expes wes passengers or luggage from Waterloo to Southampton in five
minutes less than the booked time. The engine never lacked
team of full pressure the whole way. team of full pressure the whole way
As evidence of the tendency towards heavier locomotives and longer trains used on American railways during recent
yeare some interesting figures have been published regarding the
weights of engines turned out by the Brooks Locomotive Works in weights of engines turred out by the Brooks L. Locomotive Works in
the evears 1891 and 1899 . The average weight of the engines built in the former year was 822 tons, and in the latter 121 tons. The
figures are hased on an output of 226 and 300 ocomotives. respec-
tively The weights given are thoee of engine and tender in workligures are hed on The weights given are those of engine and tender in work-
tively.
ing order. A FEw months ago we published a letter which gave
letails concerning the routes likely to be taken by the projected detai]s concerning the routes likely to be taken by the projected
line of railway that will bring the railway system of European
Pe Russia into direct communication with Russian Central Asia, It
is now announced that the sum of 100 million roubles will be required for the construction of the line in question. The
Imperial Council discussed recently the Budget of Extraordinary Imperial Council discussed recently the Budget of Extraordinary
Expenses, and a vote of ten million roubles was then granted to
the Ninistry of Ways and Communications for use turing this year. The length of the projected railway will be 2000 versts, or about 1335 miles.
Tue Light Railway Commissioners held an inquiry last wy the Town Council, to construct a line two and three-quarter
hite
miles lon throug the street of the torough The scheme is to ny the lone through the street of the borough. The sheeme is to
connect the local railway stations with the summit of the Cotswold connect the local railway stations with the summit of the Cotsiwold
Hills, a ditance of six miles, thereby opening up the rual dis.
tricts at present untouched by any line. The scheme in its complete tricts at present untouched by any line. The scheme in its complete
form was before the Commissioners a year ago ; but suceesful form was before the Commissioners a year ago; but successful
objection was raised to its passage through a particular street. An alterrative route was now proposed, and no serious objection was
taken. The line will be worked on the electric overheat trolley

The Midland Railway Company is seeking powers to f600,000 may be raised by the issue of debenture stock, and
$£ 1,800,000$ by the issue of new preferred converted ordinary stock, and new deferred converted ordinary stock, or of Midland
Railway 2 $2 \stackrel{\text { per cent. perpetual preference stock. Amongst the }}{ }$ Railway $2 \frac{1}{2}$ per cent. perpetual preference stock. Amongst the
general pproposes of the ocmpany for which the new eptital is
sought is included the widening in in Derbyshire for shight is included the widening in Derbyshire, for a distance (f widening of the Dore and Chinley line natatrally follows the com-
pany's widening of its main line between Sheffild and Dore, for the completion of which they are seeking further time, viz, to

NOTES AND MEMORANDA

There were 954 ships, of 267,642 gross tons, built in the United States last
160,132 tons gross
Steel, as a
nited Kingdom dopbuilding material, was used in the
The Admiralty have appointed a civilian expert at Plymouth to give a number of naval medical officers in the Royal
Naval Hospital a course of instruction in the use of the Rīntgen

The largest steamers which were launched in the nited Kingdom during last year are the following:- Oceanic, 7,274 tons grass: Ivernia, 13,$900 ; \mathrm{Mi}$
2,$970 ;$ Saxonia, 12,$750 ;$ Persic, 11,973 .
Fros the returns compiled by Lloyd's Register of Ship ping, it appears that, excluding warships, there were 538 vessels, of
$1,306,751$ tons gross, under construction in the United King am at
ither the close of the quarter ended 31st December last. This total
then in 1898.
The amount of copper produced in the United States hast year-estimating the output of December-was 264,600 tons. This amount includes the copper in sulphate, and shows an increase
over the production of 1898 by about 10.5 per cent. This pro-
duction is about 6.5 per cent. of the total output of copper in the

During 1899, exclusive of warslips, 726 vessels of 1,416,79 tons gross, viz, 714 steamers of $1,414,774$ tons and 12 The warships launched at both Government and private yards the United Kingdom for the year were, therefore, 761 vespets of $1,585,381$ tons.
According to the annual statement regarding the shipbuilding trades published by Lloyd's Register the tonnage of ressels exclusive of warships lanched in the uear than in 1898,
during 1899 was greater by 49,000 tons in that and exceeded by 464,000 tons the output of 1897 . As regards war
vessels the figures for 1899 , which exceed those for 1897 by 73,000 vessels the figures for 1899 , which exceed those
tons, are less than those for 1898 by 23,000 tons.
According to the report on the condition of the metropolitan water supply during the month of September last by the water examiner appointed under the Metropolis Water Act,
1877 , the average daily supply from the Thames was $143,035,685$ gallons inem tre te Lea, 20, 190,011 gallons ; from springs and wells,
$60,150,551$ gallons ; from ponds at Hampstead and Highgate, 191 $60,150,551$ gallons ; from ponds at Hampstead and Highgate, 1912
gallons The daily total was $223,378,159$ gallons for
estimated at at $5,989,933$, representintion a daily consumption per head astimated at 5,
of $37 \cdot 30$ gallons.
During last year the three leading German shipbuilding firms have been very busy on vessels for foreign Powers.
According to the Berlin correspondent of the Tiues, these firms Accoe been engaged in building three armoured and four torpedo
havised cruisers as well as four torpedo boat destroyers for the Russian
Goverument. Eight small torpedo boats have been supplied to Japan, and the Vulcan yard last year built the Yakumo, a cruiser
of 9850 tons displacement, for that Power. The Schichau yard is of 9850 tons displacement, for that Power. The Schichau yard is
building torpedo cruisers for Italy. The Tamoyo, atorpedo cruiser
of 1080 tons displacement, has been built for the Brazilian Governof ent in the Germania yard at Kiel.
A swing bridge operated by electricity has been erected and Charlestown. The bridge, with approaches, is 1920ft. long and the width 100 ft . The revolving central section is 240 ft . long, and weighs 1200 tons. When turning it is supported on 70 stee
wheels, 26 in. in diameter, which run on a track 54 ft . diameter. The plant for operating this portion of the bridge is contained in
a chamber below, and the motive mechanism consists of two 28 horse-power motors placed outside the power-house, one on this by means of bevel gearing and vertical shafts, soas to equalise the moving power.
At a recent meeting of the Committee on Black Smoke, in Glasgow, the sanitary inspector submitted diagrams showing
the results of the mechanical improvements for the prevention of black smoke, adopted by certain firms. During the month o November, 74 inspections were made of boilers and furnaces, and
13 observations were taken of chimneys; 18 warning notices were is 3 ,ed to defaulters, giving them one month whereing to effect the necessary improvements. During the month 77 prosecutions were
taken against offenders, and seven convictions obtained daken against offenders, and seven convictions obtained. 17 since
the work was taken over by the sanitary department, 17 firms have made alterations and improvements in their plant, five are
burning better fuel than formerly, and six have discharged incompetent firemen.
A Governafent return, showing the number of fatal accidents and deaths in and about the mines and quarries of the
United Kingdom last year, has just been issued. There were 863 separate fatal aceidents, involving 990 deaths, in mines of coal.
fre-clay, stratififed ironstone, nnd shale, deate compred with 828 dents and 908 deaths in the previous year. Of these, 424 accidents and 433 deaths were due to explosions of firedamp or coal dust,
the remainder of the total being caused by accidents in shafts, on the surface, and in connection with the underground machinery
and workings. In other mines not included in the preceding there were 47 separate fatal accidents involving 56 deaths, against 31 accidents and 333 deaths in 1898 . The deaths caused by accidents
in quarries numbered 117 , a decrease of 17 compared with the total of the previous year
The United States Lighthouse Board is experimenting with a megaphone and a siren whistle at the Falkner's Island
lighthouse station. The megaphone, according to the Engianering Derr, is 17 ft long and 7 ft . in diameter at the mouth, and stands upon
a circular platform 28 ft in diameter, upon which it revolves. When a circular platform 22 ft . in diameter, upon which it revolver. When
the tube is due north of any vessel the ship will hearthenorth signal -a short, a long, and a short blast. If it is due west of a ship the
vessel will hear three short blasts, and so
bination of with a different toomvessel win hear three short blasts, and so on, with a different com-
bination of long and short blast of e echo of the eight point of the
compass. The signals are fifteen seconds a part, and the apporatus compass. The signals are fifteen seconds apart, and the apparatus
makes a complete revoltion in two minutes, All the sounds indicating the various directions are regularly classified, the wo tern
being longer than the eastern signals, and those indicating fouth being longer than the eastern signals, and th
being shorter than those for signalling north.
The eminent surgeon Sir William MacCormac, has written to the Llumct from the seat of war in South Africa giving
his experiences of wounds made hy the Manser butlet. It appears
that this misesile bores a small chen that this missile bores a small, clean hole right through the part,
and the aperture of exit can hardly, if at all, be distinguished
from that of entrance. The wounds are on the whel from that of entrance. The wounds are on the whole aseptic, and
heal rapidly under a simple antiseptic dressing. Sir William give heal rapidy under a cimple antiseptic dressing. Sir William gives
numerous instances of the comparatively simple natue of the wounds numerous instances of the comparatively simple nature ff the wounds
which have come under his notice. In one case where the bullet must have pierced the stomach no symptoms of sich injury were
noticeable, the patient taking food as usual. Even when perforat
ing the lungs only a small amount of hemorrhage appears to be
produced, and again when a comminuted fracture of a bone of limb has been produced complete consolidation ot the broken b

miscellanea

The Chicago Main Drainage Canal was opened on waters of the Chicago River.
The new United States battleships Kearsarge and
The Admiralty have ordered a thid-class cruiser to be laid down in Deronport dockyard forthwith. She will be 310ft.
long have a speed of twenty knots, and be armed with sixteen long, have a speed of twenty kn
quick-firing and two Maxim guns.
It is stated that the Niagara Falls Power Company has petitioned the Treasury Department of the Cnited states levy a tariff on current generated in Canada and transmitted across
the border into the States. This course is being taken in order the border into the States. This course is beong taken in order
that the Ontario Power Company shall not compete in the United ates with the petitioning conceri
The report of the Registrar-General on the public health states that the deaths registered last week in thirty-thrce
great towns of England and Wales corresponded to an annual rate great towns of England and Wales corresponded to an annual rate
of $29 \cdot 1$ per 1000 of their aggreagate population, which is estimated
on $11.610 \cdot 1$. at 11,610,296 persons in the middle of this year. Croydon had the highest death-rate, nan
namely, $16 \cdot 1$ per 1000 .

There is an outery in Paris against the behaviour of the drivers of motor carriages, who appear from all accounts to
have a supreme disregard for all rules of the road. Some time
. have a supreme disregard for all rules or the road. Some time
azo officials were appointed to "keep an eye" on automobilisti azo othey do wot seem to have met with much suceess, probably
but
beause they have todepend upon their limbs to catch the offender because they have to depend upon their limbs to catch the offenders
It seems likely that more rigorous steps will shortly be taken to It seems likely that more rigorous ste
limit the legal speed of these vehicles.
As evening paper calls attention to the dangerous prac
tice which is common in this country of leaving horses unattende tice which is common in this country of leaving horses unattended
on the public highways, Always a risky proceeding, both for the on the public highways, Always a risky proceeding, both for th
horse and the public, it is now more than ever to be deprecated horse and the parice of the presence on the roads of what our contemporar calls the "panting nowor car." If horses are to be left unattende when startled.
when
IT is satisfactory to note from the information col lected from the tables of trade disputes in 1899 published in the Lectour fiactete that last year was freer from important disputes
than any year in recent times. The number of workpeople affected than any year in recent times. The number of workpeople affected
by disputes in 1889 was about $2 \cdot 1$ per cent. of the total numbe employed. The percentage was 5.5 in mining and quarrying, 4.5
in textile trade, $3 \cdot 6$ in building, 1.9 in metal, engineering, and
shiptilding 0.5 in other trades.

Last Tuesday the Belfast Harbour Commissioner granted the firm of Harland and Wolff a thirty-one years' lease of their present holding and of all additional ground required for pur
poses of extension. As a result the removal of part of this firm works, of which rumours have for some time been current, will no now be necessary. The Commissioners have, it is said, also decided to build new graving docks suitable for warships, on condition.

The President of the Board of Trade on Wednesday received a deputation of residents in Marylebone on the subject of the defective supply of electric lighting in that parish by the
Metropolitan Electric Supply Company. Mr. Ritchie said th Metropolitan Electric Supply Company. Mr. Ritchie said the
grievance of the consumers had been thoroughly made out. The company was liable for breach of contract with their customen but the only legal remedy was that of summoning the compan before a magistrate, and getting them mulcted in penalties. Hi
hoped the deputation would do some good by having ventilated the subject.

Amongst the killed of the garrison at Ladysmith is Lieutenant John Pakeman, a native of Derby, and grandson of the the Midland Railway, His Midland line. John Pakeman was educated at Christ's Hospital and on leaving school entered one of the Midland Railway depart
ments. But he soon threw up his appointment, and enlisted in the Royal Dragoons. He left this regiment to join the Imperia Light Horse, with which body he was serving when he met hi

The Times, which is usually so well informed in technical matters, contained on Tuesday last a paragraph headed "New Bridge for the Tugela," which is not quite accurate in al
its details. We read that the bridge "whs to be Martin steel, 105 ft . long, 16 ft . 6in. wide, and weighing 750 tons.
As will be seen from our description As will be seen from our description on page 71, this is only one of
seven spans, each of them 105 ft . long, five being for the Tugela seven spans, each of them 105ft. long, five being for the Tugela
Bridge and two for the bridge at Frere. Moreover, the span
weighed 105 tons, and not 750 tons, which is rather greater than weighed 105 tons, and not 750 tons,
the weight of the whole seven spans

From a report recently made by Preece and Cardew on the cost of lighting railway carriages by electricity, it appears that
the total annual cost per coach would be $£ 1316 \mathrm{~s}$, 6d., based on the cost of fitting and running 400 coaches with an average of twelv lamps of 8 -candle power per coach. The total capital outlay for
lighting this number of coaches is estimated at $£ 32,000$. These figures somewhat exceed those contained in a report on the subjec
by Mr. W. Worby Beaumont some months ago, and show that th capital outlay would be about 50 per cent. higher than for com pressed oil gas for equally effective lighting, while the gas would cost about 25 per cent. less for supply and maintenance.
Owing to the growth of the incandescent system o
gas lighting in Germany, proposals have gas lighting in Germany, proposals have been made to reduce
greatly the candle power of the gas provided, with a view to greaty the cande power of the gas provided, with a view to
cheapening its production. At Magdeburg, says the Americar
Mearefieterer, the question has been seriously debated as to whether it would not be well to reduce the candle power from fourteen, it present value, to ten, and finally to eight. Experiments show that cases given even more light than the rich. Thus, in gas has in certain a burner of this type was supplied with gas ranging in candle power from fifteen to two, and the latter actually gave the best With the recent improvements in water-gas manufacture, a gas

At the Westminster Palace Hotel on Tuesday, a con ference was held of coalowners and representatives of the Miners
Federation with reference to an agreement entered into provision ally on December 7th last at a meeting of the Conciliation Board the date of the expiration of the previous agreement for a
further three bove the 1888 standard sate of wages to be raised additional 5 per cent. to be granted from the first making-up day to be paid on the next making-up day. This proposal, which
brings up wages 45 per cent. above the 1888 standard, was accepted by all except the Jancashire miners. Hence the present conferthroughout the Federation area be recommended to advance the rate of wages 5 per cent, on the 1888 standard to surface labour engaged on the pits, banks, and screens manipulating the coal.
The new siandard is to take effect from the first making up in

FOREIGN AGENTS FOR SALE OF THE ENGINEER

austria.-Grrold axd Co., Vienna

A. Brockuise,, , Kumpigases, Vienna
 france.-Boyven and Chevlugr, Rue de la Banque, Par
Germany.-Asher and Co., 5 , Unter den Linden, Berlin.

Twertiryerr, Lipsicic; F. A. Brockhavs, Leipsic ANDLA. A. J. Conskdoe and Cor, JAPAN. - KElly AND WAlsh, Livitre, Yokohama. RUSSIA.-C. Marvis and Co., 14, Nihonbashic Tori Sanchome, Tolyd S. AFRICA.-GorDon AxD Gorch, Loang-stret, Caputory.

AUSTRALIA.-Gordon Axd Gorch, Meloourne, Sythey, and Brishene.
R. A. Thompson and Co., 180, Pitt-street, Sydney; Mchbourne, Adelaide, and Briblane.
TURNER AxD Hevorson ,
NEW ZEALAND.-Upton and Co., Auckland: Craio, J. W., Napier. Toronto News Co., 129, Yonge-8trect, Toronto.
United states of AMERICA.-International News Co., 83 and 85,

Duane-street, Neer York.
Ubscoription News Co
SUbscripton News Co., Chicapo.
Axd Walsh, Lnatrd, Singapore.
straits settlements.-Kelly and

SUBSCRIPTIONS.

Half-yearly (including double number)
Yearly (including two double numbers)

ioth Readina Cases, to hold six issues, 2s. 6d. each, post free 2s. 101 If credit occur,
will be made.
Forieign Subscriptions will, until further notice, be received at the rates
given below. Foreign Eubscriber given below, Foreign subscribers paying in adveance at these rates
will receive THE EXeINERR weckly and post free. Subcriptions sent
 Tun
Heanyly
Yearly

ADVERTISEMENTS.

Telegraphic Address, "ENGINEER NEWSPAPER, LONDON."
PUBLISHER'S NOTICES.

* Latest Types of the Britser Fleet.-Our tro-page coloured
supplement, representing
H.M. Abpatross, may be had, printed on stiperior paper, upon a roller, * If any subscriber alroad should reccive The ENoINERR in an imperfect or mutiluted condition, he rill oblige by giving prompt
information of the fuct to the Publisher, vith the name of the
Igent through orhoom the paper is obtained. Such inconvenience Igent through orhom the paper is obtained. Such incomvenience,
if sufferd can be remedied by obtaining the paper divect from
ithis office.

CONTENTS.

\qquad agay on the Desion of Valve pia Tuk Strexirn of

timar Trant
 Che Manchestrr Associftion of Encinkrrg

 Roons Recrived
Colorors or HEA

${ }^{\text {Tevergrs }}$

thr Iron, Conl, and Genkral Trades of birminohan, Wolver:

Nobth of Excland
Notes frox scorlant
Notrs from Grbanaxy Countils

Ambrican notes

TO CORRESPONDENTS.

REPLIES

D. D. (Leicester).-The apparatus was described in our issue of the 10th
Fibruary 1899. The manker is H. W. Neild, of Victor Works,
si,

A Corraspoxpers. - It would be inpossible to give all the rules concern
ing ships boats

Board of Tride. The Sir chambers in a lifeboat must contain one cubbic
foot of air for ever tor cubic foet of boat capacity, and one person
shall be allowed for every ten feet of capacity.
M.

 Occasionally difticulty arises in deternimini
the mortgye and what must go into a
thould do wisely to consult your solicitor.

meetings next week

 ence to. Smani Flows and Waste in Dribbles," by Mr Mr. William Schön
heyder, Member, of London.
 January "uth, at A p, p . Students Mceting. Paper, "The Simplon
Tunnel," by Mr. C. B. Fox, Stud. Inst. C.E.
 Westminster, S. W. Adjourred disenssion on the Report of of the Intretitu
tion's Visit to Switzerland. Paper An Alectrolytic Centrifugn flo tion's Visit to Switzerland. Paper, "An Electrovtic Centrifugal Pro
cess for the Production of Copper Tubes," by Mr. Sherard Cowper-Coles,
Socistr of Arvs. - Monday, January 22nd, at 8 p.m. Cantor Lectures Mr. Bennett H. Brough. Leeture 1.: Deposits in which ores of the Mr. Bennett H, Brough. Leecure 1. Deposits in which ores of the
useful metals are met with Beds, veins and masses-Clasifintion of
ore deposits-Methods of mining formerly employed-Recent improve

THE ENGINEER.

JANUARY 19, 1900.

french shipbuildina.

Once again the French naval programme has shifted, and now-provided always that a fresh programme is not their appearance the time that these theories of a guerre deir appearance in print-the pretty theories of a guerre the instant, the order of the day, and ten battleships, together with ten large armoured cruisers, are spoken of while the building of two out of those nine submarines that figure in the last parliamentary return is postponed to the Ewigkeit, and generally the "new school" has been repulsed. As for the submarines, the countermanding of the two latest is, perhaps, hardly a question of schools, since their particular type-ship, the Narval, does not appear to come up to requirements. She is said, in fine, to exhibit a tendency to float bottom upwardsstate or things crew, ind to hamper her docility," which we are quite prepared to believe given the trouth which we are quite prepared to believe, given the truth
of the reported instability. Experiments with such comparatively unknown factors as submarine boats are, how ever, one thing; the proposed construction of fighting ships upon accepted models, another. It is this last that we propose to examine
First, as to cause. Hitherto the French programme has been governed by that of Great Britain, and the opponents of big ships have always pointed out that if France nents of big a battleship extra, this country replies with a couple. Therefore, they have argued, it is useless to build battleships with which to fight perfidious Albion. "Fast cruisers" has been the watchwords of this party, and for a year or two its influence has been visible in French shipbuilding. Craft like the Guichen, Chateaurenault, and others, very swift and very lightly armed, have been built specially for that form of piracy known as the guerre de course. After embarking upon this programme, some wisdom of building "a multitude of swift cruisers"about three is the present total of the multitude-got called into question. Swift the Guichen undoubtedly is, but everything is sacrificed to speed and coal, so that one of our second-class cruisers could, in vulgar parlance, knock her into a cocked hat inside a few minutes. The
result of these deliberations was that the Guichen idea result of these deliberations was that the Guichen idea
was abandoned, an armed liner being every whit as suitable for piratical purposes. Thereupon armoured cruisers were laid down; ressels able to tackle our protected
cruisers without much risk, but-except on paper-slower cruisers without much risk, but-except on paper-slower
than the Guichen type. To these we have replied with the Cressy class and others, and on this particular line things seem to have crystalised- the Guichen folly is not
likely to be repeated. Indeed, the French are now con-
tinually asking themselves why, having evolved such a really splendid type as the Dupuy de Lome, they ever started building anything else. Expense, and the desire of each Minister of Marine to be original, seem to be the
two chief reasons why. However, at present the shiptwo chief reasons why. "However, at present the ship-
building barometer is at "set fair" in the Dupuy de Lóme direction. A third reason may be casually alluded to. Great Britain never built any "reply" to the Dupuy de Lôme. In the innocence of their hearts the French administration of the period assumed that we recognised some cardinal defect in that ship, and here was an additional argument in favour of something more cheap and howy. Actually our neglect of the Dupuy de Lome idea hould rather be attributed to oversight on the part of past British Admiralties, and the fact that our people, oo, were at that time very eager to find something cheap and showy. The Dupuy de Lome is not a new ship, her mour is by no means of the latest patent; yet, seeing he angle at which it is inclined, we much doubt whether ching under a big gun could get through it. And up our Cressy better than the far more modern DupetetThouars.
So much for France's cruiser programme ; we now ome to the battleships. These, we think, owe the idea rench inception to Germany-it has dawned upon the havy, and thangland the problem of the best kind of fleet to render safe a policy of pin-pricks has been under discussion, the German navy has been creeping up. Already, in case of a Franco-German war, Germany he Channel coasts till reinforcements arrived from the Mediterranean. If Germany's programme be left unanswered, then that Power will be well ahead of France on the sea. At present, taking vessels of the first and our Buatle rank, Germany has Fre drich der Dritte. Against these France has the Brennus, Bouvet, Jaure guiberry, Charles Martel, Massena, Carnot, Charlemagne, and Gaulois-eight ships, five of which belong to the Mediterranean. True, France has the four Jémappes type, and the Courbet and Devastation re-armed-or Magenta, Formidable, and Baudin, of doubtful fighting value, and which Germany has ships to meet. Half of hese, again, are at Toulon, and altogether Germany would be in a fairly good position to make things unpleasant.
Of the ships being completed, Germany has one, the Louis Winhelm der Zweite, while France has the St Louis, Suffren, and Henri Quatre-this last quite a perhaps, but it des little else. In the matter of battle ships building France has one other, the Iena, in hand Germany has about half a dozen. This spells a probable clear superiority for Germany in the near future, unless which to help despite the parsiamentary return. If therefore, France is not prepared to concede naval superiority to Germany she must begin to build battle ships at once, for-neglecting the new programmeand to be able comfortably to beat her in detail. And since it is hardly conceivable that France will permit this, we may look during the next few months to hear a good deal more about the "glorious mastodons," and a good deal less about the "brave sous marins." While路 mended her weak spot in the war of 1870-71. The guerre de course ideal, like several other of her ideals, seems likely to cost France pretty dear. Luckily for her, she seems to have awakened just in time; and if the mportant naval Power.

an american labour struggle,

An account of one of the most remarkable struggles between capital and labour which has ever come to our ears forms the subject of an article in the current number of the Engineering Magazine. It is written by one of , persons directly interested, Mr. H. M. Norris, of the cinnati the trouble arose. We must we content merely outline the full history which Mr. Norris has written The dispute was brought about by the introduction of the premium system of pring for labour, and as the plan is premium syst kown in this country a few introductory words about it may not be out of place. The premium ydem was invented some fifteen years ago by ar Halsey, and has been surcesfully used by a number of Alsey, absen is to increase the output of merines by encuraging the individual workman An stimate is from existing data of the average time stimate is the frohining of any particulor piece of worl This average is called the time limit. And as long as the ror an firw he sets paid the rurent fixed rate of wag. But if, on the other hand , e accomplishes he ene lige on each hour or pall of a moly which ber Which With constre in the full was which he is engaged, and by taking more pains or developng greater skill he is able to gain a premium.
In the majority of the establishments where the system has been tried the workmen have been open-eyed to their own interest, and have gladly embraced the hance of earning larger wages. But at the Bickford Drill and Tool Company's works they were blind to the dvantages, and, as the tale unfolds, the company was obliged to withdraw the scheme. The story is worth ould find some difficulty in distinguishing bet ween men premium plan and piecework, Mr. Vorris introduced the premium plan and piecework, Mr. Norris introduced the
of the oldest hands and explained the principle of the rrangement to him, and by degrees spoke to others about it till most of the leading hands were working under it. He then thought the time was ripe to intro-
duce it generally, and had the necessary time cards duce it generally, and had the necessary time cards
printed. On the back of these a brief outline of the ystem and the conditions were printed. One or two quotations may be made with advantage imit once fixed will not be changed, except through the introduction of new methods of doing the work, so there need be no fear of earning too much money. Those who
earn the most will be worth the most." "Premiums earn the most will be worth the most.
will not be paid on any work that is not Premiums will not be paid on any work that is not completed to the
entire satisfaction of the foreman. Every workman must satisfy himself before commencing a piece of work that it will finish to the required size. All premiums will be paid on the first regular pay day following the completion of
the work upon which they were earned." The conditions, the work upon which they were earned." The conditions,
it will be seen, were put plainly and honestly before the men, and there was no suggestion by the men-so far as the story goes-of any,unfairness on the part of the employers. For a short time the plan seemed to be working wei, but one day a man came with a claim that a mistake He had, he admitted, gained a premium of $1 \cdot 40$ dols., but thought he should have received more; his contention being that a man who saved an hour should be paid for plan, but he did not want either of them, and would sooner go on as he had been doing before the innovation." It was pointed out to him that he need not take the extra money, there was nothing compulsory in it, but he instead of decreasing, began to go up, and at last, in order to make an example, the worst offender was dismissed,
several others left in sympathy. The firm made an endeavour to restore peace, but as the men insisted on the reinstatement of the discharged workman and the firm refused to allow him to return, the matter ultition of Machinists hands of Cincinnati, and after this associa-tin-a similar institution, apparently, to any one of our return, the strike collapsed and the others went back to work. On the next pay day Mr. Norris went to several
of the men and said, a There is a premium due from las week; would you like it enclosed in your envelope? ", and in each case the answer was "No." Loth to give up the
plan, an attempt was made to convince Mr. Seigreat- the plan, an attempt was made to convince Mr. Seigreat-the infringe on any of the rules of the union. He confus
it with piecework, and refused to be convinced some of his remarks give the key to the men's attitude it wiil be as well to quote them. "He persisted in con-
founding the premium plan with that of piecework and other systems, classing together and pronouncing as bad all methods tending towards increasing a workman' output. He declared them to be simply a scheme of the employer to augment his bank account at the ultimate
expense of the working man. He said he believed all expehse systems worked injury to ooth the employé and the employe-to the former by endergg a feeling of rivairy and discord among the men, and to the latter, by between the premium plan and piece-work was explained wage cost per piece of merchandise remains the same, no matter how great the increase in output of the workman hence, if the piece prices are fixed too high, the manuvagantly for his work;" but " under the premium plan half the saving in wages goes to the workman and half to the employers, rendering a cut connecessary, even though
the time limit should prove considerably higher than necessary." Later, the grand master of the International Association of Machinists confirmed Mr. Seigreat's view.
In his opinion labour could derive no benefit from the In his opinion labour conld derive no benefit from the
scheme. He took the position that if work was done in less time, the output would be greater than the firm
could dispose of, and the number of hands would be reduced till the output was reduced to the original amount

Although Mr. Norris's story is not yet complete, we have enough before us to show plainly the attitude of the
American workmen to progress. It is an attitude which we imagine will astonish not a few people in this country Rightly or wrongly, many of us have been under the
impression that the Yankee artisan was particularly wide awake to his own interests. We have always supposed that what unions there were rather encouraged individual enterprise than choked it, and that in all works a healthy
rivalry existed. We have even been told by American rivalry existed. We have even been told by American
writers that the success of American methods is due to the encouragement which is held out to and accepted by American workmen. We have been informed that this is particularly the case with machine tools. That the
development of this particular branch of engineering development of this particular branch of engineering
across the water was directly attributable to the interest which the mechanics took in discovering means of
reducing time, and comparisons unfavourable to the English workmen have been drawn with no little

frequency

Presumably the men of Cincinnati are not as those of is at least as stern and impartial in crushing the individual as any of our similar British institutions, and seem quite as anxious to prevent the natural develop two centuries. The men's position has been clearly said in fairness to them that they have adhered manfully to their opinion in face of evident disadvantages. They fow words. Increased output means decreased occupafow words. Increased output means decreased occupa-
tion. The more work that one man can do the less the number of men required. It would serve no useful pur-
pose to point out again the shortsightedness of this policy

It has been drummed again and again into the ears of the workman, but he is none the wiser. History does not appeal to him in the way that a deduction from
apparently plain and straightforward facts does. apparently plain and stris's article contains the observation that " theory takes account of all
the conditions that can be discovered and calcuthe conditions that can be discovered and calcuare." Can we do better than recommend workmen the world over to digest that observation well? Theory thus defined is the rock they split on. Considering only such facts as they with biassed eves conder their hands, lating only from the data immediately under their hands, account a most important factor. Would they but take the trouble to study past records, they would find it difficult to find a single case in which the means of increasing production have led to a permanent reduction of the number of persons employed. As we all know, in he majority of cases increased output, by whateve means brought about, has been followed by an increased demand,
factories.
the federated miners in south wales
The meetings of the Miners' Federation at Cardiff concluded on Friday last week, too late for more than a summary reference in these columns; and the secrecy in
which the proceedings were, for the most part, conducted, made anything like an intelligible account of the deliberations impossible at the time. Friday was an open day, and so was the forenoon portion of Wednesday; but the remainder of the four days' session was practically held
in closed caucus fashion, which the best friends of the in closed caucus fashion, which the best friends of the
colliery population regard as a tactical mistake. It was not only a tactical mistake: it was an error in policy attended by sundry unfortunate and mischievous consequences. There was a Presidential address after all, but an "opening "statement, it fell into the category of the thin slice of beef within an old Vauxhall sandwich. It was placed before the public as the unconsidered triffe they chose. That is the worst of these semi - public gatherings. One expects a free and frank exposition of the the representatives of nearly half a million of the active mining community. We are only allowed to know half hat goes on; and conjecture, however shrewd, as regards
the other half is as apt as otherwise to distort the nature of the proposals the speakers are dealing with in camerá. assemblage of the Federation in the South Wales coalfield as a distinct and defiant challenge, the very gange of battle, to the advocates of the Sliding Scale that by the sheer preponderance of opinion, connow to be regarded as in its moribund days. Some are for its immediate extinction; but they are maniminers have declared themselves in favour of denouncing the Five Years' Agreement in as legal a fashion as time and chance allow. But there is scarcely mention of this contingency in Mr. Pickard's deferred address, or in the "official" reports of the discussions, and all that is communicated on a vital issue is at extra-official
luncheons, or the itinerant district gatherings which lancheons, or the itinerant district gatherings which
alone represent the ancient missionary spirit of the Miners' Federation of Great Britain. Mr. Pickard's postponed speech, nevertheless, commands notice, and the remark must be made by way of preface that in his
observations ex cathedrá he was more sensible, more moderate, than in the free-and-easy speeches he made on sundry platforms in condemnation of the South Wales is not a fetish. There may be idealism, but not necessarily is not a fetish. There may be idealism, but not necessarily
perfection, in the phrase, or the mechanism it describes It has, however, served the purposes of an exceptional district like South Wales since 1875 -since 1879 on the
present standard-and there needs to be some proof present standard-and there needs to be some proof Board would be a superior institution to create in its
It marked a new era in South Wales, and in the history of the organisation, said Mr. Pickard, that the
members of the Federation should be able to meet in members of the Federation should be able to meet in
Cardiff; to meet with the consciousness that South Wales was with them; and to know that Welshmen had
proved such " good fighters "during the long strike proved such " good fighters," during the long strike of
1898. The "whole country," he declared, sympathised with them when they were put in a corner, and were strugging to disentrammel themselves from the fetters of the Sliding Scale. "Sliding Scales, it would on all hands the show easily, so that whether prices advanced or fell, these men made their contracts fit in to adversity, profts all the year round. In times of had always work before them; they were always dividends came in last. The coal merchants, with rare exceptions, were the people who could live better and or the workmen." Then followed an echo of the insidious teachings of Mr. D. A. Thomas, M.P., and one owners' Association. "In good times, as in bad times," said Mr. Pickard, "coal was sold at a profit. The coal If that was so, then they, as workmen, must do all they could to oust the middleman from his position.
Wales was now an integral part of the Miners' Federa to . Having come to this point, it remained for them for them-the colliers-anything more than the bare necessaries of life." Here came the word of promise
to the ear, and there is no need prematurely to criticise the value of the promissory note. "As far as South Whes was cone teral question as to mining population. Thanks to the 30 per cent. minimum mining population. Thanks to the 30 per cent. minimum $£ 6,000,000$ year by year more in wages than they could have obtained if that minimam had been percentages ran between 1871 and 1874 . Taking the
last ten years, the workmen had secured, owing to this last ten years, the workmen had secured, owing to this
minimum, about $£ 60,000,000$ extra in wages, and even minimum, about $£ 60,000,000$ extra in wages, and even
though in ordinary circumstances the owners would have declared themselves unable to pay it, now when the 45 per cent. had been obtained, it would mean to every man in the Federation at least about 9 s . per week, or nearly $£ 9,000,000$ per annum ; and this without taking South Wales, or Durham, or Northumberland into calculation. Was not that result worth the effort, and more especially as it was procured in a quiet and ordinary way? The
moral of it all, according to Mr. Pickard, is that these results have been achieved by methods-"quiet and ordinary," possibly-but quite contrary to the peaceful average selling prices f.o.b. But what about the Conciliation Board of Wages? The trade reports in The Enginere have explained the character of the work such boards have done in the North, even the North of Mr. Keir Hardie, or the more easterly North of Fife and Clackmannan. What is it that Mr. Pickard has to say as to the applicability of the Wages Board in South Wales "Some people," he went on to say, "complained that the Conciliation Board drove men out of the organisations, and that there was nothing left to fight
for. . If the Board of Conciliation ruled the standard rate of wages, the local unions at home must look after the fluctuating work in the pits, because it was the little fox which stole away the grapes. Let them be
well warned that it was their unity which consolidated well warned that it was their unity Which consoidated their power. Without aggressive Cnionism, with the
force of individualism behind it, the members could make no headway, either locally or in the general field of
It is not worth while to follow Mr. Pickard through his comments upon the Compensation Act, for we are all
familiar with the deficiencies and perplexities of that unfortunate measure; in his strictures on the apathy of both political parties as regards the Mines Regulation Amendment Bill; or in his dexterous skating over thin ice in urging still the idea of an eight hours day from and we free to need conceal. But hereanent subject after subject, and the very subjects we all feel concerned in, were relegated to the mystery of the closed chamber. It was only on this withdrawn at the concluding meeting, that the reil the most stalwart proposals, one could fairly call one of the It related to the proceeding from the Tresiderm bank to bank, an absolute impossibility in South Wales until the men make some concession in the direction of working three shifts in the twenty-four hours. There appears to have been a conflict of opinion at one of the earlier closed meetings over the Federation proposal for an amendment of the Compensation Act: that, namely, for a compulsory minimum payment for injury within three days of the accident, and before the facts could be inquired into, or Welshmen objected to this as too exacting, and incidentally it was stated that the Act had so far worked well for the Welsh miners, most of the claims having been settled without passing through the Courk The more this Conference should continue with unabated vigour to agitate for a legal eight hours' day " from bank to bank." agitate for a legal eight hours day " from bank o thank. not made the progress they looked for; they were more hopeful seven or eight years ago; and he supposed none
of them was sanguine enough to think that in the next of them was sanguine enough to think that in the next
year or two the measure would be carried into law. A Merthyr delegate said his branch had at last withdrawn their opposition to the "bank to bank" limit; but it was evident that he did not speak for the whole of the Welsh
colliers. The President ultimately evaded the difficulty by remarking that probably lead to the shelving of the whole question, and at his saggestion the original motion and amendment were withdrawn.

the dynamicables

Some eighteen years ago, when electrical engineering was ormed, which included in its ranks all the leading electrician and electrical engineers of the day. The first title of the society was "The Electric Arc Angels," but this was almos
immediately altered to "The Dynamicables." The society was in no sense public. The members met and dined to
gether at varying intervals. There were no speeches made no toasts drunk, but after dinner some member started a sub information was interchanged. After a few years, the Insti-
infor tution of Electrical Engineers superseded the Dynamicable to Mr. C. W. Biggs-one of the first of the Dynamicables - 0 get up a dinner at which should be assembled all possible
surviving members of the society. The dinner took place at
the Whitehall Club on Wednesd twenty members, including not a few srofession, were present. Major Crompton was in the chair Mr. MacFariane Gray. Although it was against the rules to make speeches, the occasion was seized to bid Major Crompton
and the band of fifty volunteer electrical engineers who accompany him to the Cape, God-speed. Major Crompton, in England for South Africa. After the melancholy death
command of the corps of Volunteer Electrical Engineers. He did so with some reluctance professionally, but he had gone on in the hope that some better man than himself would take his responsible post. No one had stepped
forward, and so it had come to pass that he had had to piek from some two hundred and fifty men fifty for special much, who gave up appointments, relinquished basininess, risked, their future prospects, and were ready to imperil their
lives in their country's cause. He was proud to lead such men, and yet sad that the need for their services should have arisen. Their work in South Africa would consist in making themselves generally useful. Telegraphing, electric lighting,
and signalling would occupy them. Much use would be made and signalling would occupy them. Much use would be made
of traction engines, and Messrs. Aveling and McLaren had worked day and night to provide plant. The detachment
went and
went went fully determined to do their duty, come what would. In very touching words he thanked his friends for their good
wishes, and trusted that the day was not distant when they wishes, and trusted that the day was not distant when they
would meet again rejoicing. The dinner was in every would meet again rejoicing. The dinner was in every
respect a success, and it is possible will be the first of a series.

peace at the pits.

Another guarantee for peace in the coalfield for a further period of three years was given in London on Tuesday, when to consider the wages question throughout the area covered
by the Miners' Federation. An arrangement has been come to whereby the last obstacle in the way of amicable working in the British coalfield for the next three years is certain to be cleared. That obstacle was the 5 per cent. advance for
surface men. The resolutions passed cover three points. The first sets forth that in consideration of the agreement for a continuance of the Conciliation Board from the 1st of January,
1901, for a further period of three years at the present 1901, for a further period of three years at the present
minimum and increased maximum to 60 per cent., the present rate of wages to underground to labour will be ine increased from the first making-up day in January by 5 per cent. on the further period of three years from the first making-up day of January, 1901, the rate of wages is not to be
below 30 per cent. above the standard rate of 1888 , the present minimum, and not more than 60 per cent.
above the standard rate of 1888 . The third resolution, above the standard rate of 1888 . The third resolution,
which is the sequel to the other two, provides that during the period of three years from January, 1901, the rate of
wages for underground labour is to be determined by the Conciliation Board within the limits mentioned in the fore going resolutions. The decision to rocommend a 5 per cent.
advance to the wages of the surfacemen was come to unanimously; but this could not take the form of a definite resolution, as the Conciliation Board has no power to enforce an arrangement in the mine which they can only recommend
to the owners in the various districts. The resolutions which have been arrived at, and the recommendation added thereto, may be taken as indicative of general confidence in
the continued prosperity of the coal trade for several years to the continued prosperity of the coal trade for several years to
come. The present prices for the various kinds of coal justify the abnormally high wages which have now been
fixed upon; but should there come a reaction in trade, which many competent judges anticipate within the period menmany competent judges anticipate within the period men-
tioned by the new arrangement, there could scarcely fail to be a recrudescence of trouble in the coalfield which would require all the diplomacy of coalowners' and miners' agents to get over.

the royal yacht.

Tre unfortunate mishap at the undocking of the new
Royal Yacht at Pembroke has given rise to a Royal Yacht at Pembroke has given rise to a good deal of speculation. We may, or may not, ever know the whole
truth of the matter. Probably we never shall. The Pembroke correspondent of the Naval and Military Record tells the ship, which was previously resting safely on the keel blocks supported by numerous breast shores, gave three
lurches immediately after she floated. Tho rising tide lifted her off the blocks, thus relieving her of the shores. Instantly that occurred she gave a slight list to port, then fell back
slightly to starboard, hung there momentarily, and again heeled to port. The starboard shores fell out whe those on the port side jammed as they fell between the side of the dock and the ship's side, and assisted to force the keel away
from the line of blocks towards the opposite side of the dock. She ultimately steadied herself at between 22 \downarrow deg. and 25 deg. from an upright position, but the opinion is generally end of the dock, the counter being brought up on the caisson and the port bilge on the keel blocks, the ship would have continued to fall until her masts reached the roof and walls
of the adjacent armour-plating shop, or came against the dock side." There seems to be no doubt that the
ship was, like several Atlantic and Australian liners, what ship was, like several Atlantic and Australian liners, what
sailors call "tender," and sensitive to the addition of extra weight on one side or the other. But it does not her coal, water, and stores aboard, to say nothing of waterballast. There are experts who predict that in sea-going
trim she will prove a perfectly safe and stable vessel. But until those responsible for her are a trifle more communicative, opinion can be but speculation.

london street traffic.

Now that the London County Council is taking energetic measures to improve the appearance of our streets and is endeavouring to meet the ever-increasing traffic in London,
appears to be a fit time for calling attention to a serious evil, appears to be a fit time for calling attention to a serious evil, and one which, strangely enough, appears to have been almost
overlooked. We refer to the heavy wagon traffic which takes place between Ludgate-hill and Charing-cross. The whole diso see a lurry heavily weighted and it not an unco Fion sight or more frequently upon any of the numerons streets which lead from the Embankment to the higher level. The stoppage of one such large wagon in the main thoroughfare is enough widening the streets might mitignte it will hardly remove the evil. It has occurred to us that if some means of assisting
heavy carts from the Embankment to Fleet-street and the heavy carts from the Embankment to Fleet-street and the
Strand--or even along these roads themselves-could be intrc-Strand-or even along these roads themselves-could be intrc-
duced, much wearing out of patience and of horseflesh would e obviated. Such a means is at hand. The pressure mains of the London Hydraulic Power Company are laid under Fleetculty and expense in erecting small hydraulic bollards or
capstans at the corners of several of the steeper streets to help horses by means of towing ropes. For this purpose a
clear space of about one cubic yard under the pavement clear space of about one cubic yard under the pavement
would have to be found, and we believe this could easily be done. The bollards themselves would occupy no more room done. The bollards themselves would occupy no more room
than the corner posts which are erected already at many places, in fact they might be so constructed as to take the place of these posts. The system would be inexpensive, and the use of the bollards might be paid for by the users, or provided by the City free of charge. In either case the key
for supplying the pressure might be in the posession of either the policeman on point duty, or might be kept in some shop close by.
vickers-maxim quick-firing gun.
IT is interesting to compare the equipment of the VickersMaxim quick-firing field battery, supplied to the City of
London Volunteers, with the service equipment, making allowance for the different character of the pieces. The calibre is $75 \mathrm{~mm} .-2 \cdot 57 \mathrm{in}$.-t the gun being the same as that supplied for the armament of the Nile boats in the last Soudan campaign. The ammunition is "fixed," the projectile and charge being inserted by means of a brass case with central fire. The carriage is fitted with spring buffers, the gun barrel recoiling about a foot in a jacket carrying the trumnions, the trail has a form of spade to check recoil, and there are brakes
which can be applied to the wheels. The recoil is by these which can be applied to the wheels. The recoil is by these
means so completely controlled that the gunner who lays the means so completely controlled that the gunner who laysthe
piece is able to remain seated on a seat on the trail. Four projectiles are supplied - shrapnel with time and percussion weight of each being $12 \frac{1}{2} \mathrm{bb}$., and lastly, case shot. The last is said to be efficient up to 300 or 400 yards; the shrapnel time fuze provides for 5000 yards, up to which the gun is sighted The muzzle velocity is 1575 foot-seconds.

BOOKS RECEIVED.

 Indicator Diagraiss:- ATratise on the Use of the Indicator and
its Application to the Steam Eingine. By W. W. F. Pullen. Manchester: The Scientific Publishing Company, Limited.
Gedenkhork van het Koninkilijk raù Ingenieurs 1847-1897. Mémoria
 A Rurlimentary Tratise on Coal and Coal Mining. By the late
Sir Warington W. Smyth, M.A., F.R.S. Eighth edition. Revised and extended by T. Forster B
and Son. 1900. Price 3s. ©d.
Rutes for Railruy Location and Construction of the Northren
Pacine Railnay Compenay. By E. H. MeHenry, M. Am. Soc. C.E.,

 Arts and Handicraft Sories." Edited by H. Snow
London : Dawbarn and Ward, Limited. Price 6d. net.
 Bont Irou or Strip Wort. By Geo. Day, F.R.M.S., and Chas
Godfrey Leland. M.A., F.R.S. Le, \&c. Being No.

 Burfoctro By A. Bewley Fx. Eng. P.W.D., India. Mevman of
Printed at the Lawrence Axylum Press, Printed at the Lawrence Asylum Press, by H. Plumbe, superin-
tendent. 1899.

 With over 200 figures. First el edition, First thousand. New
York: John Wiley and Sons, London : Chapman and Hall, The Engin.
The Enginering Worka of the Kistna Delta, A Dexripticre and
Hitarizel Acount. Compiled for the Madras Government by George T. Walch, M. Inst. C.E., Chief Engineer for Irrigation,
Madras (retired). In two Printed and published by the Superintendent, Government Press.
1899.

Singular Accident on Electric Tramways.-A curious ace dent happened to the Sheffield Electric Tramway system on on
Monday. Fierce flames were observed to issue from the electric switchbox at the bottom of West-street. Instantly the tram service on all the city routes was stopped, causing much surprise
and nlarm. The fire brigade were called out, but they could and nlarm. The fire brigade were ealled out, but they could do
nothing. The flames from the switchbox, which had frightened notuing. The names rombled crow the switchbox, which had frightened
the anem fearing an explosion, ceased
immediately the wurrent was cut off, and the brigade did not linger to contend with the smoke which poored from the bot,
bearing with it a strong bituminous smell. An examination bearing with it a strong bituminous smell.
showed that in some way at present unknown the rounding the conductor in one of the underground cables had
become defective, and had canght fire from the become defective, and had canght fire from the electric sparks
This insulation, being composed of bituminous material, burned rapidly. The defective part was close to the switchow, and only
a short length of it was burned, the damage being repaired in about half an hour. Before this conld be done, however, it was necessary to cut the section beneath the switehbox. These boxes
hold the cables which convey the current from the power hond by switches in the boxes the electricity is carried up the
antreet standards on to the street standards on to the trolley wires. The boxes are a quarter
of a mile apart, and the current can easily be taken along the trolley wires for that or a greater distance. It is to secure equality of pressure that the wires are fed from the boxes at intervals, but
when the accident occurred the feeding power of the was dispensed with. The insulation which occurs in the trolley wires opposite every switchbox was bridged over by Corporation
workmen standing on a tower car over the wire until the switchbox further on was reached, when
the feeders then came into

COLOURS OF HEATED STEEL CORRESPONDING TO DIFFERENT DEGREES OF TEMPERA TURES.
By Maunsel White, and F. W. Taylor, Bethlehem, Pa,
There is, perhaps, nothing more indefinite in the industrial treatment of steel, than the so-called colour temperatures, and as
they are daily used by thousands of steel workerx, it would seem that a few notes on the subject would prove of general interest.
The temperatures corresponding to the colours commonly used books, \&c., are so widely different as given by different ties, it is impossible to draw any definite or reliable conclusion ised for determining the higher temperatures. The introduatis of the Ie Chalier pigheter within the last fw years h of the Le Chatelier pyrometer within the last few years ha
placed in the hands of the scientific investigator an instrument extreme delicacy and accuracy, which has enabled him to deter mine the temperatures through the whole practical range o influence, and led to the establishment of new melting and freezing points or various metals and salts, which are now accepted as th standard in all scientinc investigation. There has not, how been published any results with the Le Chatelier pyrometer seek ing to
heats.
The first work done in this line, of which we are aware, is that
of Dr. H. M. Howe, some eight or nine years nao. His results, however, have not been published, and with his kind permission we are enabled to give them here

The nomenclature nsed for colour heats differs with different cems more nearly to represent the actual colour corresponding to the heat sought to be represented. We have found that differen range of temperatures covering the same colour. Further, we a range of temperatures covering the same colour. Further, we
have found that the quality or intensity of light in which colour heats are observed-that is, a bright sunny day, or cloudy day, or
the time of day, such as morning, afternoon, or evening, with their varying light-influence to a tion of temperatures by eye.
After many tests with th.
After many tests with the Le Chatelier pyrometer, and different have adopted the following nomenclature of colour scale with the correxponding determined values in degrees Fah, as best suited
to the ordinary conditions met with in the majority of smith hops:

With the advancing knowledge of, and interest in, the heat treat ment of steel, the foregoing notes, it is hoped, may prove of some tures, and lead to further and wider diseussion of the subject, with a view to the better understanding and more accurate knowledge close approximation the temperatures used in the treatment of steel cannot be over-estimated, as it h
of success in obtaining desired results.
This demand for more accurate temperatures lead to the use of accurate pyrometric instruments; but at present he only available instruments do not lend themselves readily to pended upes, and the eye of the oper or accurately determined temperatures, will prove of much materia assistance in the regulation of temperatures which cannot be
otherwise controlled.

Train Seryice to and from Paris.-The South-Eastern and Chatham Railway announce that on and from the 15th January to and from Paris, ria Dover-Calais and Folkestone-Boulogne, ing Paris Exhibition. The Northern of lin view of the forthcomhas for some time past been building new rolling stock for use on modern corridor bogie type, with lavatory uccommodation most sufficient number of these vehicles has now been completed, to
enable the $9.0,10.0$, and $11.0 \mathrm{a} . \mathrm{m}$. services from London and the enable the $9.0,10.0$, and $11.0 \mathrm{a} . \mathrm{m}$. services from London and the of these new carriages between Calais and Boulogne and Paris, and 9.0 a.m. morning service will also have a restaurant car added between Calais and Paris, and the departure from Paris will be made at 9.30 instead of 9.0 a.m., arriving in London as at present,
The afternoon service, cia Boulogne, now leaving Paris at $3.45 \mathrm{p} . \mathrm{m}$. will be timed to leave at $3.30 \mathrm{p} . \mathrm{m}$., and on and from February 1st this service will be due to arrive at Charing Cross 17 minute eariler than at present, viz., at $11.15 \mathrm{p} . \mathrm{m}$
Annual Dinner of Old Stedents of the Royal School of Mines.-Mr. H. G. Graves finding it necessary to retire from the
honorary secretaryship of the Old Students' which he has filled with such ability and success for eight years, it is thought that, over and above the recognition of Mr. Graves work by his nomination as chairman of the forthcoming annual
dinner, the eminent services which he has rendered to the Olr Students deserve some further mark of acknowledgment. It i proposed, therefore, to present him with a loving cup with a suitable
inscription, accompanied by an album containing the signatures of the subscribers, without mention of the amount subscribed. The following gentlemen have formed themselves into a Committee to
promote this object:-H. Banerman, chairman of the dinner promote this object:-H. Banerman, chairman of the dinner,
$1892 ;$ Bennett H. Brough, chairman, 1894; A. G. Charleton, chairman, 1896 ; Francis Fladgate, Registrar of the Royal Schoo
of Mines ; W. H. Greenwood, chairman, 1895; W. Gowland chairman, 1884; ; H. W. Harbord, chairman, 1899; F. F. Harman
chairman, 1897. Subscriptions should be sent to Mr. F. F. Rose
chatgate Royal College of Science, South Kensington, or to Mr. Hngh C.
McNeill, hon. see. of the Dinner Committee, 29, North Villas Camden-square, London, N.W., not later than January 11las,
Noth 1900 , in order that the presentation may take place at the Roya
School of Mines dinner on January 26th

American Society of Mechanical Engineers
\& Heat at which seale forms and adheres, i.e., does not fall away from
he piece when allowed to cool in air.

32 IN, DOUBLE-HEADED SHAPING MACHINE loudon brothers, glascow, engineers

Te Evenere?

ongs

SHAPING MACHINE.
AT a time when we hear more than enough of the invasion of English markets by foreign engineers, it is pleasant to tion of the British machine tool maker still lives. We have recently received from Loudon Brothers, of Glasgow, a photograph and some drawings of a double-headed shaping machine constructed by them for the Creusot Works. The photograph and the drawings we reproduce on this page. The bed of this fine machine is 20ft. long, and the base is broadened out so as to give great rigidity. Its exact form is seen best in Fig. 1. There are two heads which are entirely independent, being driven by separate gearing at oppcsite
ends of the machine. The gearing consists of a five-step ends of the machine. The gearing consists of a five-step head. The power is transmitted through two long shafts

End of Bed showing Toble

Connection to Driver
Figs. 1 and 2-bed and driving gear
which run the entire length of the bed, and cn each of which there slides a wheel keyed by a feather which drives large wheels fixed at the backs of the heads. Another screw is
used for traversing the heads along the bed. This serew is fixed, and nuts fitted in the heads, and rotated by hand wheels through gearing cause the movement of the heads. A system of cams and ratchet wheels can also drive this gearing to give the feed ; the amounts are $\frac{1}{8} \mathrm{in}$., $\frac{1}{T^{6}} \mathrm{in}$., $\frac{1}{2}^{\frac{1}{2}} \mathrm{in}$., and $\frac{1}{84}$ in. per stroke of ram. One of the heads is illustrated in Fig. 9, in which part of the ram is also shown. Attention may be directed to the broad wearing surfaces cf all the parts. The rams are centrally driven-a distinct advantage-by a Whitworth two-to-one quick-return motion. The arrangement is illustrated in the upper part of Fig. 2. They have a stroke of 32 in . The connecting-rods are exactly behind the centre of the tool slides, and are firmly fixed to the driving discs and rams by two $1 \frac{1}{2}$ bolts at each end. The adjustment is but the tool holders or clappers are of steel; they bave
angular and vertical adjustment. The worm segment can be boilers is 125 lb ., and the full working load is 300 indicated used for cutting internal curves. An automatic feed can be applied to the vertical adjustment when required. There and in Fig. 1. They are carried on plates hung on the fron

Fig. 3-DETAILS OF HEAD
of the bed, and are moved horizontally by screws fixed in the bed-see Fig. 1-and vertically by bevel wheels and serews fixed in the plates.

NEW TRAMWAY GENERATOR AT LEEDS.
Some three weeks ago the Leeds Corporation started their new additional generating plant for the electrical tramways. We have had an opportunity of seeing this at work. The ynamo is multipolar, and has been manufactured by Greenwood and Batley. The engine has been supplied by John ompound type. The cylinders are 29 in and 55 in . in diameter, with a stroke of 32 in . The steam pressure at the
horse-power, the emergency load nearly reaching 2000 indicated horse-power. Superheated steam is employed, a super-
heater of special form being placed between the two cylinders heater of special form being placed between the two cylinders
The speed when fully loaded is 120 , and when light 122 revc lutions per minute. The
engine has been designed and its manufacture and erection superintended by Mr. J. F. Marshall, of John Fowler and Co., Limited, and it certainly does both him and the makers a large amount of credit. On the watched the plant at work for nearly two hours. Du:ing this period it worked with hardly a sound. It had been started to work just when its erection was
completed, and had run completed, and had run almost continuously ever since, and was, a week agc,
doing some twenty - one doing, some twenty - one hours work a day and driving the whole of the electric the original machinery being used as stand by, and one boiler having been laid off. The vals gear is positive action Cor liss without trip of any kind, and the governor is extremely sensitive, and moreover, fitted with multiplying gear, so that its governing action on the expansion valves is instan while we were watching it large increases or decreases of the while we were watching it large increases or decreases of the
load, amounting on occasions to from 800 to 1000 hors power were suddenly thrown on or off in accordance with the exigences of the traffic. The engine in each case responded without a sound, and while we were observing the tachometer there was never a greater variation of speed than 2 per cent. By listening alone one could not possibly tell that the load was not quite constant, but when closely observed the clean action of the governor could be appreciated. The engine is running jet condensing, the pumps being worked by a bell crank driven off the tail end of the lowpressure piston-rod. The boiler steam passes through the jacket and cylinder covers before it reaches the interior of the high-pressure cylinder. Thence it traverses a superheater supplied with live steam from the boiler, and is then sides and covers. The result is that the steam remains dry right up to the time when it is finally exhausted. An in dicator cock on the low-pressure cylinder gave us an oppordunity of observing this for ourselves. The steam here was
tur absolutely dry, and there was no water of any kind. In addition to the governor already mentioned there are two further safety governors, one mechanical and one magnetic, to close the main stop valve should the speed or voltage for any reason exceed a specified maximum. In a future edition we hope to give detailed drawings and description of this fine engine.

A number of signalmen and torpedo-men of the Channel Fleet have joined temporarily the Vernon Torpedo School at Portsmouth for instruction in wireless telegraphy. This system is to he installed on the Majestic, Magnificent, Hannibal, and Jupiter, belonging to the Channel Squadron.

TUGELA RIVER NEW BRIDGE—END VIEW OF SPAN

THE NEW COLENSO AND FRERE BRIDGES.
OUR readers will remember that during the military perations in Natal the bridges over the Tugela River at Colenso and over the river at Frere have been destroyed by nent at once decided not promptitude the order for the reinstatement of both these bridges, but to make the new structures of a stronger and heavier type than the wrecked bridges, so that they could withstand the heavier weight of modern and increased traftic. Drawings for such bridges ivere fortunately in existence, and it remained only to object tenders were invited both in this country and in America, and in the result the order for the work was given to the Patent Shaft and Axletree Company, of Wednesbury. This firm undertook to deliver the first shipment of one span in six weeks from the date of the order. The order was given on the 21st of December last, at a most inconvenient time, seeing how near it was to the Christmas holidays. The first span was, as a fact, fimished last Saturday, the 13th inst., and deducting Christmas and Boxing days, and three Sundays, the work had actually occupied nineteen working days.
Our illustrations above and on page 66 show side and end Iews of this one span, the photographs having been taken on Ionday afternoon last, just after the structure had been taken it had been entirely erected in the company's works. This, of course, represents time, several days at all events, and, as a comparison, we may mention that not oply was this not done by the makers of the Atbara Bridge, but that the edges of the plates composing this bridge were not planed or finished. The planing involved in the span of the Tugela Bridge was no less than 7500 ft . run. Moreover, this span, as will be the
case with the whole of both bridges, was also painted with There are to be in all seven spans of 105 ft . long each. Five of these spans are for the bridge at Colenso, the remaining two are for the river at Frere. Each span will weigh some to be drilled in each span. Siemens-Martin steel males factured at the company's works, is used throughout. In al early issue we hope to give drawings of one of the spans, and shall then enter more minutely into detail than in the present instance. We may say here, however, that the bridges are both identical, saving in the number of spans, that they are 16 ft . wide, and are intended to accommodate one line of It will be, with space for pedestrins or horse traffic. manner in which the work has been carried deeply into the extraordinarily expeditious manner We were enabled to gather the following information when we inspected the first span on Monday last:-The order was received at $9 \mathrm{a} . \mathrm{m}$. on December 21st. By 5p.m. the same day a considerable quantity of material-some 100 tons-had been rolled at the company's and somested and approved by the Natal Govermment engineer, About 100 the plates were actually on the planing machines the order but and boys have been contmuously at work on tically been no night work. The quickness with which the first span was completed, and the remainder of the work begu in hand-for two spans are now completed and work begun on the third, tested and approved - is the spalt, the company's officials, of the manner in which the workmen have responded to the call made upon them. Everyman and boy, from the manager of the bridges department, Mr Knowles, downwards, having done everything in his power to
further the work. Nothing beyond ingots was in stock when the order was received. The firm had made the original Colenso and Frere bridges in 1877, but the new bridges are, plates had to be made, and the men in the template depart ment voluntarily worked right through Christmas. The company is certainly to be congratulated on the promptitude with which the work has been completed, and on having such a staff of workpeople as to render this possible.

DOCKYARD NOTES

The Shikishima, having completed for sea at Southampton, has returned to Portsmouth, reaching Spithead last Saturday afternoon. After doing her final steam, gunnery; and torpedo trials, she will come into harbour, coal, and leave for Japan next week. Her gunnery and torpedo trials re evoking great interest amongst Japanese naval officers, and practically all of them from the other ships now building in this country are at Portsmouth this week.

The new French naval programme includes the building of ten first-class battleships and ten big armoured is suspended at present. \qquad
The Dutch naval programme for 1900 provides for building wo more second-class eruisers of the Gelderland type. A en years' programme has been put forward, which includes type, and three small monitors armed with 8 in. guns in

THE ENGINEER
turrets, three other monitors-these we have heard of before -seven cruisers-Gelderland type-twenty one first - class torpedo boats, twelve small torpe
boats for the Dutch East Indies.

The needs of the American navy have been summed up as follows:-For coast defence, 46 monitors, 34 coast defence
battleships, 32 cruisers, 26 destroyers, 74 torpedo boats, and 50 submarines. For other purposes, 24 first-class battleships, 50 armoured cruisers, 20 protected cruisers, 26 gunboats, and
84 destroyers-altogether a large order and a tolerably 84 destroyers-
expensive one.

By the time these lines are in print the long-delayed Pandora will have been floated out at Portsmouth, and
hopes are locally entertained that she will be ready for her hopes are locally entertained
trials by the summer of 1903 .

The: Admiralty have ordered the Drake to be expedited and launched as quickly as possible, a course against which the authorities at Pembroke dockyard are said to be protesting, stage at that yard eventually delays them, owing to the difticulty in armouring them afloat. Rapid completion of ships is not, however, the forte of the present Admiralty, to in the case of the Pandora at Portsmouth-is the thing they like. It swells the total of "ships launched and completing,"
and serves to impress the nation. Hanky-panky has not yet and serves to impress the nation. Hanky-panky
quite retired from Whitehall and Spring-gardens.

Quire a number of newspapers now contains letters
advocating armour-protected troops-a question to which advocating armour-protected troops-a question to which The Engineer has already referred. The prime difficulty,
as we have pointed out, is how to transport the armour. A report-to which, however, we hardly feel disposed to attach
much credence-is going round to the effect that Russiamuch credence-is going round to the effect that Russia-
which generally sees the newest thing-is questioning the
advisability of armouring sailors serving the guns of such ships as the Rossia. The idea is that small particles of shell and burning powder could thus be kept out, at the cost of a
slightly reduced rate of fire perhaps. The moral effect would be great, no doubt, as 3 -pounder and 1-pounder shells would thus be discounted unless they actually hit a man. In the old days our knights in armour used to go afloat; it will be
curious if the ancient idea of armouring the hull-for this idea is old as the hills-is supplemented by the armoured men of old time. Should the ship sink, of course they will drown; In a modern naval battle it is absolutely certain that there will be no rescue of the drowning. It will be quite impossible.

The cruiser Pique is to be commissioned at Devonport on the 15th of February for service on the China station. A
Chatham the Blenheim is being brought forward for service.

THE new destroyer Electra-from Clydebank-has successfully passed her official trials at Portsmouth.

The Kent-of the 9800 tons Essex class-will be "laid down" at Portsmouth on February 1st. At Devonport a
third-class cruiser of an improved Pelorus type is to be laid third-class cruiser of an improved Pelorus type is to be laid
down at once. At Sheerness two sloops, the Espiegle of 1075 tons, 185 ft . long by 30 ft . broad, and armed with six 4 in . quick-firers. They will, of course, have no fighting value, being intended for "police duty."

The French cruiser Tage is being "transformed" again. This time it is to remove all the woodwork, an operation that has necessitated pulling her to pieces almost. She is to be
re-boilered and re-engined, so that coupling this with previous re-construction, she will nearly approach the proverbial Irishman's gun. Little of the original Tage save
the shell can now remain. The ship and her engines were fully illustrated in The Enginner some years ago.

The current Le Yacht contains a photograph of the Russian gunboat Giliak, with a descriptive article that follows
tolerably closely one that we gave in this column some weeks tolerably closely one that we gave in this column some weeks
ago. There is also an article on French cruisers, and an ago. There is also an article on French cruisers, and an
article concerning the American submarine boat Argonaut.

GUNS FOR THE WAR.

We wish to correct a mistake which crept into our descrip, tion of "Guns of Po
January 5th, page 6.

By a slip the gun in Figs. 1 and 2 was called $4 \cdot 7 \mathrm{in}$. instead of 5 in., and this was carried into the text. As correctly stated in the article on "War Material," page 21, the 5 in .
gun is mounted on the 40 -pounder carriage, and the $4 \cdot 7 \mathrm{in}$. gun is mounted on the 40 -pounder carriage, and the $4 \cdot 7 \mathrm{in}$.
on that of the 6 in . howitzer, and the cuts are correctly drawn for this.

TENDERS
PEMBROKE DOCK
For the following materials and works, for the drainage of
Pembroke Dock-northern outfall for the Pembroke Town
 840 yards run 7 tt . by 6 ft . storage culvert, 450 yards run 3 ft . in .
by 2 ft . 4 in brick sewer, 8500 yards run earthenware pipe serr
or thereabouts, together with manholes and other contingent works, and the erection of a pumping station with enginess pumpes,
and rising main complete. Beesley, Son, and Nichols are the engiand rising main com
neers for this work.

解, Dukintield (accepted)

LETTERS TO THE EDITOR

(We do not hold onrselece responsithe fior the opinious a, our

weapons and warfare.

Sine-The flood of criticism, which threatens to swamp the Eng.
 to answer : yet I fancy that what Ihave to say may porsess such small value as may be claimed for that which has not been suid
before, and is intended at least to direct thought into a new chanet.
Nothing
Nothing seems to me to be easier than to sit in a chair and dictate to a typewriter that which comes uppermost in a mind
astonished by the sequence of events unanticipated, and outside the limited experience of the author. That which seems to come uppermost in Fleet-street is the notion that our generals ought to
have known all and everything about Boers, their weapons of war have known all and everything about Boers, their weapons of war,
and their methods of fighting; and it has been argued, even by the and their methods of tighting; and it has been argued, evout Boer
more temperate, that however ignorant we might be about guns, we ought to have thoroughly understood what our own guns and it is written because the writers have not taken thought. They may rest certain that there is a cause for everything, and they ought to have sought out this cause, and not finding it, foreborne
to animadvert. No doubt all the facts will be made known by-and-
俍 bye, and criticism should for the moment be confined to such acts, serations, deeds, failures, and successes as are understood, and he purport, method, and result of which are fuly comprehended.
To illustrate my meaning, I will take the question of the merit of our larger weapons of war. We have sent guns to do some
particular work, and the guns have not done it. Had we any particular work, and the guns have not done it. Had we any
possible means of knowing beforehand whether they would or would not? The answer must be that the effects of shell fire, for of conjecture, simply because this is the first time shells have been of conjecture, simply because the special conditions. I am sure you would not care to cumber your space with all that might be said on this point.
The experience acquired in India and elsewhere may be cited; but The experience acquired in India and elsewhere may be cited; but my answer is that all experience of that kind is jast as likely mittempted to clear by shell fire, will so modify the effects that they may mean failure or success to the people using the shells.
Again, we have rifle fire. About the effects and power of that, Again, we have riffe fire. About the effects and power of that,
again, next to nothing is known. In the first place, target firing only teaches one thing. The shooting at dummy men
teaches another thing. Neither teach us anything of what the rifle will do in a sharp action. For the very reprehensible and unpleasant practice of "sniping" a Bisley experience is valuable.
For the rest let me quote a few words from Charles Lever" "Charles O'Malley." O'Malley was going to fight a duel, and his second asked him what kind of shot he was. "I can break
the stem of a wineglass at fifteen paces," was the reply. "That is all very fine," said the second, "but the wineglass had not
istol in its hand." All which means that men are certain to become excited in battle, and that under the conditions old "Brown Bess," if only she had been a breechloader, would have beaten the
best small bore of the present day. best small bore of the present day
Next we are told that
Next we are told that our sham fights must have taught us much. That is quite possible ; but they did not and could not teach us to
fight the Boers. None of these sham things take count of the man behind the gun. From first to last the war is being fough
man man behind the gun. From first to last the war is being fought
with untried weapons, so far as active, special, real fighting is
involved, under wholly novel conditions, and no one knows more involved, under wholly novel conditions, and no one knows more about the matter than our own officers and soldiers. Whenever
the Germans and the French fight with smokeless powder, lyddite, and quick-fire guns, they will find themselves in just the same plight, except in so far as they profit by our South African lessons. except main object I have in view, Sir in asking for space in your
The
correspondence columns, is to call attention to a fact which is, perhaps, well known, but never insisted on, and usually ove
looked. I mean the great truth that the value of all weapons looked. I mean the great truth that the value of all weapons of
war, and methods of fighting, depend entirely on their adaptation to their environment. We can no more make a special system succeed under adverse conditions than we can grow bananas on a
Lothian farm, or fatten prize oxen in Klondyke. It is not necessary to cite examples. The history of all wars-that is to say,
the history of the world-is full of them. That army will succeed the history of the world-is full of them. That army will succeed
that best complies with the conditions dictated by the environment. It is, of course, possible to starve out an army or wear it away by a natural process of attrition ; but such process does not represent a military, or, perhaps, I ought to say, a fighting success.
Now the success of the Boers so far has been wholly due to their intense adaptation to their environment. They are not, in the
proper sense of the word, soldiers at all. They have no drill worth proper sense of the word, soldiers at all. They have no drill worth
the name. A Boer army is a collection of undisciplined fighting men. Given an open country, and I have not the smallest doubt men. mooran open country, and have not the smallest doubt
that a moratish army. would sweep them off the face of
the earth. But Tommy Atkins is by no means suitable to the environment of the South African broken country. There was a
time when poor Tommy would have gone to fight the Boers with a ime when poor Tommy would have gone to fight the Boers with a
stiff leather stock roond his neck, and a knapsack like a small But a great deal on his back. We have got the better of all that. Bent The "hardy mountaineer" is a stock phrase, and we are
meld in history over and over again how this same hardy moun-
tol told in history over and over again how this same hardy moun-
taineer has beaten the best troops in the world. He has done so taineer has beaten the best troops in the world. He has done so
because be was adapted to his environment, and the troops were because be was adapted to his environment, and the troops were
not. A striking example of the influence of environment fully recognised and potentially operative, is supplied by the Navy.
Jack is perfectly adapted to his work; and as his environment in
a manner changes from day to day, Jack is perfectly adapted to his work; and as his environment in
a manner changes from day to day, and place to place, climate,
motion, nothing constant ; so we see how wonderfully well be motion, nothing constant; so we see how wonderfully well he
"adapts himself," to use another stock phrase, " to his surround"adapts himself," to use another stock phrase, " to his surround
ing." That is the reason that Jack has been so useful already in
Now, it seems to me that much of the criticism which I call unintelligent, springs out of an overlooking of the truths I have
endeavoured to state. We have put armies in the field which are in no way adapted at first to their environment. But no one is to blame for this. We have no other armies to use; nor do I suppose for a moment that the newspaper men who now bang their desks
with their fists, and call all their gods to witness that the Waroffice is run by imbeciles, had the smallest idea that the troops which filled our great transports would be unsuitable ; if they thought so, they kept their thoughts to themselves.
The leader writer who now denounces everyone
The leader writer who now denounces everyone and everything
either knew the facts long ago, or he did not. If he did, why has not, why denounce the War-office? to know. That is a line of defence which no contributor business paper will accept for a moment. He will tell you that it is his
business to know everything. But this is a digression, useless business to know everything.
enough perhaps, yet reminding
What we have obviously bee

But this is a digression, useless What we have obviously bee
doing for the last hundred days or so is to adapt our methods of tighting to the environment. We
have been learning. We have had certain costly lessons. All have been learning. We have had certain costly lessons. All
teaching, even that of the Board School, is terribly expensive.
The world has learned for the first time what the modern quickThe world has learned for the first time what the modern quick-
fire weapon, large or small, can do, and, what is more to the point,
what it cannot do. We have-three classes of artillery-to wit, what it cannot do. We have-three classes of artillery-to wit,
Horse Artillery, very light and mobile ; Fiold Artillery, more Herse Artillery, very light and mobile ; Fiold Artillery, moro
weighty and powerful, and slower in its movements; and guns of
position, of which the 4.7in. is a type. One result of this war will
can be moved with reasonable alacrity. Wire may yet do much in the direction not now dreamed of. I am certain that change
will be made in shells-possibly in the direction of ensuring that, will be made in shells-possibly in the diret.
no matter how they are fired, they will burst.
But I fancy the principal change that will be brought about will be the formation of armies suitable to their environment, and not moulded on one pattern. The great defect of the War-office ha-
been, I think, the endeavour to mould all our soldiers on the same pattern. There has been a certain amount of diversity, but it comes more by chance than good guidance. No doubt for several years to come we shall have to maintain a standing army
in South Africa. That army ought to be modelled on lines quite different from those hitherto recognised as orthodox, to the exclusion of all others, in Pall Mall. Far be it from me, a civil engineer, to hint, even in a sentence, what the War-office's great men ought
to do. But I shall be much surprised if Roberts and Kitchener do not come back full of excellent ideas based on facts ; and it must not be forgotten that not the men alone, but the weapons
of war, must be carefully adapted to the environment. If
the country is so difficult that a big gun cannet trel the country is so difficult that a big gun cannot travel
on its own fighting carriage, then let it be provided with a travelling carriage as well. Marryat tells us in one of his
novels bow in a certain siege it became all-important to get a 9 lb . novels bow in a certain siege it became all-important to get a 9 lb .
ship's gun up to the top of a steep hill commanding the town. The soldiers could not do it. But a sailor suggested that the gun
should be packed with tow into a large hogshead, well hooped, and
that this hogshead should be parbuckled up the hill. This was done, and the place surrendered. Jack adapted the gun to its environment. The flying bridges put up by our Royal Engineers are excellent illustrations of what 1 mean. Another is supplied by
the Indian screw guns. These are not made in two pieces the the Indian screw, guns. These are not made in two pieces the
better to kill men, but in order that they may be taken up the mountains where the men
To conclude so long been unsuccessful is not the falt of officers or men, but the unfitness of our armies at the outset to the environment. Even if the War-office had known all the conditions, there was no help, because it had to send the troops it had got. It is more than doubtful
was done at the time
Bismarck is credited with saying that for England to fight Germany would be like a whale fighting with a lion, and someone Greeks in their war with Turkey was that we could not send an ironclad up country. We have been in very much the same position with the B
tion on the veldt
tion on the veldt as an ironclad would be for putting down a
border fray. But the time lost at Ladysmith has not been wasted French has tanght us a lesson. Our " surprises" and "accident have been lessons, not defeats; we learn slowly but surely, and the
War-office already begins to recognise the value of those incom-War-office already begins to recognise the value of those incom-
parable light horsemen supplied by our Colonies parable light horsemen supplied by our Colonies-troops in perfect
accord with their environment. The lesson taught will not be accord with their environment. The lesson taught will not be
without value, and I shall be greatly astonished if one of the first results of the war is not a new departure in the mobile artillery. which constitute
January 15th.

A Min in the Strind.

Locomotive mileage.

Sir,-In a recent letter on locomotive work in England and
America 1 ventured to challenge your calculation on the cost of American locomotives per mile run, and to point out that American locomotives habitually made a mileage four or five times that
usual in this country. In the "Proceedings" of the Western Railway Club for November last, I have just come upon some
figures which may be of interest to your readers. Eugine mile per month of various engines is given as follows: Engine mileage $7316,6014,5648,5702,9657$, and 10,170 miles. One speaker metrtioned that two engines were doing the work recently done by
four ; another said that thirty-seven engines were doing the work engines also can-two had formerly been employed. That English engines also can rum 8000 miles a month continuously has been
sufficiently proved by Mr. Webb with the "Charles Dickens," but "Charles Dickens" has, as far as I know, no imitators.
$\begin{array}{ll}\text { 18, St. James'-place, S. W. } & \text { W. M. Acwonth. }\end{array}$
[Mr. Acworth's criticisms lose all force, because he does not give the faintest notion of what he means by train miles. Before any
useful deduction can be drawn, it is essential that there shall be a useful deduction can be drawn, it is essential that there shall be a
common basis of definition. We are afraid Mr. Acworth has not got sufficient data before him to state with any degree of accuracy
the mileage miles only appear in the reports. This last half-year the London mad North-Western engine mileage has been over thirty-eight
and
millions. Nearly all the main line passenger engines are double. millions. Nearly all the main line passenger engines are double-
manned, including the whole of the four cylinder engines, and manned, including the whole of the four cylinder engines, and
some of these engines are running over 8000 miles a month, which we think will compare very favourably with Amer'an engines or
those of any other country

the surrey iron railway

Sis,-Mr. Arthur Kinder is evidently unaware that there were two tramways worked in The Surrey Iron Railway could not possibly have gone to Couls-
don limeorks, as it only ran from- Wandswort don limeworks, as it only ran from Wandsworth to Croydon, Another line ran from Croydon to Merstham chalk pits and lime-
works through a cutting, and it is doubtless this that Mr. Kinder remembers. Both railways were double lines throughout. I ven-
ture to doubt if Coulsdon limeworks were ture to doubt if Coulsdon limeworks were ever connected with
the old tram, which is on a much higher level at the other side of the valley.
It is stated that the tram crossed the Brighton road by an arch,
at about $16 \frac{1}{2}$ miles from London. Possibly a level crossing was substituted after a time by altering the road or railway, or both. 6, Rawlings-street, Chelsea, S.W.,
W. B. Paley,

CAMBERED PISTON-RODS

Sir,- - We read in your newspaper of January 12th the descrip-
tion of a 2000 indicated horse-power compound mill engine, and take liberty of begging you to notice that in 1892 we took a patent for such a disposition of piston-rods. But we bend them in such a manner that they are straight when running.
aussee de Mons, 95, Ander
Bruxelles, January 16th.
H. Bollincex.

The Bill which has been deposited for next session by the Metropolitan District Railway Company, amongst other objects by it. For this purpose it is proposed to erect a generating station
near Lots-road, Chelsea, and tolay cables from the near Lots-road, Chelsea, and tollay cables from the generating station to the railway of the company at West Brompton and Earl's-court
stations. The company ask for permissive stations. The company ask for permissive power to work by
electrical power the traffic on theif existing railways, or any of electrical power the tratic on theif existing railways, or any of
them, and on the City lines and extensions railways of the company
and the Metropolitan Comen and the Metropolitan Company, and on any railways of the Metroto run over. It is, however, provided that these powers sball in no
way prejudice the right of the Metropolitan Company to run over
the Inner Circle Railway.

TWENTY-TON COAL WAGON, GREAT WESTERN RAILWAY

TWENTY-TON COAL WAGON.
We said in a recent impression that the Great Western Railway Company was trying some 20 -ton coal wagons.
Special attention is being devoted to this subject now, and Special attention is being devoted to this subject now, and
by the courtesy of Mr. Dean we are enabled to give an illustration of one of these wagons. The following tabular statement supplies all the dimensions:

the axle being reversed after the first blow, and then after every second blow. The tires chosen for testing are to be placed in a running position, with the tread resting on a solid metal foundation, and a weight of 20 cwt. will be allowed to fall freely on the tread from heights of 10 ft . and upwards, internal diameter. The tested tire must show no signs of failure under this test. On complete analysis the carbon
are not to be pressed on at night. The remainder of the specification is as usual. Tenders are to be in by 2 p.m. on Tuesday 23rd January, 1900, marked "Tender for Wagons."

NAVAL WORK OF THE ELSWICK SHIPYARD IN 1899
In our résumé of the naval work in English shipyards and engine factories in 1899, given in our issue of December 29th ult., we were unable for the moment to give that effected by Sir W. G. Armstrong, Whitworth, and Co., at the well known works at Elswick. We now have pleasure in supply ing the omission.
Of the vessels completed out of hand during the past yea Tokiwa, built for the Imperial Japanese Government. they are each of 9700 tons displacement, fitted with twin-screw triple-expansion engines of 20,000 indicated horse-power, and cylindrical boilers by Humphrys, Tennant, and Co., of Dept ford, and attained a speed of 23 knots. The two second-class protected cruisers, Hai Tien and Hai Chi, built for the Imperial Chinese Government, each having a displacement of 4500 tons, fitted with twin-screw triple-expansion engines of 17,000 indicated horse-power, and eight cylindrical boilers by Hawthorn, Leslie, and Co., of Newcastle. These vessels on trial realised a speed of 24 knots
For the Royal Portuguese Government there was built and completed the second-class protected 22 -knot cruiser Do1 Carlos 1st, a vessel of 4280 tons displacement, fitted by the firm last mentioned with triple-expansion twin-screl boilers of the Yarrow type ; and for the Chilian Government the training ship General Baquedano, of 2300 tons displacement, having single - screw six-cylinder triple -expansion engines of 1500 indicated horse-power and Belleville water tube boilers, also fitted by Hawthorn, Leslie, and Co. This vessel is fully equipped and rigged as a sailing ship.
There are also undergoing their steam trials the following vessels, built at the Elswick Works:-The United States cruiser Albany, of 3440 tons displacement, with triple-expan sion twin-screw engines and cylindrical boilers of 7500 indi cated horse-power, by Hawthorn, Leslie, and Co., to drive the
vessel at 20 knots an hour: and two torpedo boat destroyers, one engined by the Wallsend Slipway and Engineering Co., with engines of the usual "destroyer" type; and the other by Parsons Marine Steam Turbine Co., with their compound turbine motors; the former vessel being expected to attain a speed of 30 knots, and the latter 35 knots an hour.
Five other large vessels are in hand at the Elswick Works, viz.:-The battleship Hatsuse, for the Imperial Japanese Government, which is of 15,000 tons displacement, to be fitted with twin-screw triple-expansion engines and Belleville boilers of 14,500 indicated horse-power, by Humphrys,

CONTRACT OPEN.

INDIAN STATE RAILWAYS.
The Secretary of State for India in Council is advertising for tenders for the following:- Two hundred covered goods plete; woodwork, axle-box brasses, and leather shields are not to be supplied. Alternative-covered goods wagons, similar to the above, with wheels and axles, axle-boxes, and springs complete, but with pressed steel underframes. Firms tendering are to submit with their tender a drawing of the frame they propose to supply for the North-Western Railway 5 ft . 6 in. gauge. Sixteen covered goods wagons with wheel and axles and springs; woodwork, axle-boxes, and brasses, horse wagon fittings, side brake, top door fastening on roof, and flap door spring not to be supplied. These are for the Ghaziabad Moradabad Railway, 5 ft . 6 in . gauge. All fastenIndia, together with in allowance of 20 per cert extra in India, together with an allowauce of 20 per cent. extra for
waste, to be included in contract. Basic Bessemer steel is not to be used under any circumstances. All draw-bars, with hook and nuts complete, cradles, safety chains, with their hooks, eye bolts, and nuts complete, couplings complete, and coupling shackles and pins, are to be made of best Yorkshire iron. No iron or steel of foreign manufacture is to be used. The contractor is to name in his tender the firms from whom he proposes to order the axles, tires, axleboxes, springs, and Yorkshire iron.
The roof sheets of the covered wagons are to weigh before galvanising not less than $1 \frac{3}{} \mathrm{lb}$. per square foot, and after galvanising not less than 30 oz . per square foot, and are to be axles and tires are made must be made by the open-hearth acid process, from the purest brands of English hematite or Swedish iron, and not more than 30 per cent. of scrap stee down before being forged into finished axles.
The wrought iron wheel bodies are to be made of Kirtley's olled spokes and rims; the spokes are to be welded up in one mass at the boss, and a circular washer of wrought iron solidly welded on each side. The axles chosen for testing are to be placed in bearings 3 ft . 6in. apart on a solid foundation weighing at least ten tons, and must sustain without fracture ten blows from a 20 -cwt. "tup" falling from a height of 30 ft .

must not exceed - 65 per cent., or be less than 55 per cent. The phosphorus (exclusive of arsenic) and the sulphur cent. each, arsenic must not exceed - 02 per cent. The man ganese must not exceed 75 per cent, and the silicon must not exceed 35 per cent. Should the analysis show carbon silicon, phosphorus, sulphur, arsenic or manganese in the steel in excess of these maxima, the whole batch will be rejected. The wheels are not to be pressed on their axles except in the presence of the inspector, and in all cases the wheels are to require a pressure of not less than 60 tons or more than 70 tons to force them on the axles. The wheels

Tennant, and Co. This vessel is launched, and is now receiving her machinery and being fitted out for sea. The Idzumo and Iwate, first-class armoured cruisers for the Japanese Government, are each of 9800 tons displacement have the same type and power of engines and boilers as the same firm. The Idzumo is launched and now receiving he machinery and being equipped for sea, and the Iwate is on the stocks, and ready to receive her armour.
There are also in course of construction at Elswick two Norwegian armour-clads, to be named the Norge and Eids rold, intended for coast defence ships ; the former is framed

LOCOMOTIVE STEAM CRANE

bedford engineering co., bedford, engineers

and plated, and the latter partially plated. They are each of 3850 tons displacement, and will be engined by Hawthorn, Leslie, and Co. with twin-screw engines of 4500 ind
horse-power, and boilers of the modified Yarrow type. horse-power, and boilers of the modified Yarrow type.
In common with all other firms in the United Kingdo In common with all other firms in the United Kingdom tries, the business of Sir W. G. Armstrong, Whitworth and Co., during the past year was much interfered with by the difficulty in obtaining material, and certain classes of labour. Apart from these delays, it will be seen from the foregoing
record of work accomplished, that fair progress was made.

LOCOMOTIVE STEAM CRANE.

We give on this page an illustration of a steam crane, involving many modern improvements, which has recently been built for the London and South-Western Railway Com-
pany by the Bedford Engineering Company, of Bedford, from their newest 10 -ton patterns. The carriage is of steel, arrying a centre casting and having the axle and other brackets bolted to it. The steel-tired travelling wheels are 3 ft . diameter, mounted upon 6tin. axles, and provided with steel bevel gear for driving both axles. Buffer beams and spring buffers, with draw-hooks and chains, are fitted, and the cross girders are arranged for housing when not required for
maximum loads. The revolving bed is constructed of steel maximum loads. The revolving bed is constructed of steel
girders, supporting the necessary transomes for carrying four anti-friction rollers and for the reception of the forged steel the centre for the passage of the travelling shaft. The side heeks are bolted to the girders, and connected by a transome which receives the top of the post. All motions for hoisting lewing, derricking, and travelling are taken direct from the rank shaft, no second-motion shaft being used. Both the hoisting and derrick barrels are loose upon their shafts, and the latter are fixed between the side cheeks so as to act as stays. All gearing is of ample strength for the work required,
is an example of which it may be stated that the hoisting as an example of which it may be stated that the hoisting
wheel is $2 \frac{1}{4} \mathrm{im}$. pitch, $5 \frac{1}{2} \mathrm{in}$. wide, bored $13 \frac{3}{2} \mathrm{in}$., and bolted on o a 14 in . barrel. The crane has ample bearing surfaces where necessary, and is provided with efficient means of lubri-
cation. It will easily lift its maximum load aft. per minute, and travel at the rate of five miles rate of The total weight of the crane, without fuel or water, is thirts tone.

ENGINEERS AND CHINA

Engineers in the chief manufacturing centres of Great Britain have good reason to hope for increased orders in the near future from China. The official report which the Chinese minister to this country is commissioned to present to the Emperor as the result of the industrial tour upon
which the minister has recently been engaged, is almost which the minister has recently been engaged, is almost
certain to be progessive in its recommendations; and that certain to be progessive in its recommendations; and that
the Emperor is getting more and more favourable to Western the Emperor is getting more and more favourable to Westerı
commercial methods is very evident from the startling public commercial methods is very evident from the startling public
announcement which Sir Chihchen Lofengluh was able to make a few days ago, to the effect that it has been definitely decided to estabish in China a number of chambers of com step cannot fail to foster internal commerce and add to China's material prosperity, with the probable result of increasing Chinese requirements for the assistance which in so many ways English engineers are so able and willing to increasing. during thery shipments British shipments of textile machinery to that country-including Hongkongattained a value of as much as $£ 190,261$, as against $£ 116,741$ in the previous year, cr an improvement of $£ 73,520$. The
new total was also better than 1897 by $£ 47,874$. It is a pity
that the Board of Trade returns do not specify China among that the Board of Trade returns do not specify China among the markets to which the various other classes of machinery This remark applies also to steam engines. China is becoming more and more important to English machinists and ing more and more important to English machinists and
engine builders, and monthly statistics showing how the trade is progressing would be very welcome. It speaks well for increased railway enterprise in the Celestial Empire that our steel rail exports have increased in value from $£ 66,351$ in 1897 to $£ 72,778$ in 1898, and to $£ 82,389$ in 1899. China's requirements in bar, angle, bolt, and rod iron rose in value from $£ 34,716$ in 1898 to $£ 67,923$ in 1899. Last year took as much as $£ 129,039$ worth of "old iron and steel for re-manufacture," which was rather less than in the preceding year
but nearly $£ 40,000$ better than in 1897 . Clearly China is a but nearly $£ 40,000$ better than in 1897 . Clearly China is a have acted wisely in giving the Chinese minister acturer welcome at their various works.

A NOVEL CANAL LIFT

I bescmuption of a proposed canal lift was recently Presented to the Austrian Society of Engineers by Prof of this novel arrangement will be readily understood from the diagrams given below. The two levels of the canal are connected by an inclined plane built up of masonry Four parallel rails are laid up this plane. A long circular
ment of sewage and trade waste had been constructed, the natter had not been taken in hand seriously until the formatio utherity which Irwell Joint Rivers Committee in 1891. Thi the County Councils of Lancashire and Cheshire, and the county boroughs in the watershed, was constituted under a Provisiona Order of the Local Government Board to enforce the powers of
the Rivers Pollution (Prevention) Act, 1876, the application of the Board being supported by the manufacturers, who urged the Board being supported the the manufacturers, who urged
that the work should be taken in hand by a representative central authority, so as to ensure to them uniformity of treat ment. In addition to the Act of 1876 the Joint Committe obtained further parliamentary powers in 1892 . The autho gave tables showing the number of manufactories in each industry from which waste waters of a polluting character were discharged, and a comparison between the number of purification works constructed in of the works at three manufactories where
description was given of the trade waste was efficiently treated, together with the cost of the works and the annual cost of treatment, and the paper wa accompanied by plans and sections of these works. The manufactories referred to were those of R. Clay and Sons, Kelsall and
Kemp, and Syddall Bros, R. Clay and Sons carried on the procose Kemp, and Syddall Bros. R. Clay and Sons carried on the proces purifying the trade waste consisted of precipitation tanks and purifying the trade waste consisted, of precipitation tanks and
filters, sludge tanks, presses, \&c. The volume of water at time amounted to 500,000 gallons per day ; it was treated with lime and "iron alum" and settled in tanks in which most of the suspended solids were intercepted; from these tanks the water was pumped to a second series of tanks for further precipitation, and the c
liquor was finally passed through cinder filters to the stream. Kelsall and Kemp were woollen manufacturers, dyers, finishers. The trade waste was of a very polluting character owing to the amount of soap used in the scouring processes and the grease extracted from the wool. The waste containing the grease, \&c., was kept separate from the dye-water in the
mill, so that it might be treated by itself. It was pumped into mill, so that it might be treated by itself. It was pumped into o series of three tanks, in which the solids were precipitated
oy lime and ferric chloride, the elear liquor passing forward oy lime and ferric chloride, the clear liquor passing forward
through a second series of tanks and filters into the stream the sludge was discharged on to filters composed of cocoannt matting, and after it had dried sufficiently it was pressed and
the oil extracted. The dye-water from the mill, to which way the oil extracted. The dye-water from the mill, to which was added the clear liquor from the grease tanks when they were being
Irawn off for cleaning, was settled in a series of tanks, and filtered, The volume of water dealt with was 180,000 gallons per day Messrs. Syddall Bros, carried on the processes of calico printing, dyeing, and bleaching, and the pollution was caused by alizarine, logwood, and other dyes, soap, starch, \&c. The total volume of the trade waste emounted to about 70,000 gallons per day; the water from the various departments was collected to a well, whence
it was pumped to the purification works, which consisted of central settling-tank and two precipitation tanks, used alternately each of the latter holding a 2.2 days' supply ; iron alum was used as precipitant. The sludge was drawn from the settling and pre-ludge-drying area. The water from the precipitation to "
slation tand was finally filtered through fine ashes. A description was given of the methods adopted at another printworks in the water-
shed, where the waste waters from the logwood, indigo, and soap shed, where the waste waters from the logwood, indigo, and soap
were severally subjected to a preliminary treatment before being were severally subjected to a preliminary treatment before being
sent forward to the precipitation tanks. In the case of the logwood the object of this preliminary treatment was to reduce the cost of treatment in the tanks, as it was found that the concentrated log.
wood liquor was more easily dealt with by itself than when mixed wod liquor was more easily dealt with by itself than when mixed
with other waste. The indigo and soap-recovery plants were re with other waste. The indigo and soap-recovery plants were re-
munerative, and should be adopted at all works where possible. This method of treating the different polluting matters separately should receive special attention, as being undoubtedly the most economical and efficient. In addition to the detailed description of the works mentioned above, suggestions were given as to the
methods of treatment which should be adopted at bleach works, paper works, tanners' and fellmongers' works, brew bleach works, and chemical works. The polluting waters from bleach works might be treated by precipitation in tanks similar to those of Nessrs. Syddall, and, if convenient, it was advisable to separate the final wash water, to reduce the volume, as that water was usually pure enough to be discharged direct into the stream. The
water from the keirs, being highly concentrated, should be collected in the keirs, belos highn, concentrated, should be collected in a separate tank and discharged gradually into the
remainder of the water for treatment. The materials used in paper works varied so much that it was impossible to describe a typical purification plant; if esparto grass or straw was used
cvaporators should be put down, and the soda ash recovered, the
wash water being precipitated in tanks. Precipitation tanks were wawh water being precipitated in tanks. Precipitation tanks were more required at mills where rags, hemp, sce, were nsed. Thi tion. The polluted water from tanneries, fellmongeries and breweries should, if possible, after preliminary treatment, be admitted into the sewers, but if this was impossible, efficient precipita-
tion tanks, followed by filtration or The second paikr, The second paper, on "Experiments on the Purification. of
Waste Water from Factories," by W. O. E. Meade-King, M. Inst,

steel drum, open at both ends, rests on these rails, and has The ends of two ropes attached to it, at two or more points. The ropes are laid as shown round guide pulleys and on to a windlass. When the drum is in the position shown in the engraving, the upper rope is wound up on it, whilst the lower rope is unwound. By pulling on the upper rope the
drum is caused to revolve and rolls up the plane. A system of weights, which roll down a rolls up the plane. A system the inclined plane, and is comnected by other to the face of drum, effect a balance. The drum, as we have said, is the at both ends, but it is partly closed by an annular ringen that it will in any position hold an amount of water sufficient to float a barge. It is obvious that the ingress and egress of the latter is very easily effected, and the system under certain conditions might prove feasible, but, as a rule, in such cases as it would be fitted to deal with, locks would be more cheaply installed and more simply worked.

THE INSTITUTION OF CIVIL ENGINEERS
THE PURIFICATION OF WATER
Arksey ordinary meeting ou Tuesday, January 9th, Mr. Charles The first, on "The Purification of Water after its Use ine read. factories," by Reginald A. Tatton, M. Inst. C.E., dealt with the seriously polluted condition of the rivers in the Mersey and Irwel plaint. Although in some instances works subject of com-
C.E., was an ascount of experiments made with a view to arrive their use in manufactories, Many dealing with foul waters after which these waste waters could be dealt with, and doubtles there were those who wouters could be dealt with, and doubtlest recommended ; but the position of a manufacturer was very ifferent from that of a local authority, who, on being called apon to carry out works for sewage purification, could obtain was extended over a considerable number of years; whereas the individual could obtain no such sanction, but could be called upon to carry out such works at his own expense. It was therefore an important matter that the most simple process taught nothing new it subject, and so be the indireet any rate cause vew. It was hoped that comments would be made on the use of salt water as an addition to certain precipitants for the purpose of causing rapid precipitation. The author was not aware that a large scale, its trial could have no injurious effect either on the works or the pockets of the manufacturers. Rapid filtration was cousidered an essential point owing to the probability of there woing only a very limited area in which to put down purification works, and the experiment showed that this could be obtained by with a space of a few inches between each, so that the liquid instead of being held up in the filter, had practically a free passage; at the same time it was aërated and was acted upon by the mediums sufficiently to turn out an effluent to all appearance

METHODS OF COALING SHIPS AT SEA

Fig.1 Leut Bell's Plan 1887

Fig 2 Lieut Tupper's Plan 1887.

Fig. 6. Miller's Experiments 1898

COALING VESSELS AT SEA.*

A papre entitled "Coaling Ships in Squadron on the Open Sea"
was delivered by Lieutenant R. S. Lowry, R.N., before the Royal United Service Institution, London, April 13th, 18s3. In Lieut. Lowry's plan, special coal boxes or boats holding about a ton of
coal were proposed to be carried by a collier and passed from that to the warship by lines, hoisted on deck, emptied, and returned These boxes contained an air-tight chamber so as to float. The plan was fully discussed, and was evidently not considered practi-
cable. Four years later a paper entitled "coaling Ships of War at Sea" was read before the same Institution, by Lieutenant C. E.
Bell, R. N. This paper was the late Vice-Admiral Colomb, Commander Campbell, Captains Fitgyerald and Henderson, and others.
Lieutenant Bell gives a quotation from Captain Scott, which
forms his excuse for putting his views before the Institution :s forms his excuse for putting his views before the Institution : follows :- "I think, moreover, that you require, if you havegroups
of squadrons, some equal coaling power or means of coaling at sea of squadrons, some equal coaling, power or means of coaling at sea
which we have not yet hit upon." And then says:-"I feel sure that all officere will agree with me that coaniing from broadside at
sea is imposible, except in very calm weather, and even then it is attended with great risk to both men and material employed." And "I am sure I am supported in such belief, by all who have
considered the subject, that the only way by which the various difficulties and dangers of coaling at sea can be overcome and the dificuities and dangers of coaling at sea can be overcome aud the ansfully with the least possible delay, and
work carried out
absence of danger to men and material is by coning from bow to work carried out successfully with the east possible delay, and
absence of danger ot men and material is by coaning from bow to
stern." Also, "I do not make any claim to originality ; in fact, I stern." Also, "I do not make any claim to originality ; in fact, I
believe the same idea has occurred to many officers who have given any consideration to the subject, and, in fact, on submitting a
sketch of the present plan to Sir J. H. Cammerell a short time ago, he then told me it had suggested itself to him some year ago, hand he believed it to be the only was it could be done.,
bells revrirement. -Lieutenant Bell says, "Any satisfactory of coaling at sea must satisfy the following requirements: (1) Rapidity. (2) Safety. (3) Ability for the ships engaged in the These three requirements are absolutely essential to the succesed of any plan, but there are others of no little importance. (4) Neces-
sity of keeping coal dry. (5) Minimum of labour to be employed. (6) Little cost for material necessitated.

Lieutencut Boll x plan.- The plan suggested by Lieutenant Bell
is that shown in Fig. 1 , in which it will be seen that he first took is that sollier in tow of the warship, and then added an inclined and elevated cable attached low down to the after mast on the warship
and to the top of the foremast of the collier. On this elevated and to the top of the foremast of the collier. On this elevated
line a truck or carriage was employed capabie of running along line a truck or carriage was employed capabe of running alo ong
this line. Two ropes are shown, one fastened to the rear, and one to the to the collier so that the bags of coal secured to the true can be drawn over to the warship, and the empty truck hauled
back to the collier. The hawsers he showed crossed from the "stern pipes of the ship of war to the bow ports, hawse ports, or other convenient places of the coal ship." He proposed to carry
five bags at a time, carrying about 220 ib. of coal per bag. The deck of the cell a man stationed on the foreyard for that purpose. With this plan
he proposed to satisfy all the requirements which he had laid out namely, rapidity, safety, sc. While he refers to the fact that his apppance costs
at the same time insist that no expense should be considered too great to carry out this most important, I may say all-important, operation in those cases where it may be essential to the success or
safety of any ship or ships of the Navy, or any expedition they may be engaged in
followed was properly very severe on Lieun. - The discussion that followed was properly very severe on Lieutenant Bell's plan, for,
as it will be observed, there were no means provided for maintain. ing a uniform tension on this eleyated and suspended wire, and if the vessels so rigged were pitching ever so little, either one of two
things would occur, and probably both after a short time. By the things would occur, and probably both after a short time. By the
ships pitching towards each other the coal bags would be likely to be dropped into the sea, and by pitching away from each other pended cable snapped. Commander Campbell said:-" "I do not agree with him, but I admire his principle, and I sincerely hope
this paper may help to give another blow to the ' happy-go-lucky system,' and assist us in bringing about that systematic organisa tion of every detail for which the Navy is now crying with one
voice, and which is now happily receiving the special attention voice, and which is now happily receiving the special attention of
our rulers." Lieutenant Tupper said, among other things:-" think the practice of coaling ships, both at sea and in harbour ought to be made just as much a drill and evolution as are many
other operations which have to be performed." The chairman of
${ }^{\circ}$ A paper by Mr. Spencer Miller, presented at the annual meeting
the American Society of Naval Architects and Marine Engineers.
the meeting, Admiral Boys, said in relation to Bell's plan :- . But if those ships should get in any sea way whatever, the operation, 1 blockade, the practice of coaling at sea by boats or otherwise will occasionally be adopted.
Lientenant Tupper's plan.-Lieutenant R. G. O. Tupper, R.N.,
submitted a different plan for coaling vessels at sea, as shown in Fig. 2. His plan provided an endless rope, starting from the stern of the collier in bow of the warship, passing over an elevated
support on the foreyard, thence to the after mast of the warship, and thence to the forepart of the warship. This endless rope was and thence to the forepart of the warship. Mhis endless rope was
to have buckets of coal secured to it at frequent intervals, the whole operated by a capstan, and the coal in that way passed from one ship to another. This plan was, of course, subjected to the same criticisms as that of Lieutenant Bell's, namely, that in any seaway whatsoecer excessive slack or snapped by pitching in the reverse direction. by excessive slack or snapped by pitching in the reverse direction.
He continued, however, by saying:-"I think vessels performing the duties of colliers, store ships, transports in a fleet, should be large and of the highest speed, and armed with quick-firing and machine guns, so that they might be utilised as scouts for the not actually employed in the operation of transmitting the supplies they contain to the ships of the fleet to which they may be pattached."
The Loir plan.-The Hon. Philip B. Low secured a patent,
July 10 th. 1893 , on a plan practically the same as that of Lientenant Bell, described in his paper six years earlier, but with the addition of a counterweight secured to the end of an elevated carrying cable, Fig. 3. This counterweight was arranged to mainhe a constant tension, and consequently a constant deflection on the suspended cable, regardless of the motion of the ships. The
use of a counterweight to maintain a constant tension on a pended wire rope has successfully been employed in wire rope tramways. His plan was tested by the Navy Department in Francisco and the U.S.S. Kearsarge. The distance from the shears of the cruisers to the upright poles on the collier was about 235 ft . so that the distance between the vessels was something less
than 20oft. The transporting cable, or the transmission wire, than 200ft. The transporting cable, or the transmission wire, as the inventor called it, was secured to the deck of the san Fran-
cisco, supported by a pair of shear poles at the stern, then run on an incline to a gin block near the foremast of the Kearsare which played the part of the collier, at an elevation of about 32 ff . above the point of suspension on the San Francisco. This gave an air-line inclination from the points of support of about 8 deg. to
the horizontal. After the cable was rendered about the gin block the war bentalal. After the cable wasts, and on the end was secured a counterweight about 1600 lb . weight. The bags of coal weighed nearly 200 lb ., and the time required to travel from the pole head on the collier to the shear peloe on warship was about out 1 saec. The time of hoist-
ing and sending over ten bags of coal was about 20 min., ing and sending over ten bags of coal was about 20 min., giving
the rate of about 2 to 2 tons per hour. The Board of Naval Officers were instructed to report upon the trial, and their official eport was that in rough weather the apparatus would not be apparatus was reported to have worked well ; but as the sea was calm, it was impossible to tell what would have been the effect in a moderate sea. As the sea becomes heavier, the distance between ships would have to be increased for safety, and there would have
to be a corresponding increase in the height of the gin block, in order that a proper inclination could be given to the connecting rope. Presuming that the distance between ships be increased to
300ft., the same angle of inclination preserved e 3oof.t. the same angle of inclination preserved, and the same
height of shear poles on the warshin then the height of shear poles on the warship, then the gin block on the
collier would have to be located 7 Off. above the deck of the collier Seliier would have to be located fort. above the deck of the coliin. truck of the foremast of the U.S.S. collier Saturn. It is clear that to attempt to attach bays of coal at such a height as that above the deck would be difficult, if not impracticable, especially in a rolling sea. Even then the capacity, whatever te might have
been at 200 ff ., must be something less at 300ft. distance between the ships. In order, therefore, to increase the capacity of this be noticed that with a 200 lb . load a 1600 lb . counterweight was employed, a 400 lb . load would require a 3200 lb . counterweight, and a 600 ll . lood a a 4800 lb . counterweight, and so on. The
element of danger to the ship in carrving any such counterweight element of danger to the ship in carrying any such counterweight
would seem to need consideration. If the tow-line should snap, would seem to need consideration. If the tow-line should snap,
this weight would be pulled up to the gin block, and then some thing would give away, and the dropping counterweight would do great damage.
The Joln E. Walsh plan.-Fig. 4 illustrates a plan patented by John E. Walsh, of New York. The cable R, attached at one end to the towing boat, inclines upward and bends over a pulley block block 0 , carrying a counterweight W. The rope is bent many times, and must therefore carry a very large counterweight to
sustain the requisite tension in the rope R. The objections which

Fig.7. Miller Conveyor 1899

have been offered by the author to Low's inclined cable and counterweight apply equally well to the Walsh plan. The figure also illustrates overnead derricks for hoisting the load out of both being somewhat higher than that on the foremast, and an auxiliary inclined cable between the masts adapted to carry the coal for-
ward. The author believes that any hoisting device of this kind ward. The author belisas to that any hoisting device of this kind the load is to be hoisted at all on ships at sea, it should certainly be steadied between guides.
Lieutencut Niblack's paper.-Lieutenant A. P. Niblack, in a paper
on "Coal Bunkers and Coaling Ships," read before the Socity on "Coal Bunkers and Coaling Ships," read before the Society of Naval Architects and Marine Engineers in 1893, presented a most
complete argument for the necessity of rapid coaling as a factor in efficiency, and he gives considerable data on the rapidity with which the ships then built in the United States navy could be coaled in harbour. He says :- "Our crack ship, the San Francisco, could only take coal in at Sandy Point at the rate of ten tons per hour, and ordinarily she takes three days, working hard, to fill up.
Efficiency in ship's crew must be supplemented by the best mechanical arrangement practicable, and the ship must be both able to go anywhere and stay there." "Coal supply and rapid coaling are very important factors in efficiency, not only in emergency, but in time of peace, for the time spent in coaling ship is time wasted." He then gives the rates representing an average of three or more good
actual performances of each ship, and shows that the Chicago, the Charleston, and the Newark coaled at the rate of thirty tons per hour. He quotes from the English manceuvres, giving the average of the Thunderer at $17 \frac{1}{2}$, and of the Anson at 51.6 tons per hour, the latter using the Temperley transporter-see Fig. 5. Recently English ships coaling in a harbour being completely surrounded by
colliers and working Temperley transporters and whips combined colliers and working Temperley transporters and whips combined,
have coaled 150 tons per hour. It seems to the writer very apparent that the United States navy needs not only an
appliance for coaling at sea, but also a far better means than at appliance for coaling at sea, but also a far better means than at
present employed for coaling in harbour. At the present time the United States navy owns but one Temperley transporter, the device which the British Navy has used with so
much success and has so This transporter was fitted to the collier Saturn during the late war, but does not know if it was ever used, or whether any report was ever made upon it.
Lieut. Niblack's paper appealed for larger coal capacity and
greater facility for getting the coal into storage. Naval greater facility for getting the coal into storage. Naval Con
structor Francis T. Bowles, United States navy, said, in reference to Lieut. Niblack's plan, as follows :- "I have no doubt that it would add at least 20 per cent. to the cost of the vessel, and the propor-
tion of cost as a vessel grows larger would increase, because the larger the ship the greater the amount of space and weight every
one thinks he ought to be allowed to dispose of ". one thinks he ought to be allowed to dispose of."
Ditficulties of coaling at sea during the Spanixh-A merican rar ol
1898.- Touching upon the difficulties which were experienced by 1898.- Touching upon the difficulties which were experienced by
the United States vessels during the Spanish-American War, the author quotes some paragraphs which appeared in the daily Press while the conflict was being waged. The Commercial Adcertiser, on June 26th, 1898, published a diary of their correspondent located
on board the United States battleship Iowa, and only that part is on board the United States battleship Iowa, and only that part is
quoted from which has reference to the coaling problem :quoted (June 7th, 1898. . . The collier Justine is alongside, and we started in coaling. The Justine has not the coaling capacity
of the Merimac, but she is a fine steamer, very strongly built. In a seaway this is a great advantage, for though we gave her some pretty hard knocks, no holes were punched in her side. Since she
comes right alongside our arnour belt, she can be the only sufferer comes right alongside our artnour belt, she can be the only sufferer
She is also very convenient to coal from. Working three forwar hatches, we are able to take aboard very easily 260 tons before supper time
"June 8th, 1898. Much to our disappointment we found that we
cannot get the Justine agin toder cannot get the Justine again to-day, as she was ordered over to
the Brooklyn, and we had to content ourselves with the Sterling to our sorrow. We had every fender out possible, big rope fellow too, that will stand any amount of knocking, but no sooner had the Sterling come alongside than she came up heavily against our ash chute and opened a hole in her side. There was nothing to do Every send the carpenter's gang aboard and shove her off for repairs. Every one is disgusted with the Sterling for having sides like paper.
"June 11th, 1898. We tried to coal again from the Justine today. Made all preparations, and even started sending the coal aboard, but, before we got more than a dozen bags on, the ships and give it uper again so badly that we had to cast the collier off clean up the ship, only to start in coaling again on Monday." Thus it will be seen that coaling was begun on the 7 th, and on plished, although each and every day they noeded coal, and were desirous of having it. It may be interesting to know that this same collier Justine, after discharging a single cargo of coal, was
returned to Newport News and laid up a long time for repairs, the bill for which exceeded 4000 dols.

It is generally conceded that Cervera's defent was due directly
to the faet of being out of coal and provisions and he thereby
sought the harbour of Santiago de Cuba to fill his bunkers. It is solso a fact that had he been as speedy about coaling after he had also act par hably could have escaped from the harbour, because
arived he
the American vessels were also short of coal, as will appear from the mesesages exchanged between Admiral Sampsou and Commodore Schley and the Navy Department, as they appeared in the report
of Captain Crowninshield, Chief of Bureau of Navigation. The ollowing messige was sent frour Commuduro .aspect difficulty here will be to coal from colliers in constant heavy swell. Other problem easy compared with this one so far from the base,",
On the same day Admiral Sampson received this despath from Commodore Schley, dated May 24 th: - "Coaling off Cienfuegos is
very uncertain. Having ascertained that the Spanish fleet is not very uncertain. Having ascertained that the Spanish fleet ix not
here, will move eastward to-morrow communicating with you
from Nicholas Mole; on account of short coal sapply in ships
 cannot blockade them in in santago., however, by Texas' short coal
stath for Santiago, beenge marrassed,
supply and her inability to coal in open sea. I shall not be able to remain off that port on acocount of general short coal supply of supadron, so will proceed to the vicinity of Nicholas Mole, where
the water is smooth, and I can coal Texas and other ships with
隹 this matter, it it only necessery to say that had Commonore sichley been in poscossion of colliess fitted to coal at sea, especially during
his journey from Cienfuegos to Santingo, there would have been no oceas
arrival.
tivect

rogress the French were experimenting on this problem of coaling

 isth, said, in reference to the experiments in coaling with the Temperley transporter, as follows: - "The econd interesting pointin these manceurres has been the attempt to coal at sea. This experiment, if suceessful, would necessarily have led to a con-
idierable imnovation in naval plans, for it would have induced the uthorities to send out under the protection of men-of-war tloating
depots which would follow the fleets destined to fight in distant waters, and to supply them with coal. The Japon, a collier, 3000
onn, furnished with a cranc - Temperley transporter while steaming six knots in a rough sea and strong breeze succeeded in coaling
the Marceau and Ia Touche Treville with 200 tons of coal. It was , but the operation was not continued as long as desired, it being interrupted in the case of the Marceau by way an accident to the Japon, which had to return to Toulon for
repairs." This problem does not seem to have been fully solved,
as proved by the damage sustained by the Japon as proved by the damage sustained by the Japon. The French that the Japon is to remain permanently attached to the Mediterranean reserve squadron. This solution will naturally have impor-
tant consequences, one of the first being eventually the complete re-victualling of ships in motion, or at any rate out at sea, There is no doubt, indeed, that, the question being thus raised for all
navies of the world, it will be solved. We may even go further.
If all the nations could have not merely coaling stations but com plete re-victualling stations always at hand, victualling on the voy. possible, even for the richest and best equipped Powers, especially now-a-days, when colonising nations may be drawn into action in
far distant regions. It may therefore be supposed that the far distant regions. It may therefore be supposed that the
problem to be laid down will be coaling and re-victualling in
motion." "This is the question now before all the great navies and as such experiments cannot be made in the dark, it is certain
that all nations will almost simultaneously have the necessary apparatus for enabling ships to be supplied at sea, so that they can
be sent to the greatest distance without running short, at the be sent to the greatest distance without running short, at the
moment of combat, of either food or coal."
Cooll teresting reviews of the Spanish-American war were made by
foreign naval officers. One of the most interesting touching the
subject of coal supply was written ly the late Vice-Admiral P. H. Colomb,, R.N., in Cossir, 's Mayusinr, published August, 1898,
entited "Coal Supply, Speed, Guns, and Torpedoes in Marine
Naval War." Among other things under the head Naval War." Among other things under the head of coal supply,
Vice-Admiral Colomb said:- "We get speed and certainty for voyages made under steam, and the full advantages are reaped
in peace time, because coal supply can lee exactly arranged for and calculated according to the work required of it, for that can bo
known, but for the warshijs in war no such special arrangements known, but for the warships in war no such special arrangements
and calculations are possible. Coal sulpply can be treated only
generally before war breaks out. No one can say beforehand generally before war breaks out. No one can syy beforehat
whether it has been advantageously or economically allotted."
Becoming interested in this question in 1893, the author propos at that time to stretch an elevated cable from the stern of the wa ship to the bow of the collier in tow, one to be securely fastened to
the warship and the other end wound around the compensating engine, similar to the steam towing machines. The load rumning
on this cable was to be conveved over lyy an endless rope. It was expected that the compensating engine would keep an equal strain
on this elevated line irrespective of the pitch of the vessels so con on this elevated line irrespective of the 1 intch of the vessels so con-
nected. In March, 1898, Lieutenant J. J. Woodward, Naval Con-
strul structor, located at Newport News, Va., invited plans and prices
on a device containing much the same general ideas. A few
weeks later-April-a plan was sent to Mr. Woodward, and he in turn transmitted it, with favourable recommendations, through the Chief Constructor, to the Secretary of the Navy. It was not,
however, until August of the same year that any understanding was could be begun. The plan, considerably modified, was subtritted president, Thomas Williamson, chief engineer, and Z. L. Tanner,
commander, and they consider the device "feasible in moderate commander, and they consider the device "feasible in moderate
weather.", Thereupo the Department contracted with the
Lidgerwood Manufacturing Company, of New York City, U.S.A., Lidgerwood Manufacturing Company, of New York City, U.S.A.,
to have the apparatus installed on board the collier Marellus.
So much time was lost in negotiations, however, that work of construction was begun the war came to an end.
The author's experiments.-October 15th, the author performed an experiment in New York harbour with a tug, towing a sloop,
using a quarter-sized model. Shear poles were mounted on the tug, and blocks on the mast of the sloop, the distance between
points of support being 100 ft . An endless rope was being used in accordance with the plan shown in Fig. 6. A movabline connecting it with a sea anchor or towing was held taaut by
the sea behind the sloop. By this plan it will be observed that the tug towed the sea anchor as well as the sloop, the latter merely supporting the rope as it passed over. A carriage gripped part served to carry the bags of coal over from sloop to tug. As
the experiment was performed in a storm, no photographs were taken. The storm was so severe that the sloop shipped water
over the bow, and both boats rolled and pitched very badly. In spite of this, however, the bags of coal were conveyed across the
space as though the sea was smooth ; the sea anchor serving to space as though the sea was smooth; the sea anchor serving to
perfectly act as a compensator, maintaining a constant tension on
the endless conveving cable. If such a plan were adopted the the endess conveying cable. If such a plan were adopted, the
sea anchor would have to be selected in accordance with the speed
of towing; the greater the speed the smaller the cone required.

Deochiption of the Miller Conteyon on the

(1) It is proposed, with this device, for the war-hip to take the
collier in tow, or the collier to tow the warship, leaving the distance between ships about 300ft.; this method of securing boats (2) The warship to receive the coal will erect a pair of shear
poles on its deck, which, secured by guys, will support a sheave
wheel and a chute to receive the load. wheel and a chute to receive the load. speciully-contrived engine
(3) The collier is provided with a located aft the foremast, having two winding drums, A steel
cable, fin. diameter, leads from one drum to the top of the foremast, over a sheave, thence to the sheave on the warship, back
another sheave on the top of the foremast, thence to the other another sheave on the top of the oremast, thence to the conveying
drum. This engine gives a reciprocating motion to the rope, paying out one part under tension ; a carriage secured to
one of the parts passes to and from the warship, its load clearing the water intervening.
(4) A carriage of special form is provided with wheels whic roll on the lower part to the conveying cable, and grip slightly but
sufficiently the upper part of the cable. This carriage will carry sufticiently the upper part of the cable. This carriag a hook pivoted
bags of coal 700 ll. to 1000 lb . The load is held by a at the bottom of the carriage, which hook is held by a oatch Whenee block at the warship, this latch is pressed in, thereby
relasing the hook and its load. Should the carriage strike
res. heavily at either terminus the upper part of
through the grip and no dama will ped
(5) As soon as the bags are dropped, the direction of the rope is reversed, and the carrage returned to the collier. During the coal placed thereon, suspended from a bale, and elevated again to the stops on the guides, so that when the carriage has returned to the colier, the pointed hook hinds its way under the bale or hanger
supporting the coal bags. The instant the load is hooked on the supporting the coal bagss. The instant the load is hooked on the
direction of the ropes is again reversed, the carriage takes its load from the elevator and transers it acroas the ite.
the warship, and drops it again into the chute.
(6) The engine for operating the conveyor is of peculiar con struction. It runs practically all the time in one direction, it
speed being varied by the use of the throttle. The drum near the foremast is provided with friction mechanism so that it is capable This drum is operated by a lever. The other drum is of special is ad, empted so so that it will cliip under any strain exceeding, say,
3000 Ils. It may be adjusted while the operation is going on, the tension being increased if the load sags too much, and diminishe referred to hereafter as the 4000 lb . drum, and the other as the 3000 lb, drum. When the engine is running, the tendency of bot
drums is to draw both parts in, one to the extent of 4000 lb , and the other 3000 lb . The effect, therefore, is for the 4000 ll , drun to prevail and overhaul the 3000 1b, resistance, and it is this resist
ance that sustains the load in its transit between the two losats. Through the co-operation of the two drums the conveying distance between the two boats is compensated for, and a practicall
uniform tension sustained during the transit of the load. If the points of support on the two ships approwh cach other-during
the transit of the load-the effect will be that the drum pulling the transit of the load-the effect will be that the drum pulling
4000 lb . will take up the slack so produced, and the 3000 lb . drum will temporarily cease slipping, or at least the slip will be reduced If now the boats pull apart, the 3000 ib. drum will simply slip the machine is to see to it that the speed of transit is is
double the speed at which the two boats come together
(7) After the load is dumped at the warship the operator of the engine releases the friction ever on the 4000 l . drum, thus reduc
ing the tension on the lower part to some point considerably below ing the tension on the lower part to some point considerably belon
3000 ll ., whereupon the 3000 lb . drum acts to haul in rope, and thus returns the carriage to the collier.
(8) The speed of conveying is about 1000 per minute, conse
quently the load will be taken from the collicr and deposited in the quently the load will be taken from the collicr and deposited in the
warkhin in alount wenty seonds.
(9) Attention is called to the fact that the total tension on these two parts of rope will never exceed, say 8000 ll ,; furthermore the only effect will be to unwind the rope from one of the drume
itse end falling into the water, whereupon the other drum will wind in the other end of the rope and recover the carriage attached
thereto. The drum used for operating the conveyor also serves wind up and store the cable when the collier is not coaling at sea this device, consequently any further description of it will be
deferred until the meeting of the Society, when the author will he in a better position to give illustrations and descriptions of the
macline as it will be tried at sea.

almanacs, CALENDARS, \&c

We have to thank the Campbell Gas Engine Company, Limited it is a rail way y accident insecrance calendar policy for fiary. A feature on
A pooket for stamme, $\&$... is formed in the cover. poeket for stamps, \&e., is formed in the cover.
MIr. Perey J. Neate, of Rochester, has brought out a wall
alendar, much on the same linesus lact year it is nisely ip in biack ink on a white card, the result being a pleasing con-
rast with some of the highly coloured and ornamented calendars which are usually considered attractive.
Peckett and Sons, of the Atlas 1acomotive Works, Bristol, have issued a wall calendar of handsome appearance, and having
monthly "tear-off" slips. $A s$ usual, the calcendar is ornamented constructed locomotives, a six-whecels coupled saddle tank congine,
with 1 sin. cylinders, and weinghing calendar there is given a large amount of useful information.
The Hunslet Engine Works, Leeds, are issuing a neat wall the monly "tear-off" type.

CATALOGUES

Westinghouse Electric Company, Limited, Norfolk-street, Strand. Circular No. 1010. Self-cooling transformers
Burnham, Will Bhirnham, Thiams, and Co, Baldwin Locomotive Works, hese works, giving illustrations and particulars of the locomotive
recently constructed. The Horseley Company, Limited, Tipton, Staffordshire. Mlus
trated description of the works, together with information regard ing work executed by the company. The printing and illustration are of the highest standard.
Robert Boyle
New illustrated catalogue. This book is in reality something more Chan a more description of this firm's specialities; it forms an
artistic practical treatise, in which is demonstrated how ventilation can be successfully achieved by a natural agency and
without complex mechanical arrangements.

According to the monthly report on the state of the skilled labour market published by the Labour Department of the
Board of Trade, the general state of employment continued
tood in
 aggregate member hhip of $511,184,1,1,664$-ok $2 \cdot 5$ per cent.- were
reported as unemployed at the end of December, compared with $2 \cdot 2$ in November, and with $2 \cdot 9$ per cent. in the 118 unions, with
a membership of 470,391 , from which returns were received for
December, 1898 .

THE IRON, COAL, AND GENERAL TRADES OF BIRMINGHAM, WOLVERHAMPTON, AND OTHER DISTRICTS.

Fiveu wir arn Comrospondent

ink ar activity prevails at all the works, and the upward tendenc of prices continues. Galvanised corrugated sheets were quoted
on Change in Birmingham this Thurday afterwoon \&15 for 4 w.g.g. f.o.b.
is greatly incre the Transvaal and Free State, and from Great Britain. Owing t
the crowded condition of Cape Town, Durban, and other South the crowded condition of Cape Town, Durban, and other South
A frican towns, temporary structures have to be erected for housing the population, so that corrugated rooting shects are in heavy
demand. Black sheets are advanced 5s, making the minimumi price $£ 115$ s. for 24 gauge. They are in large demand for use by Hoops and all classes of strip are in large out turn at satisfactory
Hol prices, and the demand is excellent. The Hoop and Thin Stri)
Assocition have advanced prices 10 . per ton, making the basis Association have advanced prices 10 s. per ton, making the basi
price $£ 11$ for 20 gauge, with the usual extras. Some makers however, state that they are securing 7 s , 6 d . to 10 s , more than thi of
of Hinge Strip Manufacturers have reduced discounts 2 , per cent. which is equivalent to a net rise of 5 to 10 per cent. Gas stri)
is advanced to $£ 10$, and bedstead strip in cut lengths is $£ 11$ 5s. Steel strip is also quoted $£ 115 \times$, or a rise of $£ 2$ upon a few Marked b
Nuarked bars continue £.11, and common unmarked lars are
quoted $£ 10$. A further meeting of the small round section of the of estras, Bar Association has been held to consider the question present position, yet several of the members have declared their
intention of forcing the 10s, extra upon gin. gauge, and with other sizes accordingly.
steck of all kinds is in great demand. Steel rounds realiss
s10 15s. to $£ 11$, delivered in South Staffordshire. Best cold-rolled and close-annealed steol sheets for working up purposes are quoted for tin-plate making are being sent here from Wales at about £1 or 24 gauge, delivery Midiand stations, which is an advance or about 30s, upon three months ago. Midland tin. plate maker
quote timed sheets fe29 per ton for coke singles, and $£ 3010 \mathrm{~s}$. for charcoal doubles. The next li-monthy average eelling price in
the Midland iron trade is expected to be declared about a week hence, and is pretty sure to show a further advance.
Pig rion is quoted: $-S$ taffordshire cinder forge, $7 \times 2 \mathrm{~d}$. to 73 s .
 consumers. Northamptonshire and Lsicestershire sorts are quoted $73 \mathrm{~s}, ~$ to 75 s ., and Derbyshire 7 4s. to 76 s . These high prices are
largely due to the advanced rates for cokes. Derbyshire coke hn been advanced to 30s. per ton at the ovens, and Durham and
Welsh coke is quoted 40 s., delivered into this distriet. Pig iron is being imported from other dor supply. Coal also is decidedly dearer than recently. Some of the coalowners are making in creased charges for the use of wagons, and are abolish well a domestic sorts are from 2 s . to 2 s .6 d . dearer than
ago, and this, of course, increases the cost of iron.
The brass and copper industries appear to be in a sound, if not for stock, but there is no dearth of consumptive demand, at al events for roods of the cheaper descriptions. But copper poods
are not selling so freely, as public confidence in the stability of the metal has been somewhat rudely shaken by recent fluctuationlarge contracts under exceution for municipalities, local authori tics, and railway companies in various parts of the country.
the export department shipments have been interfered with of lat by the scarcity of freightage, owing to the large number of
nerchant vesels repuired by the Government for transport pur poses. There are consequently a good many unexecuted order And cargoes awaiting shipment for various colonial and foreign
markets, which will swell the returns of future months. The mane urgent orders at present are those arising out of the war, on the
cexecution of which some of our manufacturers are engaged almost night and day
In the machinery branchos in the Birmingham district there is
steady, if not full, employment, hut there is not the steady, if not full, employment, but there is not the pressure of
demand which was experinceded latit demand which was experienced last summer, and many engineers
and machinists could do with additional orders. Struetural engineers, however, continue very busy, and report contract the year. They complain, however, that prices are not what they ought to be relatively to the cost of habour, fuel, and steel. But
this ix, doubtlesx, an evil which will correct itecelf with the anate this is, doubtioss, an evil which win correct itself with the abate
ment of competition, as orders accumulate in manufacturers

Makers of -springs and axles report business active, both for recont rises in metal and fuel, has prompted them to declar another advanco of prices equivalent to from $7 \frac{1}{3}$ per cent. to 10 per
cent. During the past twelve months the Axlemakers' Asocia tion has reduced discounts by 10 per cent., which is equivalent to There are loud complaints by Birmingham merchants of the wanton injury inflicted on British commerce with Brazil by the new Customs regulations of that country, and especially the
prohibition of the distinctive English labels by which our good have hitherto to ridentiie, and the duplication of invoices, of
which one has to remain in the divulging trade secrets and prices to trade competitors. The on the subject, and to invite the co-operation of other Chamber in obtaining a reform of these obnoxious rules.

NOTES FROM LANCASHIRE

21. Lincolushire, 75s, 6d. to 76 s , net; and Derbyshire about 80 s .
net cash, with forge qualities, delivered Warrington, 7 ss . 2 d . to
 for lanceashire. Current quotations for Middlesbrough in the open
market are about 1 . 6 d . per ton higher than last week's rates,
merchants asking uoted by makers, There has also been a similar advance in Scotch iron, Eglinton and Glengaraoceck being quoted ly merchants
about 80s. 6d. to 81s., net cash, delivered Manchester docks, with makers' prices about 2 Ls above thesevered Manchester docks, with
delivered Manchester docks, is about 77 Fs s. 6 d . to 7 Fs s. net pet cash. Perhaps not quite so mach mush business is being booked by finished
iron makers at the advanced rates, but they continue indiferent about new orders for the time being, and they are asking a further premium upon present priese where they have any special lotst they
can offer for immediate delivery. For Lancashire bars the list masis is $£ 10$, but $£ 10$ 5ss. is being got for prompt delivery. North
taffordshire bars remain nominally at $£ 10$, but met caffordshire bars remain nominaly at $£ 10$, but makers decline to
aceept business except at quite 5 s. above this tigure. In hoops a
teady demand is reported at the full rates of $£ 10$ Is. 6 d , for random to $£ 1012 \mathrm{~s}, 6 \mathrm{~d}$, for special cut lengths, delivered fl . 6 d . for district, and 2s. 6 . less for shipment. Sheets are now quoted \&1l to
£11 5 s , delivered here. Nut and bolt makers have not yet followed £11 5s, delivered here. Nut and bolt makers have not yet followed
the upward move in tinished iron by any further advance in their ist rates, but for long forward delivery they are quoting higher inices. generally a fairly too pos busition becomes steadily stronger, with Muotations remain firm at t9s. 6 d to 9 93.s. loess 2 , he but the the upward
tendency in warrants will no doubt tend to harden makers' prices. (endency in warrants will no doubt tend to harden makers' prices.
For billets t 7 10s. is . the minimum quotation, with local makers having little or nothing to offer. Local made steel bars have in
 boiler plat
district.
Machine tool makers continue to report a slackening off in the weight of new work coming forward, and in many cases they are
now finishing orders more rapidy than these are being replaced but the prevalent opinion is that a good deal of new work is jus
now simply boing held back. Other branches, such as boiler making, stationary had locomotive enginer buichecsing, and and the general
engineering trades, are all exceedingly busy, whilst the extreme engineering trades, are all exceedingly busy, whilst the extremo
preessure of work trourhout all sections of ecectical engineering
is more than maintained. The usual monthly returns of the lead ing workmen's unions show little material change in the position
The Amalgamated reports a temporary increase in the donation
 over 2 per cent. Tocally, but this is fully accounted for by suspensions
due to holidays, and other special causes. The Stean Eigine Makers
Society returns showa forther red $\frac{1}{\text { per cent. of the total roll being on donation, with practically }}$
clear book in the Manchester district. The United Machine Workers' Association has under 2 per cent. of the membership on
benefit, with about the same proportion in most of the Lancashir benefit, with about the same proportion in most of the Lancashir
engineering centres. Returns from branches as to the state o
trade So improverenatisfactory nature
the Manchester Geological Society at their meeting on Friday last by Mr. J. G. Patterron, recperesentative of Baxendale and Co.
the makers. Amongst these improvements is a special arrange ment-Patterson's patent-for preventing lamps going down into
the pit without gazes, the the imminent danger of life and pro-
perty perty. In this arrangement the gauze is provided with a ring
which forms a seat for the glass, so that in the event of the gauz or gauzes not being in their place, the glass, on being put in the
lamp, will fall to the bottom, thus revealing to the lamp man that something is not in its place. In fact, with this device it is im possible to put a lamp toget ther unless it is a complete safety lamp
The forty-fouth annual report of the Council of the Manchester meeting of the sosieneery held on on Saturday last, shows that one
honorary life, 22 honorary, and 27 ordinary members were added honorary life, 22 honorary, and 27 ordinary members were added
to the roll during 11899, and after taking into account the loss by death, resignation, \&ce, the total number on the roll is now 453 ,
ast against 416 a 416 aar
honorary shows a balance to the credit of the Association, after paying all
accounts due up to December 31st, of $£ 4188$, as against $£ 4224$ twelve months ago, representing a surplus of te263 on the year's
working. working. Last week 1 referred to the probability of a further upward
move in eoal prices. This has now been fully borne out, and at at
an earlier date than was generally anticipated. On Friday last an earlier date than was generally anticipated. On Friday last
at a meeting of the West tanceshire Coal Sales Association, it was
decided to advance best Wigan Arley coals 1s. 3d., and all other decided to advance best Wigan Arley coals $1 \mathrm{s}$. . d , and and ath other
descriptions of fuel 1 s . 8 d . per ton. On the following Tuesday,
the leading Manchester colliery concerns decided
 Monchester and Salford, with advances in outride districts
Mangiest ranging from 1s. 3d. to 1 s . sd., according to circumstances. Yor
houne fire coal the advance in price will bring pit quat-
tions in West Lancashire to $14 \times$. 6 d . and 15x. best qualities

 descriptions of fuel suitable for iron-making, steam, and general
manufacturing purposes, the demand continues considerably in
excess of the supplies offering in the market, and the advanced exces bring pit quotations about on a level with the special
rates
prices that were previously being got in the open marke.. The
 quatities of engine fuel, and res. ©d. up to 11s. for the very best
qualities. Shipping prices are even higher than inland quotations,
and for ordinary qualities of steam coal 15s, is the general tigur, and for ordinary quanitites of steam coal $15 s$ s. is the general tigure
that is now being readily got for delivery at the High Level, Liverpool, or the Garston docks,
The further advance in prices has been brought about by the
continued scarcity of all descriptions of fuel except house-fire qualities, and the great pressure of demand for iron-making, steam, and general manufacturing purposes, and also for shipment. The
sarcity of supplies has to a large extent been caused by the rescarcty of supplies has a darge extent been caused by the re-
striction of the output which during the past six months at the
pits generally throughout Lancashire has been quite 10 per cent. pits generally throughout Lancashire, has been quite 10 per cent.
below the average. get ;"ad w with the additional advanec in
wages that has now been conceded, a still further reduction of the output is regarded as not at alli improbable.
The upward move in the price of coal is in
accompanied hy a corresponding advance in coke ; but this is by no means general, and average quotations at the ovens remain at
about 23 , to 23 s . 6 d . for furnace qualitié, up to 30 a . for the best
found foundry sorts. There is a very full and a very active trade in hematite
 little iron to sell, and many of them can readily get 822 , od. for
good brands at reasonably forward delivery. The market chows
indications of expansion, and the probabilities are that, although indications of expansion, and the probabilities are that, although
the demand at the moment is fuller than the supply, a still brivker demand will soon be experienced. Warrant iron has improved in price to 75 jas . 6 d . net cessh sellers, 75 s . 5 d . buyers.
Some large parcels of warrant iron have been
Barrow stores during the week, and the total for the district thows a shrinkage of 6095 tons. There is now in warrant stores 192,530 tons, or a decrease since the beginning of the year of 5317 tons.
Forty-sevent urnaces are in blast, as compared with forty-one in the corresponding week of last year
Iron ore is in wery
ordinary sorts are at 14 ss , to 15 ss , net at mines, with best at 18 ss .
and 20 s . The price of Spanish ores delivered is steady at 19 s . and 20s. per ton, and very large imports are coming to hand.
ane steel trade is brisk in every department and themselves not only well off for orders, but in receipt of very full firquiries for forward deliveries. Heavy rails are at $£ 7$ per ton
firm, and ship plates are stil at $£ 8$, with any amount of order
offering There ixa offering. There is a good business doing in every depa
the steel trade, and prospects are very bright all round
Shipbuilders and marine engineer and are devoting special energies in pushing forward the large amount of Admiralty work in hand.
Coal is dearer, at 17 s . delivered f
Surham coke delivered Shipping of very busily employed, and exports are very large
$\$ 87$ tons of sigel iron. Last week 17,080 tons of pig iron and 584 tons of steel were exported from West Coast ports, being an
increase of 10,425 tons of pig iron, and 1749 tons of steel as compared with the corresponding week of last year. The total export
this year have been 45,680 twe of pig iron and steel, showing an increass on the corresponding period of last yea
of 23,736 tons of pig iron, and a decrease of 5604 tons of steel.

THE SHEFFIELD DISTRICT.

Tue prolonged congestion of the railway lines is now being ontirely done away with, has been greatly lessened, and we are
ithin measurable distance of the conal trade resuming it vithin measurable distanco of the coal trade resuming its proper
condition. There is no faling off, however, in the high price paid or coal in any of the qualities. The weather has been so damp with occasional cold snaps, that household fuel has been firmly main
tained, and is still called for in excess of the output. Markets have cen so completely depleted of stocks during the Christmas holiday that there is a eneral request from alldirections for further supplies
The demand for London, the Eastern Counties, and the home dis lrict is equally urgent, and as forward selling has been exception
ully active, there is very little coal to dispose of in the open market ek-14s,, 15 s , and 16 s . per ton at the pi
 In the steam coal trade there is still a large demand, and the tendency of stocks to accummate during the first month of the
year it altogether absent this season. All qualities of hard coal ire called for on inland account. For heary weights the figures
range from 10 s .6 d . to 11 s . per ton, but the rates for smaller quantities are quoted from i3s.
urgently in need of supplies as ever. In many cases the difficulties gg are byil the day are me, and the situation can Engine fuel has never been in greacter request than now,
 changed, rates ranging from $18 \mathrm{~s}, 6 \mathrm{~d}$. to 22 s .6 d . per ton. nother 10s, per ton, the quotation for bar iron being now from ${ }^{11}$ per ton upwards.
Emark branch of the iron trade is full of work, and a similar put could be increased if the raw material were obtainable more report that full employment is being found for all their men Nuts, bolts, and similar goods have again gone up in price. In the begin-
ning of December contracts were taken at $£ 3$ per ton advance on he quotations of December, 18s. Aded since then.
adder A feature of the military material trade is the large demand at
present for lyddite and shrapnel shells on Government account Makers are keeping their machinery running night and day, the
Government requiring immediate delivery. 1 it is not unnatural that one should hear a revival of the old complaint that the plant and skilled artiticers were idle for months at a t time. Now orders are being placed very heavily, and the authorities cannot get
all they need. Nanufacturers of heavy gun forgings are also busy on Government acoount, heavy shaftings and castings for marine purposes being likewise rreely ordared
In the wire mills activity univerall
he production of pit haulage and similar ropes being particularly in request. This trade was a good deal cut into some years ago by ing their steel over here to be prepared, but in spite of the Swedish competition, there is sufficient work
markets to keep the plant fully engaged.
Al the cauding firms engaged in the tool trades are full of
work, a feature of the orders on the books being the demand for
he home market the home market. The Government have recently been placing
large orders for steel spring bands, and are now inviting tenders for close upon 300,000 iles required in the varioux departments of
the arsenals. The file trade generally is in a good state, although
in prices to recoup them for the higher rates charged for raw
material. It is noteworthy that the use of machinery in the file trade is still steadily increasing; in fact, were it not for the
machines the requirements of the world would not be met.

NORTH OF ENGLAND

A stEAD improvement must be reported in the iron and allied
trades this week-an improvement which bas been in progress since the year commenced-and the tone of business in consequenco is
cheerful, with consumers much more disposed to operate than the ellers. Actual transactions completed have been comparatively
few in number this week, but that is owing to the indifterence producers rather than to any backwardness of the buyers, indecd, if the latter had their way a large business would have been done.
As a matter of fact, it scems to be the gencral belief that higher prices will rule, and, therefore, while consumers show considerable anxiety to purchase, sellers- both makers and merchants-are
inclined to hold back, as they are likely to do better by waiting. The situation is gencrally
quietest period of the year, when usually prices seccline and stocks
nerea ebot now prices are on the upward tack, and demand is quietest period of the year, when usually prices decine and stocks
increaie, but now price are on the upward tack and demand is so
presing that stocks are being reduced even in the publio warrant

The searcity of pig iron is indicated by the complaints that con-
The sumers still make as to the difticulty of getting what satisties their
needs. At this time of the year under ordinary circumstances there is no difficulty, for the output exceeds the requirements.
When, therefore, there is a short supply in the middle of winter naturally the makers expect that the business will be exceedingly favourable for them in the spring, and they are very sanguine.
What is a most satiffactory feature of the current upward movement is that seculative operations have played but a small part
in bringing it about ; it has been induced by an increaze of reall bona fice business and thus is the more likely to be maintained.
Inquiries for iron for spring delivery are coming forward freel Inquiries for iron for spring delivery are coming forward freely,
especially from the Continent, and the prospects of active trade for that season are altogether encouraging.
Makers adhere yet to 70 s . per ton as th.
Makers adhere yet to 70 s. per ton as the price of No. 3 Cleve
land G.M.B. pig iron - a figure which they have quoted since the
oarly part of December, and below which they have not done during the interval been eelling at times considerably under thi
ditand price, even as low as 61 s .6 d ; ; but that did not affect makers, who were never so well off as regards orders: The price of pig iron in
merchants' hands has been steadily rising this month, ls. bd. per ton having been added this week, bringing the figure for No. up to 69 s, , which is only 1 s . below makers' iron, and 4 s .6 d . more than the price ruling a little before Christmas. Cleveland war-
rants have also been considerably lower than the prices quoted either by makers or merchants, but that circumstance has had great inclination to take warrants, even though they have been so Thish cheaper than makers iron, eithe thands in the public store bas become somewhat limited. Thus, when makers, were quoting
7 Os. for No. 3 , and merchants 67 s , 6 d ., Cleveland warrants could be bought at 66s. 9 d . On Tuessay, merchants raised their price to 69s., but warrants were obtainable at 67 s s 9 d ., but on Wednesday
they were raised to 6 ss . d . For a long time now warrants have
been the former has gone down considerably, it might have been expected to have decreased to a greater extent.

Abstract

 this has caused a heavy reduction in the shipments fon Scotch, and o Grangemouth, so much so that this month they are litte moere last year-up to the 16th they were 17,437 tons, as compared with 31,262 tons in J January, 1899. This is to be expected when it isborne in mind that Cleveland warrants were at one time this week only 3Jd. per ton bolow scotch, whereas the usual difference in Is. to s., that being what it costs to deliver Cleveland iron to the
Glasgow founder on the same terms as Scotch iron. Under present circumstances the Scotch consumer has to pay a good deal moro he is cutand iron than his Scotch costs him, and naturally
his consumption of the former as much as No. 4 Cleveland pigiron and all deseriptions of forge iron are
(uoted and sold at 6 s., and are not very easily obtainable, as the
 Hematite pig iron is very searee in this district, the production being short of requircments, while makers, it is asserted, have no
tocks, and the stock in the public stores has dwindled to about ery insignn quantly with a make of $1,200,000$
 Relatively better prices are ruling for East Coast than for West
Coast hewastite warrants, 7 Is. being the figure for the former and distri
the W
make make under 900,000 tons per annum. The producers in this dis-
rict brict ask, and will not take less than, 80 , per ton for mixed num-
bers of East Coast hematite pig iron, and some quote 82.6 d . past, owing to the fall in freights, which is usual at the close of
the Baltic season, many of the steamers trading with the Baltic ports in the season being put into the Bilbao ore trade when it is
over. The rates of froight have declined $1 \$$. 3 d . per ton from Bilbao, but ore has not fallen that much in price, , bd. being the
outside, for 20 s. 6 d . delivered at the wharves in this district is Pig iron exports from the Cleveland district this month are in January. The total quath better to the Continent than are usual
quanty shiped up to Wednessay night was 4,729 tons, as compared with 53,93 tons last month, and
61,426 tons in January, 1899 . The stock of Cleveland pig iron in
Connal's stores on the 17 th was 65875 tons, a decrease for the conth of 4748 tons, and of hematite 7653 tons were held, decreaso The 37th annual report of C. E. Muller and Co, Middlesbrough, contans some important statistics relative to the ore and iron in-
dustrise, especialy the former. It is shown that out of the
d $051 / 1$, the Britain in 1899, no less than 6,186,022 tons came from Spain, thess
 $4,633,24$ tons in 1898. The North-East ports of England im-
Torted $, 2456,513$ tons of foreign iron ores, as compared with
$2,266,600$ tons in 1898 . It is also shown that the North-Fast of England exported last year two-thirds of all the pig iron sent from The manufactured iron and steel industries continue extremely brisk, and where works are not running to their fullest capacity
it is because of short supplies of materials, particularly of fuel. Tecause not only are the supplies short and irregular, but price have gooe u up heavily. Notwithstanding this, manufacturers in
this district have not followed the example of those in the Midland and Scotland in regard to advancing prices; indeed, they have
not altered their quotations for several weeks past, though there is no lack of work, and a good many orders have to be ref used.
Common iron bars are quoted at $£ 815.5$ best bars, $£ 95 \mathrm{ss}$; double
best har
 C5 15s. per ton, all less $2 \frac{2}{2}$ per cent. f.o.t., except puddled bars
which are net. Heary steel rails are firm at $k 7$ net, and stee
rail The officials and workmen at the Stockton Malleable Iron and Steel Works of the South Durham steel and Iron Company,
Limited, on Tuesday made a handxome presentation to Mr
Douglas Upton, who is retring frad Douglas Upton, who is retiring from the general managership of
the works, which he has held since 1891. The winding up of the
Stockton Nalleable Iron Compuny, which sold its works to the South Durham Steel Company, has now been completed, and the liquidators have intimated that the shareholders will get a little
over par value for their $£ 100$ shares. Shortly before the sale they This week the official have been conferring with the representatives of vavious grades of that the business will been arranged that no information relative to the negotiations The coal trade of this district has never been in such a brisk is question for the last quarter of a century as it is now; indeed, it supply. Consumers in all branches of industry complain of the difticulty in getting fuel, and prices are being rushed up at a great
rate, being now in some cases double those guoted last vear, thi being most apparent in the retain house coal trade. Sellers seem
to be able to get almost whatever they like to ask, for there i the coals at any price. For best steam coals 20 s . per ton f.o.b. has
 prices for coal than for coke, and the dificulty of getting the latter fo.b. has been paid, and for blast furnace coke 25 . 6 d . at the
furnaces is the least that will be taken for ordinary qualitic.

NOTES FROM SCOTLAND

Thene has been a gradual improvement in the Glaggow pig iron
arrant market this week, so far as prices are concerned. The
volume of business was small, especially in the earlier part of the volume of business was small, especially in the earlier part of the
week; the values moved steadily upward. There was later a considerable demand for warrants from outside quarters,
London being reported as a good purchaser. This later fact
caused caused quite a ceported al tone in in business, and prices jumped up
when the report came on Change, nearly 1s. per ton in the of Scotch iron. came on Change, nearly. 1s. per ton in the case
67 s . 5 d . to 69 s cash, and 67 s . 10 d done to to 69 s , 5 d . onete warrants month. Trom
. There has been very little doing in Cleveland warrants, in which sales
were reported from $67 \mathrm{~s} .1 \pm \mathrm{d}$. to 67 s . 9 d . cash, and 67 s . 7 d d . to from 74s. 6d. to 75 s .9 d . cash, and 7 ss . 11 d . to 76 s . 4 L d . one
month. month.
The f tion, and there are 83 blowing ine holidays are pared with 75 last week and 82 at this time last year. Of the
total 40 are making hematite, 38 ordinary, and five basic iron. The demand for makers' iron has now resumed its former state
of activity. It is true that there has only been a moderate of activity. It is true that there has only been a moderate
amount of iron purchased by consumers in the open market, but The stock of pig iron in Conngal made by mat reduction for the past weok of 3749 tons, and the reduction since
the beginning of the year is now 7203 tons, Pricos of makers' iron are firm as follows :-Govan, f.o.b. at
Glasgow, No. 1 , is quoted 70 s. ; No. 3, 69 s ; Carnbroe and Wishaw

 There is a large and steady consumption of hematite pig iron at
the steelworks, and the prices of Scotch-made hematite, after having touched 80 s . per ton, are now improving. Merchants
quote for this class of iron 81s. for delivery in railway trucks at the teel works. Fair supplies of ore are being obtained, but it is not
expected that prices will be lower for Spanish ore for some time The shipments of pig iron from Scottish ports in the past week have been 8613 tons, compared with 5244 in the corresponding
week of last year. There was despatched to the United States 150 ons, South America 10, India 10, Australia 660, France 420 Italy 114, Germany 180, Holland 551, China and Japan 100, other
countries 30 , the coastwise shipments being 6388 compared with 3726 tons in the same week of 1899 .
ull employment. In some cases the full starting of work part in elayed beyond what has been usual at this season by a scarcity of coals. This difficulty is now being gradually removed, so far as
the supply is concerned although very high rates are being charged quote rivet and angle free at the ship at Glagsow, net cash. Steel is very firm, and a
very large amount of material has been booked for delivery over ${ }^{\text {a }}$ great part of the present year.
which keep back supplies from consumers, buthe it is is expected that will have resumed something like, its normal condition. At some of the ports the pressure for shipment has eased off considerably,
while in other cases coals cannot be got forward in sufficiently large quantities to meet the demand. The home trade is engaging
the attention of coal masters very much at present consumer is ready to pay proportionately higher prices than can be coals are nominally the same as those quoted last week.

Wales and adjoining counties.

THE rough weather of late, preventing the arrival of tonnage,
has had some effect in lessening the excitement in the coal trade, but as the conditions remain which led to the boom, this may be considered as ouly temporary, and the upward course of things
will be rexumed. It was reported on Change this week that all
the large colliery the large colliery firms have full stems on their books for this
month's looding, and this fact exceeds in value a page of speculation. Fortunately, too, labour questions are a pasy, ond in in the
tine
principal districts the output promises to be large, even if not quite up to the demand. In the Swonsea Valley compplaints are strong
of a limited supply, and of almost phenomenally high prices. At Pontardawe Hedley's Colliery, the colliers, 400 to 500 , came out on
Monday. Efforts are being made to bring about, if possible, an Monicable settlement.
A slightly easier demand for steam coal was the most notable feature at the early part of the week, followed by perceptible
improvement later. Best steam smalls maintained their remarkable position, as will be seen by latest quotations, and best and second-
best house ere in active request. So, too, the semi-bituminuous
保 Newport has had a busy week, onnection with Cardiff shipments,
 wise. Swansea had a a good average export: 46,415 tons, and
nearly yoot tons patent fuel. Swansea local eoal supplies are quite
inadequate to meet the demands of its various industries, inadequate to meet the demands of its various industries, and
short supplies have told seriously in many instances.

 foundry,
characerise both patent fuel and coke.
The Government
 of which were due to falls of sides and roof.
The Yyyshir Stam Coal Company has acquired, and taken
over from over from January lst, the Ynyshir House Coal Company, formerly
belonging to Mr. Thos. Jones. belonging to Mr. Thos. Jones.
A new colliery is to be start
foot for starting it the Brynecthin pits. Certain shares in the on foot for startyng the Bryncethin pits. Certain shares in the
minerals underlying the Forest, and now worked by the Nixon Company, are being placed on the market, with the notitication of
royalities. First, a dead rent of $£ 8910 \mathrm{~s}$, then 7 d . for every ton royaities. First, a dead, rent of $\pm 8910 \mathrm{~s}$, , then 7 d . . for ereation of
of large coal, 3 Idd. small, 6 d . ironstone, and 3 d . fire-clay. 1 am glad to report that the Wynnstay colliers, Ruabon, whose
notices expired on Saturday, have withdrawn them for notices expired on Saturday, have withdrawn them for a fort.
night to enable their representatives to effect a settlement if
nosible possible.
All districts are sharing in the prosperity in coal. Newport, ore imports were greater than they have been for the past eight
years. In the Forest years. In the Forest of Dean the improvement in price and
demand has benefited the collier in ratio. Last week there was an advance of 2 s . per ton, and a concession to the men of 10 per
This week, in the Cardiff district, some large Admiralty orders
were placed. The total was about 90,000 tons, and the delivery were placed. The total was about, 90,000 tonge and the dely delivery
from present date to June. Prices f.o.b. range from 24s. 9d. to from present date to June. Prices f.o.b. range from 24s. 9 d . to
25 . This is higher than the strike prices of ' 98 , which in May
were 23s. to 23s. 6 d . best steam. The last Admiralty contracts, were 23s. to 2ss. od. best steam.
placed three months ago, , ranged from 18st, to 19. The present
contracts have been divided as follows: Dowlais, 10,000 tons ; contracts have been divided as follows: Dowlais, 10,000 tons;
Cffarthfa, 6000 tons ; Ynyshir, 600 tons; Hills, Plymouth, 0,000 tons ; per Adams and Wilson, Ferndale, 5000 tons ; Albion,
0000 tons : Penrhiwkiber, 15,000 tons ; Nixon, 5000 tons ; Burnyeat Brown, 5000 tons; Powell Duffryn, 15,000 tons.
It was stated on 'Change, Cardiff, mid-week, that all firms who quoted above the figures 1 have named were excluded. They are
Swansea coal prices this week are not freely quoted. very high, and forward sales have been declined at present figures:
Anthracite, 15 s . 6 d . to 16 s .; seconds, 14 s .6 d . to 15 s .6 d .;

 20s; Rubio, 21s, Pitwood, 19 s , to $19 \mathrm{~s}, 6 \mathrm{~d}$, , into trucks. In the
Newport, Mon., and Cardiff districts the prices of Bilbao are as ubio, 20s. 6d. to 21 ss . in freely principally from Bilbao, but of late the Dowlais Company has been importing also from
Paraguelos, and Cyfarthfa from Almeria. It is expected that im Paraguelos, and Cyfarthfa from Almeria. It is expected that im-
ports from the latter will incrense, especially if the old scare is evived that the North of Spain resources are lessening. The
drain is evidently great. Swansea imported 5126 tons last week drain is evidently great. Swansaa imported
Briton Ferry 1500 tons, Blaenavon, Ebbw Vale, Cyfarthfa, and Dowhais considerable quantities. Amongst the imports of the week have been bar iron for Newport from Workington, pig iron
from Barrow and other quarters totalling over 1000 tons to Swansea. 1 am glad also oto note increased quantities of spiegel even
from Mostyn to Ebbw Vale and Dowlais. Great tracts of manganiferous ore from Harlech to Barmouth will probably find Next month a quantity of blast furnace and colliery plant will be disposed of by auction at Abernant, Aberdare.
was at first generally supposed. Considerable numbers of men are In various militia regiments, and as these are called in the strain ttention more strongly than ever to mechanical and other appli nces. The latest, in the form of the Bolton stoker, now on trial the Dowlais, will relieve twenty men.
The Birmingham quarterly meeting gave a spurt to prices, and further advance of 5s. to 7s. 6d. per ton in finished iron and steel Swansea, mid-week, there was a grood deal of animation. It was reported that pig iron had shown a distinct revival. In Scotch there has been an advance of 1s. 5d.; in Middlesbrough, 1s. 4 I2d. in hematite, 1 s . 3 Jd d. It was reported that there had been an
extraordinary decrease in stocks, 3949 tons in Scotch, 2919 tons in Ileveland, and 6154 tons hematite ; total 13,022 tons on the week. months. Supplies of tin-plate bars short, and seriously affecting tin-plate mills. I give quotations with the proviso that they are
nominal, and subject to moderate alteration. Coal is so abnor mally high and scarce, and block tin has again advanced to £
 S5. Sd. for mixed numbers, f.o.b. Cumberland, aceording to brands,
Welsh hematite. 8.5. . Welsh
 usual extras. Sheets, iron, and steel, $£ 1$ to $£ 115 \mathrm{~s}$. at works.
Steel rais, heayy, $£ 7$ 10. to $£ 7.15$. light, $£ 810 \mathrm{~s}$, to $£ 815 \mathrm{~s}$;

 Spelter, £20 7 s. 6d. Lead, £16 15s.
There was a arge shiment of tin-plate last week- 92,735 boxes
Teceipt from works 64,539 boxes. Stock is down to 169638 -receipt from works 64,539 boxes. Stock is down to 169,638 .
Short supplies of coal and bars have seriously affected make of the
eight furnaces in iight furnaces in Morriston, five only were at work, Serious
breakages affected Foxhole, and from the same cause in the Briton Ferry district make was greatly reduced. Foundries in the well, also furnaces adjoining. Gloucester sheds very busy.
There was a meeting of the Tieplate
There was a meeting of the Tin-plate Conciliation Board in
swansea on Tuesday, but the business was not of an important whansea on Tuesday, but the business was not of an important
character. A demand for a 15 per cent. advance for steelworkers was adjourned. Minor disciplinary disputes were arranged, and ction taken to maintain friendly relations between the managers, aperintendents, and meu.
Aberystwith, unlike oth
bjections to receive more guns for defer Welsh coast, is raising A very successful machinery trial of the new Royal Yacht took t Pembroke Dock.
For boys now at Cork Harbour will be transferred to Mifford.
Much difticulty is experienced in the thin Much difficulty is experienced in getting boys from the South of
Ireland, and the advantages of the Welsh coast and the interest of
Wer Ireland, and the advantages of the W
Welsh boys in seafaring are admitted.
Have referred of hate to the agitation amongst the railway men
elonging to the Taff Vale, Cardiff, Rhymney climax would now appear to be at hand. At the last meeting-Sunday-it was decided to hand in notices at the expiration of
seven days if employers refuse to meet a deputation of the men to confer on wage questions. A strong wish is expressed all over the district that peaceful measures will prevail, even if deferred to the
ist moment. Action is evidently timed to take dere whole of the Welsh industries are in fullest activity, and if perse vered in must bring about complete stagnation. Railways hav and lessened revenue. I believe that the difficulty will be tided position of railways at prosent, should impress the more reasonable

NOTES FROM GERMANY

Favocrable accounts are given concerning employment in the
various iron-producing districts, and inquiry is still exceptionally arious iron-producing district,
Eood in almost tall departments.
Pis
y manufacturevesing demand, and the output readily purchase are therefore most anxious to secure all they can get in and material.
Last Week's business on the Silesian iron market was, in some brisk, healthy tone prevailing. Heary plates and merchant bar appear to be in rising demand. The business done on foreig Coal and coke are in large request
December last year were, for the Ruhr district, $3,392,280 \mathrm{t}$ t against $3,779,70$ t.; for the Saar district, 553,670 t., against
50,250 t.; for Silesia, $1,329,080$ or the three districts together, $5,275,030 \mathrm{t}$., agains 50 t . $;$ and per cent. for the Rubr 189strict The decrease in output was 10°. $10{ }^{\circ} 2$ per cent. for Silesin, and 9.7 per cent. for the three district, together. Total deliveries of coal and coke in the past year were,
for the Ruhr district, $45,614,240 \mathrm{t}$., against $42,932,300 \mathrm{t}$.; for

Silesia, $16,806,530 \mathrm{t}$., against $15,909,990 \mathrm{t}$.; for the Saar district togeth, $6,33 \%$ anainst $, 09,120 t$, and for the Increase in output was accordingly 6.2 per cent. for the Ruhr trict, and 5.8 per cent. for the three districts together.
The following figures, given by the Rheinidh - Westphalische
Zeitung, show imports in English coal to Hamburg to have been in 1899, from Durham and Northumberland, $1,235,354 \mathrm{t}$., against $1,022,243 \mathrm{t}$. in 1898; from the Midlands, $491,949 \mathrm{t}$ t., against
$40,123 \mathrm{t}$.; Sottand, 5766767 t., against $541,885 \mathrm{t}$. Wales, $110,325 \mathrm{t}$,., against $39,325 \mathrm{t}$. Coke : 5762 t ., against $11,524 \mathrm{t}$.;
total import thus amounting to $2,420,157 \mathrm{t}$,, against $2,055,100 \mathrm{t}$ From Westphalia $1,645,805 \mathrm{t}$. coal were sent to Hamburg, against
$1,652,154$ t in 1899 . n December last year import in coal from Durham and Northumberland was $88,294 \mathrm{t}$., against $97,791 \mathrm{t}$. in
 amounting to 182,661 t., against $209,465 \mathrm{t}$. From Westphalia last, total supplies thus amounting to $295,844 \mathrm{t}$., against $338,373 \mathrm{t}$. in 1898.
The business done on the iron market in Austria-Hungary is of sort. All through last year Anstrinan ironmasters have heopenth the whole, but moderately engaged, and quotations have shown a tendency io weakness. Fortunately, export has been improv-
ing, especially in bars, plates, and girders; and though this was caused by the Austrian prices being lower than those in other
countries, still the orders thus seured have done
coun countries, still the orders thus secured have done a good deal to keep the works going regularly. At the same time, imports in
iron and steel to Austria-Hungary were very low on account of the pressing demand for all sorts of iron which was felt in other噱, and so the majority of the Austrian shops were fairly well engaged during the greater part of the year. The business
in scythes has been anything but satisfactory, partly on account of an unfavourable harvest, and also because foreign competition Thouyden
Though demand and inquiry have been moderate when compared
to the last quarter, the Belgian iron market has yet been showing remarkable firmness upon the week, and prices are all well maintained. Quotations in the first of January were as follows: Luxemburg foundry pig, No. 3, 110 f .; ditto, forge pig, 100f.;
basic, 110f, per ton
lerchant bars, No 230f. to 2355 . p.t.
realises 215 for home consumption, No. 22 for export,
f.t.; No. 3,220 , to 230 . p.t. Inland tion for girders is 205 f .; angles, 2355.; iron-plates, No. 2., 2255 f. duction of pig iron in Belgium during the month of December last year is officially stated to have been $104,780 \mathrm{t}$., $28,055 \mathrm{t}$. being forge pig, 9145 . foundry pig, and $67,500 \mathrm{t}$. basi. Hotal outpa of pig iron in Belgium was nearly 25 per cent. higher than in
1898 , being $1,219,690 \mathrm{t}$. for 1899 , and $982,748 \mathrm{t}$. for the year

The Belgian coal trade is very active, and quotations remain ex to 22f. p.t. will be quoted for engine coal, and $25 f$. to 27 f. p.t. for best steam coal. Small coal fetched 1rfit tiol col . from lasterium
In November last year exports in artifial coal from avied to $44,840 \mathrm{t}$, arainst $51,019 \mathrm{t}$. for the same month in he previous year, while from January to November in the year
now past export was $488,480 \mathrm{t}$., against $610,960 \mathrm{t}$. in the same period the year before.
The following
The following figures, given by the Rhenixht. Westplatian Garstle,
show the production of iron and steel in Sweden to have been, during the first nine months of last year, as under

THE NEWPORT HARBOUR COMMISSIONERS' WEEKLY TRADE REPORT.
STEAM coal keeps in good demand, and prices for all descriptions strong upward tendency. Tin and copper both higher than last week's quotations. Exports for week ending January 12th, 1900 ,
were:-Coal, foreign, 69,361 tons fuel, 1200 tons. Imports for well ore, 4470 tons ; pig iron, 510 tons ; bars, 220 tons ; cement, 160
tons ; ;itwood, 4712 loads.

 livered in the district, cash. Tin-plates:- Bessemer steel, coke,
175. ${ }^{\text {d. }}$ to 116 s ; Siemens, coke finish, 16s. to 16 s . 3d. Pitwood,
17s, to 17s. d . London Exchange telegram :-Copper, £70 10s.; Straits tin,
£116 10s. Freights firm. E116 10s. Freights firm.

The Prevention of Rallway Accidents.-A test of the Laffas system for preventing railway accidents took place at Barry on
Tuesday last. The testing train consisted of an engine and nine coaches, weighing altogether about 160 tons. The trials appear to representative will $\begin{aligned} & \text { good deal of success. The Board of Trade } \\ & \text { probably visit Barry next week to test the }\end{aligned}$ ne Trade and Besisess Annocncements. - Mr. Emile Cloes, civil engineer and representative for Belgian works, 122 , Cannon-
steet, London, E.C., has retired from business, and has transferred his agencies to Mr. Adolphe Corin, who will carry on business at
the same address under his own name.-Mr. Edward Lomer, 12, St. Mary Axe, has been appointed agent in this country of the
Accumulator Works (Accumulatoren Fabrik A.G.), of Berlin and Hagen, Westphalia. - Mr. Jno. Stevenson, Middlesbrough, has
taken his son, Mr. Joseph Shaw Stevenson, into partner George Funiess.-The death is announced of Mr. Geo. Fur Mr. Furness commenced business about 1841, his first contracts being for the construction of railways in the Midlands. Subsequently he transferred his energies to France, where he was
associated in important railway contracts with the late Mr. Thomas asociated in important railway contracts with the late Mr. Thomas
Brassey, father of Lord Brassey. Upon his return to England he constructed railways in most of the Midland, Western, and Southern counties, having at the same time very heavy contracts abroad.
In London he constructed the northern outfall sewer, the reservoirs in connection therewith-the combined works forming an mportant feature to the present main drainage system of London -and the Thames Embankment from Westminster Bridge to the in London somerset House. The tenders for these undertaking in London approached one and a-half million sterling. The last
railway built by Mr. Furness in England was the extension of the
South-Enstern to Port Yictorio

AMERICAN NOTES.

New York, January 3rd.
The most important factor in the iron and stee industry to-day is the prospective railroad requirement for 1900 . Over 4500 miles were built
in the United States during the past year. The widely. Much depends upon the condition of the money market, and as to this it is possible to speak only in general terms. Congress is legis.
lating in a minner which promises to remove all lating in a minner which promises to remove all
elements of uncertainty from the pathway of financiers. To all app earances there is an abunoceasional twists given to the market by specu-
lators in Wall-street Government has taken steps, however, by which the Internal Revenue receipts will not te tied up in banks, but will re-
main in circulation. Three-fourths of the railraad building last year was doue by way of ex-
reat to be done this year will consist of entirely new lines, or new lines connecting existing systems.
In Canada 470 miles of road were built and in In Canada 470 miles of road were built, and in
Mexico 255 miles last year. The State of Iowa Mexico 255 miles last year. The State of lowa
took the lead with 552 miles. A great increase in mileage will take place throughout the western in mileage will take place throughout the western building will also be done in the far North-West and in British America. Prices for railroad material rule high, and to all appearances there
will be very little, if any, decline. The reason for this is that requirements are so heavy, mills are coming to the surface that manufacturers of rail equipment, locomotives, and cars, see no occasiou
for showing any leniency to the companies. Pig iron production is close on to 300,000 tons per week. Every effort is being eexerted to push the
construction of furnaces, rolling mills, the encapacity in every direction involving the consumption of iron and steel. The greatest
activity lies in the expansion of plate mill activity lies in the expansion of plate mill
capacity and the building of new mills. Two or this fact accounts in part for the decline in and this fact accounts in part for the decline in plate
in large quantity. The leading bridge builders are making up their prospective requirements for
the third quarter of the year. If prices are suitable they will place orders in the latter part of this month. Included in these probable re-
quirements are some orders from Europe and Asia, the extent of which is unknown at this time. The manufacturers of iron and steel in this city said last Saturday that they were warranted
in the belief that the requirements for the third and fourth quarters of the year would largely be
placed during the first quarter. If so, they say phat means a rush of business unprecedented in the annals of the iron and steel trade, but they
decline tospeak as to the probability of any weaken. ing in prices. Such talk as this is only heard
among buyers, whose wish is father to the thought. among buyers, whose wish is father to the thought. weakness, and, on the contrary, state that every. thing points to even stronger quotations. It is,
however, the general belief that iron and steel quotations have reached the highest probable
level. Several very important improvements level. Several very important improvements
will shortly be inaugurated in this city, involving more bridges, and the or more tunnels, one our rapid transport system, including the use of
electricity instead of steam. The contemplated electricity instead of steam. The contemplated
expenditures will reach between $30,000,000$ dols. expenditures will reach between 30,000,000 dols.
and $40,000,000$ dols., and it is the intention to rush the work through as rapidy as possible. situation beyond the fact that extraordinary activity prevails in the manufacture of equip-
ment for the quicker handling of ore from the ment for the quicker handling of ore from the
mines to the furnaces. It is also intimated that a meat deal of new ore territory will be defined early in the spring, but the deposits are much been believed for years past that the limits of the ore deposits were pretty definitely ascertained. This is probably the ease, still there may be small
outlying fields of value.

ENGINEERING NOTES FROM

 SOUTH AFRICA.
SOUTH AFRICA.

Important as was the part attributed to artillery by the prophets before the Boer war began,
few could have expected to find it dominate the position so completely. On the whale, the burghers rite shooting has not turned out so
deadly as it was represented, but with the aid of
their heavy modern guns, their entrenched positions on the rugged kopjes of Northern Natal, ago, in Johannost impregnable. Several months ago, in Johannesburg, one of the chief officers
of the Staats Artillerie assured me, "We are not afraid of the resources of the British Empire,
and we mean to fight. We shall get into Natal and take up our positions, and we shall laugh at the resources of the British Empire." This
sounded at the moment like the customary sounded at the moment like the customary
Pretorian "" bluff," but subsequent events have at least given it a certain measure of justification.
The ordinary type of British field artillery does not appear to be powerful enough for dealing
with an enemy who will not quit his entrenchments under any conditions, and who is supported him. The fact is that the Boer, fighting with the assistance of continental experts and with the best continental war material, represents an
entirely different level of guerilla warfare to that of the Indian frontier tribes. Regular siege guns seem to be required to dislodge him from
his positions, and upon the artillery officers will be thrown the principal brunt of the attack. Pending the arrival of more guns, therefore,
there is likely to be a protracted lull in the Aampaign. good deal of interest has been excited in South Africa by the report that the amalgamation of the two mail steamship companies has been
decided on. This interest centres almost entirely upon the possibilities of improvement in speed
and comfort of service, and of reduction in and comfort of service, and of reduction
freights, which may result from the change.
little consideration, however, would show that the proposal, if effected, is not likely to introduce while past the competition between the two mail lines has been purely nominal, and they have
practically agreed to divide the traffic practicaly agreed to divide the tratic.
proof of this is in the absolute identity of their shipbuilding policy. Within the past few year
both fleets have been practicaly both tleets have been practically re-modelled on
the same general lines. The Kinfauns and Kil donan Castles are very well matched by th Norman and Briton, and a similar comparison
may be drawn with the two companies' new inter may be drawn with the two companies' new inter-
mediate vessels. Amalgamation would, therefore, simply mean administrative economy, and
would certainly lead to no revolutio in the of steamshing $\begin{aligned} & \text { lead to no revolution in the clasy }\end{aligned}$ service. There is, indeed, very little to complain of in the present facilities, and many people
prefer a seventeen-knot steamer to the tearing greyhounds of the Western Ocean. No doubt fares and freights are high; but then it must be
remembered that there is practically no retu cargo from South Africa practically no retur voyage has frequently to be made with empty holds. The last monthly Cape trade returns are
very illustrative of this latter fact. Now that the war has stopped the export of gold and diamonds, the value of the exports has dropped
from about a million and a-half to under $£ 600$. 00 . By the way, the steamship companies must done very well out of the war, not only by the
letting of transports, but also by the carrying of letting of transports, but also by the carrying of
the large crowd of British refugees from the Transvaal.
I have not seen it mentioned that the home-
made carriage for the 4•7in, naval gun enables that piece to be drawn by eighteen men-the astomary crew for a 12 -pounder.
COAL MINING IN SOUTH RUSSIA Mr. Joserph Crankshaw, F.G.S., read before
the members of the Manchester Geoloticher Society recently, a paper on "Coal Mining in South Russia," dealing chiefly with the coal mines of the Jusowo district, which is the centre of the bituminous coalineld of the Donetz basin. The whole of the district was, he said, overlaid with
an alluvial deposit of gravel and sand from 40ft to 120 ft . in thickness, beneath which the coal seam outcropped. The seams were at a high inclination near the surface, being at an angle of 18 deg., but they became much flatter to the deep, and at about 400 yards they were in some
places only 4 deg. to 5 deg. Few of the pits wer pare than 200 yards deep; ; they were rectangular more than 200 yaros deep; they were rectangular
in shape, and about 13 ft . 6 in . by 5 ft ., lined with
tine timber, with one or two partitions. The con-
ductors were of wood and most of the cages provided with safety catches called "parachutes." The men, however, generally ascended and de
scended by "ladders." The winding encine were mostiy of the type used in England for underground haulage. and were used at pits with
an output of 200 to 1000 tons per week ; but one colliery was winding 1000 tons a day from one their pits, for which they had a pair of engine cylinder and 7 ft stroke , T Wigan, with 42 i the district varied in thickness from $72 \mathrm{in}$. . to 15 inin ,
but the average was about 24 in . The coal was generally of a good a appearance, light in weight "fatty" coal. Some of the seams yielded a high percentage of gas, but they were also rather hig in sulphur, ranging from 0.77 to 2.5 per cent.
The system of working was mostly pillar and stall. A large proportion of slack was produced,
but this did not seem to be but this did not seem to be of much importance
as the same price was as the same price was got for the coal, indepen
dently of size. The cost of getting and carting was equal to 58 ld d. to 69 g d . per ton, put in rail way trucks. The elling price of the coal was equal to 8 s . 1d. to 11s. 8d. per ton at the time of
his visit, and had The average profit was quite 4s. per ton. At the given to Eng lishmen and English capital In answer to questions from members, Mr Crankshaw said none of the coal was shipped
the collieries could not the collieries could not raise enough for the manufacturers in their own country. The coal
belonged to the middle or lower measures, but not the millstone grit, although the limestone came immedia
some parts.

LAUNCHES AND TRIAL TRIPS Northlands, steel screw steamer ; built by Wm. Gray and Cor, Limited ; to the order of
Jones and Hallett; dimensions, 3299 ft ., 46 ft . 23ft. 6in.; engines, triple-expansion, 23in., 363in,
62 in, by 39 in, , 62 in, by
39in., pressure,, 160 lb ; ; constructed by
Central Marine Engine Works ; trial trip, Janu Central
ary 10 th.
MackDonis, steel screw steamer: built by Craig, Taylor, and Co., Stockton; to the orde , ensions, 274 ftt ., 35 ft ., and 23 ft . Bin. moulded engines, triple-expansion, 22 in., 3 iin., and 59 in.
by 39 in. stroke, pressure 1601 b Thomas Richardson and Son, Limited ; trial trip, January 13 th ; $12 \frac{1}{2}$ knots.
AQUA, steel screw steamer ; built by, Ropner
and Sons Stockton-on-Tees ; to the order of, and Sons, Stockton-on-Tees; ; to the order of, Sir Christopher Furness, for Newman and Dale, of
London ; dimensions, 325 ft ., 48 ft , and 2 fft . 3in moulded ; to carry, 5200 tons deadweight engines, triple-expansion, pressure, 160 lb .; constructed by, Blair and Co_{0}, Limited; launch, January 16th.
ZINMIA, steel screw steamer, spar deck; built by, Tyne Iron Shipbuilding Company; to the 46ft., 28 ft ; engines, triple-expansion, 23 in., 382in., 64in., by 42in., pressure, 1801 b.; conCompany ; launch, January 16th
VAvihais, steel screw steamer ; built by, Irvine's Shipbuilding and Dry Docks Company,
Limited ; to the order of, West Hartlepool stey Limited ; to the order of, West Hartlepool Stean 279 ft , to company; dimensions, $8300 \mathrm{ct.}$,48 ftt . gines, triple-expansion, 25 in ., 40 in ., $66 \mathrm{in}$. ., by 45in, ; pressure, 160 lb . $;$ constructed by, Sir
Christo
and Co., Christopher Furness, Westgar
Limited; launch, January 17th.

THE PATENT JOURNAL

Application for Letters Patent

When inventions have been "communicated" the
namme and address of the communicating party are printed in italices.
29. Assistive the Propusion of Cycles, G. B. H Austin, London.
330. TRANsantrivo Motios in Traction Exaines, Marshall, London.
331. Cssits Mrxis, H. Edmunds, London. London. 333. Cois-FRered Apparatus, A. M. Argles, London.
334. Gas Governors, S. Chandler, jun, J. Chandier, and Kirkham, Hulett, and Chandler, London.
335. ELIMISATING Iaverities from METALLIC Sole

 342. PRivtivo Machinge, J. R. Corbin, London.
343. NvT Locks, O. OSulivan and E. G. Boardman
London.

 London.

sth January, 1900.

350. Apparatus for Physical Exercise, J. Robinson,
 Manchester.
351. Isvecrons, T. H. White, Manchester.
352. Distulution of SuALE Coal, A. Ramage, Glas.
 35\%. Pootalale Cabinets for Baths, S. Morrison
353. Bgawind Cues, w. Warburton and r. Theaker Sheffield
354. Bevvel Protractor, A. B. and H. B. Barlow

Double Link Detachable Chaid, A. H
London.

James, London.
36G. GENERATING Acktylene Gas, M. Lieske, London

 Renno, Loudon

 Apraratus for Filtering oil, J. and J. r.

384
355
356
385
388
380
F
F.
390
391.
39.
 PUMPs, 0 . Beckmanne Len, London.

Drivino Ge Cund

London.
London.
395. PRodecing Multiple Pictures, w. Caelius,
Mondon. Mrse, M. Behrendt, London.
397. Mwimsiva Geve, Emerich
Zilahi, London.
398. Cover Fastentinas for Bottles, I. P. Doolittle,
London.

400. LAMPS, C. A. Lee, London.

 403. Machines for Cutine Stone, de., S. Holgate

chesterical Instrumenis, dc., S. Howard, Man-
cos. Photron

 and The Linlithgow Oil Company, Límited, Giasgow
409. Moovodno Botrle Stopres, A. B. Mclean
10. Apparatus for Producina Gas, E. J. Duff, Glas
gow.
11. Aur,

Maticolly
Bradord.
HLIGHT APPA
412. Flashioht Apparatus, O. Giese, Glaggow,
41. ARRSTINo the Motion of VEssis, H. Simpson,

Lis Fixinos for Fitted Woodwork, A. J. Norris
 London.
417. Amovord Road Carrigess, T. and H. Fenwick,
London.
Lis. BEndon.
ERDTEADs, L. Dutriez, London.
surrey. many. Miking Sosp Bubless, G. Krufft, Barmen, Ger
t2l 22. Applinace for Use in Drawing, J. A. Jones t23. Renceritacle for Holding Articless, T. H. Percival,
 and A. J. Clirk, London.
25. Bersiks, H. C. Woodworth and B. G. Spiller
2. Lis. Apparastus for Elevating Materials, J. Fish burn, Londou.
27. ESAMELIM Prockss, S. S. Bromhead.-(c. I.
 Le. Boon, J. J. Hartopp, London, Li. Fondon. . Exws, F . Beck, London. HS, J. A. Prestwieh, .ondon. Automatic Mixise Miles, A. and A. Simon,

 London.
43S. Con- Frerd Delivery Apparatus, F. E. Fensom,
London.
Monnal Coalemining Machinss, H. Ebert, Londonermical Sockets, L. M. Chapman and J. M.
Gelatt, Loudon
H. Safkri vaviss, J. W. Mackenzie.-

 Posp, E. de G. Whames, London. Conrp, E. de G. Whomes, London.
Conaisation Tool for Usk of Excinkrs, E . Jones, Lind Prootector for Hat or Bonset Pin, R. Chidley, Lis. Aton London. H. Cole, A. H. Waters, and H. Lowe, Birmingham. $\operatorname{singm-Pressure~Pumps,~J.~E.~L.~Ogden,~}$
L. ondon.
REidLatiso the Supply of Air, F. Pinther,
Washina Plates, Dishes, \&c., A. M. Mills,

 1. 5 . Pancon
rand P. W. Moran,
\qquad
Cyclists' Repair Requisitrs, de., H. Berbyn

Ca., Germany.). Thames
this skerive Traces to Thils, P. R. J. Willis.- $(A$. 636. Ficiututisa the Escapp of Gas, W.J. Wells and
 Londonias for ELEctric Light, B. M. Flether,
Ls. SADDLEs, J. Seott, London.
69. GLass Cotrers, B. J. R. Mills.-(c. Degon,

 Leeazar, France.) Irse from Orss, G. Harrison.-
 . RAIL Jonsts, E. Ling and C. F. Liegwarth,
 Ondon.
Lhar-provecriva GLass, G. Moffat and E. J.
 Clutch Mechaniss, R. Tingey and Miliner safe

 Londo
LS3. TRE
S3. Treanterest of Complex Ores, F. Ellershausen,
London.
London.
S4. Appliances for Savisa Life, G. A. Logsdail,
London.

9 th January, 1900.
S7. Band.saw Mechanise, J. W. King, London.
S88. TVRstiLe, J. H. Winson and F. B. Tussaud,
London.
Locn.
Lo.ing earth Contacts, M. J. Myers,

ussex.
TRovsre Strgtchers, A. Doman, Dudley.
HTPR
 lin. rmingham.
Retrilima ing Place Piss and Studs, A. G. Strong, Sasin Locks for Wisdows, H. C. Pruce, Bir-
Tornivo Machinery Spindles, G. Hayhunst,

Couplises for rallway Wagoss, J. Mallon,
hester
Fhaster. Printina, J. Galbraith and W. McW.
trie, Glasgow.
Wisplso Yary, J. T. Haworth, T. C. Usher, and
E. Hodgson, Halifax.

Halifax.
O4. Hoskr Costrolled by Frictios, E. J. Smallcombe,
Manchester.
${ }^{30} 50$. Hanb-cliprisa Machises, se., J. Dumachie,
 Tyne.
Biss, A. Clarke, Birmingham.
sos. TuIE, W. W. Gravill, heeds.
cheeterixa Yarv, J. Major and T. J. Wood, Man-
 Si. Buskres, s. B. Morse, L.ondon.
Bil. WATcurs, J. A. Lumd, Landon:

London, Wisolesa of Loosss, J., A., and H. Ryo,

 Hedbavny, London,
522. Foodyb. Jonsts for Shekt Metal, T. L. Carbone,
London.

 530. Chioroctarbonic Etures, he Traibana,

 533. CARPRMTERE

 Liverpool.
M. WAshmo and Disivfecive Ciofurs, H. Tipper
and A. MeAllister, Manchester. 54. THitwe Allister, Manchester.

10ht Janamiry, 1900.
Sce. Shot or Blow-hievre Chavaivo Game, S. Cooke, Birroingham.
Dut.
Minkther, W. H. Clans and A. Rée,

 Woolston, Hakts.
TJT. ExTRSMILLE TABLEs, A. J. Johnson, Kingston-on-
Thames.
Titection White Letiserise, J. R. Wigham,
Dullin. STh, Disisfrgetants, J. S. C. Legge and T. P. R. Brad-
shaw, Drumcondra, Co. Dubline

 Gst. Fugtexpr for Len
London.

 Bradiond. Covilso, A. W., J. A., and H. N. Bray,
Sss. Wano.
Manhester.
 seorwod, Capire for Brick Pressess, w. H. Bartans,
Bradforid.

 59.4. Macinings for Cleniiva Bottles, J. W. Nathan,
595. Poondetion of Carbides, J. de Burgue and R.
 597. Firg.escaprs, M. Mtandish, Kingston-on-Thames.
5s. Mrecso Machives, J. C. Hall, Kingston-on.
Thames. ${ }^{\text {Tha }}$ Thames. Clipsible Table, O. Imray.-(6. F. Beyte, Poo. Protbetina Walls of Fursacess, G. Claude,
London. London.
Col. Hadiverger Brakes for WAcoss, D. J. Morgan, London.
Londive for Water Heatres, J. Winterflood,
London,
coss. Suprort for Ckiliscs, A. Hurum, Berlin, Ger-
many. mot. Baid Closers, E. J. Smith and C. A. Baker, A Reckomir" for Monkr, M. E. Alaverdoff, London.

 aio. Tkiburapuit for Usk on Sutrs, C. F. Cronheimer ail. INon.
London.
ine. Laspr for Cookivi Purposes, J. C. Becker, Man-

London. Lodis Checkina Rechipt of Moxex, J. R. Layton G10. Shigen. for Protectivo Ansausitiox, F. G. Cooke,
Liondon Lindin.
6li. WRapers for Exclosisg Butier, \&c., H. Rose,

 London,
63. Carmers for Electric Conductors, B. F. Black, 624. Makive Soapd for Sizive Paprr, C. J. Rähr (i2.) Gilovers for Washiva Cloths, G. F. Steinlechner wezi. Simizl for Mumary Purposes, r. C. Steed,
 62s. STonixa Cycise, C. and G. Maurer and E. Gloor L2.) Crcuss, J. G. L.orrain.-(T, H. Glechlill, Laited 630. Apprearvs for Convective Mrikrs, J. R. Dick and The Reavon Manufacturing Company, Limited
and
London. 631. Foor Protrctor for Padoleres, H. Stewart, (13. Bundon BEns, H. J. Haddan.-(f. Weelinagtoa, Unitmd 633. Cratavishes with Liquid Packiva, I. Bayer,

635. But w, How Janaury, 190

(33.) Sasni Cord Hol.drr, J. Brown,
 L.iverpool.

Glisgow. Haskes. R. Douglas, Glasgow,

it. LiAprer Morions for Looms, W. Slater, joun., and
 Robertson, Glasgow.
Coventry. ${ }^{6}$ i. Bristivin

Parker, Manchster.

 London. GSS. Jicker for Mkdcal Purboses, C. von Hillem
Flinsch, Loondon.
 mi. Telephoye Appratis, wis
 London.
Ges. Diviva GRar for Crcless, C. W. Jesty and J. E
Sith Smith, London,
G6. Brecen
MkCuxisM
 London.
G6F. Machings for Reostrerinc Votrs, A. F. Bardwell, Lotidon, Fame-maiva Apparatis, C. T. Atkinson Ge9. Andestale Mticic Stools, C. C. Bender,

 aic. Coatisa P. Anstic Bodiss with Metal, J. A. Dily
 6is. A Non - Rephleale bottle, W. T. Nuttall,
hTon. Rantway Switches, w. F. Burr, Kingston-on Thames. ini. Apparatus for Loadina Ordnance, r. Matthews, is2. PkN CLemers, V. I. Fceny.-(R. W. Pope

 Liondon.
csi. Devicers for Plativo Machines, c. Schurmann is7. Driving Apparatus by Friction, A. D. Klaber,

 London.
g90. Protoraph Frames, de., G. H. Stepney

695. Madertic Cut-outs, E. Andreas, London.
696 , DENTAL BITE-FRAMEs, A. F. Benson, London.

69\%. Bellet-prcor Strel Breastwork, C. Young
London.
 G99. UTuisise Stena, G. G. M. Hardingham.-(F. H. T, Willitit, Empt.)
sp, C. Jumg, A. Brecher 7in. Convinskerks, J. Groivelle and H. Ampembourg,

 Tos. Gexsral
 man, Sicalen). F. Zehetmayr, London
 Mack, London. . W. C. Hooker and K. R. Marks,
70S. ANIMAL TRAP, W.

10. Treatinc Sulpiwe Ones, G. E. and A. r. Dati T11. Book, C. I. Benedict, London.
712. Ioxition Ges for Explosive
712. Ioxrion GERA for Explosive Esoinse, F. R.
Simmas and R. Bosch, London

SELECTED AMERICAN PATENTS.
 War Cars, W: F.
Aughat 13il, 189 s .
Guiniw,-The combination with a milway car having
a axle provided with a driving pulley, of a dynam naxie provided with a driving pulley, of a dynam
secured to said car anove said driving pulley and on one side therof, said dymamo having a pulley,
tightoner pulley ammued on the opposite side of sai driving pulley and nbove the same, means wherel)

said tightener pulley can be adjusted towawl and
 Tacing the lower portion of the driving pulley, and a
driving belt wrapped around the driving pulley
 634,654. Gas Exaver, a. A. Whitromul, Frominapham

 haviny cutoffs ford ooutrolling said ports and ale
provided with relief chamels communicating

634,654

at one end with the explosion chamber of the
cylinder nand adapted at the other end for conmunnication alteriately, nud at times with said exthanst
passuque continmously of the inward movement of the
 reciprocatory path of the piston and estanilisis hinter
mittent engygenent of the relief channels and exhmus mittent engagement of the relief chamnels and exhaust
passage, substantianly as specified.
 Claim,-(1) In a hydraulic dredge, the combination
of a boat ; excanating mechusism adatpted to cut
nerose the width of the

each having an air and water-tight jacket securely
attached to it, substantially as aud for the purpose set forth. (2) In combination with a baot and its discharge pipe, the posts or anchors 1 , and the rope or cable m
secured to said posts and passing through an eye secured to said posts and passing through an eye ? ach being provided with a semi-cylindrical air and
water-tight jacket, said jacket being securely united water-tight
634,865. Dredige, L. W. Bates, Chicago, Ill.-Filed Craim.- - (1), In a dredge the combination of a suction
pipe : a cutter carried by said pipe ; and a buogant pipe; a cutter carried by said pipe; and a buoyant
ladder for directly supporting and controlling the position of the suction pipe, substantially as and for the
a hull or boat, in buogant ladder for currying the cuitting
or excavating devices; means for controlling the lung or excovating devices; means for controlling the they.
ancy of the Inder; mieans for effecting the foeding movement of the lidder in the cut an extension ann projecting rearwardly from the hull or boat ; a hollow
apuld or spuds carried at the outer end of ssid aurn

each provided with an air chamber or tank adjustable and air chambers: : electric motors poraunted upon the dredge : and electric conductor for supplying current
to suid montorx ; a buoyant support for sid cable : and
 634,954. Wheri Tire, T. McKianoon and J. Priagle Claim. In a whee tire, the combination with the
felloe or rim provided with a series of hemispherical 634,954

) 7

cavities or cups and an outer tread ring provided with a corresponding serics of cavities or cups, of a series of
hollow rubber balls armanged within and between said forth.
 Crain. In I feeding device for pulverisers, the com-
bination of a feed chamber having an opening therein bination of a feed chamber having an opening thereiu
at the upper end thereof thromgh which material is
introduced, a rotatable feed table mounted in said

chamber and adjustable toward and away from the feed opening thercin, means for adjusting said table,
and a shear adjustable vertically with said table buit held from rotation, whereby the shear will remove
material from said table, substantially as set forth.
 Claiz. - (1) Apparatus for casting, substantially
cylindrical rolls with a practically uniform depth of cylindrical rolls with a practically uniform depth of
chill consisting of a chill mould the surface of whose
matrix cavity is chatrix cavity is sumstantially that of a frustum of a
mone, substantially as described. (o) The method of

making substantially cylindrical rolls, consisting in
casting the metal in a chill mould having a frustoconical natrix cavity, with its larger end upward, and
cooling the outer portion of the cast roll in contact cooling the outer portion of the cast roll in contact
with said mould in such a way as to cause the larger end of the roll to contract to substantially the same final diameter as that of the smaller end, substantially

